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A suitable coupling of the inflaton ’ to a vector kinetic term F2 gives frozen and scale invariant vector

perturbations. We compute the cosmological perturbations � that result from such coupling by taking into

account the classical vector field that unavoidably gets generated at large scales during inflation. This

generically results in a too-anisotropic power spectrum of � . Specifically, the anisotropy exceeds the 1%

level (10% level) if inflation lasts �5 e-folds (�50 e-folds) more than the minimal amount required to

produce the cosmic microwave background modes. This conclusion applies, among others, to the

application of this mechanism for magnetogenesis, for anisotropic inflation, and for the generation of

anisotropic perturbations at the end of inflation through a waterfall field coupled to the vector (in this case,

the unavoidable contribution that we obtain is effective all throughout inflation, and it is independent of

the waterfall field). For a tuned duration of inflation, a 1% (10%) anisotropy in the power spectrum

corresponds to an anisotropic bispectrum which is enhanced like the local one in the squeezed limit, and

with an effective local fNL � 3ð�30Þ. More in general, a significant anisotropy of the perturbations may

be a natural outcome of all models that sustain higher than 0 spin fields during inflation.

DOI: 10.1103/PhysRevD.87.023504 PACS numbers: 98.80.Cq

I. INTRODUCTION

In this work we compute the power spectrum and the
bispectrum of the cosmological curvature perturbations �
under the assumptions that

(1) The dominant contribution to � is provided by a
slowly rolling inflaton field.

(2) The inflaton is coupled to the kinetic term of a
vector field so as to produce a nearly scale invariant
and frozen spectrum of vector perturbations at large
scales.

These assumptions are realized in models of magneto-
genesis and of statistical anisotropy of the cosmological
perturbations. Despite the fact that the phenomenology of
these models has been heavily studied in the literature, we
obtain novel and general results, since, for the first time to
our knowledge, we simultaneously take into account both
the facts that (i) a strong contribution to the anisotropy (both
in the power spectrum and in the bispectrum of �) results
from the same coupling characterized in 2, and (ii) the
inflationary expansion that took place before the CMB
modes left the horizon unavoidably results in a classical
background vector field that is homogeneous from the point
of view of the CMB modes, but breaks isotropy.

Interest for models that can produce vector fields during
inflation has been generated by the inference of intergalac-
tic magnetic fields and by claims of broken statistical
invariance of the CMB modes. Intergalactic magnetic
fields have been inferred by an apparent lack of GeV scale
� rays coming from blazars that produce TeV scale � rays;
in standard models, part of the higher energy � rays should
be converted in lower energy secondaries (which then

generate the lower energy � rays) by their interaction
with the intergalactic medium. The nonobservation of the
GeV scale � rays has been explained as intergalactic
magnetic fields that deflect the secondaries [1].
Broken statistical isotropy of the CMB perturbations

has instead been found in the studies [2–4] of the WMAP
data. While the overall WMAP results [5] strongly support
the inflationary paradigm, the above studies have shown
that the statistics of the WMAP anisotropies does not
possess full rotational invariance. Specifically, under the
parametrization [6]

P� ð ~kÞ ¼ PðkÞ½1þ g�cos2�k̂;V̂�; (1)

(which can be thought of as an expansion series of the
power spectrum in the limit of small anisotropy, truncated
at the quadruple term) the WMAP data give g� ¼ 0:29�
0:031 [4]. The ‘‘privileged’’ direction V̂ lies very close to
the ecliptic poles. This strongly suggests a systematical
origin of the effect, and it has been shown in Refs. [3,7]
that the instrument beam asymmetry can account for it.
Fortunately, the Planck satellite will soon provide an
independent test of this with an expected sensitivity to a
quadrupolar anisotropy in the power spectrum as small as
0.5% at 1� [8,9]. On different scales (and marginalizing

over the preferred direction V̂) large-scale structure data
analysis constrains �0:41< g� < 0:38 at 95% C.L. [10]
(the amplitude of the anisotropy may, in general, be scale
dependent [6]).
Broken rotational invariance could be the result of an-

isotropic inflation [11]. It is, however, nontrivial to realize
this, since anisotropic spaces typically rapidly isotropize in
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the presence of a cosmological constant [12].1 Vector fields
may, in principle, support the anisotropy.2 In this case, the
problem of preserving the anisotropy translates into con-
trasting the quick decrease of the vector energy that takes
place for a minimalLA ¼ �F2=4. To our knowledge, four
distinct classes of models have been constructed to achieve
this; the first three of them are characterized by (i) a vector
potential VðA2Þ [15], (ii) a fixed vector vacuum expectation
value (VEV) due to a Lagrange multiplier [6], and (iii) a
vector coupling A2R to the scalar curvature R [16,17]. This
last mechanism was originally employed for magnetogen-
esis in Ref. [18]. These three proposals break the U(1)
symmetry of the minimal action and lead to an additional
degree of freedom, the longitudinal vector polarization,
that in all of these models turns out to be a ghost [19].3

The fourth class is, instead, U(1) invariant and free of
ghost instabilities. It is characterized by a function of a
scalar inflaton ’ multiplying the vector kinetic term,

L ¼ � I2ð’Þ
4

F��F
��: (2)

A suitably chosen evolution for hIi during inflation
results in a (nearly) constant vector energy density and,
therefore, in a prolonged anisotropic expansion [21].4

Also, this mechanism was originally suggested for

magnetogenesis [27] (this application is, however, prob-
lematic [28], as we discuss below). For anisotropic expan-
sion, a homogeneous vector field pointing along a given
direction corresponds to an ‘‘electric’’ component, and (2)
enjoys an ‘‘electric’’ $ ‘‘magnetic’’ duality under I2 $ 1

I2

[29]. A constant ‘‘electric’’ component is also produced
through (2) in the mechanism of Ref. [30], in which the
vector field is coupled to the waterfall field � of hybrid
inflation through a �2A2 interaction. Due to this, the gauge
field provides a contribution to the mass of �, concurring to
determine themoment at which inflation ends, and—thanks
to this—contributing to the curvature perturbation. The
waterfall field acts as the medium through which the an-
isotropy inA� is communicated to the inflation; however, as

we shall see, the communication already occurs through the
very same interaction (2) that supports the vector field.
This unavoidable effect has not been accounted for either
in Ref. [30] or in the related works [31–35].
The linearized theory of cosmological perturbations in

the anisotropic inflationary model of Ref. [21] was worked
out in Refs. [36–39]. The classical equations of motion of
the model admit an attractor solution [21,40] characterized

by a nonvanishing ‘‘electric’’ component ~Eð0Þ. A 10% level

anisotropy (jg�j ¼ Oð0:1Þ) is found for an energy j ~Eð0Þj2=2
which is about 8 orders of magnitude smaller than the
inflaton potential [37–39]. Therefore, the vector energy
needs to be highly subdominant not to produce a too-strong
anisotropy. The work [41] computed instead the cosmolo-
gical perturbations in the case in which (2) provides scale
invariant ‘‘magnetic’’ components of the vector field, as in
the magnetogenesis application [27,42]. Cosmological
applications in this context have also been studied in
Ref. [43]. Studies of the cosmological perturbations in
Refs. [27,42] start from the point of view that the statistics
of the generated magnetic field is isotropic, and therefore
obtain statistical isotropic results. In short, in the magneto-
genesis context [27,42] one does not have the analogous

of the attractor solution ~Eð0Þ of the classical equations of
motion of the anisotropic inflationary model [21] (the cor-

responding ~Bð0Þ vanishes in Refs. [27,42]), and therefore it
is simply assumed that g� ¼ 0 in this case.
However, in Refs. [21,30] (respectively, in Refs. [27,42]),

the CMB perturbations are affected by a classical ‘‘elec-

tric’’ field ~Eclassical (respectively, classical ‘‘magnetic’’ field
~Bclassical) which is, in general, different from the value given
by the classical equations of motion. Indeed, such mecha-
nisms are designed to result in a nearly scale invariant
spectrum for the ‘‘electric’’ (respectively, ‘‘magnetic’’)
perturbations. Let us denote by Ntot the number of e-folds
of inflation. The modes that left the horizon in the first
Ntot � N e-folds of inflation add up as a classical back-
ground from the point of view of the modes that leave the
horizon in the final N e-folds. This is well appreciated for
scalar fields during inflation [44]. The modes that leave the

1See Ref. [13] for the extension of the study of Ref. [12] to
slow-roll inflation.

2Vector fields can play a nontrivial role for the inflationary
dynamics also in the isotropic case [14].

3The field provides a negative contribution to the energy
density, giving an instability of the vacuum in the early universe;
the vacuum decays into pairs of normal particles þ ghosts; the
decay rate rapidly grows (and nominally UV diverges) for
momenta greater than the ghost mass. This requires a cutoff of
the theory, with the idea that the ghost should disappear above it.
The problem with those models is that the ghost originates from
an OðHÞ mass term, and therefore the regulating theory—
assuming that it exists (which is, by itself, not granted)—must
involve operators that manifest themselves already at that scale,
thus affecting all phenomenological predictions derived from
these models (as they would strongly change the evolution of the
modes throughout the entire short wavelength regime).
Moreover, in several of these realizations, the solutions of the
linearized equations of motion diverge [19], signaling an insta-
bility already at the linearized level. Reference [20] appears to
agree with some of these statements, but it then claims that ‘‘it
remains to be seen whether the full theory is sick.’’ As we have
just discussed, we believe that this claim is too optimistic, and
that, at the very least, the phenomenological predictions derived
for these models (all based on the stability of the standard
linearized theory, and disregarding the ghost) are unreliable.

4See Ref. [22] for models of anisotropic inflation that employ
the idea of Ref. [21]. Also, an interesting model of a vector
curvaton [23] employing a varying massm and kinetic function I
has been proposed in Ref. [24] and studied in Refs. [25,26]. This
model also admits an attractor solution where I scales as in the
model studied here. In particular, Ref. [26] demonstrated that
treating I andm as functions of a quantum inflaton field results in
a different phenomenology than just treating them as classical
external functions.
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horizon add up in a ‘‘random walk’’ manner to form a
classical background that is experienced as homogeneous
by modes of smaller size. A homogeneous classical vector
is a field that points in a given direction (that, in a given
realization of the model, is determined by the random
addition of the superhorizon modes) that breaks isotropy.
In the magnetogenesis application, the effects of this energy

h ~B2i=2 on the background evolution have been well appre-
ciated (see, among others, Refs. [28,45,46]). We point out
that this energy is associated with a classical vector field,
and in this work we show that this vector imprints a strong
anisotropy to the power spectrum and bispectrum of � in all
the applications of (2).

Specifically, we show that the natural value of g� asso-
ciated with these modes is �0:1 (respectively, �0:01),
if inflation lasted about 50 e-folds (respectively, about
5 e-folds) more than the final �60 e-folds necessary to
generate the CMB modes. Generic models of slow-roll
inflation are characterized by a much longer duration of
inflation, and, therefore, embedding the mechanism (2) in
one of these models generically results in too-anisotropic
perturbations. For a tuned duration of inflation the mecha-
nism becomes extremely predictive since there is essen-
tially no free parameter in (2). The only relevant quantity is
the magnitude of the classical vector field present when the
CMB modes left the horizon, and that can be ‘‘traded’’ for
g�. Therefore, any given value of g� should be associated
with firm predictions for other observables.

There are two such predictions that immediately come to
mind: the first is a Temperature B-polarization (TB) and an
E-polarization B-polarization (EB) mixing in the CMB data
[47], resulting from the coupling between scalar and tensor
modes that, due to the anisotropy, takes place already in the
linearized theory [11,48–50]. The second is a directionality
dependence in the bispectrum (and, in principle, in the
higher point correlation functions), with a clear correlation
with the one in the power spectrum. The bispectrum result-
ing from (2) is computed for the first time in the present
work.5 We show that the isotropic power spectrum and
bispectrumofRef. [41] are in fact the theoretical expectation
(i.e., the theoretical average over several realizations) for the
anisotropic signals that we obtain here, and which are the
real quantities that are produced by any single realization of
(2). Quite interestingly, an observable g� produced from (2)
is associated with an observable bispectrum which is
enhanced like the local one in the squeezed limit, and which
has a characteristic shape and anisotropy (immediately cor-
related with the one in the power spectrum).

The paper is organized as follows. In Sec. II we study the
spectrum of the vector field perturbations obtained from
(2), paying particular attention to the functions I that result
in scale invariant vector modes. In this section we also

further discuss the role of the large-wavelength modes in
determining the classical background anisotropy that
affects modes of CMB wavelengths. In Sec. III we study
how these modes �A are coupled to the modes of �
through (2). The power spectrum and bispectrum of � are
computed, respectively, in Secs. IV and V. There, we show
explicitly how the sum of the long-wavelength modes adds
up with the solution of the classical equations of motion

to determine the physical value of ~Eclassical (or ~Bclassical)
observed by the CMB modes. The resulting phenomenol-
ogy is reviewed in Sec. VI. In Sec. VII we discuss our
results, which generally apply to all the realizations of (2)
that give a nearly scale invariant vector field, in the context
of anisotropic inflation [21], of the waterfall mechanism
[30], and of magnetogenesis [27,42]. A concluding discus-
sion is given in Sec. VIII.

II. A SCALE INVARIANT VECTOR FIELD

Let us consider a locally U(1) invariant vector field with
Lagrangian (2). Reference [27] identified this field with the
electromagnetic one, assuming that I becomes a constant
after inflation (in this case, we can simply normalize
Iend ¼ 1). The function I enters in the definition of the
‘‘electric’’ and ‘‘magnetic’’ components

Ei ¼ �hIi
a2

A0
i; Bi ¼ hIi

a2
	ijk@jAk; (3)

(we denote by h� � �i the vacuum expectation value of a
field, or of a function), where a prime denotes a derivative
with respect to conformal time 
, and a is the scale factor
of the universe, ds2 ¼ a2ð
Þð�d
2 þ d~x2Þ. With the nota-
tion (3), the physical energy density in the vector field

assumes the conventional expression � ¼ j ~Ej2þj ~Bj2
2 at all

times. In this work, apart from where we explicitly refer
to the magnetogenesis application [27], we do not neces-
sarily identify the vector field with our photon, but we keep
the ‘‘electromagnetic’’ notation (3) for convenience. The
classical equations of motion obtained from (2) are solved

by a homogeneous ‘‘electric’’ field ~Eð0Þ / 1
a2hIi . While the

standard case, I ¼ const, corresponds to �E / a�4, a con-
stant ‘‘electric’’ energy is obtained if hIi / a�2.
A desired time evolution for hIi can be obtained for

several functions Ið’Þ, provided they are suitably arranged
with the inflaton potential [42]. Indeed,

a / exp

�
�

Z d’ffiffiffiffiffiffiffiffiffiffiffiffiffi
2	ð’Þp

Mp

�
; (4)

where we have introduced the slow-roll parameter

	 � M2
p

2

�
V0

V

�
2

(5)

(a prime on a function here denotes a derivative with
respect to its argument) and where a monotonic slow-roll
inflaton evolution with _’< 0 is assumed. Therefore, a
desired behavior hIi ¼ fðaÞ can be obtained by choosing

5For previous works on anisotropic non-Gaussianity, see
Refs. [30–34,51–61].
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the functional form of I to coincide with that function f of
the right-hand side of (4):

I ¼ I0 exp

�
�
Z nd’ffiffiffiffiffiffiffiffiffiffiffiffiffi

2	ð’Þp
Mp

�
) hIi / an; (6)

where I0 can be chosen so that I ¼ 1 after inflation. As a
concrete example, the choice

V ¼ 1

2
m2’2; I ¼ e

c’2

2M2
p (7)

results in hIi / a�2c. We thus see that a constant ~Eð0Þ is
achieved for c ¼ 1. Many other choices of V and I are
clearly possible, provided that their functional forms are
related to each other to produce through (4) the desired
time dependence for hIi [42].

A. Production of vector fluctuations from the I2F2 term

It is well known that, for I ¼ 1, the vector field is
conformally coupled to a FRW background, and so its
fluctuations are not excited by the expansion of the
universe. On the contrary, as we now review, the choice

hIi / a�2 that allows for a constant ~Eð0Þ solution also excites
the vector fluctuations to produce a classical and scale
invariant spectrum of ‘‘electric’’ fluctuations at large scales.

We quantize the vector field in the Coulomb gauge
A0 ¼ 0,

~A ¼ ~Að0Þ þ X
�¼�

Z d3k

ð2Þ3=2 ei
~k ~x ~	�ð ~kÞ V̂�

hIi
V̂ � a�ð ~kÞV�ðkÞ þ ay�ð� ~kÞV�

�ðkÞ;
(8)

where ~	� are circular polarization vectors satisfying

the relations ~k � ~	�ð ~kÞ¼0, ~k� ~	�ð ~kÞ ¼ 	ik ~	�ð ~kÞ,
~	�ð� ~kÞ ¼ ~	�ð ~kÞ�, and normalized according to ~	�ð ~kÞ� �
~	�0 ð ~kÞ¼���0 . The annihilation/creation operators satisfy

½a�ð ~kÞ;ay�0 ð ~k0Þ�¼���0�ð3Þð ~k� ~k0Þ.
The mode functions satisfy the evolution equation

V 00
� þ

�
k2 � hIi00

hIi
�
V� ¼ 0; (9)

where a prime denotes a derivative with respect to confor-
mal time 
. For hIi / a�2 / 
2 (we disregard slow-roll
corrections, so that a ¼ � 1

H
 ), the properly normalized

vector modes are

V� ’ 1þ ik
ffiffiffi
2

p
k3=2


e�ik
: (10)

We Fourier transform the ‘‘electric’’ and ‘‘magnetic’’
fields (3),

~E ¼ ~Eð0Þ þ
Z d3k

ð2Þ3=2 ei
~k ~x� ~Eð ~kÞ

~B ¼
Z d3k

ð2Þ3=2 ei
~k ~x� ~Bð ~kÞ:

(11)

Inserting the solutions (10) in (3) we see that the ‘‘elec-
tric’’ and ‘‘magnetic’’ fields become classical (commuting)
fields at superhorizon scales,

� ~Eð ~kÞ¼X
�

Ek ~	�ð ~kÞ½a�ð ~kÞþay�ð� ~kÞ�

� ~Bð ~kÞ¼X
�

Bk� ~	�ð ~kÞ½a�ð ~kÞþay�ð� ~kÞ�

Ek’ 3H2ffiffiffi
2

p
k3=2

; Bk’ H2
ffiffiffi
2

p
k1=2

; �k

1:

(12)

Namely, the ‘‘electric’’ field fluctuations are nearly con-
stant outside the horizon, while the ‘‘magnetic’’ field fluc-
tuations rapidly decrease. As we mentioned, the ‘‘electric’’
field fluctuations are scale invariant (slow-roll corrections
will slightly tilt their spectrum; however, we disregard
slow-roll corrections in this work whenever compared
with a nonvanishing expression at 0th order in slow-roll).
Finally, we note that this mechanism enjoys a duality

symmetry hIi $ 1
hIi . Under this exchange, the ‘‘electric’’

and ‘‘magnetic’’ modes interchange their role, j� ~Ej2 $
j� ~Bj2. The original mechanism [27] aims to produce fluc-
tuations with scale invariant magnetic energy, and therefore
has hIi / a2 during inflation. This corresponds to choosing
c ¼ �1 in the example (7). For definiteness, our explicit
computations are done for hIi / a�2. However, our results
can be readily extended to the context of Ref. [27] by
exploiting this duality.

B. Classical anisotropy when the CMB modes
leave the horizon

We denote by ~Eð0Þ the ‘‘electric’’ field obtained from
solving the classical equations of motion of a given model.
For instance, as we discuss in Sec. VII A, the classical
equations of motion of the anisotropic inflationary model
[21], characterized by c ’ 1 in (7), admit an attractor

solution with a nearly constant ~Eð0Þ.
We denote by ~Eclassical the classical and homogeneous

‘‘electric’’ field measured by a local observer at some time

 during inflation. We can assume that at the initial time
of inflation 
in no classical fluctuations are present, so that
~Eclassical ¼ ~Eð0Þ at 
in. However, this identification is no
longer exactly true at any later time. Indeed, at the time

 > 
in during inflation

~Eclassical ¼ ~Eð0Þ þ ~EIR; (13)

where the second quantity (IR ¼ “infrared”) denotes the

sum of all the modes � ~Ek that left the horizon between the
times 
in and 
. These modes have become classical and
are homogeneous from the point of view of a local observer
present at 
.
The same considerations apply to the ‘‘magnetic’’ com-

ponent of the vector field. For any single realization of the

mechanism (2)with hIi / a�2, the quantities ~EIR and ~BIR are
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drawn by, respectively, a Gaussian (to a very good approxi-
mation) statistics, with vanishing mean and with variance

�2
~EIR;N

¼h� ~Eð ~xÞ2i¼ 1

2

Z
IR
dkk2jEkj2’9H4

22

Z
IR

dk

k

¼9H4

22
N

�2
~BIR ¼���¼3H4

82
; (14)

where the IRmodes are those characterized bymomentum k
in the interval 1

�
in
< k< 1

�
 , and where N is the number of

e-folds of inflation from 
in and 
.
These quantities are the natural expectation for the

energy that gets progressively stored in the ‘‘electro-
magnetic’’ field during inflation,

��E;N ¼ h� ~Eð ~xÞ2i
2

’ 9H4

42
N; �B 
 ��E: (15)

This has been well appreciated in the magnetogenesis
applications of this mechanism (we remark that the role
of the ‘‘electric’’ and ‘‘magnetic’’ energy is interchanged
for hIi $ 1

hIi ). For example, Ref. [28] computed the energy

density accumulated in these superhorizon modes for all
possible values of n in the hIi/an dependence. For jnj> 2,

this energy density grows as a4ðjn=2j�1Þ (while n ¼ �2
results in � / lna ¼ N, as we have seen), until the
backreaction of this energy is no longer negligible.
Reference [45] studied the regime of strong backreaction
that takes place for n > 2. Reference [46] studied magneto-
genesis for a more general time dependence of I, imposing
as one of the conditions that the energy density in the
classical superhorizon modes remains less than that of
the inflaton.

We obtain a first limit on the total duration of inflation

Ntot by imposing that ~EIR has a negligible effect on the
background evolution. The strongest backreaction con-
straint does not actually come from ��E 
 V, but rather
from the evolution equation of the inflaton (loosely speak-
ing, it is ‘‘easier’’ for the vector field to affect the motion
of the inflaton, which is slowly rolling on a flat potential,
than the expansion rate). The corresponding condition is
��E 
 2	H2M2

p, and it is satisfied for Ntot 
 Oð107Þ [41].
The variances of the three components of ~EIR are equal

to each other,6 and equal to 1=3 of the value given in (14).
This, however, does not mean that in a given realization the
superhorizon modes add up to equal amounts in all three
directions. Indeed, the difference between different direc-
tions is drawn from the statistics

h�E2
x��E2

yi¼0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hð�E2

x��E2
yÞ2i

q
¼2h�E2

xi¼4

3
��E;N: (16)

Therefore, ��E is also the typical amount of the classical
anisotropy provided by the IR modes. This is not surprising

since, in any given realization, ~EIR is a classical vector that
points in some given direction.

Only for j ~Eð0Þj � j ~EIRj, or, equivalently, for �Eð0Þ �
��E

, the classical ‘‘electric’’ field measured by the observer

is (deterministically) given by the solution of the classical
equations of motion. If this is not the case, one should
conclude that the solution of the classical equations of
motion is unstable under quantum corrections, and one
should expect large corrections to the predictions made if

only j ~Eð0Þj is considered.7 In our computations below, both

the contributions to ~Eclassical will be accounted for (as we
will see, this amounts to considering loop contributions to
the power spectrum and the anisotropic spectrum of the
cosmological perturbations).

III. ANISOTROPIC SOURCE OF THE
COSMOLOGICAL PERTURBATIONS

As we have discussed at length in the previous section,
for the mechanism we are studying the cosmological
perturbations that we observed experienced a classical
homogeneous vector field (13) when they left the horizon.
This breaks the background isotropy, and, strictly speak-
ing, the local patch where these modes live has a Bianchi-I
geometry with residual 2d isotropy,

ds2 ¼ �dt2 þ a2ðtÞdx2 þ b2ðtÞ½dy2 þ dz2�; (17)

where, for definiteness, the x axis has been oriented along
~Eclassical.
To characterize the anisotropy, we define

�H

H
� 3ðHy �HxÞ

Hx þHy þHz

: (18)

This nearly corresponds to the mechanism of anisotropic
inflation of Ref. [21], where the model (7) has been
employed, and where it is shown that the classical equa-

tions of the model admit an anisotropic solution with �H
H ’

ðc� 1Þ	. In Ref. [21], and in the successive works [36–39]
that study the linearized perturbations of this model, it is

assumed that ~Eclassical ¼ ~Eð0Þ, while, as we have discussed,
these two quantities are, in general, different. Therefore,
this model leads to anisotropic inflation even for c ¼ 1.
Given this strong correspondence, our study has several
relations with Ref. [21], and for example, we will show that

6Actually, one can obtain a small difference proportional to the
small difference �H in the expansion rates of the different
directions. As we will see, �H=H needs to be & 10�8, and
therefore this difference is completely negligible for the present
discussion.

7Before Eq. (13), we set ~Eclassical ¼ ~Eð0Þ at the start of inflation.
We note that if this is not the case the departure of the classical
‘‘electric’’ field from the solution of the classical equation of
motion will, in general, be even greater.
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our results for the power spectrum coincide with that of

Refs. [37–39], once the value of ~Eð0Þ used there is replaced
by the full ~Eclassical (for the bispectrum instead, our result is
completely new, since the perturbations of Ref. [21] have
been so far studied only at the linearized level).

In the studies [36–39], the perturbations are separated
according to how they transform under an SO(2) rotation in
the symmetry plane orthogonal to the vector VEV, as
originally done in Refs. [11,49]. This simplifies the prob-
lem, as modes that transform differently are not coupled to
each other at the linearized level. Still, the non-FRW
background results in a very involved computation, once
the perturbations of all the fields (metric included) are
taken into account. In particular, the anisotropy does not
increase the number of physical modes, but results in
couplings between these modes that would be absent in
the FRW case [11,49]. The main result of Refs. [37–39],
which is somewhat surprising a priori, is that an aniso-

tropic parameter g� ¼ Oð0:1Þ is obtained for a �H
H ¼

Oð10�8Þ background anisotropy. Motivated by this result,
one can instead use a different approach, and perform the
standard quantization of the cosmological perturbations on
a FRW background, ignoring at zeroth order the couplings
between the different modes. Such couplings can be taken
into account as perturbative mass insertions in the in-in
formalism. This is effectively the procedure adopted in
Refs. [37,39] where they solve analytically the linearized
theory. Moreover, Ref. [39] showed that the dominant
operator that determines g� in this perturbative evaluation
is the �’� �A� coupling obtained from expanding the

vector kinetic term, and with no contribution from the
metric perturbations. This analytic approximated result is
in excellent agreement [39] with the one obtained from an
exact numerical evolution of g� (in which the full quadratic
action of all the 2d scalar modes is retained). Moreover, the
analytical and numerical results of Ref. [39] agree with
those of Refs. [37,38], respectively.

We use the same computational scheme for the bispec-
trum computation. Specifically, we disregard metric per-
turbations, and we use, in the in-in formalism, the 0th order
eigenmodes obtained from the approximate FRW quanti-
zation. The bispectrum is produced by interactions, and we
know that for slow-roll FRW inflation the interactions of
the metric perturbations produce an unobservable bispec-
trum. We will see instead that the interaction between the
vector and the scalar fields, which is encoded in the vector
kinetic term, results in a larger, and potentially observable,
signal. Reference [41] proved this explicitly for the case

of ~Eclassical ¼ 0, by solving the second order equation
for the curvature perturbation in the spatially flat gauge

� ¼ �H
’0 �’ (we recall that a prime denotes a derivative

with respect to conformal time 
, while H ¼ a0
a ). It was

shown in Ref. [41] that the contribution from the direct
vector-scalar interaction is slow-roll enhanced with respect

to that coming from the interactions of the metric. There is
no reason to expect that the relative strength of the effects
should change for an Oð10�8Þ background anisotropy.8

Therefore we retain the FRW quantization of the vector
field performed in the previous section. The remaining
perturbations (of the scalar field and of the metric) are
also quantized as in the standard FRW case. We then
expand the vector kinetic term into �A and �’. We use
the resulting interactions to determine the dominant aniso-
tropic contribution to the power spectrum of � and the
dominant contribution to the bispectrum.
Therefore, all the dominant effects arise from expanding

the only interaction term between the inflaton and the
vector field,

�L¼�a4

4

��
�I2

�’

�
�’þ1

2

�
�2I2

�’2

�
�’2þ���

�

�ðhF��iþ�F��Þ2: (19)

In a spatially flat gauge, �’ ¼ � ’0
H

� ¼ ffiffiffiffiffiffi
2	

p
Mp� .

We note that, in principle, � has additional contributions
proportional to the perturbations of the vector field.
Reference [41] showed that these contributions are com-

pletely subdominant in the case of ~Eclassical ¼ 0. We believe
that it is very natural to assume that this continues to be
the case also in the current context. Indeed, as we shall
see, �E

�’
needs to be & Oð10�8Þ during inflation; otherwise,

the power spectrum is too anisotropic. This ratio further
decreases between the end of inflation and the inflaton
decay, when the inflation field performs coherent oscill-
ations, so that �’ / a�3, while the vector kinetic term

becomes standard, and �E / a�4. If this is the case,

aend infl
areh

’ 10�10

�
Treh

109 GeV

�
4=3

�
1015 GeV

Hend infl

�
2=3

; (20)

where Treh and areh are, respectively, the temperature of the
inflation decay products and the scale factor at the inflaton
decay.We see that it is therefore natural to disregard �E and
��E at reheating. In this way, the only relevant contribution
of �A to the final curvature perturbation is the modification
of �’ induced by the vector-inflaton coupling (which is
precisely the effect that we are computing). We note that
this assumption is also made in Refs. [37–39] when they
give the power spectrum of � in the model [21].
Using the expression (6), we have, for the first two terms

in the expansion of I2,

8We note that metric perturbations are also disregarded in the
computations [30–35] of the anisotropic bispectrum through the
waterfall mechanism.
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�
@I2

@’

�
�’¼�2n

�
I2ffiffiffiffiffiffi
2	

p
Mp

�
�’¼�2nhI2i� 1

2

�
@2I2

@’2

�
�’2

¼
��

n2

	M2
p

� n

M2
p

�
1� �

2	

��
I2
�
�’2 ’2n2hI2i�2;

(21)

where � ¼ M2
p
V00
V is a slow-roll parameter, and where in

the final approximation we retained only the dominant
term in the slow-roll approximation.

We inserted these expressions in (19), taking n ¼ �2
(which corresponds to a constant ‘‘electric’’ field). We
expanded also the vector part as in (8), and we computed
the contributions to the power spectrum and the bispectrum
combining the resulting vertices. We verified that the lead-
ing diagrams do not contain interactions coming from the

second order term �2I2

�’2 (if this was not the case, we should

worry about the convergence of the I½h’i þ �’� expan-
sion). Therefore we have the two dominant / �’Að0Þ�A
and / �’�A2 interactions9

Lint�a4½4Eð0Þ
x �Ex�þ2� ~E �� ~E���Lint;1þLint;2: (22)

We note that the vector field enters in the quadratic term

Lint;1 only in the combination / 2hExi�Ex  ~E2 � ~B2 /
F��F

��. We also note that the cubic termLint;2 should also

have the term �2a4� ~B � � ~B�; this term however gives a
subdominant contribution to � with respect to the contri-
bution from the ‘‘electric’’ components, since the ‘‘elec-
tric’’ modes are much greater than the ‘‘magnetic’’ ones at
superhorizon scales—see Eq. (12)—which is where they
provide the greatest contribution to � (as discussed in
Ref. [41] and below).

We stress that, although in this section we have often
mentioned the anisotropic inflationary model [21], this
interaction Lagrangian applies to all models that verify
the two assumptions spelled out at the beginning of the
Introduction. We actually see that the precise functional
forms of I and V do not enter in (22), apart from the fact
that the relation (6) has been imposed, with n ¼ �2.
Identical results would be obtained for n ¼ 2, exploiting
the ‘‘electric’’-’’magnetic’’ duality of the mechanism. We
recall that n ¼ �2 precisely correspond to enforcing the
assumption 2. made at the beginning of the Introduction.

For the choice (7), one has n ¼ �2c. However, we stress
that (22) is valid independently of this choice.
The interaction Lagrangian (22) enters in the n-point

correlation functions through the in-in formalism relation

h�̂ ~k1
�̂ ~k2

. . . �̂ ~kn
ð
Þi

¼ X1
N¼0

ð�iÞN
Z 


d
1 . . .
Z 
N�1

d
N

� h½½. . . ½�̂ ð0Þ~k1 �̂
ð0Þ
~k2
. . . �̂ ð0Þ~kn

ð
Þ; Hintð
1Þ�; . . .�; Hintð
NÞ�i;
(23)

where in our computational schemes the quantity �̂ ð0Þ~k is the

Fourier transform of the (unperturbed) FRW quantized
field

� ð0Þ ¼
Z d3k

ð2Þ3=2 ei
~k� ~x�̂ ð0Þ~k ; �̂ ð0Þ~k � � ð0Þ~k

a ~k þ � ð0Þ�~k
ay� ~k

:

(24)

At leading order in slow-roll, we have

� ð0Þk ð
Þ ’ Hð1þ ik
Þ
2

ffiffiffi
	

p
Mpk

3=2
e�ik
: (25)

The unperturbed fields are also employed in the inter-
action Hamiltonian Hintð
Þ ¼ �R

d3xLintð
; ~xÞ. The two
terms in (22) give, respectively, rise to the two terms

Hint;1ð
Þ¼�4Eð0Þ
x

H4
4

Z
d3k�Exð
; ~kÞ�̂ ð0Þ� ~k

ð
Þ

Hint;2ð
Þ¼� 2

H4
4

Z d3kd3p

ð2Þ3=2�
~Eð
; ~kÞ �� ~Eð
; ~pÞ�̂ ð0Þ� ~k� ~p

ð
Þ:

(26)

Once inserted into (23), the two interaction terms give
rise to the leading contributions to the power spectrum and
bispectrum described by the diagrams shown, respectively,
in Figs. 1 and 2. These quantities are computed in the
following section.

FIG. 1. Leading diagrams for h�2i, with the vertices labeled as in (26).

FIG. 2. Leading diagrams for h�3i, with the vertices labeled as
in (26).

9When we perform the expansion, linear terms in the pertur-
bations are removed by the background equations of motion; we
commit a mistake by disregarding the effect of the gauge field
VEV in the background evolution, but, as we remarked, we work
in a regime where this effect is negligible.
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IV. ANISOTROPIC POWER SPECTRUM

The total power spectrum P� ð ~kÞ is related to the full

two-point correlation function (23) by

h�̂ ~k1
�̂ ~k2

i ¼ 22 �
ð3Þð ~k1 þ ~k2Þ

k31
P� ð ~k1Þ: (27)

We denote the contributions of the first and of the last
two diagrams in Fig. 1 as, respectively,

h�̂ ~k1
�̂ ~k2

i ¼ h�̂ ð0Þ~k1 �̂
ð0Þ
~k2
i þ �h�̂ ~k1

�̂ ~k2
i (28)

and, correspondingly,

P� ¼ P ð0Þ þ �P: (29)

These quantities are computed in the following
subsections.

A. Tree level contributions

The first diagram in Fig. 1 gives the (unperturbed) FRW
power spectrum

P ð0Þ ¼ H2

82	M2
p

¼ H4

42 _’2
(30)

at superhorizon scales, where the slow-roll expression (25)
has been used.

The second diagram in Fig. 1 gives the anisotropic
contribution

�h�̂ ~k1
�̂ ~k2

ð
Þij1 ¼ �
Z 



min

d
1
Z 
1


min

d
2

� h½½�̂ ð0Þ~k1 �̂
ð0Þ
~k2
ð
Þ;H int;1ð
1Þ�;H int;1ð
2Þ�i:

(31)

We are interested in the power spectrum at superhorizon
scales, kj
j 
 1. The time integral (31) is dominated by
the times for which the modes in Hintð
iÞ are also outside
the horizon (mathematically, the contribution in the sub-
horizon phase is suppressed by the oscillatory phases in the
mode functions). This condition will be relevant for setting

min (see below). As remarked before Eq. (12), in this
regime the vector field is classical and does not contribute
to the commutators. The only nontrivial elements in the
commutators are therefore

½�̂ ð0Þ~k ð
Þ; �̂ ð0Þ~k0 ð
0Þ� ¼ ð� ð0Þk ð
Þ� ð0Þ�k ð
0Þ � c:c:Þ�ð3Þð ~kþ ~k0Þ

’ �iH2½
3 � 
03�
6	M2

p

�ð3Þð ~kþ ~k0Þ; (32)

where the last result is true in the superhorizon regime. We
insert (26) into (31) and perform the commutators between

the �̂ ð0Þ fields. The two resulting � functions are employed
to perform the two integrals over momenta, leading to

�h�̂ ~k1
�̂ ~k2

ð
Þij1 ’ 4Eð0Þ2
x

9	2M4
pH

4

Y2
i¼1

Z 



min

d
i

4i

½
3 � 
3i �

� h�Exð
1; ~k1Þ�Exð
2; ~k2Þi: (33)

Requiring that the vector field in this expression is in the
superhorizon regime limits each time integral to 
i >� 1

ki
.

This sets the value of 
min in the two integrals. Using the
expressions (12), and the identity

X
�

	�;ið ~kÞ	��;jð ~kÞ ¼ �ij � k̂ik̂j: (34)

We obtain

�h�̂ ~k1
�̂ ~k2

ð
Þij1 ’ 2Eð0Þ2
x

	2M4
p

�ð3Þð ~k1 þ ~k2Þ
k31

sin2�k̂1;Êð0Þ

�
�Z 


� 1
k1

d
0


04
½
3 � 
03�

	
2
: (35)

Changing the variable y0 � 
0

 , and recalling that

�k1
 
 1, the time integral in the second line becomes

Z � 1
k1


1
dy0

y03 � 1

y04
’ ln

1

�k1

: (36)

At the end of inflation this quantity becomes Nk1 , namely,

the number of e-folds before the end of inflation at which
the modes with wavenumber k1 left the horizon. Using this
result,

�P1ð
end; ~kÞ ’ 24

	

Eð0Þ2
x

Vð’ÞN
2
kP

ð0Þsin2�k̂;Êð0Þ ; (37)

where 
end denotes the end of inflation (we assume that I
rapidly approaches 1 at the end of inflation, so that the
vector field is rapidly diluted away by the expansion, and
the power spectrum of � freezes out).
For the anisotropic inflationary model of Ref. [21],

Eq. (37) coincides with the analytic result of Refs. [37,39],
which, as we remarked, is in excellent agreement with
the full numerical computation of Refs. [38,39]. This con-
firms the validity of all the approximations that we have
performed.

B. Including the loop contribution

The expression for the loop diagram in Fig. 1 is analo-
gous to Eq. (31), withH int;2 replacingH int;1. We perform

the commutators, again keeping in mind that the time
integrals are dominated by fields in the superhorizon
regime. We obtain
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�h�̂ ~k1
�̂ ~k2

ð
Þij2 ’ 1

9	2H4M4
p

Z d3pd3q

ð2Þ3
Y2
i¼1

�
Z 



min

d
i

4i

½
3 � 
3i �h�Eið
1; ~pÞ�Ei

� ð
1; ~k1 � ~pÞ�Ejð
2; ~qÞ�Ejð
2; ~k2 � ~qÞi:
(38)

Evaluating the full correlator (disregarding the discon-
nected contraction) gives

ð�h�̂ ~k1
�̂ ~k2

ð
Þij2Þtheory

’ 9H4�ð3Þð ~k1 þ ~k2Þ
2	2M4

p

Z d3p

ð2Þ3
1þ cos2�

p̂;̂k1�p

p3j ~k1 � ~pj3

�Y2
i¼1

Z 



min

d
i

4i

½
3 � 
3i �; (39)

where also in this case we recall that the main contribution
comes from the times when all the fields are in the super-
horizon regime [for the same reasons mentioned after
Eq. (31)]. This corresponds to 
min ¼ Max½� 1

p ;� 1
j ~k1� ~pj�.

Performing the time integrals, and keeping only the loga-
rithmically enhanced term, leads to

ð�h�̂ ~k1
�̂ ~k2

ð
Þij2Þtheory

’ 9H4�ð3Þð ~k1 þ ~k2Þ
2	2M4

p

Z d3p

ð2Þ3
1þ cos2�

p̂;̂k1�p

p3j ~k1 � ~pj3 ln2

�
�
Min

�
1

�
p
;

1

�
j ~k1 � ~pj
��

: (40)

The final momentum integral naively diverges logarith-

mically at the two poles ~p ! ~0, ~k1. We need, however, to

impose that the fields � ~E in (38) were inside the horizon at
the start of inflation (or they would not be excited by the
mechanism described in the previous section). Therefore,

p; j ~k1 � ~pj>� 1

in
, where 
in denotes the conformal time

at the start of inflation. With this cutoff

�P2ð
end; ~kÞjtheory ’ 192P ð0Þ2N2
kðNtot � NkÞ: (41)

This result accounts only for the contribution of the two
poles and therefore is accurate only as long as the loga-
rithmic enhancement encoded in the last term is � 1.
For Ntot ’ Nk this last factor should be replaced by an
Oð1Þ factor. The result (41) was first derived in Ref. [41]
using the Green function method.

We note that the modes contributing to the logarithmic
enhancement are precisely the modes that left the hori-
zon during the first Ntot � NCMB e-folds of inflation, and

that contribute to the classical field ~EIR. As we discussed

after Eq. (13), this quantity adds up with the solution
~Eð0Þ of the classical equations of motion to give ~Eclassical,
which is the homogeneous and classical ‘‘electric’’ field
observed by the CMB modes. The quantity (41) is the
theoretical expectation value associated with the loop
diagram; it is the result that one would obtain if one
could average over several realizations of the mechanism
(see also Ref. [62]). However (assuming that this mecha-
nism describes our universe) the CMB modes exit the
horizon after a single realization of the first Ntot � NCMB

e-folds of inflation. They therefore are not affected by

the theoretical average hj ~EIRj2i (which is statistically

isotropic), but by the value that ~EIR happened to assume
in that single realization.
Therefore, if we want to compute the contribution of

�P2 to the power spectrum that is observed in a single
realization, we need to replace the quantum operator of
the IR modes entering in (38) with the classical Fourier

transform of ~EIR. If we do so, the expression (38) becomes

formally identical to (33), with the quantity Eð0Þ2
x � j ~Eð0Þj2

replaced by j ~EIRj2 and with �Exð
i; ~kiÞ (namely, the com-

ponent of the fluctuations along the direction of ~Eð0Þ)
replaced by the component of � ~Eð
i; ~kiÞ in the direction

of j ~EIRj2. As a consequence, the value of �P2ð
end; ~kÞ for
a single realization coincides with (37), with ~Eð0Þ replaced
by ~EIR,

�P2ð
end; ~kÞj1realization’24

	

j ~EIRj2
Vð’Þ N

2
kP

ð0Þsin2�k̂;ÊIR : (42)

Computing the theoretical expectation for this contribu-
tion amounts to replacing sin2�k̂;ÊIREIR2 with 2

3�
2
~EIR;N

. The

resulting expression coincides with (41).
We note that taking the classical IR value for one propa-

gator is equivalent to taking the classical IR value for one
of the two vector fields in the interaction HamiltonianHint;2

given in Eq. (26). This interaction term then becomes

identical to Hint;1 apart from the fact that ~Eð0Þ is replaced
by ~EIR. The two expressions then become a unique vertex

in terms of the vector ~Eclassical ¼ ~Eð0Þ þ ~EIR. This is the
expected physical result, since the CMBmodes ‘‘measure’’

the sum ~Eclassical and cannot distinguish the two compo-
nents. Even at the diagrammatic level, taking the IR limit
in the third diagram of Fig. 1 amounts to shrinking to zero
one of the propagators, and one thus recovers the second
diagram with a different external vector in the vertex
(clearly, all this discussion applies also to the bispectrum
computation). Therefore, from the last two diagrams of
Fig. 1 we obtain

�Pð
end; ~kÞ ’ 24

	

E2
classical

Vð’Þ N2
kP

ð0Þsin2�k̂;Êclassical:
(43)
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V. ANISOTROPIC BISPECTRUM

The bispectrum of � is defined as

B � ð
; ~k1; ~k2; ~k3Þ�ð3Þ
�X

i

~ki

�
¼ h�̂ ~k1

�̂ ~k2
�̂ ~k3

ð
Þi: (44)

The diagrams shown in Fig. 2 give the dominant contributions to the bispectrum. The computation is presented in the
following subsections.

A. Tree level contributions

We evaluate the contribution of the first diagram B1 as we did for �P1 in the previous subsection. We start from

h�̂ ~k1
�̂ ~k2

�̂ ~k3
ð
Þi1 ¼ i

Z
d
1d
2d
3h½½½�̂ ð0Þ~k1 �̂

ð0Þ
~k2
�̂ ð0Þ~k3

ð
Þ;H int;2ð
1Þ�;H int;1ð
2Þ�;H int;1ð
3Þ�i þ � � � ; (45)

where the dots denote two additional terms obtained by permuting the position of H int;2. Performing the commutators
between the �̂ ð0Þ fields results in

h�̂ ~k1
�̂ ~k2

�̂ ~k3
ð
Þi1 ’ 4Eð0Þ2

x

27	3H6M6
p

Y3
i¼1

Z 



min

d
i

3 � 
3i


4i

Z d3p

ð2Þ3=2 h�Exð
1; ~k1Þ�Exð
2; ~k2Þ� ~Eð
3; ~pÞ � � ~Eð
3; ~k3 � ~pÞ þ � � �i;

(46)

where dots denote two additional terms obtained by permuting ~k3 with the other two momenta. As for the diagrams
evaluated in the previous subsection, the time integrals are dominated by the times for which the mode functions are
classical and do not oscillate. For the term that is explicitly written in (46), this gives the three lower limits 
1 >� 1

k1
,


2 >� 1
k2
, and 
3 >Max½� 1

k1
;� 1

k2
� (the limit on 
3 is most easily seen after taking the expectation value). Taking the

expectation value and performing the time integral, we obtain

B1ð
end; ~kiÞ ’ 288
ffiffiffi
2

p
5=2

	

Eð0Þ2
x

Vð’ÞP
ð0Þ2

�
Nk1Nk2Min½Nk1 ; Nk2�

k31k
3
2

Ck̂1;k̂2;Êð0Þ þ 2 permutations

	
; (47)

where we have defined

Ck̂1;k̂2;V̂ � 1� cos2�k̂1;V̂ � cos2�k̂2;V̂

þ cos�k̂1;V̂ cos�k̂2;V̂ cos�k̂1;k̂2 : (48)

B. Including the loop contribution

For the second diagram in Fig. 2 we obtain

h�̂ ~k1
�̂ ~k2

�̂ ~k3
ð
endÞi2

’ 1

27	3H6M6
p

�Y3
i¼1

Z d3pi

ð2Þ3=2

�
Z
d
i


3�
3i

4i

� ~Eð
i; ~piÞ �� ~Eð
i; ~ki� ~piÞ
�
; (49)

where again we restrict the time integrals to when the
modes are outside the horizon. The full correlator gives

h�̂ ~k1
�̂ ~k2

�̂ ~k3
ð
endÞi2jtheory

’ 27H6�ð3ÞðPi
~kiÞ

	3M6
p

Z d3p

ð2Þ9=2
Y3
i¼1

Z
d
i


3 � 
3i

4i

�Qki½p̂�Qij½p̂� k1�Qjk½p̂þ k3�
p3j ~p� ~k1j3j ~pþ ~k3j3

; (50)

where we have definedQij½p̂� � �ij � p̂ip̂j and where the

time integrals are restricted to 
1 >Max½� 1
p ;� 1

j ~p� ~k1j
�,


2 >Max½� 1
j ~p� ~k1j

;� 1
j ~pþ ~k3j

�, and 
3>Max½�1
p;� 1

j ~pþ ~k3j
�.

The final momentum integral has three poles where it
naively diverges logarithmically. The integral is regulated
by the same argument used after (40), which in the present

case enforces p, jp� ~k1j, j ~pþ ~k3j>� 1

in
. Performing

the integrals gives
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B2ð
end; ~kiÞjtheory
’1152 ffiffiffi

2
p

5=2P ð0Þ3
�
Nk1Nk2Min½Nk1ðNtot�Nk1Þ;

Nk2ðNtot�Nk2Þ�
1þcos2�k̂1k̂2

k31k
3
2

þ2permutations

	
: (51)

As for (41), this result is accurate for Ntot � Nki ; if this

is not the case, the factor Ntot � Nki should be replaced by

an Oð1Þ factor. The result (51) was first derived in Ref. [41]
using the Green function method.

As for �P2, the result is dominated by the regime in
which one propagator has an IR mode. Also in this
case, the value for a single realization is obtained by
replacing the quantum operator of the IR field entering in
(49) by a classical Fourier transform. We recover an

expression formally identical to (46), with ~Eð0Þ replaced
by ~EIR. Therefore, precisely as for the power spectrum, the
total contribution of the two diagrams to the bispectrum is
given by

Bð
end; ~kiÞ ’ 288
ffiffiffi
2

p
5=2

	

j ~Eclassicalj2
Vð’Þ

� P ð0Þ2
�
Nk1Nk2Min½Nk1 ; Nk2�

k31k
3
2

� Ck̂1;k̂2;Êclassical þ 2 permut

	
; (52)

where we recall that C is given in (48).

VI. PHENOMENOLOGY

The total power spectrum is given by

P� ¼ P ð0Þ
�
1þ 24

	

E2
classical

Vð’Þ N2
kð1� cos2�k̂;Êclassical

Þ
�

(53)

corresponding to a negative g� parameter in (1),

g� ¼ � 24

	

E2
classical

Vð’Þ N2
k


�
1þ 24

	

E2
classical

Vð’Þ N2
k

�

’ � 24

	

E2
classical

Vð’Þ N2
k ; (54)

where the approximation is due to the fact that jg�j is
phenomenologically constrained to be <1.

Inverting this relation for the CMB modes, and denoting

by �Ecl
� E2

classical

2 the energy of the classical ‘‘electric’’ field

present when the CMB modes left the horizon,

�Ecl

Vð’Þ ’ 5:8� 10�9 	

0:01

jg�jCMB

0:1

�
60

NCMB

�
2

(55)

and therefore we see that even a very subdominant vector
field can produce an appreciably anisotropic power
spectrum. Conversely, this indicates that the classical
‘‘electric’’ field must be extremely subdominant not to

conflict with the phenomenological limits on the isotropy
of the power spectrum.

We recall that, in any given realization, ~Eclassical ¼
~Eð0Þ þ ~EIR, where ~Eð0Þ is the solution of the classical

equations of motion of the model, and ~EIR is drawn by a
Gaussian statistics of zero mean, and variance (14)

h ~EIR2iN ¼ 9H4

22
N: (56)

The variance grows with the number of e-folds of inflation.
It is instructive to evaluate the ratio

RN � �Ecl

��E;N

¼ j ~Eð0Þ þ ~EIRj2
h ~EIR2iN

(57)

at the moment that the CMB fluctuations left the horizon.
Combining (55) and (56), and using the observed value [5]

for the dominant term P ð0Þ ’ P� ’ 2:5� 10�9, we obtain

RNtot�NCMB
’ jg�jCMB

0:1

�
60

NCMB

�
2 37

Ntot � NCMB

: (58)

The numerator of (57) is the observed value, while the
denominator is the theoretical variance. Therefore, a value
RNtot�NCMB

� 1 should be naturally expected for this ratio.

Indeed, RNtot�NCMB

 1 indicates either that the sum of

the IR modes is unnaturally small in that realization

(i.e., j ~Eð0Þj2, j ~EIRj2 
 h ~EIR2iNtot�NCMB
), or that it unnaturally

cancels against ~Eð0Þ. Assuming a natural RNtot�NCMB
*1

realization,10

jg�jCMB * Min

�
0:1

�
NCMB

60

�
2 Ntot � NCMB

37
; 1

�
: (59)

In generic slow-roll inflationary potentials, the total dura-
tion of inflation exceeds (by much) the minimal NCMB

amount.One naturally finds an order one anisotropy in these
models.
Another important conclusion can be drawn from (58).

As it is exponentially unlikely to have j ~EIRj2 much greater

than its variance, a value RNtot�NCMB
� 1 implies that j ~Eð0Þj

is much greater than the sum of the IR modes. Only in this
case, the solution of the classical equations of motion
provides an accurate value for the classical vector field
that affects the observable curvature perturbations (as it is
typically assumed in many works). A value RNtot�NCMB

’ 1

indicates instead that the contribution of the IR modes
is no longer negligible, and that the solution of the
classical equations of motion is unstable under quantum
fluctuations (more appropriately, under the sum of the
quantum fluctuations that have become classical). We see

10Strictly speaking, Eq. (55), and those derived from it, is only
valid for jg�j<1. Avalue ofNtot�NCMB that results in a jg�j> 1
in (58) should be associated with a jg�j ¼ Oð1Þ in the natural
RNtot�NCMB

* 1 regime.
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from (58) that RNtot�NCMB
� 1 can be obtained only for

Ntot�NCMB
37.
Therefore, this mechanism can result in a jg�jCMB ’ 0:1

anisotropy for either a tuned short duration of inflation or

an unnaturally small ~Eclassical. Assuming that this is the
case, we can obtain a firm prediction from the anisotropy,
the shape, and the magnitude of the non-Gaussianity in the
model. The bispectrum from this mechanism is given in
Eq. (52). To quantify whether this bispectrum is of observ-
able magnitude, we notice that it is enhanced in the
squeezed limit precisely as the local template. We there-
fore insert (52) into the relation

B� ð
end; ~kiÞ � 3

10
ð2Þ5=2fNLP� ðkÞ2

P
i k

3Q
i k

3
i

(60)

which, for the local bispectrum template, results in a
constant flocalNL with the correct normalization [the noncon-
ventional factor of ‘‘2 dependence’’ is due to our choice
(24) for the Fourier transform]. In the squeezed limit, we
obtain

fNL’480

	

P ð0Þ2

P2
�

�Ecl

Vð’ÞNk1N
2
k2
Ck̂1;k̂2;V̂ ; k1
k2’k3; (61)

where C is given in (48). Recalling that P ð0Þ dominates
the power spectrum, using (55), and simply denoting
Nk1 ’ Nk2 � NCMB (assuming that the momenta are not

too hierarchical; this is certainly the case in the CMB
analysis), we arrive at the final estimate

fNL’26
jg�jCMB

0:1

NCMB

60

Ck̂1;k̂2;V̂
4=9

; k1
k2’k3; (62)

where the value 4=9 has been inserted in the last factor so
that this factor averages to 1 if we average over all direc-

tions of ~k1 and ~k2 ’ ~k3. This result holds independently of
the type of inflationary potential considered. In the esti-
mate (62) we have averaged over all directions, with the
assumption that this is what is done when extracting the
value of fNL from the full-sky data. The estimate (62)
indicates that a jg�j in the 0:01–0:1 range from this mecha-
nism can likely be associated with a detectable bispectrum.
A detection of a nonvanishing fNL of the local shape will
motivate a more detailed analysis, where the full shape and
the anisotropy of (52) are retained.

VII. APPLICATIONS

In the following subsections we discuss how our findings
apply to three well-studied models in which vector fields
are employed to either break statistical isotropy or to
generate primordial magnetic fields.

A. Anisotropic inflation

Reference [21] studied anisotropic inflation from the
model (7). It was shown that the classical equation of

the system admits an attractor solution characterized by
the geometry (17) and by

Eð0Þ
x ’

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3	ðc� 1Þ

p
HMp: (63)

This values corresponds to [21]

�H

H
’ 2�Eð0Þ

Vð’Þ ’
ðc� 1Þ	

c2
: (64)

The power spectrum in this model was computed in
Refs. [37–39], which, however, disregarded the contribu-

tion of ~EIR. Our computation reproduces their result (which
confirms the validity of our computational scheme and the
accuracy of our approximations) in this limit. Moreover,
we have computed for the first time the bispectrum of this
model, using the same computational scheme used to
compute the power spectrum.

The contribution of ~Eð0Þ to the anisotropy of the power
spectrum forces c� 1 & 10�6 [37–39]. The implicit as-
sumption in this result is that choosing a c� 1 ! 0 in the
Lagrangian would result in a g� ! 0 parameter. However,

taking also ~EIR into consideration leads to the general
conclusions on the natural amount of g� and on the insta-
bility of (63) that we have presented in the previous
section.

B. Waterfall mechanism

Reference [30] embedded the mechanism (2) in hybrid
inflation, through the Lagrangian

L ¼ � I2ð’ÞF2

4
� 1

2
ð@’Þ2 � 1

2
ð@�Þ2 � V

V ¼ �

4
ð�2 � v2Þ2 þ 1

2
g2’2�2 þ 1

2
m2’2 þ 1

2
h2A�A��

2:

(65)

The additional coupling of the vector A� to the waterfall

field � provides a contribution to � through the mechanism
of modulated perturbations [63]. Specifically, the value of
the vector field contributes to determine the end of infla-
tion, which happens when

m2
� ¼ ��v2 þ g2’2 þ h2A�A

� ¼ 0 (66)

so that perturbations �A� get converted into � at the end of

inflation. This results in the additional contributions [30]

�g� � �h4jAj2
g4’2

e

; �fNL � �e

�
h2

g2
�g� � �g2�

�
; (67)

where ’e and �e are, respectively, the value of the inflaton
and of the slow-roll parameter � at the end of inflation, and
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where we have normalized the coupling in (2) to hIi � 1 at
the end of inflation.11

These additional contributions to the anisotropy obvi-
ously vanish in the limit in which the vector field is not
coupled to the waterfall field (h ! 0). On the contrary, (59)
and (62) are general results unavoidably present when the
function I in (65) is arranged to provide a constant vector
field [which is also necessary to have non-negligible values
in (67)]. These unavoidable contributions have not been
included in the many works that studied the mechanism of
Ref. [30]. Given that (59) nearly saturates the phenomeno-
logical limit, the contribution (67) to g� is at most compa-
rable to (59). On the contrary, the additional coupling h
present in (65) can allow for a greater non-Gaussianity than
(62). Indeed, in the minimal model (2), the parameter fNL
is uniquely related to g� through (62), and this strict rela-
tion increases the predictivity of the mechanism. For the
model (65), non-Gaussianity can be enhanced for h � g.
The shape of the contribution to the bispectrum resulting
from the waterfall coupling [30] is, in general, different
from the shape of (52); the two shapes coincide for h � g.

C. Magnetogenesis

Using the ‘‘electric’’ $ ‘‘magnetic’’ duality that we
have mentioned [29], the results for the perturbations that
we have obtained are also valid in the case of hIi / a2,
which results in a scale invariant ‘‘magnetic’’ field [27]. In
fact, the two results (41) and (51) have been first obtained
in Ref. [41] for hIi / a2. Although the mechanism (2) was
first introduced with this motivation, the magnetogenesis
application suffers a strong coupling problem [28]. Indeed,
with (2) the fine structure constant scales as � / hIi�2. The
choice hIi / a2 corresponds to a fast decreasing � / a�4

during inflation. Assuming that � reaches the present value
at the end of inflation implies � � 1 during inflation and a
quantum field theory of electromagnetism that is (at the
very least) out of computational control [28]. Alternatively,
for� & 1 at the start of inflation, one obtains�� e�4Ntot at
the end of inflation, and requiring that � grows back to its
present value before big-bang nucleosynthesis does not
appear feasible [41].12

Clearly, the strong coupling problem is a problem of the
magnetogenesis application and not of the mechanism (2),
as one can always assume that a generic U(1) field is
sufficiently weakly coupled to other fields. For a growing
hIi the coupling decreases during inflation, and one can

assume that the vector field has couplings & 1 at the
beginning of inflation. For a decreasing hIi the coupling
grows during inflation, and one can require a coupling& 1
when inflation ends. In principle, one may hope that a field
with such properties is produced during inflation by this
mechanism, and it is then (partially) converted to the
magnetic one through some coupling. Some attempts so
far in this direction have been unsuccessful [41], but a
general study remains to be done. If this, or some other
idea [43], can circumvent the strong coupling problem, our
findings provide a signature that may be correlated with the
magnetic field.

VIII. CONCLUSIONS

There are two questions associated with the attempt of
reconciling a nonvanishing anisotropy g� with a model
of inflation. The first one is ‘‘what are the other signa-
tures that would accompany the measured value of g�?’’;
the second one is ‘‘what is the natural value of g� in the
model ?’’ A first difficulty that is encountered in answer-
ing these questions is that anisotropic hairs are typically
erased by inflation [12,13], so that one has to design
specific models that preserve the anisotropy. Vector fields
appear as the simplest possibility, as their VEV breaks
isotropy. Several mechanisms have been designed to
prevent the rapid erosion of the vector VEV by the
inflationary expansion. As shown in Ref. [19], however,
many of them (for instance, the use of a potential as in
Ref. [15], of a Lagrange multiplier as in Ref. [6], or of a
coupling to the curvature as in Ref. [16] and as in
analogous models of vector curvatons) have ghosts.
The use of (2) for preserving the vector VEV [21,30]
has resulted in a rather exceptional mechanism where the
above two questions can be formulated.
With the mechanism (2), the answer to the first question

appears to be very positive. The anisotropy in the power
spectrum is correlated with a characteristic and very likely
detectable bispectrum. The bispectrum, whose full shape is
given in (52), is enhanced as the local one in the squeezed
limit, where it has an effective local parameter [see (62) for
more details],

fNL ’ 26
jg�jCMB

0:1
: (68)

A larger bispectrum can be obtained if the vector field has
additional interactions with the inflationary sector, as in the
waterfall mechanism of Ref. [30]. However, these addi-
tional interactions are not needed, and the result (68) is
the direct contribution that comes from the interaction (2).
Therefore, this is the result in the most minimal and
predictive implementation of (2). We see that an anisotropy
in the power spectrum at the 1%–10% level could be
associated with a detectable bispectrum.
For the second question, one needs to take into account

that, for a mechanism that results in a scale invariant field

11Reference [34] studied the additional contributions to � from
the waterfall coupling in the case in which the VEVof the vector
field varies with time. For a discussion of the effects from a time
varying inflaton coupling in modulated reheating see Ref. [64].
12A scale invariant magnetic field is also obtained at the start of
inflation for hIi / a�3. However, too much energy gets stored in
the electric field in this case [28], and the system enters in a
strong backreaction regime in which a too-small magnetic field
is produced [45].
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(as in the implementations [21,30]), a classical background
value of this field is unavoidably generated by the sum of
the modes that have left the horizon during inflation [44].
The crucial point for our discussion is that a background
vector field breaks isotropy. It is unnatural to require that
the anisotropy experienced by the CMB modes when they
leave the horizon is smaller than the theoretical expectation

value h� ~E2i �H4ðNtot � NCMBÞ, where H is the Hubble
rate during inflation, and Ntot � NCMB is the number of
e-folds of inflation that took place before the CMB modes
are generated, and during which the classical background
of long-wavelength modes experienced by the CMBmodes
has accumulated.13 Taking this into account, we find that
the natural value for the anisotropy is [see (59) for more
details]

jg�jCMB * Min

�
0:1

Ntot � NCMB

37
; 1

�
; (69)

which can easily overcome the phenomenological
bounds (particularly with the improvement expected
from Planck [8,9]). We note that this saturation takes
place for a very subdominant vector field, with very
negligible backreaction on the background inflaton
evolution. This ensures that the result (69) is robust.
However, as already obtained in Refs. [37–39], even a
very subdominant vector field can result in a substantial
anisotropy parameter.

Remarkably, these considerations apply also to the mag-
netogenesis applications of (2). The role of the background
magnetic field has been so far disregarded in the study of

the cosmological perturbations obtained in that context.
However, the result (69) applies also to this case. We stress
that the magnetogenesis application suffers from a serious
strong coupling problem [28]. If this problem can be
solved, a magnetic field through this mechanism would
be naturally correlated with an observable anisotropy of the
perturbations.
Analogously, an anisotropic signal should also be

expected in models where a triad of vectors is arranged
to produce isotropic expansion or isotropic perturbations
[65], since the long-wavelength background values of the
different vectors fields will, in general, be different.
Although our study has been limited to the mechanism

(2), one may expect that an anisotropic background field
and a large anisotropy of the perturbations may be a
general outcome of all models that sustain higher than 0
spin fields during inflation. For instance, it would be inter-
esting to study the natural level of anisotropy to be
expected in the mechanism of Ref. [24] (for which statis-
tical isotropy has been obtained for very specific choices of
the kinetic and the mass function [26]) or in the case of
inflation or magnetic fields from p-forms [66].14
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