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The aim of this paper is to answer the following two questions: (1) Given cosmological observations of

the expansion history and linear perturbations in a range of redshifts and scales as precise as is required,

which of the properties of dark energy could actually be reconstructed without imposing any parame-

terization? (2) Are these observables sufficient to rule out not just a particular dark energy model, but the

entire general class of viable models comprising a single scalar field? This paper bears both good and bad

news. On one hand, we find that the goal of reconstructing dark energy models is fundamentally limited by

the unobservability of the present values of the matter density �m0, the perturbation normalization �8 as

well as the present matter power spectrum. On the other, we find that, under certain conditions,

cosmological observations can nonetheless rule out the entire class of the most general single scalar-

field models, i.e., those based on the Horndeski Lagrangian.
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I. INTRODUCTION

Research in dark energy (DE) cosmology is generally
devoted to building viable models and to constraining them
from observations (see, for instance, the reviews [1–3]).
The models are usually characterized by a small number of
properties at background and linear-perturbation level
(equations of state, speeds of sound, masses, coupling
strengths, etc.) which then have some particular effect on
the phenomenology (evolution of the scale factor and
perturbations of matter and DE itself). In this paper, we
employ a different approach, aiming to answer the follow-
ing questions:

(1) Assuming the ideal case of cosmological observa-
tions of the expansion history and linear perturba-
tions in a range of redshifts and scales which are as
precise as is required, which physical properties
[such as e.g., the Hubble rate HðzÞ, the perturbation
normalization �8, the perturbation growth rate f,
etc.] could actually be reconstructed if we were to
refrain from any parameterization of dark energy?

(2) Can we use these observable quantities to rule out
not just some particular cosmological model but the
entire class of viable single scalar-field models?

We are of course not the first to attempt to study dark
energy cosmologies in a model-independent way. In
Ref. [4] the author argues for a reconstruction method
which does not rely even on Einstein equations. This
method can in principle directly measure the space-time
curvature but cannot test a modification of gravity. On
background level, the power of observations to constrain
the expansion history of the Universe by assuming �-cold
dark matter (�CDM) as a null test was studied in

Refs. [5,6], while a principle-component analysis of the
equation of state constraints was developed in Ref. [7].
Recently, even the validity of the assumption of the
Copernican principle was tested [8]. On the level of linear
perturbations, parameterizations are usually used to limit
the freedom in the model-independent description of
growth of structure [9–13], although principle-components
analysis has also been employed [14]. Another way to
limit the freedom in the fully general description is to
exploit the structure which any general-relativity-like
theory of dark energy must obey: such approaches were
discussed in Refs. [15–18]. All of the above approaches,
when contrasted with data, require parameterizations in
order to break degeneracies but simultaneously introduce
parameterization-dependent biases.
The difference of our approach is that, given the mini-

mum of assumptions, we first elucidate the observables
that measurements can in principle provide without the
assumption of any dark energy model in particular. It is
only then that we use these model-independent observables
to construct tests which might eliminate or confirm
particular models. Our approach is closest in spirit to
Ref. [19], the results of which we extend.
In this paper, we completely ignore the practical prob-

lems and limitations of the observations and assume that
good-enough statistics with sufficiently small systematic
errors can be achieved in the range of redshifts and scales
discussed here. By exploring this idealized case we try to
discover the fundamental limits to which observations in a
dark energy cosmology are subject.
We adopt metric signature (�þþþ), while a comma

denotes a partial derivative. We interchangeably use coor-
dinate time t, scale factor a, e-foldings N � lna and the
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redshift z as time variables. Overdots denote derivatives
with respect to t, primes with respect to N. The subscript
0 denotes the present time. We also make use of the
notation of De Felice et al. [20,21], to which we refer for
a thorough study of linear perturbations in the context of
the Horndeski theories.

II. ASSUMPTIONS

In keeping with the spirit of generality, we first wish to
make the minimum of assumptions on the geometry and
matter content of our Universe that will allow us to inter-
pret observations at all. In the following we assume only
that:

(a) The geometry of the Universe is well described by
small linear perturbations living in an Friedmann-
Lemaı̂tre-Robertson-Walker metric with scale factor
aðtÞ. We will not consider possible observations of
rotational perturbation modes nor of gravitational
waves, as these are irrelevant for structure formation
in late-time cosmology.

(b) The matter content (i.e., dark matter and baryonic
matter) is pressureless or evolves in a known way.

(c) The relation between the galaxy distribution and the
matter distribution at linear scales can be modeled as
�gal ¼ bðk; aÞ�m, where bðk; aÞ is the potentially

scale- and time-dependent linear bias, while at the
same time there is no bias between the velocities of
galaxies and matter. This implies that both the bar-
yonic and dark matter respond in the same way to
the gravitational potentials and that the statistical
velocity bias due to galaxies sampling preferentially
overdense regions [22] is negligible on the scales of
interest.

(d) The late-time universe is effectively described by
the action

S ¼
Z

d4x
ffiffiffiffiffiffiffi�g

p �
1

2
RþLx þLm

�
(1)

(setting 8�GN ¼ 1), which includes the Einstein-
Hilbert term for the metric g�� and the Lagrangian

Lm describing pressureless matter fluids, both bary-
ons and dark matter, between which we will not
differentiate here. Any other terms are ascribed to
the DE Lagrangian Lx, which represents some con-
sistent theory potentially depending on extra
degrees of freedom or g�� (i.e., modifications of

gravity).1 We will neglect the radiation component
because all the observations are assumed to be
performed well after decoupling. In nonminimally
coupled models, the Lagrangian Lm depends on a
different metric, related to g�� through some

transformation. Here we assume, however, that we
have already reformulated the action so that matter
moves on the geodesics of g��.

We employ the above minimal framework to address ques-
tion (1) by considering the background observables in
Sec. III and those arising from linear perturbations in
Sec. IV. To answer question (2) we need another crucial
assumption, concerning the degrees of freedom in the dark
energy Lagrangian:
(e) The Lagrangian Lx, which describes dark energy, is

any one of the Lagrangians describing a single scalar
field governed by second-order equations of motion.
We call this scalar field dark energy, but we do not
necessarily require it to be driving the current accel-
eration. For example, it could be that the late-time
acceleration is effectively driven by a cosmological
constant, but in the presence of this additional degree
of freedom. The assumption of a scalar field ensures
that there are no gross violations of isotropy. The
limitation to second order is a necessary condition
to ensure that the model is not subject to instabili-
ties (see e.g., Ref. [23]).2 We will therefore assume
that the dark energy is governed by the most general
Lagrangian which fulfills these requirements:
1
2RþLx will form the Horndeski Lagrangian (HL)

[25,26]. We dedicate Sec. V to this system.

III. BACKGROUND OBSERVABLES

From assumptions (a)–(c), by varying the action Eq. (1)
with respect to the metric, we obtain a Friedmann equation
that can be written as

H2 �H2
0�k0a

�2 ¼ 1

3
ð�x þ �mÞ; (2)

whereH0 is the present value of theHubble parameter,�k0 is
the present curvature density parameter and �m is the matter
energy density. From assumption (b),�m evolves asa�3, and
�x is the energy density of the terms coming fromLx.
Observations of the cosmic expansion are essentially

estimations of distances DðzÞ (i.e., luminosity or angular-
diameter distances) or directly HðzÞ (e.g., using measure-
ments of longitudinal baryon acoustic oscillations, or
real-time redshift-drift observations [27]) based on the
existence of standard candles, rods or clocks. More exactly,
standard candles or rods measure HðzÞ up to a multiplica-
tive constant, related to the unknown absolute measure of
the source luminosity or proper length. For instance, the
flux of supernovae Ia with absolute luminosityL are known
only up to the constant LH2

0; only ratios of fluxes at differ-

ent redshifts are independent of the absolute normalization.

1A consistent theory is understood here to be a theory free of
ghost and other catastrophic instabilities that can in general
occur in generalized gravity and dark energy models.

2This class of Lagrangians includes such theories as fðRÞ
gravity, despite their naively fourth-order equations of motion.
This is because we can always introduce the a priori hidden
scalar explicitly through a Legendre transformation [24].
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The same is true of baryon acoustic oscillations: they
measure only the ratio of the sound horizon at last scatter-
ing and the Hubble radius H�1ðzÞ. We can therefore say
that, without additional assumptions, background cosmo-
logical observations estimateDðzÞ up to an overall constant
as well as the dimensionless Hubble function EðzÞ �
HðzÞ=H0. Notice, however, that real-time redshift-drift
observations can estimate the absolute value ofHðzÞ, while
local measurements of the expansion measure H0.

Combining DðzÞ with HðzÞ, we can also estimate the
present curvature parameter �k0. We can therefore deter-
mine the evolution of the combined matter and dark energy
content, 1��k, at all times. If we assume that there are
only two components of the cosmic fluid, then we have
only one free parameter, �m0. In fact, we can write

�x ¼ 1��k ��m ¼ 1� 1

E2
ð�k0a

�2 þ�m0a
�3Þ: (3)

Therefore, we conclude that from background observables
we can reconstruct both �m and �x, but only up to �m0

[28], since one can compensate for any change of�m0 with
a modification of the DE model. Of course, if we parame-
terize the evolution of �x with a simple equation of state,
we can break the degeneracy with �m0, as is usually done
in analyses of supernovae Ia data, but that is exactly what
we are trying to avoid in this work.

The same result is valid if instead of pure pressureless
matter one includes further components (e.g., massive
neutrinos) that evolve with an effective equation of state
wmðzÞ, provided wmðzÞ can be inferred from other obser-
vations (e.g., knowledge of the neutrino masses).

IV. LINEAR PERTURBATION OBSERVABLES

The linear perturbation observables are the correlations
of positions, velocities and shapes (ellipticities) of sources
(i.e., galaxies, Lyman-� lines, clusters, background radia-
tion) in angular separation and redshift. Given knowledge
of DðzÞ, these can be converted to the more usual depen-
dence on wave number k and redshift.

Let us first discuss the clustering of matter. We denote
the root mean square of the correlation of galaxy number

counts in Fourier space as �gal [i.e., �gal � P1=2
gal ðk; zÞ,

where Pgal is the galaxy power spectrum]. We define

from now on the wave number k to be the physical wave
number expressed in the units of the cosmological horizon,
i.e., k ¼ kphys=aH (k is independent of H0 if kphys is

measured in h=Mpc). This means that k is time-dependent.
We observe galaxies, not matter perturbations, so as an-
ticipated we need to introduce a bias function bðk; zÞ such
that �gal ¼ b�m. Without the assumption of a particular

model, DE perturbations are unknown. In many models
they are not at all small compared to matter perturbations.
For this reason, wewill define the total density perturbation
�t � �m�m þ�x�x and introduce the bias B of galaxies
with respect to it:

�gal ¼ B�t ¼ BZ�m�m; (4)

where Zðk; aÞ � 1þ�x�x=ð�m�mÞ is a function of space
and time that depends on the clustering of the x component.
Then we have that b ¼ BZ�m.
Let us denote the initial total density perturbation

spectrum at decoupling as �2
t;inðkÞ and as Gtðk; zÞ the

scale-dependent growth function of the linear total density
perturbations, normalized to unity at present. If the gal-
axies move with the same velocity field as matter, the
galaxy velocity divergence �gal in the sub-Hubble regime

is related to thematter density perturbation as �gal ¼ �m ¼
��0

m ¼ �f�m, by the continuity equation for matter. We
then obtain �gal ¼ �ðf=bÞ�gal, where f ¼ G0=G is the

linear matter growth rate and Gðk; zÞ is the growth function
for matter perturbations, both of which are scale-dependent
for general DE models. This velocity field generates
redshift distortions as a function of the direction cosine

� ¼ ð ~k � ~‘Þ=k, where ~‘ is the unit line-of-sight vector. The
observable �gal can therefore be expressed as [29]

�galðk; z; �Þ ¼ GtB�8;t

�
1þ f

b
�2

�
�t;0ðkÞ; (5)

where �8;t is the present normalization of the total

density spectrum. Now we can write GtB ¼ Z�m�mB=
ðZ�m�mÞ0 ¼ Gb=ðZ�mÞ0, so we have the almost-standard
expression

�galðk; z;�Þ ¼ Gb�8

�
1þ f

b
�2

�
�t;0ðkÞ: (6)

In this expression we set, using the 8 Mpc=h spherical
Fourier space window function WðkÞ,

�8 ¼ �8;t

ðZ�mÞ0 ¼ Z�1
0

�Z
Z2
0Pm0W

2ðk; R8Þdk
�
1=2

; (7)

which is equivalent to the usual normalization �8 if Z
depends weakly on k.
To discuss weak lensing, we introduce the standard per-

turbed metric in longitudinal gauge ds2¼�ð1þ2�Þdt2þ
a2ð1þ2�Þ�ijdx

idxj. Since later we will confine ourselves

to a scalar dark energy, as part of assumption (a), we
assume that the DE does not excite vector and tensor
modes so that only scalar modes need to be included. It
is helpful to introduce the function Y, the effective gravi-
tational constant for matter, and the anisotropic stress 	
defined as (see e.g., Refs. [12,21,30])

Yðk; aÞ ¼ � 2k2�

3�m�m

; 	ðk; aÞ ¼ ��

�
: (8)

Both 	 and Y are unity on sub-Hubble scales if Lx is a
constant (i.e., the DE is a cosmological constant) and the
matter is a perfect fluid. In the linear regime, the lensing
effect is proportional to the lensing potential, which itself is
driven by the density perturbations (see e.g., Ref. [31]). In
general, this relation can be written as
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k2�lens¼k2ð���Þ¼�3

2
Yð1þ	Þ�m�m

¼�3

2
Yð1þ	ÞGt�8;t�t;0

Z
¼�3

2
�G�m�8�t;0; (9)

where we have defined the ‘‘modified lensing’’ function
�ðk; zÞ � Yð1þ 	Þ. The ellipticity correlation is an integral
function of�lens within a window function that depends on
the survey geometry (see e.g., Ref. [19]). Assuming good-
enough knowledge of the galaxy distribution one can differ-
entiate the correlation integral and obtain the quantity

�ðk; zÞ � 2

3
ðk4P�lens

Þ1=2 ¼ 1

a3E2
�m0�G�8�t;0: (10)

Then from �galðk; z; �Þ (with e.g.,� ¼ 0, 1) and�ðk; zÞ one
can measure the three quantities A, R, L defined as

A ¼ Gb�8�t;0; R ¼ Gf�8�t;0; (11)

L ¼ �m0�G�8�t;0: (12)

The quantities that connect the observations to theory
(i.e., to the Lagrangian Lx) are �x, f, �, so it would be
optimal to estimate them directly from observations. Now,
the cosmic microwave background anisotropy allows one to
measure, at least in principle, the initial potential�in through
the Sachs-Wolfe effect. It is, however, impossible to derive
from this information the present power spectrum �t;0 since

it also depends on a scale- and time-dependent transfer
function. Absent a model for DE, this transfer function is
unknown and since it acts to process the total perturbation
spectrum, changing its k dependence, it also makes �t;0 an

unknown without further assumptions. This argument shows
that the only �t;0-independent quantities directly measurable

from linear cosmological observations are ratios of A, R, L,
and their derivatives with respect to N, i.e.,

P1 � R=A ¼ f=b; (13)

P2 � L=R ¼ �m0�=f; (14)

P3 � R0=R ¼ fþ f0=f: (15)

All other possible�t;0-independent ratios, such asA
0=A,L0=L

or R0=L or higher-order derivatives with respect toN, can be
obtained as combinations of P1–3 and their derivatives, for
instance L0=L ¼ P0

2=P2 þ P3. Other linear-perturbation
probes, such as integrated Sachs-Wolfe, cross correlations
or 21-cm flux measurements, add statistics and might extend
the observational range but do not break the fundamental
degeneracy.

The quantity P1 is a well-known observable quantity,
often denoted 
 [31]; since it involves the bias function b,
related in an unknown way to the model of dark energy, we
will not consider it any longer in this paper. The quantity P2

has already been introduced in Ref. [19] as EG as a test of
modified gravity, but the fact that �m0 is not an observable
was not discussed there. The quantity R contains the term
Gf�8, also denoted as f�8ðzÞ in the literature [32]. This
term is often considered to be a directly observable quantity,

but, as we have argued, this is only true if one assumes a
model for DE, or at least a parametrized form of �t;0;

otherwise, the model-independent observable combination
is P3 ¼ R0=R. It is important to realize that even a perfect
knowledge of P3 does not imply knowledge of f since the
equation f0=fþ f ¼ P3ðk; zÞ cannot be solved without the
unknown k-dependent initial condition for f. Finally, notice
that we did not need to assume Gaussian fluctuations nor
isotropy of the power spectrum.
Measurements of galaxy peculiar velocities and

their time derivative directly estimate � through the
Euler equation, which would give the quantity V ¼
�m0YG�8�t;0. Then one can form the observable L=V ¼
1þ 	, which measures the anisotropic stress. This new
observable is not independent since it can be written in
terms of E, P2, P3 [see Eq. (22)]. Moreover, the estimation
of V requires a delicate subtraction of the peculiar redshift
from the cosmological redshift by using distance indicators
such as Cepheids and therefore a number of additional
assumptions on the source physics. No current or foresee-
able method to estimate the peculiar velocity field
(let alone its derivative) has been shown to be reliable beyond
a few hundred megaparsecs (see e.g., Ref. [33]), so we will
not pursue this possibility any further in this paper.
Our first result is that linear cosmological observations

can at best determine only E � H=H0 as a function of time
(as well as �k0 but not �m0) and the observable combina-
tions P1–3 as functions of time and space, within the range
of the observations themselves. To achieve this, we need to
combine galaxy clustering and weak lensing in the same
redshift range. It is possible that one can determine other
combinations from nonlinear effects, but this will certainly
introduce new uncertainties (e.g., a nonlinear bias).

V. THE HORNDESKI LAGRANGIAN

It is now time to use also assumption (e) regarding the
explicit form of the dark energy Lagrangian. In the choice of
the action (1), we have assumed that all matter components
(i.e., dark matter and baryons) feel the same gravitational
force and propagate on geodesics of the metric g��. In

addition, we now explicitly assume that the DE is modeled
by a single scalar field � described by the HL. The HL is
defined as the sum of four terms L2 to L5 that are fully
specified by a noncanonical kinetic term Kð�;XÞ and three
in principle arbitrary coupling functionsG3;4;5ð�;XÞ, where
X ¼ �g���

;��;�=2 is the canonical kinetic term,

L2 ¼ Kð�;XÞ;
L3 ¼ �G3ð�;XÞh�;

L4 ¼ G4ð�;XÞRþG4;X½ðh�Þ2 � ðr�r��Þ2�;
L5 ¼ G5ð�;XÞG��r�r���G5;X

6
½ðh�Þ3

� 3ðh�Þðr�r��Þ2 þ 2ðr�r��Þ3�: (16)
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The Horndeski Lagrangian is the most general Lagrangian
for a single scalar which gives second-order equations of
motion for both the scalar and the metric on an arbitrary
background. This is a necessary, but not sufficient, condition
for the absence of ghosts.3 In general, the equation of motion
for the scalar will couple it to the matter energy density. The
metric potentials � and � are as usual determined by the
Poisson and anisotropy equations, which are constraints, and
therefore do not have independent dynamics. We note that
the generalization to the case of multiple scalar fields has
been discussed in Ref. [34].

In what follows, we will assume that the so-called
quasistatic limit is valid for the evolution of perturbations.
This implies that we are observing scales significantly
inside the cosmological horizon, k � kphys=ðaHÞ � 1,

and inside the Jeans length of the scalar, csk � 1, such
that the terms containing k dominate over the time-
derivative terms. The sound speed cs is a particular
function of the HL functions K, G3–5 evaluated at the
background level and we have presented it in Eq. (A4)
[20]. In this quasistatic limit for a model belonging to the
HL, one obtains [21]

	 ¼ h2

�
1þ k2h4
1þ k2h5

�
; Y ¼ h1

�
1þ k2h5
1þ k2h3

�
(17)

for suitably defined functions h1–5. In this limit, one also
has Z ¼ Y	.

The functions h1–5 express the modification of gravity
induced by the HL. In real space they induce a time-
dependent Yukawa correction to the Newtonian potential.
They are all combinations of HL functions K, G3;4;5

and their derivatives with respect to � and X, all evaluated
on the background and are therefore time- but not
k-dependent,

hi � hiðzÞ � hið�;X;HÞ: (18)

The explicit expressions for the functions hi are very
complicated and not particularly illuminating; we have
nonetheless presented them in the Appendix. For �CDM
one has simply h1;2 ¼ 1 and h3;4;5 ¼ 0. If the two gravity-

coupling functions in the HL, G4, G5, are constant, i.e., the
effective Planck mass is constant, then 	 ¼ 1; if moreover
G3 depends only on � (i.e., k-essence), then also Y ¼ 1
and there are no modified-gravity effects at all in this
quasistatic limit.

It is worth noting that one could have arrived at the form
of Eq. (17) given just our assumptions of second-order
equations of motion, the symmetries of the Friedmann-
Lemaı̂tre-Robertson-Walker background and quasistaticity.

In the same quasi-static limit, from the matter conser-
vation equation, we obtain

�00
m þ

�
2þH0

H

�
�0
m ¼ �k2� ¼ 3

2
�m�mh1

�
1þ k2h5
1þ k2h3

�
;

(19)

or

f0 þ f2 þ
�
2þH0

H

�
f ¼ 3

2
�mh1

�
1þ k2h5
1þ k2h3

�
: (20)

On the other hand, we can write for the weak-lensing
function �,

� ¼ Yð1þ 	Þ ¼ h6

�
1þ k2h7
1þ k2h3

�
; (21)

where we have introduced two auxiliary functions:
h6 ¼ h1ð1þ h2Þ and h7 ¼ ðh5 þ h4h2Þ=ð1þ h2Þ. As an
aside, one can show that if G3, G4 depend only on � and
G5 ¼ const, i.e., we are dealing with a k-essence theory
nonminimally coupled to gravity, then h2 ¼ 1 and h7 ¼ h3
so that � becomes independent of k. In this limit, the
gravitational potential felt by photons is not distorted
(we have discussed this model in detail in Ref. [35]).
From the observables Pi, E we can construct a model-

independent relation measuring the anisotropic stress 	
as follows. From P2, P3 we can obtain f ¼ �m0�=P2

and f0 ¼ P3�m0�=P2 � ð�m0�=P2Þ2. Inserting this in
Eq. (20) and employing Eq. (21), after a little algebra we
obtain a simple relation:

3P2ð1þ zÞ3
2E2ðP3 þ 2þ E0

EÞ
� 1 ¼ 	 ¼ h2

�
1þ k2h4
1þ k2h5

�
: (22)

It is important to stress that the left-hand side of Eq. (22) is a
function of model-independent observables, and thus a
model-independent measurement of 	, valid under our as-
sumptions (a)–(d), but not requiring (e). The form of the last
term is determined by the quasistatic limit of the Horndeski
Lagrangian. Given the above, we can exclude all dark energy
models described by a single scalar field in the quasistatic
limit by showing that the anisotropic stress measured from
the observation data does not follow the particular scale
dependence mandated by Eq. (22). Equation (22) must be
valid in fact at all times and scales where the quasistatic limit
is valid. At any given epoch z�, this equation involves the
three unknowns h2, h4, h5 all evaluated at z

�. If at this epoch
we observeE andP2, P3 at more than three kmodes, we can
form an overconstrained system. If for any z� this system has
no solution, then the observations are inconsistent with the
quasistatic limit of HL. Equivalently, from Eq. (22) one can
obtain a consistency relation that depends only on observable

quantities. Defining gðz; kÞ � ðREa2Þ0
LEa2

, one has in fact

2gð1Þgð3Þ � 3ðgð2ÞÞ2 ¼ 0; (23)

3The constraints on the HL arising from stability considera-
tions are derived in Ref. [20]. We have also presented them in the
Appendix.
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where gðnÞ is the nth derivative of gwith respect to k2. If this
condition fails at any one redshift, the DE is not described by
the HL in the linear quasistatic limit. This is the secondmain
result of this paper. Needless to say, a cosmological constant
satisfies this consistency relation.

On the other hand, if there are consistent solutions, then
we obtain an indication in favor of the HL and also direct
constraints on it. For instance, if observationally we find
that P2, P3 do not depend on k, then from Eq. (22) we see
that the condition h4 ¼ h5 must be satisfied.

If the consistency relation is not satisfied, the only
possible way out of our conclusion is that the conditions
for the linear quasistatic limit that we employed to derive
Eq. (17) are not satisfied. This can occur if the rate of
change of the functions h1–5 is very large, e.g., if h0j=hj �
c2sk

2 � 1 for some j. However if the field � drives the
current accelerated expansion (this is indeed an additional
assumption), we expect it to be slow rolling on time scales

of the order of _hj=hj �H, i.e., h0j=hj � 1. If the sound

speed squared c2s is of order unity, then on typical astro-
physical scales of 100 Mpc=h one has k2 � 103, so the
quasistatic limit should be very well satisfied. However if
c2s is less than say 10

�2, then the simple form of Eq. (17) is
no longer valid. One might then expect oscillating terms in
the Y, 	 equations; it is possible that this behavior could be
probed, and possibly rejected, by a similar method we are
discussing here but a full analysis of this ‘‘cold dark
energy’’ scenario would be required. Another potential
difficulty is the fact that these more general scalar field
theories contain nonlinearities in principle independent of
those in the matter perturbations. It may prove difficult to
determine on which scales the linear approximation for the
dark energy is valid, if at all.

From P2 and P3 one can build other consistency equa-
tions, e.g., by differentiating P2 or the combination
P0
2=P2 þ P3 ¼ �0=�þ f with respect to N and again

employing Eqs. (20) and (21). These relations however
require derivatives of the observables P2, P3 and will
introduce derivatives of the h1–5 functions, so appear to
be less useful than Eq. (22).

We observe also that the propagation speed cT of gravi-
tational waves is a function of the HL coupling functions;
see Eq. (A3) [36]. A detection of a source both in gravita-
tional and electromagnetic waves could allow for a mea-
surement of cT and therefore new independent constraints
on the HL [37].

VI. CONCLUSIONS

We have shown that cosmological linear observations
can measure only �k0, E � H=H0 and the combinations
P1 ¼ f=b, P2 ¼ �m0�=f and P3 ¼ fþ f0=f. Parameters
such as�m0, �8 or functions such asGf�8 are not directly
model-independent measurable quantities via linear cos-
mological observations alone. This limits in a fundamental
way the knowledge of, among others, the evolution of the
DE density parameter �x, its equation of state, or the
matter growth rate f. From E, P2;3 one can form consis-

tency relations in terms of the HL functions. The simplest
one is Eq. (22) or (23), expressed purely in terms of model-
independent observables. If observations indicate a viola-
tion of a consistency relation, then the DE is not described
by the HL in the quasistatic limit. Conversely, finding the
predicted k behavior would be a major confirmation of the
scalar-field picture of dark energy.
Nonlinear effects will bring both more information and

more unknowns into the picture so it is not clear howmuch,
if at all, they would improve the task of reconstructing or
rejecting the HL. The limitations of real-world observa-
tions, completely neglected here, are of course in practice
the major hurdle on the path to this goal.
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Enrique Gaztañaga, Dragan Huterer, Eyal Kazin, Ofer
Lahav, and Shinji Tsujikawa for useful comments and
conversations. We are grateful for the hospitality of the
Centro de Sciencias de Benasque Pedro Pascual, where a
part of this manuscript was prepared. The work of L. A. and
I. S. is supported by the DFG through TRR33 ‘‘The Dark
Universe.’’ M.K. acknowledges funding by the Swiss
National Science Foundation. M.M. is supported by
CNPq-Brazil. I. D. S. acknowledges STFC for financial
support.

APPENDIX: DETAILS OF
HORNDESKI PROPERTIES

This Appendix concerns the properties of the scalar-field
theories described by the Horndeski Lagrangian given by
the combination of terms presented in Eq. (16). The sub-
scripts, � and, X denote derivation with respect to that
variable. On a flat Friedmann-Lemaı̂tre-Robertson-Walker
background, the energy density and pressure are given by

�x ¼ 3H2ð1� w1Þ þ 2XK;X � K � 2XG3;� þ 6 _�HðXG3;X �G4;� � 2XG4;�XÞ
þ 12H2ðXðG4;X þ 2XG4;XXÞ �G5;� � XG5;�XÞ þ 4 _�XH3ðG5;X þ XG5;XXÞ;

Px ¼ �ð3H2 þ 2 _HÞð1� w1Þ þ K � 2XG3;� þ 4XG4;�� þ 2 _�Hw1;� � 4X2H2G5;�X þ 2 _�XH3G5;X

þ
€�
_�
ðw2 � 2Hw1Þ; (A1)
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where, given a slight rearrangement of the results in Refs. [20,21], we define four functions wi as

w1�1þ2ðG4�2XG4;XþXG5;�� _�XHG5;XÞ;
w2��2 _�ðXG3;X�G4;��2XG4;�XÞþ2Hðw1�4XðG4;Xþ2XG4;XX�G5;��XG5;�XÞÞ�2 _�XH2ð3G5;Xþ2XG5;XXÞ;
w3�3XðK;Xþ2XK;XX�2G3;��2XG3;�XÞþ18 _�XHð2G3;XþXG3;XXÞ�18 _�HðG4;�þ5XG4;�Xþ2X2G4;�XXÞ

�18H2ð1=2þG4�7XG4;X�16X2G4;XX�4X3G4;XXXÞ�18XH2ð6G5;�þ9XG5;�Xþ2X2G5;�XXÞ
þ6 _�XH3ð15G5;Xþ13XG5;XXþ2X2G5;XXXÞ;

w4�1þ2ðG4�XG5;��XG5;X
€�Þ: (A2)

All of the dynamics of linear perturbations are fully determined by the above four functions. In particular, the speed of
propagation of gravitational waves, cT, and the normalization of the kinetic term of these tensor perturbations, QT, are
given by

c2T ¼ w4

w1

> 0; QT ¼ w1

4
> 0; (A3)

with positivity required by stability. From the above, is can be seen that w1 has the meaning of the normalization of the
tensor perturbations; i.e., it is the effective Planck mass squared. The corresponding quantities for the scalar degree of
freedom, the sound speed of dark energy, cs, and the normalization of the kinetic energy for perturbations, QS, in the
presence of dust with energy density �m, are

c2s ¼ 3ð2w2
1w2H � w2

2w4 þ 4w1w2 _w1 � 2w2
1ð _w2 þ �mÞÞ

w1ð4w1w3 þ 9w2
2Þ

> 0; QS ¼ w1ð4w1w3 þ 9w2
2Þ

3w2
2

> 0: (A4)

With above definitions in hand, we can define the five scale-independent functions h1–5 which appeared in the result (17).
All the observables for scalar perturbations in the quasistatic regime are determined by these five functions:

h1 � w4

w2
1

¼ c2T
w1

; h2 � w1

w4

¼ c�2
T ; h3 � H2

2XM2

2w2
1w2H � w2

2w4 þ 4w1w2 _w1 � 2w2
1ð _w2 þ �mÞ

2w2
1

;

h4 � H2

2XM2

2w2
1H

2 � w2w4Hþ 2w1 _w1H þ w2 _w1 � w1ð _w2 þ �mÞ
w1

;

h5 � H2

2XM2

2w2
1H

2 � w2w4Hþ 4w1 _w1H þ 2 _w1
2 � w4ð _w2 þ �mÞ

w4

;

(A5)

and where the effective mass squaredM2 can be expressed
in terms of derivatives of the total pressure and total energy
with respect to the scalar as

M2 ¼ 3HðPx;� þ �x;�Þ þ _�x;�

_�
: (A6)

One may wonder whether it is possible to invert Eq. (A5)
in order to obtain �m as a function of the functions h1–5. If

this were possible, and if all the h1–5 were observable,
then one could measure �m0, contrary to our claim in the
text. In a future paper we will discuss in detail the ob-
servability of the functions h1–5 and we will show that in
fact it is not possible to obtain �m0 this way. Here it will
suffice to notice that h1 is completely degenerate with
�m0 [see Eq. (20)]; it turns out that �m is proportional to
1=h1 and therefore the fact that h1 can only be measured
up to �m0 implies the same degeneracy in �m.
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