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We study properties of two-color QCD at imaginary chemical potential (�) from the viewpoint of the

Roberge-Weiss periodicity, the charge conjugation, and the pseudoreality. At � ¼ �i�T=2, where T is

temperature, the system is symmetric under the combination of the charge conjugation C and the Z2

transformation. The symmetry, called CZ2 symmetry, is preserved at lower T but spontaneously broken at

higher T. The Polyakov-loop extended Nambu-Jona-Lasinio model has the same properties as two-color

QCD for CZ2 symmetry and the pseudoreality. The nontrivial correlation between the chiral restoration

and the deconfinement are investigated by introducing the entanglement vertex in the Polyakov-loop

extended Nambu-Jona-Lasinio model. The order of CZ2 symmetry breaking at the Roberge-Weiss end

point is second order when the correlation is weak, but becomes first order when the correlation is strong.

We also investigate the impact of the correlation on the phase diagram at real �.
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I. INTRODUCTION

Elucidation of QCD at finite temperature (T) and finite
quark-number chemical potential (�) is one of the most
important subjects in hadron physics. Lattice QCD
(LQCD) is the first-principle calculation, but has the sign
problem at real �. Particularly at �=T * 1, the LQCD
calculation is not feasible, although several methods have
been proposed so far to circumvent the problem; see, for
example, Ref. [1]. For this reason, effective models such as
the Polyakov-loop extended Nambu-Jona-Lasinio (PNJL)
model [2–6] are widely used to investigate QCD at finite�.

Symmetries are important to understand QCD. In this
paper we focus our discussion on global symmetries. QCD
has chiral symmetry in the limit of zero current quark mass
(m) and ZNc

symmetry in the limit of infinite m, where Nc

is the number of colors. Charge conjugation (C) symmetry
is preserved at � ¼ 0 but not at finite �, since the QCD
action Sð�=T; TÞ is transformed by C as

Sð�=T; TÞ !C Sð��=T; TÞ: (1)

This indicates that

Zð�=T; TÞ ¼ ZðcÞð�=T; TÞ ¼ Zð��=T; TÞ; (2)

where ZðcÞ is the partition function written with the
C-transformed quark and gauge fields and the second
equality comes from (1). Thus C symmetry is broken at
finite �, but it derives the fact that Zð�=T; TÞ is � even.

Similar discussion is possible also for imaginary
chemical potential � ¼ i�T, where � is the dimensionless
imaginary chemical potential. For simplicity, we use Sð�Þ
and Zð�Þ as shorthand notations of Sði�; TÞ and Zði�; TÞ,
respectively. Consider the transformation

qðx; �Þ ! expði�T�Þqðx; �Þ (3)

for the quark field q, where x and � are the spatial
and imaginary time variables. After this transformation,
the action Sð�Þ with the standard boundary condition
qðx; �Þ ¼ �qðx; 0Þ is changed into Sð0Þ with the twisted
boundary condition

qðx; �Þ ¼ �Rð�Þqðx; 0Þ (4)

with the twist factor

Rð�Þ ¼ expð�i�Þ: (5)

The action Sð0Þ with the twist factor (5) in its quark
boundary condition is a good starting point to understand
roles of C and ZNc

at finite �. For example, one can easily

see from (5) that Zð�Þ has a periodicity of 2�. We can then
consider one period of either 0 � � < 2� or�� � � < �.
The action Sð0Þ is not transformed by C, but the twist

factor is changed as

Rð�Þ !C Rð��Þ: (6)

This indicates that

Zð�Þ ¼ ZðcÞð�Þ ¼ Zð��Þ: (7)

The action Sð0Þ is also invariant under the ZNc

transformation

q ! Uq; A� ! UA�U
�1 � ið@�UÞU�1; (8)

where A� is the gauge field and Uðx; �Þ are elements of
SU(Nc) with the boundary condition Uðx; � ¼ 1=TÞ ¼
expð�2i�k=NcÞUðx; 0Þ for integers k ¼ 0; . . . ; Nc � 1.
However the ZNc

transformation changes Rð�Þ as [7]

Rð�Þ !ZNc
Rð�� 2�k=NcÞ: (9)

This indicates that

PHYSICAL REVIEW D 87, 016015 (2013)

1550-7998=2013=87(1)=016015(9) 016015-1 � 2013 American Physical Society

http://dx.doi.org/10.1103/PhysRevD.87.016015


Zð�Þ ¼ ZðzÞð�Þ ¼ Zð�� 2�k=NcÞ; (10)

or equivalently

Zð�Þ ¼ Zð�þ 2�k=NcÞ; (11)

where ZðzÞ is the partition function written with the
ZNc

-transformed quark and gauge fields. Either (10) or

(11) is called the Roberge-Weiss (RW) periodicity [7].
The periodicity means that Zð�Þ is invariant under the
combination of the ZNc

transformation and the parameter

transformation � ! �þ 2�k=Nc, i.e., under the extended
ZNc

transformation [4].

At imaginary chemical potential, the C and ZNc
thus

break down through the quark boundary condition.
As shown below, however, Rð�Þ is invariant under the
C transformation or the combination of the C and ZNc

transformations at special values of �. At � ¼ �, Rð�Þ is
C invariant, since Rð�Þ ¼ Rð��Þ. At � ¼ �=Nc, Rð�Þ is
invariant under the combination of the C transformation
and the ZNc

transformation with k ¼ �1:

Rð�=NcÞ !C Rð��=NcÞ!
ZNc

Rð�=NcÞ: (12)

QCD has the same symmetry at � ¼ �=Nc mod 2�=Nc

because of the RW periodicity. We refer to this symmetry
as CZNc

symmetry in this paper, particularly when the ZNc

transformation used is not the identity transformation. An
order parameter of the symmetry is aC-odd andZNc

-invariant

quantity such as the quark-number density nq. In this sense

CZNc
symmetry has properties similar to C symmetry.

For Nc ¼ 3 as a typical case of odd Nc, there appears
CZ3 symmetry at � ¼ ��=3, �. Particularly at � ¼ �, the
symmetry is reduced to C symmetry. CZ3 symmetries at
� ¼ ��=3 can be understood as Z3 images of C symmetry
at � ¼ �. The symmetries at � ¼ 0,��=3, � are summa-
rized in Table I. Note that these symmetries may be spon-
taneously broken in some cases as shown below. Also for
Nc ¼ 2 as a typical case of even Nc, the system has CZ2

symmetry at � ¼ ��=2 and C symmetry at � ¼ 0, �; see
Table II for the summary of symmetries. CZ2 symmetries at
� ¼ ��=2 are, however, not Z2 images of C symmetries at
� ¼ 0, � because the number of Z2 images is 2. Further
understanding is thus necessary for CZNc

symmetry with

even Nc.
When T is higher than some temperature Tc

RW, there
appears a first-order phase transition at � ¼ �=Nc mod

2�=Nc [7]. Just on the transition line, the spontaneous
breaking of either C or CZNc

symmetry takes place [8].

The transition is now called the RW phase transition.
A current topic on the RW phase transition is the order
of the transition at its end point, i.e., the RW end point.
Recent three-color LQCD simulations show that the order
is first order for small and large m, but second order for
intermediate m [9–12]. The order may be first order for
both two-flavor [9,10] and three-flavor cases [11,12], when
the pion massm� has the physical value. If the order is first
order, the RW end point becomes a triple point at which
three first-order transition lines meet. The PNJL model
reproduces these results [13–15].
Two-colorQCDhas some interesting points. The number

of colors, Nc, can vary from 2 to infinity, that is, realistic
three-color QCD is between two-color QCD and large Nc

QCD. In this sense, understanding of both two-color and
large-Nc QCD is important. The algebraic approach based
on the pseudoreality [16] plays an important role in two-
color QCD, while large-Nc QCD is well understood by the
geometric approach based on the 1=Nc expansion [17] or
the AdS/CFT correspondence [18]. In virtue of the pseudor-
eality, two-color LQCD has no sign problem not only at
imaginary � but also at real � [19], and consequently
LQCD data are available there [20–25]. Furthermore,
two-color QCD has higher symmetry at imaginary � than
at real �, that is, CZ2 symmetry at � ¼ ��=2.
In this paper, we study properties of two-color QCD

at imaginary � from the viewpoint of the RW periodicity,
CZ2 symmetry, and the pseudoreality. The PNJL model
has the same properties as two-color QCD for the RW
periodicity, CZ2 symmetry, and the pseudoreality. The
PNJL model is then used to investigate two-color QCD
concretely. Particularly, the nontrivial correlation between
chiral and CZ2 symmetry breakings are investigated.
This paper is organized as follows. In Sec. II, some

properties of two-color QCD are derived with the Z2

transformation, the charge conjugation, and the pseudor-
eality. In Sec. III, the two-color PNJL model is formulated
with the mean-field approximation. Numerical results are
shown in Sec. IV. Section V is devoted to summary.

II. PROPERTIES OF TWO-COLOR QCD

We first consider the one-flavor (Nf ¼ 1) case. The

partition function Z of two-color QCD is obtained in
Euclidean spacetime as

TABLE I. Invariances of twist factor Rð�Þ in three-color QCD.
CZ3 transformation is defined with k ¼ �1 for � ¼ ��=3. Note
that Sð0Þ is invariant under both Z3 and C transformations.

� Z3 C CZ3

0 Invariant

��=3 Invariant

� Invariant

TABLE II. Invariances of twist factor Rð�Þ in two-color QCD.
CZ2 transformation is defined with k ¼ �1 for � ¼ ��=2. Note
that Sð0Þ is invariant under both Z2 and C transformations.

� Z2 C CZ2

0, � Invariant

��=2 Invariant
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Z ¼
Z

DA det½Mð�Þ� exp
�
� 1

4g2
F2
��

�
(13)

with

Mð�Þ ¼ Dþm� �4�; (14)

where the Dirac operator D is defined by D ¼
��ð@� � iA�Þ for the current quark mass m and the gauge

field A�, and F�� ¼ @�A� � @�A� � i½A�; A��. It is

assumed that � is either real or pure imaginary. For
later convenience, we define Pauli matrices ti in color
space and the Dirac charge-conjugation matrix C ¼ �2�4.

The fermion determinant det½Mð�Þ� satisfies
ðdet½Mð�Þ�Þ� ¼ det½Mð���Þ�; (15)

since

ðdet½Mð�Þ�Þ� ¼ det½Mð�Þy� ¼ det½�5Mð�Þy�5�
¼ det½Mð���Þ�: (16)

The relation (15) indicates that det½Mð�Þ� is real when
� is pure imaginary. The relation (15) is true for any Nc.

Two-color QCD has the pseudoreality [16],

Dt2C�5 ¼ t2C�5D
�; (17)

and hence the fermion determinant satisfies

det½Mð�Þ� ¼ det½ðt2C�5Þ�1Mð�Þðt2C�5Þ�
¼ ðdet½Mð��Þ�Þ� (18)

in virtue of the pseudoreality (17). This means that
det½Mð�Þ� is real when � is real. Two-color LQCD thus
has no sign problem at both real and pure imaginary �
[19]. The charge-conjugation relation (2) is obtained from
(15) and (18).

The Polyakov loop� is the vacuum expectation value of
the Polyakov-loop operator

L ¼ 1

Nc

trc

�
P exp

�
i
Z 1=T

0
d�A4

��
; (19)

with the time-ordering operatorP . The operator L is real in
the two-color system, because

L� ¼ 1

2
trc

�
P exp

�
�i

Z 1=T

0
d�ðA4Þ�

��
¼ L; (20)

where the second equality is obtained from the identity
t2A�t2 ¼ �ðA�ÞT ¼ �ðA�Þ�. The Polyakov loop � is
hence real at both real and pure imaginary �; note that
det½Mð�Þ� is real there. Under the charge conjugation, the
factor�ðA4ÞT is transformed into A4. Therefore the second
equality of (20) means that L is C invariant. Using this
property and the relation (2), one can see that

�ð�=T; TÞ ¼ �ð��=T; TÞ: (21)

For pure imaginary chemical potential � ¼ iT�, it is
convenient to introduce the modified Polyakov loop

�ð�Þ � �ð�Þei�; (22)

where �ð�Þ has been used as a shorthand notation of
�ði�; TÞ. The modified Polyakov loop satisfies the RW
periodicity

�ð�Þ ¼ �ð�þ �Þ; (23)

since it is invariant under the extended ZNc
transformation

[4]. Inserting (22) into (23) leads to

�ð�Þ ¼ ��ð�þ �Þ: (24)

One can also see from (21) and (22), and ��ð�Þ ¼ �ð�Þ
that

�ð�Þ ¼ �ð��Þ; �ð�Þ� ¼ �ð��Þ: (25)

Hence the imaginary part Im½�ð�Þ� is � odd, whereas the
real part Re½�ð�Þ� and �ð�Þ are � even.
At � ¼ ��=2, two-color QCD has CZ2 symmetry,

as mentioned in Sec. I. And �ð�Þ and Im½�ð�Þ� are order
parameters of the symmetry, since �ð�Þ and Im½�ð�Þ�
are CZ2 odd at � ¼ ��=2:

�ð�Þ !C �ð��Þ !Z2 ��ð�Þ; (26)

Im ½�ð�Þ� !C Im½�ð��Þ� !Z2 � Im½�ð�Þ�; (27)

because L is C invariant and transformed by the Z2

transformation as L ! �L. The two order parameters are
identical with each other at � ¼ ��=2, since Im½�ð�Þ� ¼
�ð�Þ sinð�Þ ¼ �ð�Þ. This is not surprising, because two-
color QCD has only one symmetry there. At � ¼ 0, �,
meanwhile, QCD has C symmetry and the order parameter
is a C-odd quantity such as nq. Table II shows the symme-

tries that two-color QCD has at � ¼ 0, ��=2, �.
Next we consider the Nf ¼ 2 case. The fermion deter-

minant is described by

det½Mð�Þ� ¼ det½Muð�Þ� det½Mdð�Þ�; (28)

where det½Muð�Þ� and det½Mdð�Þ� are the fermion
determinants for u and d quarks, respectively. Using the
operator Ct2 only for det½Mdð�Þ�, one can get the relation

det½Mð�Þ� ¼ det½Muð�Þ� det½ðCt2Þ�1Mdð�ÞðCt2Þ�
¼ det½Muð�Þ� det½Mdð��Þ�: (29)

This relation indicates that the 1þ 1 system with finite �
is identical to the 1þ 1� system with the same amount of
isospin chemical potential �iso. The diquark condensate
in the former system corresponds to the pion condensate in
the latter system. Because of this symmetry, we consider
the former system only in the present paper.
Two-color LQCD simulations were made in

Refs. [20,21,23,25] for theNf ¼ 8 case. The LQCD results

at � ¼ �=2 show that� ¼ 0 at small T but is finite at large
T. This indicates that the spontaneous breaking of CZ2
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symmetry occurs at some temperature Tc
RW. Further analy-

ses are made in Secs. III and IV by using the PNJL model.

III. PNJL MODEL

We consider the Nc ¼ Nf ¼ 2 case. The PNJL

Lagrangian is obtained in Minkowski spacetime by

L ¼ �qði��D� �mÞqþG½ð �qqÞ2 þ ð �qi�5 ~�qÞ2
þ jqTCi�5�2t2qj2� �Gvð �q��qÞ2 �Uð�Þ; (30)

where q is the two-flavor quark field,m is the current quark
mass, and ti and �i are Pauli matrices in color and flavor
spaces, respectively. In the limit of m ¼ � ¼ 0, two-color
QCD has Pauli-Gürsey symmetry [26,27], so the PNJL
Lagrangian is so constructed as to have the symmetry.
Note that the vector-type four-quark interaction ð �q��qÞ2
does not work at � ¼ 0 in the mean-field level, since the
vector-type condensate is zero at � ¼ 0. The potential U
is a function of the Polyakov loop�, and the explicit form
is shown later in Sec. IV.

Using the mean-field approximation, one can get the
effective potential � as [28]

� ¼ �2Nf

Z d3p

ð2�Þ3
X
�

�
1

2
NcE

�
p þ Tðlnf� þ lnfþÞ

�

þUþUð�Þ (31)

with

f� ¼ 1þ 2�e��E�
p þ e�2�E�

p ; (32)

U ¼ Gð�2 þ�2Þ �Gvn
2
q (33)

for the chiral condensate � ¼ h �qqi, the diquark conden-
sate � ¼ jhqTCi�5�2t2qij, and the vector condensate
(quark-number density) nq ¼ hqyqi. Here the factors E�

p

are defined by

E�
p ¼ sgnðEp ��vÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðEp ��vÞ2 þ ð2G�Þ2

q
(34)

for finite � and

E�
p ¼ Ep ��v (35)

for � ¼ 0, where sgnðEp ��vÞ is the sign function,

Ep ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þM2

p
, M ¼ m� 2G�, and �v ¼ �� 2Gvnq.

In the limit of m ¼ � ¼ 0, the condensate nq is zero, so

that � becomes invariant under the rotation in the �-�
plane as a consequence of Pauli-Gürsey symmetry.

In the Polyakov gauge, the Polyakov-loop� is obtained
by

� ¼ 1

2
ðei	 þ e�i	Þ ¼ cosð	Þ (36)

for real number 	, indicating that � is real. The mean
fields X ¼ �, �, nq, � are determined from the stationary

conditions

@�

@X
¼ 0; (37)

where � is regularized by the three-dimensional momen-
tum cutoff

Z d3p

ð2�Þ3 !
1

2�2

Z �

0
dpp2; (38)

because this model is nonrenormalizable.
At imaginary chemical potential � ¼ i�T, � is

invariant under the extended Z2 transformation [4]

� ! e�i��; � ! �þ �: (39)

This can be understood easily by introducing the modified
Polyakov-loop � ¼ ei�� and its conjugate �� ¼ e�i��
invariant under the extended Z2 transformation. The
condensate � is zero at imaginary �, since � becomes
finite only for �2 � m2

�=4 [13,16]. When � ¼ 0, � is
rewritten into the form of (31) with

fþ ¼ 1þ 2�e�2i�e��ðEp�2GvnqÞ þ e�2�Eþ
p ; (40)

f� ¼ 1þ 2��e2i�e��ðEpþ2GvnqÞ þ e�2�E�
p : (41)

Obviously, Eqs. (40) and (41) show that � is invariant
under the extended Z2 transformation and at the same time
that � has a periodicity of � in �, i.e., the RW periodicity

�ð�Þ ¼ �ð�þ �Þ: (42)

It should be noted that if� is finite,�will not have the RW
periodicity. Since the � dependence of mean fields X ¼ �,
nq, � is determined from � by the stationary conditions

(37), all the X have the RW periodicity

Xð�Þ ¼ Xð�þ �Þ: (43)

Furthermore, the RW periodicity�ð�Þ ¼ �ð�þ �Þ yields
the relation

�ð�Þ ¼ ��ð�þ �Þ: (44)

The PNJL Lagrangian L is invariant under the
combination of the C and the parameter transformation
� ! ��. This property guarantees that �ð�Þ ¼ �ð��Þ
and thereby C-even quantities �, �, and � are � even,
whereas the C-odd quantity nq is � odd. In the PNJL

Lagrangian, � appears only through the pure imaginary
factor i�. This shows that �-odd quantities become pure
imaginary, while �-even quantities become real. The
second equation of (25) is obtainable from the fact that
�ð�Þ� ¼ �ð�Þ ¼ �ð��Þ, namely,

�ð�Þ� ¼ ð�ð�Þei�Þ� ¼ �ð�Þ�e�i� ¼ �ð��Þ: (45)

The PNJL model thus has the same properties as two-color
QCD for the RW periodicity and the � parity.
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Using (44) and �ð�Þ ¼ �ð��Þ, one can see that

�ð�Þ ¼ ��ð�� �Þ; (46)

and hence�ð�Þ ¼ 0 at � ¼ �=2, if� is a smooth function
of �. When T is larger than some temperature TRW, � is
not a smooth function of � at � ¼ �=2. This is the RW
phase transition. Once the RW phase transition occurs,
�ð�Þ is not smooth at � ¼ �=2, and consequently �ð�Þ
becomes finite there. This means that the spontaneous
breaking of CZ2 symmetry takes place on the RW phase
transition line.

The relations (43) and (45), meanwhile, yield a similar
relation to (46):

Im ½�ð�Þ� ¼ �Im½�ð�� �Þ�: (47)

At � ¼ ��=2, therefore, Im½�� serves as an order
parameter of CZ2 symmetry as well as �.

IV. NUMERICAL RESULTS

A. Parameter setting

For the Nc ¼ Nf ¼ 2 case, we do not have enough

LQCD data at the imaginary chemical potential. We then
make qualitative analyses here. It is well known from the
nonlocal version of the PNJL model [5,6,29–33] that there
is the correlation between the chiral order parameter and
the Polyakov loop in the coupling constant through the
distribution function. This feature can be phenomenologi-
cally introduced in the local PNJL model by using the
entanglement vertex [14]. This entanglement is taken
into account in the present analysis. We make the following
parameter setting:

(1) Since the ratio r � Gv=G is of order ðNcÞ0 in
the leading order of the 1=Nc expansion, we take
r ¼ 0:4 that is determined from the Nc ¼ 3 case by
comparing the result of the nonlocal PNJL model
with LQCD data at the finite imaginary chemical
potential.

(2) We introduce the entanglement vertex of the form
Gið1� 
�2Þ for Gi ¼ G and Gv, respecting Z2

symmetry. Here the entanglement parameter 
 is
treated as a free parameter, but it is assumed to be
common for both G and Gv. Vacuum properties
are unchanged for any value of 
. We mainly use

 ¼ 0:4 at which pseudocritical temperatures of the
chiral and deconfinement transitions almost coin-
cide when � ¼ 0.

(3) In the leading order of the 1=Nc expansion, m� is
scaled by ðNcÞ0 and the pion decay constant f� byffiffiffiffiffiffi
Nc

p
. These scaling properties are assumed to deter-

mine the parameter set ðG;�; mÞ of the NJL sector,
where m is simply assumed to be 5.4 MeV. In this
parameter set, the dynamical quark mass M
becomes M0 ¼ 305 MeV at T ¼ � ¼ 0. The
resulting parameters are shown in Table III, together
with the values of m�, f�, and M0.

(4) Following Ref. [28], we take the Polyakov-loop
effective potential of the form

Uð�Þ
T

¼ �b½24e�a=T�2 þ lnð1��2Þ� (48)

with a ¼ 858:1 MeV and b1=3 ¼ 210:5 MeV. This
potential yields a second-order deconfinement tran-
sition in the pure gauge limit.

In Ref. [34], the scalar coupling G was varied to
investigate the effect on the phase transition. In this case,
however, the change of G also varies vacuum properties
such as m� and f�. We therefore fix G in this paper not to
change the vacuum properties. The Polyakov-loop effective
potential U used here is determined by using the strong
coupling expansion of the pure Yang-Mills theory. The
logarithmic part comes from the Haar measure. Since the
parameter fitting procedure does not refer to microscopic
dynamics, it is unclear how the Polyakov-loop effective
potential is related to nonperturbative characteristics near
Tc. This problem should be investigated elsewhere by
considering other approaches based on gluon and ghost
propagators [35].

B. � dependence of order parameters

Figures 1(a)–1(c) represent � dependence of M, Im½��,
and �, respectively, for three cases of 
 ¼ 0, 0.2, and 0.4.
Here we consider a high-T case of T ¼ 2:5m�.
M is an order parameter of chiral symmetry, while
Im½�� and � are order parameters of CZ2 symmetry,
respectively. Equations (43)–(47) show that � is antisym-
metric with respect to the � ¼ �=2 axis, whereas M
is symmetric with respect to the axis. In addition, Im½��
is antisymmetric with respect to the � ¼ �=2 axis and zero
at � ¼ 0 and �. As shown in Fig. 1(b), Im½�� has a gap
at � ¼ �=2, indicating that CZ2 symmetry is spontane-
ously broken there for the high-T case. The zeroth-order
discontinuity (gap) in Im½�� means that a first-order phase
transition takes place at � ¼ �=2. This is the RW phase
transition [7]. At � ¼ �=2, � also has a gap, since
Im½�� ¼ � at � ¼ �=2. This is a characteristic of two-
color QCD.
The CZ2-even quantity M has a cusp at � ¼ �=2, when

the CZ2-odd quantities Im½�� and � have a gap there. In
general, the zeroth-order discontinuity (gap) in a CZ2-odd
quantity is propagated to other CZ2-odd quantities as the
zeroth-order discontinuity (gap) and to CZ2-even quantities
as the first-order discontinuity (cusp) [36,37]. The order
parameters Im½�� and � are less sensitive to 
 than M.

TABLE III. Summary of parameters and physical values.

m� [MeV] f� [MeV]M0 [MeV]G [GeV�2]� [MeV]m [MeV]

140 75.4 305 7.23 657 5.4
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C. Interplay between chiral and
deconfinement transitions

Figure 2 shows the T dependence of M=M0 and j�j at
� ¼ �=2 for three cases of 
 ¼ 0, 0.2, and 0.4. The
CZ2-symmetry breaking takes place at some temperature
Tc
d , and the order is second order for 
 ¼ 0 and 0.2 but

becomes first order for 
 ¼ 0:4. Here the vertical thin-
dotted line denotes the critical temperature of the first-
order transition. The chiral transition is a crossover for

 ¼ 0 and 0.2, but it becomes first order for 
 ¼ 0:4.
The entanglement thus intensifies both the chiral transition
and the CZ2-symmetry breaking. For 
 ¼ 0 and 0.2,M has
a cusp at T ¼ Tc

d as a result of the propagation of the first-

order discontinuity in j�j [37].
Figure 3 shows the T dependence of M=M0 and � at

� ¼ 0 (� ¼ 0), where � is an order parameter of the

deconfinement transition. Both the deconfinement and chi-
ral transitions keep the crossover for 
 ¼ 0, 0.2, and 0.4,
although the transitions become stronger as 
 increases.
The pseudocritical temperature Tc

d of the deconfinement

transition is less sensitive to 
 than the pseudocritical
temperature Tc

� of the chiral transition, where the pseudo-

critical temperatures are defined by peak positions of
dM=dT and d�=dT, respectively.
As shown in Fig 2, the CZ2 symmetry breaking takes

place on a line of � ¼ �=2 and T � Tc
d . As discussed in

Sec. III, the line is the RW phase transition line, and the end
point is nothing but the end point of the RW phase tran-
sition line; therefore, Tc

d ¼ Tc
RW. This end point is called

the RWend point. As shown later in Fig. 6, the spontaneous
breaking of CZ2 symmetry at the RW end point is contin-
uously connected to the deconfinement transition at
0 � � < �=2. Thus the crossover deconfinement transition
at � ¼ 0 is a remnant of the CZ2 symmetry breaking at the
RW end point. Hence, for simplicity, we regard the CZ2

symmetry breaking at the RW end point as a part of the
deconfinement transition at 0 � � < �=2.
Dynamics at � ¼ �=2 is more complicated than that at

� ¼ 0, since the order parameters have discontinuities of
either the zeroth or the first order at � ¼ �=2. The order
parameters are considered to be more sensitive to 
 near
the discontinuities. This is really true as seen by comparing
Fig. 2 with Fig. 3. Through the discontinuities, we can then
investigate clearly how strong the entanglement between
the chiral and deconfinement transitions is. The symmetry
breakings at � ¼ �=2 thus give deeper understanding.
Figure 4 shows the
 dependence of two (pseudo)critical

temperatures Tc
d and Tc

� at � ¼ �=2 and 0. The two

(pseudo)critical temperatures approach each other as 

increases and finally agree with each other at 
 * 0:2 for
� ¼ �=2 and at 
 * 0:4 for � ¼ 0. As for 
 & 0:2, the
speed of the approach is much faster for � ¼ �=2 than for
� ¼ 0. The entanglement thus makes the correlation
stronger between the chiral and deconfinement transitions.
Therefore, the difference jTc

� � Tc
d j is a good quantity

to determine the value of 
. For � ¼ �=2, the deconfine-
ment transition is second order at 
< 
c 	 0:33 but first
order at 
> 
c. The chiral transition is, meanwhile, the
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M
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M
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T / mπ

|Φ
 |

(b)

FIG. 2 (color online). T dependence of (a) M=M0 and (b) j�j
at � ¼ �=2. The dotted, dashed, and solid lines represent the
results of 
 ¼ 0, 0.2, and 0.4, respectively.
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FIG. 3 (color online). T dependence of (a) M=M0 and (b) �
at � ¼ 0. See Fig. 2 for the definition of the lines.
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FIG. 1 (color online). � dependence of order parameters (a)M,
(b) Im½��, and (c)� at T ¼ 2:5m�. HereM is normalized by the
value M0 at T ¼ � ¼ 0. The dotted, dashed, and solid lines
represent the results of 
 ¼ 0, 0.2, and 0.4, respectively.
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crossover at 
< 
c, although it is first order at 
> 
c.
Hence, the point at 
 ¼ 
c is a tricritical point (TCP) for
the deconfinement transition and a critical end point (CEP)
for the chiral transition.

Figure 5 shows the r dependence ofM=M0 and jIm�j at
� ¼ �=2. The effect of r is similar to that of 
, but the
former effect is smaller than the latter one, when r is varied
within a realistic range from 0.25 to 0.5.

D. Phase diagram at imaginary and real
chemical potentials

First we consider the phase diagram at imaginary � for
two cases of 
 ¼ 0 and 0.4. Here we take r ¼ 0:4. Figure 6
shows the phase diagram in the �-T plane. In the left panel
for the case of 
 ¼ 0, the upper and lower dotted lines
denote chiral and deconfinement crossover transitions,
respectively. The two transitions are thus separated from
each other, when the correlation between the two transi-
tions is weak. In this situation, the CZ2 symmetry breaking
at the RW end point ð�; TÞ ¼ ð�=2; Tc

RWÞ is second order.
In the right panel for the strong correlation case of


 ¼ 0:4, the two crossover transitions (dotted lines) agree
with each other, and the CZ2 symmetry breaking at the
RW end point becomes first order. In other words, the RW
end point becomes a triple point where three first-order
transition lines meet. Thus, the RW end point becomes a
triple point, when the correlation between the chiral and
deconfinement transitions is strong.
The Polyakov-loop effective potential used in this study

yields the second-order Z2 symmetry breaking in the heavy
quark limit. Since the entanglement parameter
makes the
symmetry breaking stronger, the first-order CZ2 symmetry
breaking in the physical quark mass does not come from
the CZ2 symmetry breaking only. The chiral transition
becomes stronger, if the coupling constant G is weakened
at finite T; see, for example, Ref. [38]. In the present
model, the coupling constant is weakened through the
entanglement vertex, so that the chiral transition becomes
first order. This behavior is seen in the left panel of Fig. 2.
The first-order CZ2 symmetry breaking is therefore in-
duced by the first-order chiral transition.
Next we investigate an influence of 
 on the phase

diagram at real �. Figure 7 shows the T dependence
of M=M0, �, �=�0, and nq for the case of r ¼ 0:4 and

� ¼ m�, where �0 is the absolute value of � at T¼�¼0.
As shown in Fig. 7(c), �=�0 vanishes around T ¼ 1:5m�,
indicating that the superfluid/normal transition occurs
there. The phase boundary is rather sensitive to 
.
In this study, we take r � Gv=G ¼ 0:4 for all the

calculations. Although this value is obtained from
the Nc ¼ 3 case by comparing the PNJL results with the
corresponding LQCD data, it is not easy to determine the
value definitely. We then check the r dependence of order
parameters, as shown in Fig. 8 where r ¼ 0:25 and 0.5 are
taken as lower and upper limits of a reliable range of r.
Effects of r on M, �, and � are rather small, although r
gives an appreciable effect on nq.
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FIG. 5 (color online). T dependence of (a) M=M0 and
(b) jIm�j at � ¼ �=2. The dotted, dashed, and solid lines denote
the results for r ¼ 0:25, 0.4, and 0.5, respectively. Here 
 is set
to 0.4.
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FIG. 6 (color online). The phase diagram in the �-T plane for

 ¼ 0 (left panel) and 
 ¼ 0:4 (right panel). Here the case of
r ¼ 0:4 is taken. The dotted and solid lines stand for crossover
and first-order transitions, respectively. In the left panel, the
upper and lower dotted lines mean the chiral and deconfinement
crossover lines, respectively. In the right panel, the chiral and
deconfinement crossover lines almost coincide with each other,
and the diamond symbol denotes the triple point.
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FIG. 4 (color online). 
 dependence of (pseudo)critical
temperatures Tc

d and Tc
� at (a) � ¼ �=2 and (b) � ¼ 0 for the

case of Gv ¼ 0:4G. The solid diamond symbol with ‘‘TCP/
CEP’’ stands for the point that is a TCP for the deconfinement
transition and a CEP for the chiral transition. The numerical
values have ambiguities of about 1 MeV, and the solid lines are
drawn by connecting two neighborhood points.
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Finally we consider the phase diagram at real �.
Figure 9 shows the BCS-BEC crossover (M ¼ �), the
deconfinement crossover (� ¼ 0:5), and the superfluid/
normal transition lines for two cases of 
 ¼ 0 and 0.4;

see Ref. [28] for the definitions of these transitions.
When T is small, the superfluid/normal transition occurs
at � ¼ m�=2 as expected. When T > m� and �>m�=2,
meanwhile, the superfluid/normal transition takes place
around T ¼ 1:5m�. The transition line depends on
 rather
strongly compared with the BCS-BEC crossover and
the deconfinement crossover line. Thus the correlation
between the chiral and deconfinement transitions is impor-
tant not only at �2 ¼ �ðT�=2Þ2 but also at large real �
such as �2 > ðm�=2Þ2.

V. SUMMARY

We have studied properties of two-color QCD at imagi-
nary � ¼ i�T from the viewpoint of the RW periodicity,
the pseudoreality, and CZ2 symmetry. Two-color QCD has
CZ2 symmetry at � ¼ ��=2. The PNJL model has the
same properties as two-color QCD for the RW periodicity,
the pseudoreality, and CZ2 symmetry. The PNJL model is
thus a good model to investigate two-color QCD at imagi-
nary� concretely. We have then investigated the nontrivial
correlation between the deconfinement and chiral transi-
tions at imaginary � for the two-flavor case.
At � ¼ �=2 and T � Tc

RW, i.e., on the RW phase-

transition line, the spontaneous breaking of CZ2 symmetry
takes place. The CZ2 symmetry breaking at the RW end
point ð�; TÞ ¼ ð�=2; Tc

RWÞ is continuously connected to the
deconfinement transition at 0 � � < �=2. Thus the cross-
over deconfinement transition at � ¼ 0 is a remnant of the
CZ2 symmetry breaking at the RW end point.
The order of the CZ2 symmetry breaking at the RW end

point is nontrivial. It cannot be determined by CZ2 sym-
metry and the pseudoreality. The order depends on the
strength of the entanglement parameter 
, i.e., the strength
of the correlation between chiral and CZ2 symmetry break-
ings. The order is second order for small 
, but becomes
first order for large 
. The second-order nature is origi-
nated in the Polyakov-loop effective potential. Meanwhile,
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FIG. 7 (color online). T dependence of (a) M=M0, (b) �,
(c) �=�0, and (d) nq for the case of r ¼ 0:4 and � ¼ m�.

The dotted and solid lines represent the results of 
 ¼ 0 and 0.4,
respectively.
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the first-order nature comes from the fact that chiral sym-
metry breaking becomes first order as a consequence of the
strong entanglement. The order of CZ2 symmetry breaking
at the RW end point is thus sensitive to the strength of the
correlation between chiral and CZ2 symmetry breakings.
Finally, we have investigated the impact of 
 on the phase
diagram at real �. The diagram, particularly the superfluid
transition, is rather sensitive to 
. The determination of 

is thus important for both real and imaginary �.

At the present stage, we do not know how large 
 is, but
it is possible to determine the value of 
 from LQCD
simulations at � ¼ �=2, particularly by seeing the corre-
lation between chiral and CZ2 symmetry breakings. It is

interesting as a future work. In two-color QCD, the corre-
lation between the chiral and deconfinement transitions is
thus important for both real and imaginary �. This is true
also for three-color QCD. This strongly suggests that
understanding of three-color QCD at imaginary � is
important to determine the phase diagram at real �.
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