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The Bethe-Salpeter approach allows for quantum-field theoretic descriptions of relativistic bound

states; its inherent complexity, however, usually prevents the finding of exact solutions. Under suitable

simplifying assumptions about the systems discussed, we derive analytically examples of rigorous

solutions to the instantaneous homogeneous Bethe-Salpeter equation by relating tentative solutions to

the interactions responsible for the formation of bound states.
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I. INTRODUCTION

One of the great remaining challenges in theoretical
elementary particle physics is the description of bound
states in a way fully consistent with all requirements
imposed by special relativity and quantum mechanics—
that is, within the framework of relativistic quantum field
theory. In principle, the appropriate tool to achieve this
goal is the Bethe-Salpeter formalism [1–3]: for bound-state
constituents with fixed features, the homogeneous Bethe-
Salpeter equation governs all the bound states. However,
for various practical reasons, some of which we recall
below, in its applications to both quantum electrodynamics
and quantum chromodynamics, some simplified equations,
situated along a path of nonrelativistic reduction, are fre-
quently used. Its cornerstones are the Salpeter equation [4]
and the reduced Salpeter equation [5,6].

The nature of such bound-state equations renders it
difficult to find their exact analytic solutions for given
interactions of the bound-state constituents. However, a
knowledge of at least some exact solutions facilitates the
judging of the significance of the outcomes of reduction
steps or numerical solution techniques. In view of this, we
remember a straightforward idea used in quantum physics,
e.g., by Neumann andWigner [7], for studies of the follow-
ing kind.

Within the formalism of nonrelativistic quantum
mechanics, bound states are described by the time-
independent Schrödinger equation, which is the eigenvalue
equation of the Hamiltonian operator controlling the
dynamics of the system under consideration for energy
eigenvalues E and associated eigenfunctions c . The bound
states correspond to the discrete eigenvalues in the spec-
trum of this operator. For a particle of massm experiencing
interactions induced by some potential V, this Schrödinger
equation in configuration-space representation reads

�
� �

2m
þ VðxÞ

�
c ðxÞ ¼ Ec ðxÞ; � � r � r:

Typically, the interaction potentialV is inferred from physi-
cal considerations or principles, and, for this potential, the
solutions fðE; c Þg of the Schrödinger equation are then
derived. However, for the purpose of just constructing
examples for exact solutions ðE; c Þ related to potentials V
entering into the Schrödinger equation, onemay also follow
the opposite route: on an equal footing, one may postulate,
for a chosenvalue ofE, any preferred or convenient shape of
the solution c and see whether one is able to find analyti-
cally the related potential V. This is easily done for vanish-
ing binding energyE, i.e., forE ¼ 0, with the general result

VðxÞ ¼ �c ðxÞ
2mc ðxÞ :

Assuming the potential V to be spherically symmetric,
VðxÞ ¼ VðrÞ, r � jxj, the choice [7]

c ðxÞ ¼ c ðrÞ ¼ sinða3r3Þ
r2

; a � 2m;

for a likewise spherically symmetric stationary solution
thus fixes [7] the central potential1:

VðrÞ ¼ 2

ar2
� 9a5r4:

We intend to adapt the above procedure in quantum
mechanics applied to Schrödinger problems to the
Bethe-Salpeter approach. To this end, we first identify,
in Sec. II, examples of Bethe-Salpeter equations with
internal structure sufficiently simple to allow for the kind
of inversion we have in mind. For these tractable bound-
state equations, we then, in Sec. III, relate postulated
candidate solutions to confining and nonconfining interac-
tion potentials.

*wolfgang.lucha@oeaw.ac.at
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1Here, the eigenvalue E ¼ 0 is located in the continuous
spectrum of the Hamiltonian; thus, it is not discrete.
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II. BETHE-SALPETER FORMALISM IN
INSTANTANEOUS LIMIT

Motivated by the needs of physics, the aim of the present
discussion is to construct analytic solutions to equations of
motion describing relativistic bound states, which we
assume to be composed of some fermion, with momentum
p1, and some antifermion, with momentum p2; the total
momentum of the bound state isP � p1 þ p2, and its mass
M is given by M2 ¼ P2.

A. Homogeneous Bethe-Salpeter equation

In principle, within the framework of relativistic quantum
field theory, the adequate tool for the (Poincaré-covariant)
description of bound states is the Bethe-Salpeter formalism
[1–3]. In this approach, a bound state BðPÞ of momentum P

and massM �
ffiffiffiffiffiffi
P2

p
is described by a Bethe-Salpeter ampli-

tude defined in configuration-space representation as a
matrix element of the time-ordered product of the field
operators of the bound-state constituents evaluated between
the vacuum state j0i and the bound state jBðPÞi. In
momentum-space representation, the Bethe-Salpeter ampli-
tude, after splitting off the center-of-momentum motion of
the bound state and suppressing all indices generically
denoted by �ðp; PÞ, encodes the distribution of the relative
momentum p of the two bound-state constituents; it satisfies
the formally exact homogeneous Bethe-Salpeter equation,
which involves two kinds of dynamical ingredients: the full
propagators SiðpiÞ of the constituents with individual mo-
menta pi, i ¼ 1, 2; and the Bethe-Salpeter interaction kernel
Kðp; q; PÞ, by construction a fully amputated four-point
Green function of the bound-state constituents defined per-
turbatively by summation of the countable infinity of all
Bethe-Salpeter-irreducible Feynman diagrams for two-
particle into two-particle scattering. Skipping all indices,
this Bethe-Salpeter equation generically reads

�ðp; PÞ ¼ i

ð2�Þ4 S1ðp1Þ
Z

d4qKðp; q; PÞ�ðq; PÞS2ð�p2Þ:
(1)

Unfortunately, attempts to apply the Bethe-Salpeter formal-
ism to relativistic bound-state problems are doomed to face
various grave obstacles, such as the impossibility of deter-
mining the Bethe-Salpeter interaction kernel beyond the
tight limits of perturbation theory, or the appearance of
excitations in the relative time variable of the bound-state
constituents—that is, of solutions called abnormal, difficult
to interpret in the framework of quantum physics.2 They

may be remedied in three-dimensional reductions of the
Bethe-Salpeter equation; the most well known of the
resulting bound-state equations is the one proposed by
Salpeter [4].

B. (Full) Salpeter equation

In order to facilitate the formulation of instantaneous
Bethe-Salpeter equations, let us recall the standard
definitions of one-particle energy EiðpÞ, the one-particle
Dirac HamiltonianHiðpÞ, and the energy projection opera-
tors ��

i ðpÞ for positive and negative energy of a particle
i ¼ 1, 2:

EiðpÞ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

i

q
; HiðpÞ � �0ð� � pþmiÞ;

��
i ðpÞ �

EiðpÞ �HiðpÞ
2EiðpÞ :

The projection operators ��
i ðpÞ satisfy, in terms of the

charge conjugation Dirac matrix C,

½��
i ðpÞ�c � ½C�1��

i ðpÞC�T ¼ ��
i ðpÞ; i ¼ 1; 2:

The reduction of the Bethe-Salpeter equation to the
Salpeter equation relies on exactly two simplifying
assumptions (brief reviews of such reductions can be
found in Refs. [9–11]):
First, the instantaneous approximation assumes that in

the center-of-momentum frame of the bound states, fixed
by P ¼ ðM; 0Þ, all interactions between bound-state con-
stituents are instantaneous. In this (‘‘static’’) limit, the
Bethe-Salpeter interaction kernel Kðp; q; PÞ depends only
on the spatial components p and q of the relative momenta
p and q involved; that is, it takes the form Kðp; q; PÞ ¼
Kðp; qÞ. If, furthermore, the propagators SiðpiÞ of both
constituents may be assumed to be entirely free from any
nontrivial dependence on the zero component p0 of the
relative momentum p, integrating with respect to p0

reduces the Bethe-Salpeter equation [Eq. (1)] to a kind of
instantaneous Bethe-Salpeter equation for the Salpeter
amplitude

�ðpÞ � 1

2�

Z
dp0�ðpÞ:

For various attempts in this direction, see, for instance,
Refs. [12,13] and references therein.
Second, any bound-state constituent is assumed to

propagate as a free particle with some effective mass
mi required to encompass appropriately all dynamical

2There are, however, very sound arguments [8] claiming that
the presence of timelike excitations might be just an artifact of
the ladder approximation to the Bethe-Salpeter kernel, incorpo-
rating the interactions responsible for the bound states only by an
iteration of a single-particle exchange between the constituents.
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self-energy effects.3 In other words, any fermion propaga-
tor SiðpÞ is approximated by its corresponding free form4:

Si;0ðp;miÞ ¼ i

6p�mi þ i"
� i

6pþmi

p2 �m2
i þ i"

;

" # 0; i ¼ 1; 2:

Imposing both restrictions above on the Bethe-Salpeter
equation [Eq. (1)] yields, by contour integration in the
complex p0 plane and the residue theorem, the Salpeter
equation (where, trivially, p � p1 ¼ �p2 and P0 ¼ M in
the center-of-momentum frame of the bound state) [4]:

�ðpÞ ¼
Z d3q

ð2�Þ3
�
�þ

1 ðp1Þ�0½Kðp; qÞ�ðqÞ��0�
�
2 ðp2Þ

P0 � E1ðp1Þ � E2ðp2Þ
���

1 ðp1Þ�0½Kðp; qÞ�ðqÞ��0�
þ
2 ðp2Þ

P0 þ E1ðp1Þ þ E2ðp2Þ
�
: (2)

Multiplying the Salpeter equation [Eq. (2)] from the left
by ��

1 ðp1Þ and from the right by ��
2 ðp2Þ and using

��
i ðpÞ��

i ðpÞ ¼ 0 reveals that any of its solutions �ðpÞ
will satisfy the constraints

�þ
1 ðp1Þ�ðpÞ�þ

2 ðp2Þ ¼ ��
1 ðp1Þ�ðpÞ��

2 ðp2Þ ¼ 0:

These constraints halve the number of independent com-
ponents of any solution �ðpÞ of the Salpeter equation
[Eq. (2)]; obviously, this has important implications for
practical calculations. Generally, the Bethe-Salpeter inter-
action kernel Kðp; qÞ may be decomposed into a sum of
products of Lorentz-scalar potentials Vðp; qÞ and associ-
ated Lorentz structures. Assuming the latter to be repre-
sented by identical Dirac matrices, generically labelled �,
the action of the kernel Kðp; qÞ on the Salpeter amplitude
�ðqÞ requested by the Salpeter equation [Eq. (2)] is

½Kðp; qÞ�ðqÞ� ¼ X
�

V�ðp; qÞ��ðqÞ�:

C. Reduced Salpeter equation

By the charge conjugation properties of the energy
projection operators ��

i ðpÞ, the second term on the

right-hand side of the Salpeter equation [Eq. (2)] corre-
sponds to the negative-energy components of the Salpeter
amplitude �ðpÞ: ��

1 ðp1Þ�ðpÞ�þ
2 ðp2Þ � ��

1 ðp1Þ�ðpÞ�
½��

2 ðp2Þ�c. Assuming that it is justifiable to neglect the
contribution of this latter term relative to that of the first
term on the right-hand side of Eq. (2) leads to the reduced
Salpeter equation [5,6]:

½P0 � E1ðp1Þ � E2ðp2Þ��ðpÞ

¼
Z d3q

ð2�Þ3 �
þ
1 ðp1Þ�0½Kðp; qÞ�ðqÞ��0�

�
2 ðp2Þ; (3)

forming, unlike Eq. (2), an explicit eigenvalue problem for
the bound-state masses P0 ¼ M. Formally, this reduction
of the (full) Salpeter equation [Eq. (2)] to the reduced
Salpeter equation [Eq. (3)] may be effected by imposing
as a further constraint ��

1 ðp1Þ�ðpÞ ¼ 0 or �ðpÞ�þ
2 ðp2Þ ¼

0; as a trivial consequence of this, all solutions �ðpÞ of the
reduced Salpeter equation [Eq. (3)] involve only the positive-
energy components �ðpÞ ¼ �þ

1 ðp1Þ�ðpÞ��
2 ðp2Þ �

�þ
1 ðp1Þ�ðpÞ½�þ

2 ðp2Þ�c. Physically, this simplification
supposes that P0 � E1ðp1Þ � E2ðp2Þ � P0 þ E1ðp1Þ þ
E2ðp2Þ or ½P0 þ E1ðp1Þ þ E2ðp2Þ��1 � ½P0 � E1ðp1Þ �
E2ðp2Þ��1 holds at the level of expectation values; this
assumption may be justified for semirelativistic and weakly
bound heavy constituents. In the center-of-momentum frame
of the bound state, P ¼ 0 clearly implies p ¼ p1 ¼ �p2.

D. Pseudoscalar bound states

To start with, let us focus our interest on those fermion-
antifermion bound states which are represented by a
Salpeter amplitude with the least number of independent
components: the pseudoscalar states. These are bound
states composed of some fermion and its antiparticle, and
are thus characterized by m1 ¼ m2 ¼ m and well-defined
behavior under charge conjugation; the quantum number
assignment common to all pseudoscalar states is J ¼ 0
for their total spin, P ¼ �1 for their parity, and C ¼ þ1
for their charge conjugation parity: JPC ¼ 0�þ. Such
states are realized in nature in the form of, e.g., the pion,
as a quark-antiquark bound state. Henceforth, all indices
i ¼ 1, 2 distinguishing the bound-state constituents can

be dropped, since now, for instance, E1ðpÞ ¼ E2ðpÞ ¼
EðpÞ ¼ EðpÞ � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p2 þm2
p

, with p � jpj � ffiffiffiffiffiffi
p2

p
.

The most general expansion of the Salpeter amplitude
�ðpÞ over a complete set of Dirac matrices would, of
course, introduce 16 Salpeter components. However, as a
consequence of the peculiar projector structure of the
Salpeter equation [Eq. (2)], manifesting in the constraints
mentioned in Sec. II B, precisely eight of these components
are independent. Specifically, for describing pseudoscalar
states, just two of the latter, labeled ’1ðpÞ and ’2ðpÞ, are
relevant:

3This forms the example par excellence of the trivial p0 depen-
dence of the propagators requested above.

4The assumption of free propagators for the bound-state con-
stituents may, however, encounter a serious conceptual problem
for the following reason: in quantum field theory, the infinite
tower of Dyson-Schwinger equations relates any n-point Green
function to at least one ðm> nÞ-point Green function; this entails
that propagators, being two-point Green functions, and the four-
point Green function entering as an interaction kernel, cannot be
viewed as independent. In particular, in quantum chromodynam-
ics (the theory describing the strong interactions), free propa-
gators for any of its fundamental quark and gluon degrees of
freedom are incompatible with the feature of color confinement,
exhibited by this unbroken non-Abelian gauge theory.

EXACT SOLUTIONS OF BETHE-SALPETER EQUATIONS . . . PHYSICAL REVIEW D 87, 016009 (2013)

016009-3



�ðpÞ ¼
�
’1ðpÞHðpÞ

EðpÞ þ ’2ðpÞ
�
�5:

In fact, the above decomposition of �ðpÞ applies to all
bound states of a spin- 12 fermion and a spin- 12 antifermion

for which the quantum number s of the sum of the two
fermion spins is zero; i.e., to all spin singlet states carrying
s ¼ 0, irrespective of the relative orbital angular momen-
tum ‘ of the constituents. Pseudoscalar bound states are
just the special case ‘ ¼ 0. The one additional constraint
truncating the full to the reduced Salpeter equation
enforces the equality of the Salpeter components ’1ðpÞ
and ’2ðpÞ: ’1ðpÞ ¼ ’2ðpÞ � ’ðpÞ. Thus, all spin
singlet—notably, all pseudoscalar—solutions of a reduced
Salpeter equation [Eq. (3)] will read

�ðpÞ ¼ ’ðpÞHðpÞ þ EðpÞ
EðpÞ �5 � 2’ðpÞ�þðpÞ�5:

E. Radial eigenvalue equations

In order to follow the more-or-less standard route of
nonrelativistic reduction, let us assume that the Bethe-
Salpeter interaction kernel Kðp; qÞ is of convolution type;
i.e., it is of the form Kðp; qÞ ¼ Kðp� qÞ, which entails for
the potentials V�ðp; qÞ ¼ V�ðp� qÞ; and let us assume
that Kðp; qÞ respects spherical symmetry; i.e., Kðp; qÞ ¼
Kððp� qÞ2Þ, and thus V�ðp; qÞ ¼ V�ððp� qÞ2Þ; trivially,
this means that each momentum-space potential V�ðp; qÞ
is the Fourier transform of a spherically symmetric
configuration-space potential V�ðrÞ depending just on the
radial coordinate r � jxj. In this case, any dependence on
the angular variables, encoded either in spherical harmon-
ics or in vector spherical harmonics, can be split off; this
factorization effects the reductions of both the Salpeter
equation [Eq. (2)] [14,15] and its reduced counterpart
[Eq. (3)] [16] to equivalent systems of coupled equations
for the radial factors of all independent Salpeter compo-
nents. For a particular Lorentz structure of the Bethe-
Salpeter kernel (such that the index � identifying the
Lorentz structure may be suppressed), the interactions
experienced by bound-state constituents enter the radial
eigenvalue equations in the form of Fourier-Bessel trans-
forms VLðp; qÞ (L ¼ 0; 1; 2; . . . ) of the radial static
configuration-space potential VðrÞ, defined in terms of
spherical Bessel functions of the first kind [17], jnðzÞ, n ¼
0;�1;�2; . . . :

VLðp; qÞ � 8�
Z 1

0
drr2jLðprÞjLðqrÞVðrÞ;

p � jpj; q � jqj; L ¼ 0; 1; 2; . . . :

In Sec. III, we intend to exemplify our technique
of constructing exact solutions to the reduced Salpeter
equation by considering only a few of those Lorentz
structures � 	 � of the interaction kernel Kðp; qÞ that are
commonly used in phenomenological descriptions of

hadrons—notably, of mesons, as bound states of quarks
confined by the strong interactions.5

1. (Full) Salpeter equation

The Salpeter equation for bound states with the spin-sum
quantum number s ¼ 0 is equivalent to a system of two
equations for the two independent radial Salpeter compo-
nents ’1ðpÞ and ’2ðpÞ. For pure time-component Lorentz-
vector kernels (� 	 � ¼ �0 	 �0), this system reads

2EðpÞ’2ðpÞ þ
Z 1

0

dqq2

ð2�Þ2 V0ðp; qÞ’2ðqÞ ¼ M’1ðpÞ;

2EðpÞ’1ðpÞ þ
Z 1

0

dqq2

ð2�Þ2
�

m2

EðpÞEðqÞV0ðp; qÞ

þ pq

EðpÞEðqÞV1ðp; qÞ
�
’1ðqÞ ¼ M’2ðpÞ:

2. Reduced Salpeter equation

The (compared to the full Salpeter equation) simple and
unique energy projector structure of the reduced Salpeter
equation [Eq. (3)] guarantees that each spin-singlet bound-
state solution involves just one independent radial Salpeter
component ’ðpÞ, since ’1ðpÞ ¼ ’2ðpÞ � ’ðpÞ. The
system of coupled radial equations thus collapses to a
single radial eigenvalue equation which reads, for a kernel
of time-component Lorentz-vector Dirac structure
� 	 � ¼ �0 	 �0,

2EðpÞ’ðpÞ þ 1

2

Z 1

0

dqq2

ð2�Þ2
��

1þ m2

EðpÞEðqÞ
�
V0ðp; qÞ

þ pq

EðpÞEðqÞV1ðp; qÞ
�
’ðqÞ ¼ M’ðpÞ;

for a kernel of Lorentz-vector Dirac structure � 	 � ¼
�� 	 ��, describing all the interactions by an effective

5Since the first encounter [15,18] with unstable solutions of
Salpeter equations with confining interactions, the stability of
solutions of different relativistic bound-state equations has been
an issue of concern [19–25]. For confining interactions of
harmonic oscillator form in configuration space (in which case
all bound-state integral equations reduce to easier-to-handle
differential equations in momentum space), the conditions for
stability of bound-state solutions within the instantaneous Bethe-
Salpeter framework (in the sense of their spectrum being real,
discrete, and bounded from below) have been analyzed for those
Lorentz structures of the Bethe-Salpeter interaction kernel which
are most frequently employed for the description of hadrons as
bound states of quarks. A rigorous analytic proof of the stability
of the bound-state energy spectra entailed has been constructed
for the reduced Salpeter equation [26–28] and a particular
generalization of it [28,29], formulated by taking into account
the full propagators of the bound-state constituents [12,13,30],
obtained as the solutions of the Dyson-Schwinger equations for
the corresponding two-point Green’s functions of the bound-
state constituents, and this problem has also been discussed for
the (full) Salpeter equation [31–33].
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vector-boson exchange between the two fermionic bound-
state constituents,

2EðpÞ’ðpÞ þ
Z 1

0

dqq2

ð2�Þ2
�
2� m2

EðpÞEðqÞ
�
V0ðp; qÞ’ðqÞ

¼ M’ðpÞ;
or, for the linear combination 2� 	 � ¼ �� 	 �� þ �5 	
�5 � 1 	 1 of the kernel’s Dirac structure,

2EðpÞ’ðpÞ þ
Z 1

0

dqq2

ð2�Þ2 V0ðp; qÞ’ðqÞ ¼ M’ðpÞ: (4)

F. Special case: Massless bound-state
constituents (m ¼ 0)

In the limit of vanishing masses of the two bound-state
constituents, i.e., in the case m ¼ 0, the bound-state equa-
tions of Sec. II E simplify, of course, still further: the
Salpeter equation with a time-component Lorentz-vector
kernel � 	 � ¼ �0 	 �0 reduces to the set of equations

2p’2ðpÞ þ
Z 1

0

dqq2

ð2�Þ2 V0ðp; qÞ’2ðqÞ ¼ M’1ðpÞ;

2p’1ðpÞ þ
Z 1

0

dqq2

ð2�Þ2 V1ðp; qÞ’1ðqÞ ¼ M’2ðpÞ;
(5)

whereas the single radial eigenvalue equation emerging
from the reduced Salpeter equation reads, for interactions
with the time-component Lorentz-vector Dirac structure
� 	 � ¼ �0 	 �0,

2p’ðpÞþ1

2

Z 1

0

dqq2

ð2�Þ2 ½V0ðp;qÞþV1ðp;qÞ�’ðqÞ¼M’ðpÞ;
(6)

for interactions with the Lorentz-vector Dirac structure
� 	 � ¼ �� 	 ��,

2p’ðpÞ þ 2
Z 1

0

dqq2

ð2�Þ2 V0ðp; qÞ’ðqÞ ¼ M’ðpÞ; (7)

or, for kernels of the particularly favorable Dirac structure
2� 	 � ¼ �� 	 �� þ �5 	 �5 � 1 	 1,

2p’ðpÞ þ
Z 1

0

dqq2

ð2�Þ2 V0ðp; qÞ’ðqÞ ¼ M’ðpÞ: (8)

Although we focus on reduced Salpeter equations, we need
Eq. (5) at an intermediate stage.

III. CONFIGURATION-SPACE POTENTIALS
VðrÞ BY INVERSION

All the radial bound-state eigenvalue equations recalled
in Secs. II E and II F emerging from the reduced Salpeter
equation [Eq. (3)] under our reasonable assumption of
spherical symmetry, are for M � 2EðpÞ homogeneous

linear Fredholm integral equations of the second kind but
are still simple enough that, for sufficiently sophisticated
choices of the Salpeter solutions ’ðpÞ, their underlying
configuration-space potentials VðrÞ can be extracted by
analytical means. For notational convenience, we define
the Fourier-Bessel transforms to configuration space,

’LðrÞ � iL

ffiffiffiffi
2

�

s Z 1

0
dpp2jLðprÞ’ðpÞ; L ¼ 0; 1;

TLðrÞ � iL

ffiffiffiffi
2

�

s Z 1

0
dpp2jLðprÞEðpÞ’ðpÞ; L ¼ 0; 1;

of both radial Salpeter amplitude’ðpÞ and free-energy part
EðpÞ’ðpÞ in momentum space. In the following subsec-
tions, we illustrate the idea of analytical extraction of
configuration-space radial potentials VðrÞ by examining
explicit examples: For an appropriate ansatz for the
Salpeter solution ’ðpÞ, by application of the Fourier-
Bessel transformation to the momentum-space bound-state
equation considered, wewould like to get its configuration-
space representation in terms of ’LðrÞ and TLðrÞ; from the
latter formulation, we should be able to read off VðrÞ. Since
in Eqs. (4) and (6)–(8) the potential may absorb any mass
M � 0, we assume M ¼ 0. Of course, the simple proce-
dure sketched above can only be followed if the interaction
term in the bound-state equation under study contains
merely a single Fourier-Bessel transform VLðp; qÞ of the
radial potential VðrÞ; i.e., it involves a unique value of L. If,
on the other hand, both V0ðp; qÞ and V1ðp; qÞ enter in the
interaction term, as happens, e.g., for any interaction of
time-component Lorentz-vector structure, a different line
of reasoning has to be devised. For good reason, we first
invert equations for massless bound-state constituents
(Sec. III A). Then we turn to the more delicate case of
bound-state constituents of finite mass (Sec. III B).

A. Massless bound-state constituents: m ¼ 0

In order to be able to deal simultaneously with interac-
tion kernels of Lorentz-vector nature and of the (simplify-
ing) linear combination yielding Eq. (4), we introduce a
parameter � by

� ¼
8<
: 2 for � 	 � ¼ �� 	 ��;

1 for � 	 � ¼ 1
2 ð�� 	 �� þ �5 	 �5 � 1 	 1Þ:

By this definition, two of the reduced Salpeter equations
[Eqs. (7) and (8)] may be subsumed in the form

2p’ðpÞ þ �
Z 1

0

dqq2

ð2�Þ2 V0ðp; qÞ’ðqÞ ¼ M’ðpÞ: (9)

For this equation of motion, its L ¼ 0 Fourier-Bessel trans-
form is straightforwardly found:

2T0ðrÞ þ �VðrÞ’0ðrÞ ¼ M’0ðrÞ:
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Thus, the configuration-space potential associated to mass
eigenvalue M ¼ 0 is found to be

VðrÞ ¼ � 2T0ðrÞ
�’0ðrÞ : (10)

In the case of interaction kernels of the time-component
Lorentz-vector Dirac structure, i.e., � 	 � ¼ �0 	 �0,
the reduced Salpeter equation involves, even for zero-
mass bound-state constituents, Fourier-Bessel transforms
VLðp; qÞ of VðrÞ for more than one L—namely, both
V0ðp; qÞ and V1ðp; qÞ. From this type of bound-state equa-
tion the potential VðrÞ cannot be recovered by applying to
Eq. (6) a Fourier-Bessel transformation of a particular
value of L. In order to overcome this adverse observation,
we recall that, as a consequence of the equality ’1ðpÞ ¼
’2ðpÞ � ’ðpÞ of the two independent radial components
of Salpeter amplitudes for spin-singlet bound states
enforced by the reduced Salpeter constraint discussed in
Sec. II C, for a definite Lorentz structure � 	 � of the
interaction kernel, the radial eigenvalue equation resulting
from the reduced Salpeter equation [Eq. (3)] can be found
by adding, for ’1ðpÞ ¼ ’2ðpÞ, the two equations that
constitute the set of (originally coupled) radial eigenvalue
equations related to the corresponding Salpeter equation
[Eq. (2)]; see, for instance, footnote 2 of Ref. [27]. Bearing
these findings in mind, we seek, for tentative solutions
’ðpÞ of the reduced Salpeter equation [Eq. (6)] for pure
time-component Lorentz-vector interaction, the respon-
sible potential VðrÞ, with the help of the full-Salpeter
‘‘precursor’’ Eq. (5) of Eq. (6), via a two-step procedure:

(1) After equating the two independent components
’1ðpÞ ¼ ’2ðpÞ � ’ðpÞ, we represent the de-
coupled relations arising from the set of equations
[Eq. (5)] in configuration space by application of the
appropriate Fourier-Bessel transformation to each
of the relations:

2T0ðrÞ þ V0ðrÞ’0ðrÞ ¼ M’0ðrÞ;
2T1ðrÞ þ V1ðrÞ’1ðrÞ ¼ M’1ðrÞ:

At this stage we must take into account, by an index
L ¼ 0, 1, the possibility that the potentials VLðrÞ
derived from each of these relations by analogy to
Eq. (10) can differ:

VLðrÞ � � 2TLðrÞ
’LðrÞ ; L ¼ 0; 1: (11)

(2) We assume that the unique configuration-space
potential VðrÞ we are seeking may be expressed as
a linear combination VðrÞ ¼ c0V0ðrÞ þ c1V1ðrÞ of
the auxiliary functions V0ðrÞ and V1ðrÞ, with yet-to-
be-determined (of course, constant) coefficients c0
and c1. We attempt to find these coefficients by
inserting our ansatz for VðrÞ into the slightly more

complex and intricate reduced Salpeter equation
[Eq. (6)] forM ¼ 0; if we manage to deduce thereby
a solution for c0 and c1, our quest for the potential
VðrÞ is completed.

1. Nonconfining interaction potentials

Presumably, the first guess that comes to one’s mind for
the momentum-space bound-state amplitude ’ðpÞ is the
exponential, involving a parameter �with the dimension of
inverse mass:

’ðpÞ ¼ 2�3=2 expð��pÞ; � > 0;

k ’ k2�
Z 1

0
dpp2j’ðpÞj2 ¼ 1:

(12)

For this choice, the L ¼ 0, 1 Fourier-Bessel transforms of
’ðpÞ and m ¼ 0 kinetic term read

’0ðrÞ ¼
ffiffiffiffi
2

�

s
4�5=2

ðr2 þ�2Þ2 ; ’1ðrÞ ¼
ffiffiffiffi
2

�

s
4i�3=2r

ðr2 þ�2Þ2 ;

T0ðrÞ ¼
ffiffiffiffi
2

�

s
4�3=2 3�2 � r2

ðr2 þ�2Þ3 ; T1ðrÞ ¼
ffiffiffiffi
2

�

s
16i�5=2r

ðr2 þ�2Þ3 :

If the Lorentz structure of the interaction kernel is either a
pure vector (� 	 � ¼ �� 	 ��) or a linear combination of

vector, pseudoscalar, and scalar (2� 	 � ¼ �� 	 �� þ
�5 	 �5 � 1 	 1) as summarized by the reduced Salpeter
equation in Eq. (9), our findings [Eq. (10)] immediately
entail, for a Salpeter amplitude ’ðpÞ of the exponential
form [Eq. (12)], in configuration space the potential

VðrÞ ¼ 2

��

�
1� 4�2

r2 þ �2

�
; Vð0Þ ¼ � 6

��
;

VðrÞ !
r!1

2

��
:

In the limit r ! 1, this potential VðrÞ approaches a finite
value. It is thus a representative of the class of nonconfin-
ing interactions, with dependence on the radial variable r
(in units of �, i.e., for � ¼ 1) for Lorentz-vector Bethe-
Salpeter kernels (� ¼ 2) as depicted in Fig. 1.
For the reduced Salpeter equation [Eq. (6)] with a time-

component Lorentz-vector Dirac structure � 	 � ¼ �0 	
�0 and an exponential ansatz [Eq. (12)] for ’ðpÞ, the
auxiliary functions [Eq. (11)] become

V0ðrÞ ¼ 2

�

�
1� 4�2

r2 þ �2

�
; V1ðrÞ ¼ � 8�

r2 þ �2
:

Inserting these potentials into Eq. (6) fixes the coefficients
c0;1 to c0 ¼ c1 ¼ 1

2 , which entails a configuration-space

potential VðrÞ with behavior clearly similar to that shown
in Fig. 1:
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VðrÞ ¼ 1

�

�
1� 8�2

r2 þ �2

�
; Vð0Þ ¼ � 7

�
;

VðrÞ !
r!1

1

�
:

2. Confining interaction potentials

In order to present also an example for a confining
potential, we next consider an amplitude of normalized
Gaussian form, using a parameter � with the dimension of
inverse mass squared:

’ðpÞ ¼ 2

�
8�3

�

�
1=4

expð��p2Þ; � > 0;

k ’ k2�
Z 1

0
dpp2j’ðpÞj2 ¼ 1:

(13)

Trivially, the L ¼ 0 Fourier-Bessel transform of this
function ’ðpÞ is also of Gaussian form:

’0ðrÞ ¼
�

2

��3

�
1=4

exp

�
� r2

4�

�
:

The configuration-space potential entailed by Eq. (9)
involves the imaginary error function erfiðzÞ defined in terms
of the error function erfðzÞ [17] by erfiðzÞ��ierfðizÞ; for
large r, it rises like 16�3=2expðr2=4�Þ=� ffiffiffiffi

�
p

r4 and thus
realizes confinement, as illustrated by Fig. 2:

VðrÞ ¼ 1

��

2
4�

r� 2�

r

�
erfi

�
r

2
ffiffiffiffi
�

p
�
� 2

ffiffiffiffi
�

�

s
exp

�
r2

4�

�35;

Vð0Þ ¼ � 4

�
ffiffiffiffiffiffiffi
��

p :

A time-component Lorentz-vector Dirac structure can
be dealt with along the same lines as in Sec. III A 1;
however, the resulting expressions are lengthy and not
really enlightening.

B. Bound-state constituents with nonzero mass: m > 0

The extension of the particular inversion technique
framed here to the case of nonvanishing masses m of the
bound-state constituents clearly requires somewhat more
careful choices of momentum-space amplitudes ’ðpÞ.
One’s first attempt might employ the rational function

’ðpÞ ¼
ffiffiffiffi
2

�

s
4�5=2

ðp2 þ�2Þ2 ; � > 0;

k ’ k2�
Z 1

0
dpp2j’ðpÞj2 ¼ 1;

(14)

with a mass parameter �. Its L ¼ 0 Fourier-Bessel trans-
form is, for � 
 m, an exponential:

’0ðrÞ ¼ 2�3=2 expð��rÞ; 0<� 
 m:

For illustrative purposes, we apply this Salpeter amplitude
to invert the particularly simple reduced Salpeter equation
[Eq. (4)] with the linear combination � 	 � ¼
1
2 ð�� 	 �� þ �5 	 �5 � 1 	 1Þ of Lorentz structures.

0 1 2 3 4 5 6 7 8
r

0

1

1

2

3

V
r

0 1 2 3 4 5 6 7 8

0

1

1

2

3

FIG. 1 (color online). Configuration-space nonconfining
potential VðrÞ ¼ 1� 4=ðr2 þ 1Þ, determined by inversion of
the reduced Salpeter equation [Eq. (9)] with kernels of
Lorentz-vector nature (� ¼ 2) when assuming an exponential
form ’ðpÞ / expð�pÞ of its momentum-space solution ’ðpÞ.
Starting at Vð0Þ ¼ �3, this potential VðrÞ behaves for r ! 1
like VðrÞ ! 1 (dashed line).

0 1 2 3 4 5
r

0

1

2

3

4

5

1

V
r

0 1 2 3 4 5

0

1

2

3

4

1

FIG. 2 (color online). Configuration-space confining potential
VðrÞ ¼ ðr2 � 1

rÞerfiðr2Þ � expðr2=4Þ= ffiffiffiffi
�

p
, found by inversion of the

reduced Salpeter equation [Eq. (9)] with Lorentz-vector kernels
(� ¼ 2) if trying a Gaussian form ’ðpÞ / expð�p2Þ for its
momentum-space solution ’ðpÞ. Starting at Vð0Þ ¼ �2=

ffiffiffiffi
�

p �
�1:12837 . . . , this potential VðrÞ behaves like VðrÞ ! 1 for
r ! 1.
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In order to evaluate the relevant Fourier-Bessel transform
of Eq. (4),

2T0ðrÞ þ VðrÞ’0ðrÞ ¼ M’0ðrÞ

)VðrÞ ¼ � 2T0ðrÞ
’0ðrÞ for M ¼ 0;

(15)

we need, for m � 0, the L ¼ 0 Fourier-Bessel transform
T0ðrÞ of the kinetic part EðpÞ’ðpÞ.

1. Case 0 < � ¼ m

For the rational Salpeter amplitude [Eq. (14)], the L ¼ 0
Fourier-Bessel transform of the kinetic part is easily pinned
down if the parameter � is chosen to be equal to the
constituents’ mass m; the outcome for T0ðrÞ is basically
the modified Bessel function K�ðzÞ [17] of order � ¼ 0:

T0ðrÞ ¼ 8m5=2

�
K0ðmrÞ:

Hence, the instant reply of our inversion procedure
[Eq. (15)] is the configuration-space potential

VðrÞ ¼ � 8m

�
K0ðmrÞ expðmrÞ;

VðrÞ!
r!0

8m

�
lnðmrÞ; VðrÞ !

r!10:

The monotonic increase of this potential VðrÞ, from its
logarithmic singularity at the origin r ¼ 0 to its asymptotic
value 0 for r ! 1, is depicted for constituent mass m ¼ 1
in Fig. 3. The singularity is milder than Coulombic, and
hence is compatible with Herbst’s findings [34].

2. Case 0 < � < m

Allowing the parameter � in our ansatz [Eq. (14)] for
the Salpeter amplitude ’ðpÞ to be less than the constitu-
ents’ massm, i.e.,�<m, performing a contour integration
and adopting the residue theorem enables us to cast the
resulting configuration-space potential into the form

VðrÞ ¼ �2

8<
:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 ��2

q
þ �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2 ��2
p 1

r
� 4�

�r

�
Z 1

m
d�� exp½�rð���Þ�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 �m2

p
ð�2 ��2Þ2

9=
;:

For r ! 1, the r-dependent terms of the potential vanish
and VðrÞ approaches a constant:

VðrÞ !
r!1 � 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 ��2

q
:

Examining the r-dependent portion of this potential VðrÞ
for r ! 0 by L’Hôpital’s rule, we encounter a logarithmi-
cally divergent integral. Hence, since for� " m the asymp-
totic value of VðrÞ reduces to zero, the behavior of VðrÞ
resembles that found for the case � ¼ m.

IV. SUMMARY, CONCLUSIONS, AND OUTLOOK

In this study, we showed how to establish, by analytical
means, exact relationships between solutions of Bethe-
Salpeter equations and the underlying—instantaneous—
interactions: for elaborate assumptions about the nature
of both interactions and resulting bound states culminating
in a manageable structure of the equations governing such
bound states, this is accomplished by postulating particular
solutions and reading off the interaction potentials. Among
other benefits, having these rigorous solutions at one’s
disposal obviously provides a useful or even decisive test
when solving Bethe-Salpeter equations numerically by
conversion into equivalent matrix eigenvalue problems
(as, e.g., in Refs. [14–16,35–40]) or when attempting to
construct approximate models for Bethe-Salpeter solu-
tions, as proposed in Refs. [41,42].
Clearly, the three-dimensional Fourier transform of any

function which depends only on a radial coordinate is just
the L ¼ 0 Fourier-Bessel transform of this function.
Accordingly, due to the simplicity of the bound states
inspected, some but not all of our reduced Salpeter
equations—more precisely, Eqs. (4), (7), and (8)—are, in
fact, equivalent to so-called spinless Salpeter equations
with, where necessary, appropriately adjusted overall cou-
pling strength. (For reviews on this latter bound-state
equation, see, e.g., Refs. [43–45].) Earlier attempts to
construct exact solutions of spinless Salpeter equations
may be found in, e.g., Refs. [46–50].
In order to provide a kind of ‘‘proof of feasibility’’ of the

inversion technique constructed here, this formalism has
been elaborated only for the simplest conceivable problem;

0 2 4 6 8 10
r

0

2

4

6

8

10

V
r

0 2 4 6 8 10
0

2

4

6

8

10

FIG. 3 (color online). Configuration-space nonconfining
potential VðrÞ ¼ �ð8=�ÞK0ðrÞ expðrÞ, found by studying the
reduced Salpeter equation [Eq. (4)] for bound-state constituents
of nonvanishing mass m with a kernel of Lorentz structure � 	
� ¼ 1

2 ð�� 	 �� þ �5 	 �5 � 1 	 1Þ when relying on a rational

function ’ðpÞ / ðp2 þ 1Þ�2 as an ansatz for the momentum-
space solution ’ðpÞ. This VðrÞ vanishes in the limit r ! 1 but
exhibits a logarithmic singularity at the origin r ¼ 0.
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that is, the one posed by the reduced Salpeter equation.
There exist, however, exceptional cases for which the
above findings apply directly, without changes, also to
the full Salpeter equation: As recalled in Sec. II D, bound
states with a vanishing sum of the spins of their constitu-
ents, such as pseudoscalar states, are represented by only
two independent Salpeter components, the minimal
number of independent components for solutions of the
full Salpeter equation. Correspondingly, for these states
the full Salpeter equation becomes equivalent to a system
of merely two—in general, coupled—equations. For a
Lorentz structure of the Bethe-Salpeter interaction
kernel of, for example, the form 2� 	 � ¼ �� 	 �� þ
�5 	 �5 � 1 	 1, one of the latter equations does not con-
tain any interactions and is therefore of purely algebraic
nature [27]. For vanishing bound-state mass, the two

equations decouple, and the inversion problem for the
full Salpeter equation thus becomes identical to that for
the reduced Salpeter equation.
The intention behind this study was to carry out an

analysis of purely academic nature. Nevertheless, one may
ask the legitimate question: to which physical bound states
observed in nature do the above considerations apply?
Section II C confines the validity of the reduced Salpeter
equation to semirelativistic, weakly bound, heavy constitu-
ents; this precludes, for instance, the pion, but not neces-
sarily pseudoscalar mesons composed of heavy quarks, such
as �c and �b, or hc and hb. The range of application to be
expected for any full Salpeter equation is, of course, much
wider. However, a thorough study of the latter equation, as
well as the extraction of a realistic potential, is definitely
beyond the scope of the present work.
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