
LHC and dark matter signals of Z0 bosons

Vernon Barger,1 Danny Marfatia,1,2 and Andrea Peterson1

1Department of Physics, University of Wisconsin, Madison, Wisconsin 53706, USA
2Department of Physics & Astronomy, University of Kansas, Lawrence, Kansas 66045, USA

(Received 8 July 2012; published 24 January 2013)

We customize the simulation code Fully Exclusive W, Z Production to study Z0 production at the LHC

for both
ffiffiffi
s

p ¼ 8 TeV and 14 TeV. Using the results of our simulation for several standard benchmark Z0

models, we derive a semiempirical expression for the differential cross section that permits the

determination of Z0 couplings in a model-independent manner. We evaluate cross sections and other

observables for large classes of models, including the common E6, left-right and B� L models, as a

function of model parameters. We also consider a hidden sector Z0 that couples to standard model

fermions via kinetic and mass mixing and serves as a mediator of isospin-violating interactions with dark

matter. We combine the results of LHC Z0 searches and dark matter direct detection experiments with

global electroweak data to obtain mass-dependent constraints on the model parameters.
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I. INTRODUCTION

A simple extension of the standard model (SM) is the
addition of an extra U(1) gauge symmetry, with an asso-
ciated neutral Z0 gauge boson. Extra U(1) symmetries are a
necessary part of many interesting new physics scenarios,
including several grand unified theories and string-inspired
model constructions. Generic Z0 models can have many
new physics features, including generation-dependent
couplings, Z� Z0 mixing, and new fermions; see, e.g.,
Refs. [1–5]. We first study the simplest models with
generation-independent couplings and no Z� Z0 mixing.
There are a number of such models that are theoretically
relevant, such as the E6 GUT models and the B� L model.
In Sec.VI,we consider amodel that includesmass andkinetic
mixing between the Z0 and the Z [6], which has applications
to isospin-violating dark matter (DM) scattering [7].

We expand the simulation code Fully Exclusive W, Z
Production (FEWZ) 2.1 [8,9] to study the production and
decay of Z0 bosons at the LHC through the process pp !
Z0 ! lþl�. FEWZ includes up to next-to-next-to-leading
order (NNLO) in perturbative QCD and is fully differential
in the lepton phase space. This allows for the precise
calculation of the Z0 cross sections and differential distri-
butions with realistic experimental acceptances. In Secs. II
and III, we briefly review Z0 detection and introduce sev-
eral common benchmark models that we use to demon-
strate the efficacy and validity of our simulation.

In Sec. IV we use FEWZ to derive a semiempirical
expression for the differential cross section d�

dyd cos� . We

show that, with sufficient data, this formula can be used
to determine the couplings of the Z0 and set limits on model
parameters with good precision.

In Sec. V, we apply our fit to the E6 model class and the
production of two Z0 bosons. The heavier of the two mass
eigenstates is often assumed to be too heavy for collider
detection, but we show that it could be accessible at the

LHC for a certain range of mixing angles. Throughout, we
focus on Z0 masses of a few TeV, as the LHC lower limits
with approximately 5 fb�1 of data fall in the vicinity of
2–2.5 TeV for the considered models [10].
In Sec. VI we study the phenomenology of a Z0 scenario

in which SM particles are uncharged under the new Uð1Þ0.
In this case, SM particles interact with a new sector
through kinetic and mass mixing of the Z0 with the Z.
Such a Z0 could act as a dark matter mediator, with
isospin-violating dark matter scattering arising naturally.
Then, there are two complementary ways to test such a
model: the production of Z0 resonances in collider experi-
ments, and the direct detection of dark matter particles. We
combine the data from LHC Z0 searches [11,12] and the
XENON100 dark matter experiment [13] with global elec-
troweak data to constrain the kinetic and mass mixing
angles. We find that the electroweak, collider, and dark
matter data provide comparable limits.

II. Z0 BOSONS AT THE LHC

If the Z0 couples to standard model quarks and leptons, it
could be detected at the LHC as a resonance in the dilepton
channel through the experimentally well-studied process
pp ! Z0 ! lþl� [14–19]. We focus on the dielectron and
dimuon channels, though decays to �-lepton pairs can also
be useful [20]. The SM background to this process is fairly
small, consisting mostly of Drell-Yan Z=�� events and a
smaller number of t�t and multijet events [11,12].
The differential cross section for the Drell-Yan process

is [2]

d�

dQ2 ¼ 1

s
�ðZ0 ! lþl�ÞWZ0 ðs;Q2Þ þ interference terms:

(1)

The first term on the right-hand side is the pure Z0 con-
tribution, factored into two parts: a hadronic structure
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function containing the QCD dependence, WZ0 ðs; Q2Þ, and
the partonic cross section,

�ðZ0 ! lþl�Þ ¼ 1

4�

g2lL þ g2lR
288

Q2

ðQ2 �M2
Z0 Þ2 þM2

Z0�2
Z0
:

(2)

The interference terms with photons and the SM Z are
given in the Appendix. For narrow resonances, which
we define as �Z0 < 0:1MZ0 , interference effects can be
neglected. This is an excellent approximation near the
resonance peak. In the region slightly off peak, the inter-
ference terms can significantly alter the shape of the
invariant mass distribution [2,21].

The partial width for decay into a massless fermion pair
f �f is given by

�f
Z0 ¼ MZ0

24�
ðg2fL þ g2fRÞ; (3)

where the gfL;R are the fermion couplings, which can be

written in terms of the overall Z0 coupling and the fermion
charges zf:

g2fL;R ¼ g2Z0z2fL;R ¼ 4��

cos2�W
z2fL;R : (4)

We take the masses of the quarks to be negligible compared
to MZ0=2.

We assume for simplicity that the Z0 decays only to SM
fermions. However, in models with extra fermions, the Z0
might also have non-SM decays. Thus, the total width is
generally a free parameter. If the decay rate to new fermi-
ons is large, the Z0 mass limits could be significantly
relaxed due to the reduced SM branching fractions [22].

Dilepton resonances are not the only viable channel for
Z0 detection. Past work has considered detection using
decays to top quarks [23–26] and third generation fermions
[27–29], weak boson pair production [30], and weak
charge measurements in atomic parity violation experi-
ments [31,32]. The latter channels are particularly useful
in the case of leptophobic or nonuniversal Z0 models [33].

Other new physics, including Randall-Sundrum gravi-
tons or sneutrinos, could also be detected via a dilepton
resonance similar to a Z0. There have been several

discussions of how to differentiate such resonances from
a Z0 [26,34].

III. SIMULATION

We have analyzed the characteristic features of Z0 pro-
duction at the LHC using an expanded version of the
simulation code FEWZ [8,9] (see the Appendix). All cal-
culations are done to next-to-leading order (NLO) or
NNLO in QCD using the MSTW2008 parton distribution
function sets [35]. Factorization and renormalization scales
are set to �F ¼ �R ¼ MZ0 [9].
We adopt the following standard acceptance cuts in our

analysis:

pl
T > 20 GeV; j�lj< 2:5;

jyZ0 j> 0:8ðfor AFB onlyÞ:

The first two of these cuts are the same as those applied to
the muon channel by CMS and ATLAS [11,12]. The third
is used to define a forward-backward asymmetry. The
initial quark direction cannot be measured directly at
proton-proton colliders. However, the boost direction of
the Z0 is preferentially in the direction of the quark, not the
antiquark, especially for large dilepton rapidity jyllj.
Valence quarks are much more likely than any other par-
tons to carry a large fraction of the proton momentum.
Thus, if the dilepton rapidity is large, the boost is prefer-
entially in the valence quark direction. However, for small
dilepton rapidities, the initial momenta of the quark
and antiquark have similar magnitudes, so we cannot use
the parton distributions to distinguish between them.
Therefore, placing a cut on the rapidity of the final dilepton
system allows for a measurement of AFB [19].
We consider several common benchmark Z0 models.

The first, the sequential standard model (SSM), has cou-
plings identical to those of the SM Z. It is a common
benchmark in experimental searches. Another theoretically
interesting case is the Z0

B�L, noteworthy because Uð1ÞB�L

satisfies anomaly-cancellation conditions without the
presence of exotic fermions or nonuniversal couplings
[2,36,37], and may be a remnant of string theory [38–40].
A theoretically well-motivated class of Z0 models

derives from breaking the E6 gauge group via the chain [4]

TABLE I. Z0 gauge charges. For the LR model, �LR � 1:58.
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SUð5Þ � Uð1Þc � Uð1Þ
 ! SUð3Þc � SUð2ÞL � Uð1ÞY
� Uð1Þc � Uð1Þ
:

The new U(1) factors are associated with two neutral gauge
bosons, Zc and Z
. After symmetry breaking, they mix to

form the mass eigenstates Z0 and Z00, with the mixing
parameterized by an angle � [41]:

Z0 ¼ Z
 sin�þ Zc cos�;

Z00 ¼ Z
 cos�� Zc sin�:
(5)

Since the Z0 and Z00 are assumed to be heavy compared to
the SM Z-boson, any mixing with the Z is negligible and
ignored here. For now, we only consider the lower-mass Z0

for the three specific cases Z0
c for � ¼ 0, Z0


 for � ¼ �=2,

and Z0
� for tan� ¼ ffiffiffiffiffiffiffiffi

3=5
p

. We explore Z0 and Z00 detection
in this class of models in Sec. V.
Finally, we consider a left-right (LR) symmetric model,

Z0
LR [42]. The Z0 couples to the current

J
�
LR ¼ �LRJ

�
3R � 1

2�LR

J
�
B�L; (6)

where �LR ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos2�Wg

2
R=sin

2�Wg
2
L � 1

q
and sin2�W ¼

0:22255 [43]. We study an example Z0
LR with g2R ¼ g2L,

i.e., �LR � 1:58 [19].
Table I summarizes the Z0 couplings to SM fermions for

these models. The overall gauge coupling strength is a free
parameter, but it is often chosen to be consistent with a
grand unification scenario. We follow this approach and set
g2Z0 ¼ 4��

cos2�W
[18]. (This factor is not included in Table I.)

In Table II we list for each model the total width, nor-
malized by MZ0 , as well as the branching fractions to
leptons, quarks, and neutrinos, assuming no decays to non-
SM particles. For our calculations, we use ��1ðMZÞ ¼ 128.
In Fig. 1 we show the shape of the dilepton mass

spectrum for a variety of Z0 models with MZ0 ¼ 2:2 TeV
at

ffiffiffi
s

p ¼ 8 TeV (LHC8), and MZ0 ¼ 2:5 TeV at
ffiffiffi
s

p ¼
14 TeV (LHC14). The SM background is very small in
the resonance mass range, so for luminosities of 20 fb�1

TABLE II. Z0 decay widths and branching fractions, assuming
no non-SM fermion decays.

Model �=MZ0 BFð�þ��Þ BFðt�tÞ BF(hadrons) BFð	 �	Þ
c 0.005 0.04 0.12 0.80 0.07


 0.012 0.06 0.03 0.65 0.16

� 0.006 0.04 0.16 0.87 0.02

B� L 0.014 0.15 0.05 0.31 0.23

LR 0.022 0.03 0.10 0.90 0.02

SSM 0.026 0.03 0.10 0.73 0.18
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FIG. 1 (color online). Simulated NNLO dimuon invariant mass spectrum for a variety of Z0 models with MZ0 ¼ 2:2 TeV andffiffiffi
s

p ¼ 8 TeV (left) and MZ0 ¼ 2:5 TeV and
ffiffiffi
s

p ¼ 14 TeV (right), both with a luminosity of L ¼ 100 fb�1.
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FIG. 2 (color online). NLO cross section for the process Z0 ! lþl� versus Z0 mass, integrated over the dilepton invariant mass peak
region (� 3�) for

ffiffiffi
s

p ¼ 8 TeV (left) and
ffiffiffi
s

p ¼ 14 TeV (right).
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for
ffiffiffi
s

p ¼ 8 TeV or 100 fb�1 for
ffiffiffi
s

p ¼ 14 TeV, these
resonance peaks should be clearly distinguishable.
Distributions are calculated at next-to-next-to-leading
order. We neglect detector effects such as energy resolution
smearing. For ATLAS, the resolution width is about 1% for
electrons and 5% for muons [11]. For CMS, the resolutions
widths are 1–2% for electrons and 4–7% for muons [12].
As can be seen in Table II, the resolutions are generally
comparable to or larger than the decay widths for the Z0
(assuming that non-SM decay rates are not large).
Therefore a precise measurement of the Z0 width will likely
be difficult [21]. As we show later, there are observables
that do not depend strongly on the decay width but still
provide useful information about the properties of the Z0.

By integrating over the peak region, we can determine
the cross section as a function of MZ0 for each model.
In Fig. 2, we show the mass dependence of the integrated
peak (�3�Z0) cross section for our six model examples
at NLO. Note that the mass dependence is largely
model-independent.

IV. ANALYSIS

We now present a few empirical formulas from our
simulations, which allow the cross section and the differ-
ential distributions over a wide range of model parameters
to be predicted. They are also useful in extracting coupling
information from experimental data.

The LHC production cross section of the Z0 depends
on the mass, width, and couplings. Under the assumption
of generational universality, this dependence can be
parameterized in the narrow width approximation by

�ðpp!Z0 ! lþl�Þ¼ ½pðg2uL þg2uRÞþð1�pÞðg2dL þg2dRÞ�
�BðZ0 ! lþl�ÞfðrZ0 Þ: (7)

The parameter p is model-independent but varies with rZ0 .
It quantifies the fractional contribution to the cross
section from up-type quark events. The dependence on
the Z0 mass is contained in fðrZ0 Þ. We use the empirical
representation [3],

fðrZ0 Þ ¼ �0r
a
Z0

�
1

rZ0
� 1

�
b
; (8)

of the structure function dependence, where rZ0 ¼ MZ0ffiffi
s

p .

As in Refs. [2,18], we define the quantities

cq ¼ M0
Z

24��Z0
ðg2qL þ g2qRÞðg2eL þ g2eRRÞ

¼ ðg2qL þ g2qRÞBðZ0 ! lþl�Þ; (9)

eq ¼ M0
Z

24��Z0
ðg2qL � g2qRÞðg2eL � g2eRÞ: (10)

In this notation, the cross section formula takes the simple
form:

�ðpp ! Z0 ! lþl�Þ ¼ ½pcu þ ð1� pÞcd�fðrZ0 Þ: (11)

We use an NLO FEWZ simulation of the six model
examples in fits of the parameters of Eqs. (7) and (8).
First, we fix rZ0 and fit the simulated cross sections for
the six models to the form Acu þ Bcd, then take p ¼ A

AþB .

We repeat this procedure for several values of rZ0 over the
range, 0.1–0.6 (MZ0 ¼ 1:0–4:5 TeV for

ffiffiffi
s

p ¼ 8 TeV;
MZ0 ¼ 2:0–7:0 TeV for

ffiffiffi
s

p ¼ 14 TeV), to determine how
p changes with rZ0 . We find that this dependence can be
approximated by the function

pðrZ0 Þ ¼ 0:77� 0:17tan�1ð2:6� 9:5rZ0 Þ: (12)

The result is shown in Fig. 3.
To determine fðrZ0 Þ, we fit the normalization Aþ B to

the form given in Eq. (8). Our best-fit values are

fðrZ0 Þ ¼
8><
>:
ð3200 fbÞr15:0

Z0
�
1
rZ0

� 1
�
17:5 ffiffiffi

s
p ¼ 8 TeV;

ð43:3 fbÞr13:1
Z0

�
1
rZ0

� 1
�
16:8 ffiffiffi

s
p ¼ 14 TeV:

(13)

A comparison of our fit to the simulation is plotted in
Fig. 4. This fit captures the dependence on rZ0 within
20% over the entire range MZ0 ¼ 1–7 TeV.
After a Z0 is detected, the next step will be to measure its

couplings. Measuring couplings with precision requires a
large number of events, which may not be the situation for
a very heavy or weakly coupled Z0. However, with enough
events, an accurate measurement of cq and eq is possible,

as we demonstrate by considering a set of simulated mea-
surements of a 2.5 TeV Z0 at

ffiffiffi
s

p ¼ 14 TeV.
The coupling combinations cq and eq of Eq. (9) can be

determined by considering the differential cross section,
integrated over the resonance peak:

0.1 0.2 0.3 0.4 0.5
rZ '

0.6

0.7

0.8

0.9

1.0
p

FIG. 3 (color online). The parameter p [as defined in Eq. (7)]

as a function of rZ0 ¼ MZ0ffiffi
s

p , along with an approximate fit to an

arctangent function. Notice that simulated values (points) are
shown for both 8 TeV (squares) and 14 TeV (circles) and
agree well.
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d�int

dyd cos�
¼

Z MZ0þ3�

MZ0�3�

d�

dyd cos�dQ
dQ

¼ 3=8ð1þ cos2�Þ½pcuhu1ðyÞ
þ ð1� pÞcdhd1ðyÞ�fðrZ0 Þ þ cos�½peuhu2ðyÞ
þ ð1� pÞedhd2ðyÞ�gðrZ0 Þ: (14)

The functions hq1;2 are normalized so that integrating

over cos� and y yields Eq. (11). gðrZ0 Þ represents the
mass dependence of the cos� term, similar to fðrZ0 Þ. For
MZ0 ¼ 2:5 TeV, its value is gðrZ0 Þ ¼ 506 fb. For the same
mass, we find fðrZ0 Þ ¼ 1050 fb.

We have already determined p, fðrZ0 Þ, and gðrZ0 Þ, so all
that remains is to find hq1;2. In order to separate the up and

down contributions to the differential cross section, we
define two distinct scenarios in which the Z0 couples
exclusively to one type of quark (and to leptons). Then,
for each scenario we simulate two differential distribu-
tions. The first is the dilepton rapidity distribution, which
allows us to determine hq1 . To determine hq2 , instead of

using the total cross section, we consider the quantity
dðF�BÞ

dy , where F is the number of lepton pairs scattered in

the forward ( cos�Z0 > 0) direction in the Collins-Soper
frame [44] and B is the number scattered in the backward
direction. The resulting distributions are easily distinguish-
able, as can be seen in Fig. 5. In addition to the simulated
NLO data, Fig. 5 shows approximate curves hq1;2ðyÞ. The

specific curves used to approximate the normalized distri-
butions at 14 TeV are

hu1ðyÞ ¼
0:59

e4:6ðy�0:84Þ þ 1
; hd1ðyÞ ¼

0:78

e4:6ðy�0:63Þ þ 1
;

hu2ðyÞ ¼
2:5ð1� e�0:60yÞ
e5:7ðy�0:84Þ þ 1

; hd2ðyÞ ¼
11ð1� e�0:20yÞ
e5:8ðy�0:63Þ þ 1

:

(15)

By fitting observed data to Eq. (14), one can determine
the four coefficients cq and eq. To demonstrate the feasi-

bility of this method and estimate the statistical error, we
use our simulation as a pseudoexperiment. For each refer-
ence model in Sec. III, we generate binned distributions for
dN
dy and dðF�BÞ

dy . To extract cq and eq, we fit these distribu-

tions to linear combinations of hu1;2 and h
d
1;2 by minimizing


2. To determine the boundaries of the confidence regions,
we vary cq and eq and calculate the 
2 value at each point

for an ‘‘average’’ experiment using the method described
in Appendix A of Ref. [45].
Figures 6 and 7 show the 95% C.L. regions for our

example case of a 2.5 TeV Z0 at 14 TeV. We see that
100 fb�1 allows for some model differentiation, while for
1 ab�1 of luminosity the confidence regions are narrow. In
the right panel of Fig. 6, the red dashed contour shows the
values of cu and cd for the E6 models as a function of the
mixing angle �, from which we can see that some model
differentiation should be possible. The tilt of the ellipses

1 2 3 4 5
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10
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Z'LR

Z'

s 8 TeV

2 3 4 5 6 7 8
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10 4

0.01

1

B fb

Z'SSM

Z'LR

Z'

s 14 TeV

FIG. 4. FEWZ simulation (points) and fitted curve (lines) of the integrated Z0 cross section for
ffiffiffi
s

p ¼ 8 TeV (left) and
ffiffiffi
s

p ¼ 14 TeV
(right). We show only the E6 �, left-right, and sequential models for simplicity.

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
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s 14 TeV

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
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d

h2
u
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FIG. 5. Normalized distributions for d�
dy (left) and dðF�BÞ

dy (right) for a Z0 that couples to only up-type (solid) or down-type (dashed)
quarks. We have set MZ0 ¼ 2:5 TeV at LHC14. Points are simulated data and lines are fitted curves.
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arises from the requirement that the up- and down-quark
contributions are summed to give the total cross section,
restricting cu and cd to lie on a line.

Within the E6 model class, our fit can also be used to
place limits on � using the least squares method. Using
Eqs. (5) and (9), we can write Eq. (14) in terms of� instead
of cq and eq. At the 1-sigma level, we find

0:44�<�
 < 0:54�;

0:97�<�c < 1:03� or 1:14�<�c < 1:17�;

0:20�<�� < 0:22�: (16)

If the number of events is low, an analysis can still be
done by integrating over the distributions hq1;2, leading to a

system of four equations in four unknowns that can be
inverted [18]. Note that we have included only statistical

errors. For information on the effect of parton distribution
function errors, see Ref. [18].
From our fit, we can also determine the forward-

backward asymmetry,

AFB ¼ F� B

Fþ B
: (17)

On the Z0 peak, AFB depends solely on the Z0 couplings to
fermions. Using Eq. (14), integrated over appropriate
ranges of cos�, we can write

AFB ¼ ðpau2eu þ ð1� pÞad2edÞ
ðpau1cu þ ð1� pÞad1cdÞ

gðMZ0 Þ
fðMZ0 Þ ; (18)

where aq1;2 ¼ 2
R
ymax
ymin

hq1;2ðyÞdy. We choose ymax ¼ 2:5 and

ymin ¼ 0:8, which are the rapidity cuts discussed in
Sec. III.
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FIG. 6 (color online). 95% C.L. regions for the couplings cu and cd for an average experiment (statistical errors only) for
L ¼ 100 fb�1 (left) and L ¼ 1 ab�1 (right). The values of cu and cd for the E6 family lie on the dashed red contour. Points are
the theoretical values.
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FIG. 7 (color online). 95% C.L. regions for the couplings eu and ed for an average experiment for L ¼ 100 fb�1 (left) and
L ¼ 1 ab�1 (right). Points are the theoretical values.
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In the left panel of Fig. 8, we show the simulated values
of AFB along with statistical uncertainties for three E6

models with 100 fb�1 of data. The red curve shows the
predicted values for AFB versus the mixing angle � defined
in Eq. (5). The couplings of the LR, B� L, and 
 models
can also be parametrized (up to a normalization factor) by
an angle � with [14]

Z0 ¼ cos�Z
 þ sin�ZY: (19)

This is equivalent to

Z0
LR ¼ cos�LRð�ZB�LÞ þ sin�LRZR; (20)

where arctanð�LRÞ ¼ �LR ¼ �þ arctan
ffiffiffiffiffiffiffiffi
2=3

p
. As for the

three E6 models, we show AFB versus� in the right panel of
Fig. 8.

Off peak, the Z0 interference with the SM background
contributes to the asymmetry, so AFB varies significantly
with dilepton mass. Figure 9 shows the effect of this
interference on AFB. Both the shape of the curve and the
peak value are highly model-dependent.

V. E6 MODELS

We now consider E6 grand unification scenarios in more
detail. An E6 gauge group can be broken down into either a
rank-5 or rank-6 subgroup. In the rank-5 case, this leads to
one additional Z0 boson, the Z0

� discussed above. In the

rank-6 case, there are two additional Z0s, corresponding to
the additional Uð1Þc and Uð1Þ
 groups in Eq. (5). The
mass eigenstates are Z0 and Z00 of Eq. (5). We justifiably
ignore small mixings of the Z0 bosons with the SM Z.
Often, the Z00 is assumed to be very heavy, leading to an
effective rank-5 group, as was the case in the models we
considered in Sec. III. In Fig. 10, we show the branching
fractions and total width of each additional boson as a
function of the mixing angle �.
In the rank-6 case, the masses of the Z0 and Z00 are

related by [41]

�
MZ0

MZ00

�
2 ¼

�
cos�þ ffiffiffiffiffiffi

15
p

sin�ffiffiffiffiffiffi
15

p
cos�� sin�

��
cos�

sin�

�
: (21)

This relation assumes that the Uð1Þ0-symmetry-breaking
scale is much higher than the electroweak scale. Since the
experimental lower bound on the Z0 mass is currently about
2 TeV for E6 models, and there are tight limits on mixing
with the SM Z, this is a justified assumption.
Requiring that the Z00 be heavier than the Z0, and that

both masses are positive leads to the condition

� ffiffiffiffiffiffi
15

p
=4 � cos� � 0: (22)

Notice that the Z0
�, with cos� ¼ ffiffiffiffiffiffiffiffi

5=8
p

is excluded from the

range in Eq. (22). Additionally, both the Z0
c and Z0


, with

cos� ¼ 1 and cos� ¼ 0, respectively, have MZ0 � MZ00 .
Therefore, we would not expect the LHC to detect a
heavier mass eigenstate for the three E6 models considered
in Sec. III.
Using the empirical equations determined in Sec. IV, we

can now calculate the cross section for the Z0 and Z00. Both
cross sections are a function of just two free parameters:

2
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40
4 2
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0.5

1.0
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FIG. 8 (color online). Predicted on-peak forward-backward asymmetry versus mixing angle � for the E6 models (left) and � for the
LR models (right), along with FEWZ-simulated values and statistical errors for MZ0 ¼ 2:5 TeV,

ffiffiffi
s

p ¼ 14 TeV, and L ¼ 100 fb�1.

2200 2400 2600 2800 3000
MZ ' GeV

0.5

0.0

0.5

AFB

Z'SSM

Z'LR

Z'B L

Z'
Z'
Z'
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FIG. 9 (color online). Simulated forward-backward asym-
metry for a number of Z0 models with MZ0 ¼ 2:5 TeV andffiffiffi
s

p ¼ 14 TeV.
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MZ0 and �. In Fig. 11, we show the integrated peak cross
section for Z0 production and decay at LHC14 versus
mixing angle. In Fig. 12, we plot the same quantity for
the Z00 over the allowed range of mixing angles. Here we
see that if a Z0 were to be discovered in the mass range of
1–2.5 TeVor so, the higher mass Z00 could be accessible at
the LHC as well, within a certain range of mixing angles.

VI. DARK MATTER INTERACTIONS

There are a number of scenarios in which a Z0 boson can
serve as a dark matter mediator [46–50]. These models
often include mixing between the gauge bosons, leading to
small effective couplings between dark matter and SM
fermions [6,51–56]. We study this possibility, paying par-
ticular attention to the possibility of isospin-violating dark
matter scattering, which occurs naturally in the case of a Z0
mediator.
We now consider a model with a new Uð1Þ0 and a new

Dirac fermion that is charged only under Uð1Þ0; this fer-
mion will serve as our dark matter candidate. Interactions
between the dark matter and SM particles are achieved
through the kinetic and mass mixing of the new Z0 boson
with the SM Z. The Lagrangian in this case is [52]

L ¼ LSM � 1

4
Ẑ0

�	Ẑ
0�	 þ 1

2
M2

Z0 Ẑ0
�Ẑ

0�

� ĝ0
X
i

�c i�
�ðfiV � fiA�

5Þ �c iẐ
0
�

� sin�

2
Ẑ0

�	B̂
�	 þ M2Ẑ0

�Ẑ
�:

Here sin� and M2 parametrize the kinetic and mass

mixing between the Z0 and the Z. As usual, B̂�	, Ŵ�	,

and Ẑ0
�	 are the field strength tensors for Uð1ÞY , SUð2ÞL

and Uð1Þ0. c i are the fermion fields (including the dark
matter), and fiV and fiA are the vector and axial charges of
the fermions under Uð1Þ0. For simplicity, we consider the
case where all SM fermions have fiV ¼ fiA ¼ 0. This
choice leads to rather weak couplings between SM fermi-
ons and the new Z0, which avoids current LHC bounds on
Z0 production. f
V must be nonzero to allow for spin-
independent scattering of dark matter on nuclei.
We define two additional parameters for convenience:

 ¼ M2

M2
Ẑ

; (23)

tan2� ¼ �2 cos�ðþ ŝW sin�Þ
M2

Ẑ0=M
2
Ẑ
� cos2�þ ŝ2Wsin

2�þ 2 sin�
; (24)
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FIG. 10. Total width, normalized by the mass, and branching fractions to lepton, top, and neutrino pairs for the lower mass eigenstate
Z0 (left) and the higher mass eigenstate Z00 (right). For both, we include only decays into SM fermions.
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FIG. 11. Integrated peak cross section for the process pp !
Z0 ! lþl� as a function of mixing angle �, withMZ0 ¼ 2:5 TeV
at LHC14.
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FIG. 12. Integrated peak cross section for the process
pp ! Z00 ! lþl� at LHC14 versus mixing angle �. The mass
of the heavier eigenstate is determined by the Z0 mass and the
mixing angle.
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where ŝW is the sine of the weak mixing angle. The
Z0 couplings to DM and the shifts in the Z
couplings are proportional to �. Since � is approximately

proportional to M�2
Z0 for , � � MZ0

MZ
, these couplings must

be small for heavy Z0’s.
The physical states A�, Z�, and Z

0
� are obtained through

two sequential transformations. First, we diagonalize the
field strength tensors; then, after SUð2Þ � Uð1Þ breaking,
we diagonalize the resulting mass matrices. After these
transformations, the physical states are related to the origi-
nal (hatted) states by

A� ¼ Â� þ ĉW sin�Ẑ0
�;

Z� ¼ cos�ðẐ� � ŝW sin�Ẑ0
�Þ þ sin� cos�Ẑ0

�;

Z0
� ¼ cos� cos�Ẑ0

� � sin�ðẐ� � ŝW sin�Ẑ0
�Þ:

(25)

We can write the couplings of the physical states to
fermions in terms of the oblique parameters, S, T, and U,
and the physical weak mixing angle [52]:

gVfZ ¼ e

2sWcW

�
1þ �T

2

�
ðTi

3 � 2Qis2�Þ;

gAfZ ¼ e

2sWcW

�
1þ �T

2

�
Ti
3;

gV
fZ0 ¼ e

2sWcW

�
1þ �T

2

�
ð~sðTi

3 � 2QiÞ tan�
� ðTi

3 � 2Qis2�Þ�Þ;
gAfZ0 ¼ e

2sWcW

�
1þ �T

2

�
ð~sTi

3 tan�� Ti
3�Þ;

gV
Z ¼ �f


V; gV
Z0 ¼ f



V; (26)

where

s2� ¼ s2W þ 1

c2W � s2W

�
1

4
�S� c2Ws

2
W�T

�
; (27)

and

~s ¼ sW þ s3W
c2W � s2W

�
1

4c2W
�S� 1

2
�T

�
: (28)

The contributions to S andT due to theZ0 are, to second order
in � [52],

�S ¼ 4�c2WsW tan�; (29)

�T ¼ �2

�
M2

Z0

M2
Z

� 1

�
þ 2�sW tan�: (30)

S and T are constrained by fits to the global electroweak data,
as shown in Fig. 13 [43]. The best fit values for an assumed
Higgs boson mass of MH ¼ 117 GeV are

S ¼ 0:03� 0:09; T ¼ 0:07� 0:08;

with a strong correlation of 87%. The S and T values would
change very little for a Higgs mass of 125 GeV, as may be
suggested by recent LHC observations [57,58]. The con-
straints on S and T can be translated into constraints on the
Z0 mixing angles (and consequently the couplings and cross
sections) with a simple Monte Carlo. The result is shown in
Fig. 13. Note that the kinetic mixing angle � can be quite
large, assuming that  is small enough.
By sampling values in the region of allowed � and , we

can determine the range of possible values for the dark
matter scattering cross section and the LHC Z0 production
cross section. These can then be compared to the results of
experimental searches to further restrict the mixing angles,
Z0 mass, and fn=fp (defined below).
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FIG. 13. Left: The 90% C.L. allowed region for S and T based on the global data for MH ¼ 117 GeV [43]. Right: This region
translated into a 90% C.L. region for � and  for MZ0 ¼ 1000 GeV.
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For direct detection experiments, we are interested in
interactions between dark matter and atomic nuclei [6]. To
determine this cross section, we start with an effective dark
matter-quark coupling given by

bV;Af ¼ gV;A

Z0 g

V;A
fZ0

M2
Z0

þ gV;A
Z gV;AfZ

M2
Z

; (31)

which leads to DM-nucleon couplings of

fn ¼ 2bVd þ bVu ; fp ¼ bVd þ 2bVu : (32)

Using these expressions, we can determine fn=fp as a

function of �, , and MZ0 . Contour plots of fn=fp and

fp=fn as functions of � and  are shown in Fig. 14.

Comparing with Fig. 13, we see that S and T place no
limit on the value of fn=fp, though the mixing angles are

more tightly constrained for some values of fn=fp than

others. Therefore, the limit on the dark matter scattering
cross section will vary significantly as a function of fn=fp.

Finally, we can write the dark matter-nucleus spin-
independent scattering cross section:

�A ¼ �2
A

�2
p

�
Zþ ðA� ZÞ fn

fp

�
2
�p; (33)

where �p is the spin-independent DM-proton cross

section,

�p ¼ �2
pf

2
p

64�
; (34)

and Z and A are the atomic and mass numbers of the
detector material, �A is the reduced mass of the dark
matter-nucleus system, and �p is the reduced mass of the

dark matter-proton system [7].
It is common to present the spin-independent cross

section for a nucleus with Z protons in terms of the cross
section for scattering off a single nucleon, making the
assumption that fn ¼ fp. To compare a model with data,

we must also account for possible isospin violation.

To convert the nuclear cross section to a proton cross
section �p, we multiply by [7]

FZ ¼
P

i �i�
2
Ai
Ai

2P
i �i�

2
Ai
½Zþ ðAi � ZÞfn=fp�2

: (35)

This factor is derived from Eq. (33) by summing over all
stable isotopes of atomic number Z, weighted by their
natural abundances �i. In Fig. 15, we show the effect of
isospin violation on the xenon (Z ¼ 54) cross section,
normalized to the current limit from XENON100, �p <

2:7� 10�45 cm2 at fn=fp ¼ 1 and M
 ¼ 100 GeV [13].

Isospin violation can relax the bound by several orders of
magnitude, with the least stringent bound occurring around
fn=fp ¼ �0:7 [7].

With the XENON bound generalized to all values of
fn=fp, we can use it to place limits on the model parame-

ters. We start by choosing a random sample of points ð�; �Þ
within the allowed region shown in Fig. 13 and then
calculate the proton spin independent cross section for
each point. In Figs. 16 and 17, we show the dependence
of the cross section on fn=fp and MZ0 , respectively. From
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FIG. 14 (color online). Contour plots of fn=fp and fp=fn as a function of � and . No limits are placed on the values of � and .
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FIG. 15. The 90% C.L. upper bound on the spin-independent
dark matter-proton scattering cross section from XENON100 as
a function of fn=fp.
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Fig. 17, we see that the largest cross sections occur for
fn=fp � 0:35, while the lowest occur for fn=fp <�0:5,

which is where the XENON bound is the most relaxed. For
both figures, we have set g
 ¼ 1 and M
 ¼ 100 GeV,

which in general are free parameters. However, they have
no impact on the qualitative features of the distributions, as
they only enter the overall normalization factor. They
influence our ability to place limits on the other parame-
ters; in particular, the g2
 dependence of the cross section

means that all constraints can be evaded by choosing
a small enough coupling. For MZ0 ¼ 1000 GeV and
M
 ¼ 100 GeV, the XENON bounds are evaded for all

values of fn=fp with g
 ¼ 0:58.

Collider searches can also help constrain the mixing
angles for a dark Z0, as the Z0 acquires small couplings to

SM fermions via mixing effects [59]. Z0 production and
decay to leptons at the LHC depends primarily on the
mixing angles and the Z0 mass, with only a small depen-
dence on the dark matter properties through the decay
width of the Z0. Using the couplings in Eq. (26), we can
apply the analysis of Sec. IV to calculate the cross section
for Z0 production at the LHC. We find the ATLAS predic-
tions of the cross section for the various Z0 models given in
Fig. 2 of Ref. [11] are well parametrized by

�B ¼ ð2200 fbÞr12Z0

�
1

rZ0
� 1

�
15½pcu þ ð1� pÞcd�: (36)

With this equation, we can use the current ATLAS limits to
restrict the parameter space. Since there are no direct
couplings between the Z0 and the SM, the lower bound
on the Z0 mass is much less stringent than for the models
considered earlier. In Fig. 18, we show the upper bound on
�ðpp ! Z0 ! lþl�Þ set by the S and T parameters forffiffiffi
s

p ¼ 7 TeV.
Finally, we can combine the limits from XENON100

and ATLAS to constrain the model parameter space in
terms of �, , and MZ0 . The results are shown in Fig. 19,
again with M
 ¼ 100 GeV and g
 ¼ 1. The electroweak,

dark matter, and LHC data provide complimentary bounds,
with S and T more strongly limiting the degree of mass
mixing, while XENON and ATLAS provide more stringent
bounds on kinetic mixing. The bounds on  and � relax as
MZ0 increases and the Z and Z0 decouple. Note that the
experiments report their results at different confidence
levels, so these regions are not confidence regions; they
are simply indicative of the parameter space available.
The invisible decay width of the Z and the muon anoma-

lous magnetic moment have also been used to constrain the
mixing parameters � and  [53], but they are less restrictive
than S and T for MZ0 in the range 300–1500 GeV.
If MZ >M
, the invisible decay width of the Z must be

considered. The decay width is proportional to �2, so the
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FIG. 17 (color online). �p versus fn=fp mass for M0
Z ¼

1000 GeV. The thick red line is the XENON100 upper bound;
dots are the cross sections corresponding to pairs ð�; Þ sampled
uniformly through the allowed region shown in Fig. 13. The dark
matter mass and coupling to the Z0 are set toM
 ¼ 100 GeV and

g
 ¼ 1, respectively.
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FIG. 16 (color online). The cross section for DM scattering on
protons, �p versus Z0 mass for fn=fp ¼ 1. The thick red line at

�p ¼ 2:7� 10�45 cm2 is the XENON100 limit [13]; dots are

the cross sections corresponding to pairs ð�; Þ sampled uni-
formly over the allowed values. The dark matter mass and
coupling to the Z0 are set to M
 ¼ 100 GeV and g
 ¼ 1,

respectively.
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FIG. 18 (color online). �ðpp ! Z0 ! lþl�Þ versus M0
Z. The

thick red line is the most recent ATLAS limit [11]; dots are the
cross sections corresponding to pairs ð�; Þ sampled uniformly
through the allowed region shown in Fig. 13.
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experimental 1.5 MeV bound [43] is avoided as long as
� < 0:95.

There are also corrections to the muon anomalous
magnetic moment [53],

a� � ��2

3�c2Ws
2
W

m2
�

M2
Z0
: (37)

However, the contributions from the Z0 are very small,
because of the dependence on M�2

Z0 and �2. The current

experimental limit is a� � 3� 10�9 [43], which is

several orders of magnitude larger than the expected
contribution except for very small MZ0 .

VII. SUMMARY

Our customization of the FEWZ simulation code allows
for extensive studies of Z0 production and decay at the
LHC at NLO and NNLO. Using the results of our simula-
tion for representative benchmark models, we derived an
empirical formula for the double differential cross section
d2�

dyd cos� . This formula can be used to study broad classes of

models easily and to determine the Z0 couplings to fermi-
ons without prior knowledge of the underlying model. In a
model-dependent analysis, it can also be used to set limits on
model parameters. In the case of the E6-derived models,
without accounting for systematic uncertainties, we find that
the mixing angle � may be determined within 0:1� with
1 ab�1 of data for a mass of 2.5 TeV. For E6 models we also
showed that within a range of mixing angles, two extra
neutral gauge bosons should bewithin the reach of the LHC.

Finally, we considered a more general Z0 model with
kinetic and mass mixing, which has interesting implica-
tions for dark matter detection and hidden sector theories.

Even if the SM is uncharged under a new hidden sector
Uð1Þ0, mixing could induce couplings strong enough that
the Z0 could be produced at the LHC and mediate dark
matter scattering on nuclei, without violating limits from
global electroweak data. In the case of a heavy Z0 (MZ0 	
MZ) we find that the limits on the S and T parameters can
be combined with XENON100 and LHC data to restrict the
range of allowed mixing angles. For a relatively light Z0 at
500 GeV, the mass and kinetic mixing parameters  and �
must both be less than about 0.2. For heavy Z0’s, these
mixing parameters are unrestricted.
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APPENDIX: FEWZ CUSTOMIZATION

The FEWZ code allows for an extensive analysis of the
SM Drell-Yan process, including NNLO effects and the
influence of phase-space cuts. With a few modifications,
its features can be used to study Z0 production as well. The
details of the original simulation are provided in Refs. [8,9].
The QCD factorization theorem allows us to write the Z0

production cross section in terms of the partonic cross
section and the proton structure functions as follows:

d� ¼ X
ij

Z
dx1dx2f

h1
i ðx1Þfh2j ðx2Þd�ij!l1l2ðx1; x2Þ:
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FIG. 19 (color online). Derived limits on � and  for MZ0 ¼ 500 GeV (left) and MZ0 ¼ 1000 GeV (right). The dotted blue lines
represent the limit from global electroweak data (90% C.L.), the solid red lines are the limit from XENON100 (90% C.L.), and the
dashed green lines are the limits from ATLAS at

ffiffiffi
s

p ¼ 7 TeV for L � 1 fb�1 (95% C.L.).
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Since the addition of a Z0 affects only the partonic cross
section, and not the structure functions, we do not need to
alter the Monte Carlo portion of FEWZ.

The parameters of the Z0 model are specified in the input
file for each run. For each model, the user sets the mass,
total width, partial width to leptons, and couplings of the
Z0. The input file also includes the SM parameters and
kinematic cuts. We also include a switch to turn the Z0
contribution on and off, so that calculations of the SM
background can still be done.

The Z0 parameters are read into FEWZ and used to
calculate ‘‘weights’’ (related to the partonic cross section
of various subprocesses) for the integration routine.

Preserving the structure of the SM calculation, we insert
additional Z0 contributions to the partonic cross section.
This includes the interference terms mentioned in Eq. (1):

�ðZ0; XÞ

¼ gZ0gX
2�

�zlLzXlL þ zlRz
X
lR

288

�

� ðQ2 �M2
Z0 ÞðQ2 �M2

XÞ þMZ0MX�Z0�X

½ðQ2 �M2
Z0 Þ2 þM2

Z0�2
Z0 �½ðQ2 �M2

XÞ2 þMX�
2
X�

;

where X ¼ �, Z. Hereafter, the Monte Carlo integration
proceeds without alteration.
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