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In this article we compute the two-loop supersymmetric QCD corrections to Higgs-quark-quark
couplings in the generic minimal supersymmetric standard model (MSSM) generated by diagrams
involving squarks and gluinos. We give analytic results for the two-loop contributions in the limit of
vanishing external momenta for general supersymmetry (SUSY) masses valid in the MSSM with general
flavor structure. Working in the decoupling limit (Mgygy >> v) we resum all chirally enhanced corrections
(related to Higgs-quark-quark couplings) up to order a" Vian” . This resummation allows for a more
precise determination of the Yukawa coupling and Cabibbo-Kobayashi-Maskawa elements of the MSSM
superpotential necessary for the study of Yukawa coupling unification. The knowledge of the Yukawa
couplings of the MSSM superpotential in addition allows us to derive the effective Higgs-quark-quark
couplings entering flavor changing neutral current processes. These effective vertices can in addition be
used for the calculation of Higgs decays into quarks as long as Mgygy > Myjg, holds. Furthermore, our
calculation is also necessary for consistently including the chirally enhanced self-energy contributions
into the calculation of flavor changing neutral current processes in the MSSM beyond leading order. At
two-loop order, we find an enhancement of the supersymmetry threshold corrections, induced by the quark
self-energies, of approximately 9% for u = Mgygy compared to the one-loop result. At the same time, the

matching scale dependence of the effective Higgs-quark-quark couplings is significantly reduced.
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I. INTRODUCTION

In the MSSM diagrams with sfermions and gauginos as
virtual particles generate important loop corrections to
Higgs-quark-quark couplings. After the spontaneous
breaking of SU(2); ® U(1)y at the electroweak scale, the
Higgs fields acquire their vacuum expectation values
(VEVs), and the genuine vertex corrections to Higgs-
quark-quark couplings also generate chirality changing
quark self-energies (or self-masses). Thus, there is a
one to one correspondence between loop corrections to
three-point Higgs-quark-quark functions and quark self-
energies: The correction to a Higgs-quark-quark coupling
is given by the corresponding chirality-changing self-
energy divided by the VEV of the involved Higgs field.

This means that we can simplify the calculation of three-
point functions by reducing the problem to the calculation of
two-point functions (self-energies). In this way, the self-
energy contributions to quark masses can be directly related
to effective Higgs-quark-quark couplings, which allow for an
efficient calculation of the effective Higgs vertices.

The quark self-energies also modify the relation between
the Yukawa couplings of the minimal supersymmetric stan-
dard model (MSSM) superpotential and the quark masses
(extracted from low-energy observables). Especially if tan 8
(the ratio of the VEVs of the two Higgs fields) is large, these
contributions are generically very large and can be of order
one [1-4]. In an analogous way, also the relation between the
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Cabibbo-Kobayashi-Maskawa (CKM) matrix of the super-
potential and the physical one is altered (by chargino-squark
diagrams in the MSSM with minimal flavour violation
(MFV) [5-9] and in addition by squark-gluino diagrams in
the general MSSM [10,11]). Because of these corrections
the physical quark masses and the measured CKM elements
no longer equal the ones that appear in the MSSM super-
potential. One says that these relations are modified by so-
called threshold corrections, i.e., by the decoupling of heavy
particles. Since in Higgs decays Higgs mediated flavor
changing neutral currents (FCNCs) (like B, mixing and
By — p* ) and in Higgsino vertices the Yukawa cou-
plings (of the superpotential) and not the physical quark
masses enter, a precise knowledge of these quantities and
thus of the threshold corrections is necessary. Furthermore,
in grand unified theory models with Yukawa coupling uni-
fication not the effective Yukawa coupling of the SM, but
rather the Yukawas of the superpotential unify, and the
supersymmetry (SUSY) threshold corrections must be taken
into account in order to judge whether they actually do unify
[12,13]. In conclusion, it is desirable to know the relation
between the parameters of the MSSM superpotential and the
physical, i.e., measurable quantities, very precisely.
Having the relation between the Yukawa couplings
(CKM elements) of the superpotential and the physical
quark masses (physical CKM elements) at hand, one can
calculate the effective Higgs couplings entering FCNC
processes that include the SUSY loop corrections. This is
most easily achieved by matching the MSSM on the two-
Higgs-doublet model of type three (2HDM III). The loop-
induced couplings of quarks to the “wrong” Higgs field,
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i.e., to the Higgs that is not involved in the Yukawa term in
the superpotential, induce flavor-changing neutral Higgs
couplings after switching to the physical basis in which the
quark mass matrices are diagonal in flavor space. These
effective Higgs couplings can be expressed entirely in
terms of the physical masses and self-energies depending
on MSSM parameters. Here a complication arises because
these self-energies must be calculated using the Yukawa
couplings and the CKM elements of the superpotential,
which must have been determined previously in the pro-
cess of renormalization by including the loop corrections,
i.e., by resumming the threshold corrections. This problem
can be solved analytically in the decoupling limit of the
generic MSSM in which the self-energies are at most linear
in the Yukawa couplings [14].

The importance of these threshold corrections and thus
of the chirally enhanced self-energies motivates their cal-
culation at next-to-leading order (NLO) in «,. In the
MSSM with MFV these corrections have been calculated
in Refs. [15-19]. Here we want to extend this analysis to
the MSSM with generic sources of flavor violation and
resum all chirally enhanced effects using the results of
Refs. [7,10,14,20]. In addition, working in the approxima-
tion of vanishing external momenta, we are able to give
relatively simple analytic expressions for the self-energies,
and therefore also the resummation of all chirally enhanced
corrections can be (and is) performed analytically.

After discussing the quark self-energies (and their con-
nection to Higgs-quark-quark couplings in the decoupling
limit of the MSSM) in the next section, we derive the
relations between the MSSM Yukawa couplings and the
quark masses at LO in Sec. III. As the main result of this
article we calculate the supersymmetric QCD (SQCD) con-
tribution to the chirality-changing self-energy at the two-
loop level in Sec. IV. In Sec. V we discuss the topics of
Sec. IIT at NLO. In Sec. IV we derive the effective Higgs-
quark-quark couplings and conclude in Sec. VII. Various
appendices summarize the relevant one-loop results.

II. QUARK SELF-ENERGIES, EFFECTIVE
LAGRANGIAN, AND THE DECOUPLING LIMIT

As described in the Introduction, there is a one to one
correspondence between chirality changing self-energies
and Higgs-quark-quark couplings: In the decoupling limit
of the MSSM (Mgysy > v and Mgygy > p, where p is the
external momentum) chirality changing self-energies are
proportional to one power of a VEV only, and the correc-
tions to the Higgs-quark-quark couplings can be obtained
by dividing the corresponding self-energy by the VEV of
the Higgs field involved. Thus, as long as the momentum
flowing through the Higgs is small compared to the SUSY
masses and the SUSY masses are heavier than the electro-
weak VEV, the decoupling limit is a valid approximation.
In this approximation the calculation of the Higgs-quark-
quark three-point function can be reduced to the calcula-
tion of quark self-energies. For this reason we will consider
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the quark self-energies in this section in some detail and
discuss the decoupling limit. The analysis is valid inde-
pendent of the loop order (concerning « corrections) at
which the self-energies are calculated.

In general, it is possible to decompose any quark (or any
fermion) self-energy into chirality-flipping and chirality-
conserving parts in the following way:

2.(p) = CE (P + PEE (PP + 4 (pY)

+ pU (PP, (1)

gRL,LR

Note that the chirality-flipping parts 2 i have dimen-

sion mass, while the chirality conserving parts E?I-LL’RR

dimensionless.

In the following we will be interested in the contributions
to Eq. (1) thatinvolve heavy SUSY particles. The reason for
this is that only these contributions lead to the threshold
corrections entering the relation between the quark masses
and the Yukawa couplings of the MSSM superpotential. It is
convenient to work in an effective field theory in which the
part of the effective Lagrangian containing mass terms and
kinetic terms for the quarks is given by

f ix RL RL i LR LR
.£qu = (Uq Ygee Sfl + C;ch )0?1 _('Uthqn:e Sfl +C?l )0?1

+ (8= CHNOF + (3= CHMOEE @)

with the operators defined as

LL _ .-
07«,- = IQfﬁPLQir

RR _ .-
0% = iG;#Prq;.
Throughout this paper, the Wilson coefficients in the effec-
tive Lagrangian (2) (or, equivalently, the operators) are
renormalized in the MS scheme. The final results for the
Wilson coefficients will be written as an expansion in g,
where g is meant to be the MS renormalized strong cou-
pling constant of the effective theory, running with six
(quark) flavors.

In Eq. (2) the term —v,Y{.6; denotes the part of the
Wilson coefficient of the operator Oqu thatisinduced at tree

are

O%QL =4qrPLq:
. 3)
i = drfrqi

level by the Yukawa coupling of the MSSM superpotential.
The running of v, Y. (and also that of C ‘;fL) is the same as

the one of the quark mass in the SM (in the MS scheme). At
the matching scale mgygy, Y/, is just the Yukawa coupling
Y4 of the MSSM superpotential.' Note that Y., is not the

'The matching calculation for Y{_ is most easily done by
using the MS scheme, both on the MSSM side and on the
effective theory side. When working up to order a, we get at
the matching scale mgysy Y = Y9, where Y% denotes the
Higgs-quark-quark coupling of the MSSM in the MS scheme.
However, it is well known that one should use the DR scheme on
the MSSM side, such that supersymmetry is preserved. This can
be achieved by the shift Y% = (1 + 7+ Cp)YZ. This issue will
be considered in more detail in Sec. V. The matching condition
then reads Y. = (1 + 72 Cp)YL.
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effective Yukawa coupling of the SM, which instead is
obtained from the physical quark mass [see Eq. (11)].

The Wilson coefficients CqLR LR and CqLL KR in Eq. (2)
contain the effects of heavy particles only Self-energy
diagrams involving no heavy SUSY particles, i.e., ordinary
QCD corrections containing only quarks and gluons, do
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not contribute to the Wilson coefficients in the matching
procedure, because they are the same on the full side (the
MSSM) and on the effective side (the 2HDM III or the
SM). At the matching scale mgygy we find for the Wilson

coefficients of Eq. (2), using the results for 354 (0) and

%{‘qlf (0) given in Eq. (A2):

Cht = Wq qu:3 sCFmg(XgllEi(f)
LL —_ _a,wid wi* 342 +xd 4+ (4x2—2xH) In(x2) atLOin a;. 4
C]L{i (0) - _EW}]SW:] CF(h’l(.X ) + Xy x2(1 ); - x3) In(x ) ‘ @)

q
Ytree =Y1

Further, in the following we will focus on the nondecou-
pling pieces of Eq. (1), i.e., those contributions that do
not vanish in the limit Mgygy — o0 (which also includes
M — 00). In contrast, all parts that vanish in this limit are
called decoupling. There are two different kinds of decou-
pling contributions concerning self-energies (or effective
Higgs-quark couplings):

(1) The first kind of decoupling effects is related to the
expansion of the self-energies in powers of
p?/M3ysy- This expansion is certainly possible in
on-shell configurations because the SUSY particles
are known to be much heavier than the external
quarks. In this series, higher order contributions are
clearly suppressed for all light quarks, and even for
the top quark nondecoupling corrections are only of
the order m? /M3 sy = 4% with respect to the lead-
ing term. Thus, higher orders in p?/M2;sy can be
safely neglected as long as the external momentum
p? is small, which is the case for all low-energy
flavor observables.

(i) The second kind of decoupling effect is related to
the mixing matrices (and also the physical masses)
of the MSSM particles (squarks and charginos/
neutralinos), which appear because the mass matri-
ces of the SUSY particles are not diagonal in a weak
basis. These mixing matrices and mass eigenvalues
can be expanded in powers of v/Mgygy, and also in
this case it turns out that the decoupling limit (i.e.,
the leading order v/Mgygy) for realistic values of
SUSY masses” is an excellent approximation to the
full expressions [20]. Beyond the decoupling limit
higher dimensional operators involving several
Higgs fields would appear.

From dimensional analysis we see that all nondecou-
pling contributions are contained in EqRR LL and EqLR RE

evaluated at p?> = 0. Furthermore, the nondecouphng part

>The new results of the CMS Collaboration [21] and the
ATLAS experiment [22] require that squark and gluino masses
are at least of the order of 1 TeV.

|
of EqRR’LL (p* =0) is independent of a VEV, while
EqLR RL(p2 = 0) is linear in v. Thus, in the following we
EqRR LL( 2 0) EqLR RL( 2 — 0)
and only keep the leadmg term in v that is equivalent to
considering operators up to dimension 4 only. This sim-
plification allows us to perform an analytic resummation of
all chirally enhanced effects as developed in Ref. [14].

There is a fundamental difference between EqLR RL and

Ejf-fR LL (and thus also between CqLR RL and CqRR LL

w111 work in the limit

) even
though both pieces do not decouple. We explaln this issue at
one-loop order: E%eR’LL enters always proportional to the
quark mass itself into the renormalization of the Yukawa
coupling and CKM elements and thus has the same generic
size as an ordinary QCD loop correction (it is of order «).
Furthermore, as we will see later, the Ejf-fR‘LL even do not
contribute to effective Higgs-quark-quark couplings
at the one-loop level [23]. On the other hand, EqLR RL
can be “‘chirally enhanced” by a factor of tanf [24] or

Al AL/ (Y{;MSUSY) [10], which can compensate for the loop

factor Because of this possible enhancement, EqLR RL

gen-
erates the most important contribution to the threshold
corrections between Yukawa couplings and quark masses.
The resulting Wilson coefficients C;{iLR’RL can even be of
order one, i.e., numerically as large as the corresponding
physical quantities (m,, in the flavor-conserving case
or Vi X max[mq[, mq[] in the flavor-changing one).
Furthermore, concerning flavor-changing neutral Higgs
couplings, EqLR KL even constitutes the leading order, since
these couphngs are first generated at the one-loop level.
Because the gluino contribution to Ej’iiLR’RL involves the
strong coupling constant, it is the numerically dominant
contribution to the threshold corrections modifying the
relations between the quark masses and the Yukawa cou-
pling. Regarding flavor changes, in the MSSM with MFV
only the chargino contribution enters the renormalization
of the CKM matrix, but once there are sizable nonminimal
sources of flavor violation, again the gluino contribution
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becomes dominant. The neutralino contribution is in most
regions of parameter space suppressed (except if the gluino
is much heavier than the other SUSY particles). Thus we
consider the gluino contribution in this article. The calcu-
lation of the chargino- and neutralino-induced contribu-
tions to the threshold corrections and the effective
Higgs-quark-quark couplings is work in progress [25].
From the arguments given above we see that at any loop
order (concerning «, corrections) the chirality-flipping
quark self-energy containing at least one gluino and one
squark as virtual particles is always proportional to one®
off-diagonal element A;’jLR of the squark mass matrix that,

in the super-CKM basis, is given by

AR = —v AL — v, Al — v, uY%5,, 5)
AUR = —y AL — v Al — v u Y5,
. GRL _ A qLR* ilde i
with A" = A", Note the presence of the tilde in the

Yukawa couplings Y9 This refers to the fact that a squark-
squark-Higgs coupling is involved, while Y¥ entering the
Wilson coefficient Y{.. in Eq. (2) is a quark-quark-Higgs
coupling. Of course, both of these couplings are a priori
equal in the MSSM owing to supersymmetry and could be
identified with each other from the beginning if the calcu-
lations of the chirality-flipping quark self-energies would
be performed in the DR scheme, in which supersymmetry
is preserved. However, we decided to work out in an
intermediate step the SQCD two-loop corrections to the
self-energies in the MS scheme, i.e., in dimensional regu-
larization followed by modified minimal subtraction rather
than using dimensional reduction. At this level, the two
couplings Y% and Y7 are different and therefore have to be
distinguished in the notation. We will discuss this in more
detail in Sec. V.

The elements A?]-LR generate chirality-enhanced effects
with respect to the tree-level quark masses if they involve
the large VEV v, (tanB enhancement for the down quark)

or a trilinear A" term [A( )/ (Y ‘Mgysy) enhancement].

A. Decomposition of quark self-energy contributions

We diagonalize the full 6 X 6 squark mass matrices in
the following way*:
it M2Wa — 2 2 2 0
W MzW Wi = dlag(m m sz mz mz,mz ), (6)
where m; (s=1,...,6) denote the physical squark masses.
In the decoupling limit, i.e., to leading order in
v/Mgysy, the chirality-flipping elements AR can be
neglected in the determination of the squark mixing

*More precisely, in the decoupling limit 2‘7 is linear in
AR while beyond the decoupling limit it contains all add
powers of AR

*Note that our mixing matrices W7 correspond to the
Hermitian conjugate of the matrices I'y defined in Refs. [26,27].
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matrices W9 and the physical squark masses m-_ The
down (up) squark mass matrices are then block diagonal
and diagonalized by the mixing matrices | I
(T%,, T in the following way:

Wie M2Wee, = diag(m?y, 2y, m2,, m2e, m2y, m),
wi —(Ter © )
dec 0 FQR .

The 3 X 3 matrices FZL and FgR (0 = U, D) take into
account the flavor mixing in the left-left and right-right
sector of sfermions, respectively. It is further convenient to
introduce the abbreviations

AqRR

AR =T TL" (q=ud), ANT=THIEE  (8)

mij
where i, j, m = 1, 2, 3, and the index m is not summed
over.

On the other hand, left-right mixing of squarks is not
described by a mixing matrix, but rather treated perturba-
tively in the form of two-point q{*-qf. vertices governed
by the couplings A;’lL K ie., by what is called mass inser-
tions [28].

For the relations between the Yukawa couplings and the
quark masses (to be discussed in Sec. III) and for the
effective Higgs-quark-quark vertices (see Sec. VI) it is
necessary to decompose CYLRRL according to its Y9 de-
pendence as

CILR = CILR + ely, Y4, )

ii¥;

where, as the notation implies, Ci’f is independent of a

Yukawa coupling. Note that we did the decomposition with
respect to the Yukawa coupling Y di as C?fR can only
involve Y9 but not Y% [see Eq. (5)].

For the discussion of the effective Higgs-quark-quark
vertices in Sec. VI we also need a decomposition of EqLR
and thus of C?I.L into its holomorphic and nonholomorphlc

parts.” In the decoupling limit (and in the approximation
m, = 0) all holomorphic self-energies are proportional to A
terms. Thus we denote the holomorphic part of the Wilson
coefficient as Cflff, while the nonholomorphic part (which
can be induced by the u term or by an A’ term) is denoted as
C;.‘f-LR. This means that we have the relation

cit = ciif + it (10)

SWith (non)holomorphic we mean that the loop-induced
Higgs coupling is to the (opposite) same Higgs doublet as
involved in the corresponding Yukawa coupling of the MSSM
superpotential.
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ITI. RELATIONS BETWEEN QUARK MASSES AND
YUKAWA COUPLINGS AT LEADING ORDER IN «a;

Let us discuss the renormalization® of quark masses and
Yukawa couplings induced by nondecoupling self-energy
contributions to the Wilson coefficients C;flL REL and

C;?I-L LRR in the MSSM. For this purpose we focus on the

flavor-conserving case, but we will return to the flavor-
changing one in Sec. VI. As it turns out, flavor-changing
self-energies only contribute to the relation between quark
masses and Yukawa couplings at higher orders in the
perturbative diagonalization of the quark mass matrices.
For the renormalization and the inclusion of the
threshold corrections it is very important to distinguish
between the Yukawa couplings of the MSSM superpotential
Y7 and the “effective’” Yukawa couplings of the SM (or the
2HDM of type III) Y, = m, /v,. At the matching scale
Mgysy the running quark mass m,, of the SM is related to
the Yukawa coupling of the MSSM in the following way:

. _ |
v, Yo =my, =, Vi + Cir % (1 " E(C?,-LL + CZRR)).

1D

The term %(CZLL + C?iRR) originates from rendering the
kinetic terms of the effective theory diagonal or, equiva-
lently, in the full theory from the Lehmann-Symanzik-
Zimmermann factor that originates for the truncation of
the external legs.

As discussed in the last section, only E?,»LR (or equiva-
lently C ;’iLR in the effective theory) can be chirally enhanced.
If we restrict ourselves to this term, we recover (in the
decoupling limit in which C ZLR is proportional to one power
of Y4 at most) the well-known resummation formula for
tanB-enhanced corrections, with an additional correction
attributable to the A terms [15] (and possibly the A’ terms).
The resummation formula at leading order is given by’

g — IRy — GO
ydi = 21— = I, (12
Vg v (1 + tan,Be?(l))

with e?(l) and C?I_;]_e(l) defined through Eq. (9). The super-

script (1) denotes the fact that a corresponding quantity is
calculated at the one-loop order.

6Throughout this article, renormalization is understood not
only as the process of removing divergences but also as the
altering of the relations between different quantities induced by
loop contributions.

"For large flavor-changing elements also a contribution in-
volving two self-energies can be important for the renormaliza-
tion of the light quark masses [29]. In this case the resummation
formula reads for i = 1:

m, — CdLR _ CErC”
di 11¥, my

vy(1 + tanBed)

3

Ydl =
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IV. CALCULATION OF THE WILSON
COEFFICIENT C%;* AT NLO

In this section we describe the calculation of the two-
loop contribution to C?fR, discuss the issue of renormal-

ization, show the expected reduction of the matching scale
dependence, and discuss the decoupling limit in which
only one coupling to a VEV of a Higgs field is involved.
To be specific, we describe in the following the calculation

and the results for the down quark, i.e., C}’{‘R, and mention

at the very end how CY/R

)

In the following we write the Wilson coefficient C/% as

can be obtained.

C#R — ijiLR(l) + C;l{fRO) 4o, (13)
where C?Z.LR(I) and C‘;iLR(Z) denote the one- and two-loop
contributions, respectively. We perform the two-loop
matching calculation (order a?) for the Wilson coefficient
C?iLR in D = (4 —2¢e) dimensions, using dimensional
regularization, both for the full theory (MSSM) and for
the effective theory in Eq. (2). The complete list of
genuine 1-particle irreducible (PI) two-loop diagrams
contributing in the full theory is shown in Fig. 1 (gen-
erated with FeynArts [30,31]).

As the first two diagrams (involving squark tadpoles)
give rise to some subtle points concerning renormalization,
we ignore them in this subsection and take into account
their impact on C$/* only in the next subsection.

C;lclpR(Z)

A. Matching calculation for ignoring tadpoles

In the full theory we first calculate the 1-PI two-loop
diagrams (diagrams 3-16 in Fig. 1) in the approximation
m, =0 and p = 0, but to all orders in v/mgygy (using
exact diagonalization of the squark mass matrices). All
diagrams except diagram 16 can be calculated by naively
setting m, = 0 and p = 0. Diagram 16, however, leads to
two contributions: the hard contribution, which amounts to
the naive limit of vanishing quark masses and external
momenta of the full two-loop diagram, and the soft con-
tribution, which amounts to the same limit but only for the
heavy one-loop subdiagram [32]. As the soft contribution
is identical to the one-loop gluon correction to

- iC;Il.LR“’D) O?iLR in the effective theory,® this contribution
drops out in the matching for C?iLR(Z). As this soft contri-

bution is the only one that is infrared singular, this means in

- dLR(2)
particular that C;

should be.
We then add the counterterm contributions in the full
theory, which are induced by the renormalization of the

2 . .
parameters mj , m;, and a; in the corresponding one-loop

is free of infrared problems, as it

8C?Z.LR(1‘D ) is the one-loop Wilson coefficient in D = (4 — 2¢)

dimensions, i.e., ijiLR(l’D) = ngﬁ(O); see Eq. (A2).
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g
2

6
dj lll
d, {Q\dt B AL NE
g iN
d; d¢ di o dy
~ \*/
g d,
9 10
d d,
~ A ~
g ‘w g dt{W\dl
dy g
d; N /! ds d; ds
N _
d, g
13 14
FIG. 1.

result (where at this level of the calculation these three
parameters are renormalized in the MS scheme). The
explicit expressions are listed in Sec. A3a. In one of these
counterterm contributions the squark-mass counterterm
é‘m%x enters. Of course, when ignoring the tadpole dia-
grams in this section, the tadpole contribution to & mé\_ also
has to be ignored.

Besides the renormalization of the parameters in the full
theory, we also have to attach one-loop wave function
renormalization constants for the external quark legs to

8
uj dj
A NE AL NE
U, d,
d‘ \\ // df dl \\ l // df
S S -
at at
11 12
g
g g
g
d; N /! ds
S
dq
15 16

Genuine 1-PI two-loop diagrams involving squarks and gluinos necessary for the calculation of SILRO),

fi

the corresponding one-loop result. These wave function
renormalization constants have two contributions: One
from a self-energy with a gluon-quark loop, and another
one from a gluino-squark loop. The first one is also present
in the effective theory and consequently drops out in the

determination of C?iLR(Z), while the second one contributes.

Since we perform the renormalization in the MS scheme,
only the divergent pieces of EZ:‘; KR enter C?I.LR(Z) while the

finite part gives rise to C‘;fL‘RR .
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We now turn to the effective theory. Here, we have to
work out one-loop QCD corrections to —iC;IiLR(l’d) 09X,
i.e., the 1-PI diagram, attach the wave function renormal-
ization constants and take into account the effect of the
(MS) renormalization constant 6Z, of the operator O¢}X.
While the first two get canceled against contributions in the
full theory (as already mentioned above), the effect of the
renormalization constant of the operator enters the match-
ing condition for C‘;fR(z).

Putting things together, we get the following (schematic)
matching equation:

. dLR(1,d) _ :~dLR(2
—15Z0Cfl. ( )—lCﬂ @

=D;3+---+ D5+ DY — i{CT,, + CT,, + CT,]

1
- 55[52';?;W + 825 | CgER), (14)

Here Cng, CquJ, and CT,, stand for the contributions

induced by the insertions of the corresponding counterterms
into the one-loop diagram, and D; represents the contribu-
tion stemming from diagram i of Fig. 1. As already men-
tioned, we did our two-loop calculation in dimensional
regularization. So far the parameters mg, m; , and a;
appearing in the full theory were renormalized according
to the MS scheme. Also the various Z factors appearing in
Eq. (14) are renormalized in the MS scheme. The result for

C?I.L R2) we get at this level corresponds to the sum of the first

five terms on the right-hand side of Eq. (23). When giving
the explicit expressions for these terms, we freely made use
of the unitarity properties of the W4 mixing matrices.

We should be more precise concerning g, (or «;). In our
calculation of the full theory side g stands for g, y, i.e., for
the strong coupling constant of the Yukawa type of the full
MSSM renormalized in the MS scheme. As we want to
express the final result for the Wilson coefficient C‘;fRQ) in

terms of gi?/[ 5

SM in the MS scheme running with six flavors, we make
use of the relation [33,34]

, 1.e., by the strong coupling constant of the

6

) = {14222 1+ 610G = X e + 03,
s=1
+4C, — 3CF:|}af;ﬁ(M). (15)

Actually, this relation summarizes three steps: first, the
transition from g,y in the MS scheme to g, of the full
MSSM in the DR scheme; second, the decoupling of the

SUSY particles, leading to g, running with six (quark)
©®)

) s MS”
C;Zi),shlftozx in

flavor in the DR scheme; third, the transition to g

Equation (15) leads to the additional piece
Eq. (23).
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In principle we should have performed our calculation (of
the full theory side) using dimensional reduction, which
preserves supersymmetry, followed by modified minimal

subtraction. The corresponding result for C’;Z.LR(Z)

reconstructed by also shifting the parameter m; and m;

can be

from the MS scheme to the DR scheme in the expression
for C?iLR(l). As only mj; gets such a shift at the relevant
order in «,, we denote this contribution in Eq. (23) as

(2),mgM_S—>mg
fi
This completes the derivation of the matching condition

DR

for C}[iLR(z) when ignoring the tadpole contribution (i.e.,

diagrams 1 and 2). Note that we performed our calculation
using the expression for the gluon propagator in an arbitrary

R; gauge and found a gauge-invariant result for C‘;I-LR(Z).

B. The squark tadpole

The diagrams containing a squark-tadpole self-energy as
a subdiagram require close examination. Diagram 1 van-
ishes, but the squark-tadpole contained in diagram 2 con-
tains a divergence that enforces a renormalization of both
the physical squark masses and the trilinear couplings of
squarks to the Higgs field (the Yukawa couplings and the A
terms). Thus it has to be decomposed into the correspond-
ing two parts.

Let us first consider the decoupling limit in which the
expressions are simpler but the structure of the divergences
is the same as in the full theory because higher powers (two
or more) of A,‘-’J-LR generate finite contributions only. In the
decoupling limit Eq. (A14) simplifies to

As 2 : ii'% A GRLTJ

- CF(Sstmqs -2 .Zl(‘s"’”’SFQR AT, 85,

L]=

” ” |
+ 5,»/SI"Q’Z‘A:!]LRI‘JQ-’R81-/+3J)); + finite. (16)

Here we clearly see that to render the first term in Eq. (16)
finite, which is flavor diagonal [corresponding to Fig. 2(b)],
arenormalization of the squark masses is necessary. On the
other hand, for canceling the divergence of the second term
in Eq. (16) [corresponding to Fig. 2(a)], which is propor-
tional to A?].LR, a counterterm to the Yukawa coupling and
the A term contained in A?jLR is necessary. The latter point
can be seen as follows: In the decoupling limit the ampu-
tated chirality-changing squark two-point function for
qu., — g% is given, at lowest order in a;, by

IVSINAS VI (17)

From this we can read off the common renormalization
constant Z, of the Yukawa couplings Y% and the Af’j and
the Aﬁ;f terms, obtaining in the minimal subtraction scheme
(DR or MS)
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FIG. 2. Decomposition of the squark tadpole that is contained
in diagram 2 of Fig. 1 as a subdiagram: In the decoupling limit
the squark tadpole is either proportional to one element A?]-LR (a)
or independent of A?/-LR (b). In the first case, it connects left-
handed with right-handed squarks, while in the second case it is
flavor and chirality conserving (proportional to ). The diver-
gence of the piece proportional to A?J-LR is absorbed by the
counterterms to Y? and A? while the divergence of the piece
stemming from (b) is canceled by a squark mass counterterm.

A

1
Zy=1—"22C,—. (18)
&

In fact, it turns out that this renormalization of the Yukawa
couplings is necessary for maintaining supersymmetry
with respect to the Yukawa coupling involved quark-
quark-Higgs coupling and the one of the squark-squark-
Higgs coupling.

3 6 B B B 5
C(fzi)’l = Z Z {2W?[W;{:3’twl¢:3,sWj[-l+3’sm§CF(2CF - CA)
j=1 1

5,t=

(1=x9)(1—x7)

PHYSICAL REVIEW D 87, 015013 (2013)

C. Result for C¢/® retaining all powers of v/Mgysy

For the Wilson coefficient C/* of the two-quark opera-
tor GyPgq;, we write the general decomposition

JLR _ ~dLR(1) ALRQ) _ X (1) ag\? (2
CLR = CPR 0+ ot = 2 ) + (E) c?. (19

From Eq. (A2) we directly obtain

6 2
- - xrlIn(x,)
cf) = Y (4mecewiwiz, ). o)
=1 t
Here we introduced the abbreviations
x, = mg [mg, 1)

and for later convenience we also define
X, = p/mg, (22)

where u is the renormalization scale.
According to the detailed description in the previous

Ye = mﬁf/mg,

subsections, we decompose the Wilson coefficient C(fzi)
into various pieces:
2 — ~21 (2).2 (2),3 (2).4 ),
Cyi =Cp +Ci” + Ci” +C” + C #
(2),mz_—m

n C}Zi),shiftas o

fi

T CPTP (23)

We freely made use of the unitarity of the mixing
matrices W7 and obtain

L (1 xPLiy(1— ) — (1 - PLiy(1 - 22)

+ (x2 = x2)?Liy (1 — x2/x2) — 4x2(x? — x2)In(x,) In(x,) + 6x2(x? — 1)In(x,) — 6x7(x2 — 1)In(x,) + 2x7(x2 — 1)In>(x,)

6

o 2
120t +xd — 322 + x%)lnz(xs)]} + Z{4W?[Wf’f3,,m§CF(2CF il 2 (w) 201 - x,z)ln(x,)]},
t

t=1

c22 — i {W;zW?:3,ztrm§CF
g (1—x7)?

s,t=1

(1-
(24)

{4(1 — x)(=x3 + 2x7 — DLip(1 = x3) — 4(x, + x,)*(x — x,)°Lip(1 — x3/x7)

1
—4x2((1 + x7)In(x,) + 1 — x2)(x? — 2(1 — x2)*In(x,)) — 5[48(111(351) In(x,)x2(x? — x2 — x})
+ In?(x)x7(x7 — x2) — In(x)x} — x7) + 24(In(x,) In(x)xdx? (1 + x7) + In(e)x2xg (7 — 1)
+ In(x,)x? + In?(x,)x¥) + 12(In(x)x2x2(1 — x7) + In(x,)x¥(1 — x¥) — x2x7) + 6x2 + 6x2x% + 30x} + 18]”,

(25)
Ci? =R = ), (26)
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ot = Z{zwd Wldf3tm~CF{(—3CA + 2Cp)Liy(1 — x2) +

t=1

PHYSICAL REVIEW D 87, 015013 (2013)

1
3(1 — x,)*(1 + x,)

5 [trn (24102 (x,) — 12)x7

+ (241n(x,) + 12)x?) + 6C4((3In%(x,) — 111In(x,) + 9)x* + (31In(x,) — 14)x? + 5) + 3Cx(—21In(x,) + 1)x}

— (12In%(x,) — 12In(x,) + )2 + 81n(x,) + 8)]”, 27)
On _ % Jx In(x3) 2 2 2
cow = Z{—4Wf,w,m chw[tmf( 22(21n(x,) — D + 1) + CuB32(Q21In(x,) — 1) + 1)
=1 !
C
+ 7’:(—(4 In(x,) — Dx} + 21n(x,) + 3)x? — 81n(x,) — 4)]}, (28)
. 6 ¢ 4wd we* mzCrx? In(x
Db, _ Z{ Wit mgCrai Ind t)[Z(ln(x )+ In(y,)) — 4Cy + 3CF]
=1 3(1 R ) s=
4(n, + 6)W Wd* m;C x2 In(x
n ( f ) (1 ,+3,) FXt ( t) ln(xi)}, (29)
- x
(2),mg_—>m§_ 6 - - 1+ 2 1— 2 +2 21
Cfi " = _ZZ{W}lIW?-:itmﬁCFCA( a2l (1 _xzx2)2 i n(XI))}’ (30)
=1 t
(2), TP & ?Cz2
COT = oy {Wd Wity (= 2 + 21— 2n(x) + 1n(x§))}
S
— 8mg C Z Z [ 1+3 chd+3 sz*de + Wd*Wd Wﬁ“ Jj+3.s' )Wtd:f* s’
Ji'=1s1ts'=1
x7(21n(x,) — In(x%) — 1)(x2x3 ln(X/) + x2 In(x,) — x% In(xy)) .
(2 =)~ D0~ 1) | GV

In the MSSM we have

C,=3, =4/3, tr=1/2, and n;=6. (32)

To summarize, Egs. (20) and (23) contain the full result for
the Wilson coefficient C?I.LR where the A terms, the Yukawa
coupling, and the squark and the gluino masses of the
MSSM are renormalized in the DR scheme, while g,
stands for the strong coupling constant of the SM in the
MS scheme, running with six flavors. The effective opera-
tors, or equivalently the Wilson coefficients, are under-
stood to be renormalized according to the MS scheme.

So far, we discussed the derivations of C4/*. The cor-

responding result CdlLR for up quarks can be obtained by

replacing W4 with W7 and exchanging x and y.

D. Reduction of the matching scale dependence at NLO

The purpose of our NLO calculation is also the reduction
of the matching scale dependence of the effective Higgs
couplings that can serve as an estimate of the theory
uncertainty. This reduction not only is an improvement

achieved by our NLO calculation but also serves as an
additional check of its correctness.

As we will see in the next section, the quantity directly
related to the Higgs couplings is CA‘?Z.LR defined as

CqLR C?,-LR(I) n C?I;R(z) +%(C%;LC‘I.LR(1)

+ CHFO I + 0(a?, o} tanp). (33)

We use in the following the decomposition CA’?Z.LR =
C’qm(l) + C‘qLR’(z) At LO in our counting of a; and tan8

we have C"LR(I) C;’Cf‘R’(l).
C}I.LR (and thus also CA‘;’%.LR(I)) at a fixed low scale wyq,, 1S
obtained from qulfR at the matching scale u via
CH " (iow) = Ulptiows mo)Cl " (o). (34)

This evolution is the same as for the quark masses in the
SM. The explicit NLO expression can be taken, e.g., from
Eq. (4.81) in Ref. [35]. It is this expression that we use for
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the numerical study in Sec. IV E when doing the evolution
to the low scale oy -

However, for showing analytically the reduced matching
scale dependence, it is sufficient to assume that the scale
Miow 18 close to the matching scale w so that it is not
necessary to resum large logarithms. In this case the evo-
lution matrix U(w ey, Mo) can be expanded as

(0) 2
M
Ulmiow: o) =1+ a (Mo) . ( =L ) i =6Cr.

low

(35)

AgLR . .. .
At LO Cj;™ depends only implicitly on the renormaliza-

tion scale via the scale dependence of various parameters.
For small changes of the original matching scale u to a
new matching scale u, we get

(Mo)

wo+$1Qj) (36)

The contribution involving B, comes from expressing
ay(u) in terms of a,(uo), while the one involving § is
attributable to the corresponding manipulation of the
squark and gluino masses, the Yukawa couplings, and
the A (and A’) terms. Together with Egs. (34) and (35)
the variation of the matching scale leads to the following
ratio:

Ultion ) CEF V()
U( 10w Mo)CqLR(I)(,U»o)

~1+ “jg ) ( Bo+S— @) 1n<Z—§). (37)

The explicit u dependence proportional to «; in this ratio
has to be compensated when going to NLO.

The piece of CA’?/-I‘RQ) with explicit scale dependence
[with contributions from Eqgs. (28), (29), and (31), and
from Eq. (33) through C%Lf and C%""], can be compactly
written as

ég}’f@)’#(ﬂ) 4(:)[3 2trny + 3C4 — 3Cr

+ ?f + 2]6?}””(#) In(x2). (38)

Using this information, we finally get at NLO

PHYSICAL REVIEW D 87, 015013 (2013)

Ul ppiow> CE (1)
U(M1ows ,Uvo)é?jLR(,Uvo)

(0)

as(/-L ) Ym
~1+ 477_0(,80+S 5~ 8+ 2um; = 3C,
2
ny Mo
=1, (39)

as expected.

E. Numerics

In this section we study the numerical importance
of our two-loop corrections and the reduced matching
scale dependence compared to the one-loop result.

The matching scale dependence, as shown in Fig. 3
for SUSY masses of 1 TeV, is significantly reduced as
expected from the previous subsection. Note that the rela-
tive importance of the NLO result is to a very good
approximation independent of the size of A?jLR.

The relative importance of the two-loop contribution to

qLR(,u) is shown in Fig. 4 as a function of the matching
scale w. For SUSY masses of 1 TeV the a2 corrections
lead to a constructive contribution of approximately 9%
compared to the one-loop result that is in agreement
with Ref. [16]. Again, the relative importance of the
NLO result is to a very good approximation independent
of the size of A?]LR.

F. Transition to the decoupling limit
While the two-loop contributions calculated in this sec-

tion are obtained in the approximation p = m, = 0, the

~gLR
Ultiow-t)Cy (1)

~gqLR
Ui, 1TeV)Cyj (1TeV)
1.0

1Lo2F ™
101} ~
1.00 'N\\
099 T

]

007t T

0.96 L L L L L L #m GeV
600 800 1000 1200 1400 1600 1800 2000

FIG. 3 (color online). Dependence on the matching scale u of
the one-loop and two-loop results for (:’;{I.LR(MOW), using
Mgysy = 1 TeV and u,,, = my. Red dashed line: matching
done at LO; blue solid line: matching done at NLO matching. As
expected, the matching scale dependence is significantly re-
duced. For the one-loop result, C‘;{iLR is understood to be

C}I.LR(I) (see text).
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A qLR (2)

G W

~qLR (1)

Cy W

0.11F

0.10p

0.09¢

0.08F

0.07f

1 1 1 1 1 1 1 /J' Gev
600 800 1000 1200 1400 1600 1800 2000
FIG. 4 (color online). Relative importance of the two-loop
corrections as a function of the matching scale w. We see that

the two-loop contribution is approx1matelz/ +9% of the one-loop
contribution for u = Mgysy = 1 TeV. Cq R is defined inEq. (33).

results given in Sec. IV C still contain all powers v/Mgysy
implicitly via the squark mixing matrices W7 and the
physical squark masses m; involved. The transition to
the decoupling limit, in which all chirally enhanced cor-
rections can be resummed analytically, can be done by the
following prescription.

In all parts of the genuine two-loop contributions listed
above [Eqgs. (24)-(30)] only two mixing matrices occur,
except in Egs. (24) and (31). Equation (24) contains the
following combinations of mixing matrices and a loop
function f, which depends on squarks masses m; and mg,

6 ~ ~
Z Z wé Wﬁ% rWidfaxW?H,sf(x?’ x7). (40)

s,t=1j=1

Note that in the decoupling limit, the squark with index s in
Eq. (40) must be a linear combination of right-handed
squark only, since otherwise at least two chirality changes
(two insertions of AdLR) would be necessary. Thus we can
replace

dx d ikx ik dRR 2 2
Wi+3st+3s F F —Akﬂ and X5 = Xppo 41

where k only runs from 1 to 3 and we defined

) m;L(R)
— k
X Rk = gt (42)
g
The resulting expression
6 3
Z Z wé W,+3 ,AiﬁRf(xﬁk, x7) 43)

can now be expanded in powers of v/Mgygy, which
amounts at leading order to the replacement

PHYSICAL REVIEW D 87, 015013 (2013)

6
Z Wd Wd*3 tf( )
=1

3
- Z AdLL, AdLRAdRRf( me) fC.. an)
mf "= " g m2, —m? ’

m,n,j',j"=1 gk gk

(44)

where the dots represent possible additional dependences
on squark masses. Now we apply Eq. (44) to Eq. (43)
and use

mfj nji mfi

3
Z A\A(LLRR p d(LL)RR _  d(LL)RR 8,1 (45)
j=1

The final result for Eq. (40) in the decoupling limit is then

i AdLL, AdLRAdRRf(an’me) f(an»an)‘ (46)
1

I! !
mf /S0 R, =

m,n,j,j"= qm dn

For Eq. (31) a similar procedure works. It contains the
following combination of mixing matrices with a loop
function depending on three different squark masses with
the indices s, ¢, and s’

d d d
Z z WfS(W]:?)s ]+3tW *W\
s,t,8'=1j,j'=
FWEWE W W W f(2 08 3). (47)

Note that the first term in Eq. (47) vanishes in the decou-
pling limit since it necessarily involves multiple chirality
flips. For the second term two replacements analogous to
Eq. (41) have to be performed, and after using two times
the relation in Eq. (45) the decoupling limit of Eq. (47)
reads

3

2 2 .2
AdLL, AdLR AdRRf (me’me’an) f (me’an’an)

mfj" =" " tnjli m2 _ mZ .
mn,j,j"=1 i ax

(48)

This result involves the same combination of mixing ma-
trices as the one in Eq. (46).

To all other parts of Cy; the rule in Eq. (44) can be
applied directly to obtain the corresponding expression in
the decoupling limit.

V. RELATIONS BETWEEN QUARK MASSES AND
THE MSSM YUKAWA COUPLINGS AT NLO

Beyond one-loop Egs. (11) and (12) for the determina-
tion of Y can easily be generalized to higher loop orders
because the chirality changing self-energy (and also the
resulting Wilson coefficient) is still proportional to one
element A% in the decoupling limit, as shown in
Sec. IVF. However, since we are dealing with order one
corrections, we must specify how we count contributions at
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higher loop orders in «;. C;’CI.LR(I) is proportional to a, tan 3,

and C}fR(z) is proportional to a? tanB. Here, tan8 stands

schematically for a chiral enhancement factor, also includ-
ing A,/ (Y;Mgysy). We will count a,tan8 as order one
CILLRR
fi

and thus a2 tan as order ;. Since is not chirally

enhanced, the only relevant term in our approximation (of

order «;) is the one-loop contribution. Thus, C%‘L’RR is

always understood to be the one-loop contribution propor-
tional to a;.

To derive the relation between the quark masses and the
Yukawa couplings of the MSSM superpotential at NLO,
we also need to specify the renormalization scheme used
for the matching procedure. Let us explicitly denote the
renormalization scheme for the quantities in the matching
condition Eq. (11) (at the scale mgygy), which is important
at NLO:

lem — MS
‘Uq Yeff - m‘]i

_ MS LR(1) LR(2)
= (v Yiee +Clos’ +CHT)
1
X (1 + E(c;fi“ + cg’l.RR)). (49)

Again, Ygg@ is the Wilson coefficient induced via the
Yukawa coupling of the MSSM. This means at the match-

ing scale it is given by

YIS (ususy) = Y%(:“SUSY)
a; _
= (1 + ECF)YE—‘R(MSUSY)- (50)

In our counting in «; and tan B the renormalization scheme
for C4"* and C4** is irrelevant. Note that the quark mass
m,, is understood to be evaluated at the matching scale.
Further, one should recall from the last section that despite
the fact that we renormalized CZLR in the MS scheme,
it contains parameters given in the DR scheme, e.g.,
Yi = Y%. Since we are interested in Y%, the Yukawa

coupling of the MSSM superpotential, we must express
Y@gﬁj‘s in Eq. (49) in terms of Yg;'R via Eq. (50) so that we
can solve for Y%.

In conclusion, we arrive at the NLO generalization
(order a2 tanp) of Eq. (11):

MS _ AdLR
di _ my, CiiY[ 51)
DR y,(1 + {=Cp + tanBe?)’

with (A??l]fR defined in Eq. (33) and the corresponding equa-

tion for 7. Here e;j(l) and e?(z) are defined in direct analogy

to Eq. (13). Further, the Wilson coefficients appearing here
are assumed to be in the decoupling limit. Equation (51)
constitutes the NLO determination of the Yukawa coupling

PHYSICAL REVIEW D 87, 015013 (2013)

of the superpotential. When later inserting the Yukawa
coupling into the Wilson coefficients, one has to use this
relation.”

The electroweak contributions (involving charginos and
neutralinos) to the relation between the quark masses and
the Yukawa couplings are in most regions of the parameter
space subleading compared to the strong contributions.
However, the LO electroweak corrections are easily as
large as the NLO SQCD corrections and should be
included in a numerical analysis. This can be achieved
by simply adding the corresponding contributions to
CA‘Z;R and &7 in Eq. (51).

VI. EFFECTIVE HIGGS VERTICES

To derive the effective Higgs-quark-quark couplings,10
we have to assume that the external momenta (flowing
through the Higgs-quark-quark vertex) are much smaller
than the masses of the virtual SUSY particles running in
the loop. This assumption limits the applicability of the
resulting Feynman rules. If mpgo, myo, my+ < Mgysy
(H°, A°, and H* denote the neutral CP-even, CP-o0dd,
and the charged Higgs boson, respectively), the effective
Feynman rules can be used for the calculation of all
flavor observables (also if the Higgs is propagating in a
loop) and for processes with a Higgs on the mass shell.
If the hierarchy mgpo, myo0, my= <K Mgysy is not satisfied,
the effective Higgs vertices can still be used for pro-
cesses in which the momentum flow through the Higgs-
quark-quark vertex is small compared to Mgygy, which
is true for all low-energy flavor observables with tree-
level Higgs exchange (like B, — u*u™, BT —7"p
or the double Higgs penguin contributing to AF = 2
processes).

As discussed in the Introduction, we use an effective
field theory approach in our study of the Higgs-quark-
quark couplings, which simplifies the calculations
significantly. This means that we match the MSSM on
the 2HDM of type III at the scale Mgygy rather than
calculating the Higgs-quark-quark coupling within the
MSSM.

Let us first consider the effective Lagrangian of a general
2HDM (including Higgs-quark-quark couplings and
kinetic terms):

°The generalization to the CKM matrix can be achieved
following the procedure of Refs. [7,10,11].

'°In principle also the renormalization of the Higgs potential
should be addressed. Our derivation of chirally enhanced flavor
effects does not depend on the specific relations between Higgs
self-couplings and their masses. Since no chirally enhanced
effects occur in the Higgs sector, it is consistent to use the
tree-level values for the Higgs parameters. However, one can
as well use the NLO values for the Higgs masses and mixing
angles, which might be even better from the numerical point of
view.
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Leff — _?L((Ydtree + E??W)GbaHs* _ E}a:'eng)diR

fiew
+ 04, ((Yi55e + EUe™) e, HI* — ENSVHS)ue
+ d_leﬂ((Sfl - R??W)dl’R + l/_tleﬁ(Bfl - R;?W)uiR
+ 0%, i (8 — LU0, (52)

where adding the Hermitian conjugate of the terms involv-
ing Higgs fields is implicitly meant. The Higgs doublets
are defined as

H! HO H! H'
me= () () =) () o
Hj H, H, H,

In Eq. (52) a, b denote SU(2); indices and €, is the two-

dimensional antisymmetric tensor with €, = —1. We
introduced the holomorphic couplings £, the nonholo-
lqgew

morphic couplings EZ™ (g = u, d), and the contributions

i
to the kinetic terms R}/“" and L%". Here the superscript

_ 0 d:
Leff= Ugy, V](fj)((Ytrjee 5ji

+ EGHY — ESHY)dig +d VP ((

PHYSICAL REVIEW D 87, 015013 (2013)

“ew”” refers to the fact that these terms are given in a weak-
interaction eigenbasis. In Eq. (52) we already anticipated

the MSSM where the terms E(f/?qew, L??W, and R??W are loop

induced but Yjee and Y{ite are generated at tree level via
the MSSM Yukawa couplings.''

To connect the effective theory to the MSSM, we go to
the super-CKM basis, in which the Yukawa couplings are

diagonal, by rotating the fields

LR
qjLR — U}]i ( )QiL,R’ (54)
such that
0 0
Ul Oyt = vi.6 (55)

We now break the electroweak symmetry and write the
effective Lagrangian in component form:

dy

YieeSji + EH — ENH ) uig — dyy (Y8 + ES)HY

+EfH)dig — it yp (Ybe S g + EY)H* + EfH)uig + dpid (85 — RS )dig + priff (85 — R Juig

i

= _. - d;
+dpid (64— L;i'l')diL it i (8 — Lui, — dpp (Vi S + E}i',')vd + E}i,'vu)dm

— it (Yo i + EY )0, + Efvg)usg,

where V(0 = L1 dLO) jg not the physical CKM ma-
trix, but rather the CKM matrix generated by the misalign-
ment of the Yukawa couplings. Adding the Hermitian
conjugate of the mass terms and the terms involving
Higgs fields is tacitly understood. The terms

B =V BV, B Uy B U,

R;{i = Uzﬁ(o)* RZ;W U(j]iR(O)’ L‘?i — UZ;(O)* LZ;W U;-iiL(O), (57)

— LO) _ 1/0) 7 d 10k
Ly =Ug "L UG =V LV

are now given in the super-CKM basis. Note that this is the
same basis as the one in which the effective Lagrangian of
Eq. (2) is given (and the same basis in which we calculated
the MSSM contributions to the Wilson coefficients). Thus,
comparing the last four lines of Eq. (56) to Eq. (2) we have
the following relation between the Wilson coefficients and
the terms of the 2HDM III Lagrangian (at an arbitrary loop
order):

"In principle, without knowing anything about the MSSM, the
holomorphic corrections could be absorbed into an effective
Yukawa coupling (and also the corrections to the kinetic terms
R?‘i"ew and L% would not be physical). However, once we go
back to the 'li\/[SSM with the SUSY breaking terms as input
parameters, the holomorphic corrections also become physical.

(56)
?L'AR /fd.LR C;IAR
d L 1d ! — L
Ei=—, EiTp— BT,
oy (58)
! _ LL _ RR
=T et my-c

Now we want to go to the physical basis with flavor-
diagonal mass terms and canonical kinetic terms. As a first
step we render the kinetic terms canonical by a field
redefinition:

1 1
qiL— (5ij + EL?,)CIJL qir— <5ij + ER?]')CI]R- (59)

Consider now the quark mass matrices. The redefinition of
the fields in Eq. (59) also leads to a shift in down-quark
mass matrix so that it is now given by

2d Adtree Xrd AdLR Adtree
d — —
mfi_(Efi_’_Yfi )Ud+qufi_Cfi +defi ’

N n N (60)
Autree AULR Autree

Au Alu
m?l=(Ef,+Yf, )vu+vdEfi:Cfi +UuYfi ,

where we have defined
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3 md md
200 _ g , 1 () ) 1 2 i
Eyi” = Efiq + 2 Z(L?”/’Eﬁ T+ EquR?i)’ ( x e T \
! Uil = —miy 1 my
Aqtree 1 3 LL q RR a2 a3 ’
]:l qu qu qu3 n’lq3
3 g% g%
2aLR _ gir | | LL ~gLR LR ~qRR ( 1 "y h\ (63)
Cri =Cii™ +5 Z(C?j Cli "+ CRCR): My Moy
J=1 UqR — _mgl 1 ﬁ
Note that the quantities with a double hat contain Maa a3
also the contributions from flavor-changing left-left (LL) mmyy g ompmy o mmy )

qu qu qu mq3

and right-right (RR) Wilson coefficients, while the quanti-
ties with one hat [see Eqs. (33) and (67)] contain only the  are obtained from a perturbative diagonalization of the

flavor-conserving LL and RR Wilson coefficients. quark mass matrix.'?
_ We_ now diagonali;e the quark mass matrices by a Switching to the physical basis in which the quark mass
bi-unitary transformation matrices are diagonal, these rotations modify the effective
L*x g 7rqR _ Lagrangian as follows [20]:
Uiy miUsi = mg, 85, (62) s

where the rotation matrices
|

d u
£ — 1 Ut vO( K e B (1) -+ tan(B)HZ) UK di + d UV O (KL g ix — B (B2 + cou BHL) U,
fLY kf Kk v, d Ky, d ji “iR fLY kf Kk v u I ASEY] u ji iR
d

- my . 2 m¥. Au
—dy U;j]%*(v—’:H}l* +EG(H2 ~ tan(,B)H}l*))U;{Rd,»R -, Ug}*(v—"fﬂg* +Ey(H) — cot(/a)Hg*))U;lRuiR +He,
(64)

where we skipped the mass terms and the kinetic terms. This can be further simplified by using the physical CKM matrix
given by

Vi = UspVRUE (65)
In addition, we define the abbreviations
0 B B (R — oftRegit
Ef = UIPEGUI = B - £ 6L 0 £ 09LF = £'9— AE. (66)
BT — e Bt 0 ﬂ

Note that in this expression only quantities with a single hat defined as

. 1
EQl = B + S (LY E) + E[RY), (67)
and é?jLR defined by combining Eq. (33) with
Cci-k
I =—— (63)
max{mqj, m, }

enter. This is in agreement with the finding of Ref. [23] that the effect of the flavor-changing LL and RR self-energies drops
out in the effective Higgs vertices.
Finally, to arrive at the effective Feynman rules, we project the fields H) and HY onto the physical components H°, h°,

A° and H™ as

12Note that these rotations are identical to the ones obtained in the diagrammatic approach (see Ref. [20] for details).
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H? 3 H-
i

Gi ar d; uf

i (TER 18 Py 4 TRL P, ) i (LRI Py 4+ TRLH )
FIG. 5. Higgs-quark vertices with the corresponding Feynman
rules. The couplings with exchanged chirality structure are

obtained from Eq. (70) by using rgqufil = 5517*.

HO ——(H0 sina + h°cosa + iA%cosB),

V2
1
HO=—(H%osa — h®sina + iA’sinB), (69)
H*=cos(B)H™, =sin(B)H".

Using Egs. (65), (66), and (69), the effective Lagrangian
in Eq. (64) leads to the following effective Higgs-quark-
quark Feynman rules'? shown in Fi g. 5 (note that the CKM
matrix V in the charged Higgs coupling is the physical one):

0 m
Tl = ab(% 5y, — Ejrootp) + <47 B,
Ull
0 m.
R = x’;,<—”" 8 — El tan,B) + xk*Eld,
e v,
3 (70)
m
Fﬁfd”’ =) sinBVfJ( 4s— Ed tan,B)
> X v
Jj=1

3
. m
LG = > cos,BV}}( 8, — EY tan,B)

where for HY = (H°, h°, A°) the coefficients x% are given by

k—
xXg = cosa,

( \}_ \/_ sina, \/_ sm,B) -
xk = <— 1 sina

1
N , — \/_5 cosa, \/_f cos,B).

It is important to keep in mind that the ¢ AqLR in Eq. (66) must

be calculated using the quantities Y and V© of the MSSM
superpotential.
Note that without the nonholomorphic corrections Eff

the rotation matrices U?“R would simultaneously

Note that some of the Higgs-quark-quark couplings are sup-
pressed by a factor cosf or sina stemming from the Higgs
mixing matrices. If one decides to keep these suppressed cou-
plings, one should be aware of the fact that they receive proper
vertex corrections in which the suppression factor does not occur
and which are thus tanf3 enhanced with respect to the tree-level
couplings. Such enhanced corrections to the coupling of H* to
right-handed up quarks are important for b — sy [36,37].

PHYSICAL REVIEW D 87, 015013 (2013)

diagonalize the effective mass terms and the neutral
Higgs couplings in Eq. (64). However, in the presence of
nonholomorphic corrections this is no longer the case, and
apart from a flavor-changing nonholomorphic correction a
term proportional to a flavor-conserving nonholomorphic
correction times a flavor-changing self-energy is also
generated.

A. Effective Higgs-quark-quark vertices at NLO

The effective Higgs-quark-quark vertices at NLO in the
MSSM are obtain in the following way: After inserting the
definition for E}", [see Eq. (66)] into Eq. (70) we express

E;fl)q through CA‘(f/l)" according to Eq. (58).

VII. CONCLUSIONS

In this article we computed the genuine two-loop SQCD
corrections to the chirality-changing quark self-energies.
In the limit where the external momentum and the quark
mass are zero, we presented relatively simple analytic
results without making further assumptions on the SUSY
spectrum. Because of the one-to-one correspondence (in
the decoupling limit) between chirality-changing quark
self-energies and Higgs-quark-quark vertices, this is an
efficient and elegant way of calculating at the same time
not only effective Higgs vertices but also the Yukawa
couplings and CKM elements of the MSSM superpotential
in terms of the physical quark masses and the physical
CKM matrix.

Our next-to-leading order results increase the values of
Wilson coefficients CJinLR of the operators g;Prg; by ap-

proximately 9% compared to the values obtained at leading
order. This means that, since at large tanf the threshold
corrections to the Yukawa couplings are of order one, the
effect on the down-quark Yukawa couplings of the two-
loop corrections is O(10%). At the same time the matching
scale uncertainty of the effective Higgs-quark-quark cou-
plings and of the corresponding Wilson coefficients is
significantly reduced (see Fig. 3).

We resummed all chirally enhanced corrections modify-
ing the relation between the quark masses and the Yukawa
couplings of the MSSM superpotential up to order
a"tan" B [see Eq. (51)]. The resulting MSSM Yukawa
couplings can be used for a precision study of Yukawa
unification. Furthermore, using these Yukawa couplings,
we derived effective Higgs-quark-quark vertices [see
Eq. (70)] entering the calculation of FCNC processes and
also of Higgs decays, as long as the momentum transfer is
small compared to the SUSY scale.
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APPENDIX: ONE-LOOP RESULTS

Here we summarize various one-loop results necessary
for the two-loop calculation of the chirality flipping self-
energy (see Ref. [38] for details). Unless stated otherwise,
all expressions appearing in this appendix were obtained in
dimensional regularization. The matrices W¢ diagonalize
the squark mass matrices according to Eq. (6), and we use
the definitions

PHYSICAL REVIEW D 87, 015013 (2013)

1. Self-energies

Here we give the explicit one-loop results for quark,
gluino, and squark self-energies in dimensional regulari-
zation, where we put D = 4 — 2¢ and write the renormal-
ization scale in the form we?/?/(~/47). Our conventions
are such that the calculation of the truncated self-energy
diagrams give —iZ..

me a. Quark
_mg _ myg, _ M Al L. .
X = Ys = T = (AD) The one-loop quark self-energies induced by gluinos
# # # and squarks are given by
“Wm——JWW CrmgBo(0; m2, m2 )
Sia i+3,sCFMzbo mg,
2] x2(In?(x2) — 21In(x?) — 21n(x2) In(x?
g () O 200~ 2D )
27 1 - Xy 2(1 - xs)
a0 =— W‘f Wi CpBy(0;m2, m2)
1 3 —4x? + xt + (4x2 — 2x}) In(x2
_ __4vqwﬂ*cF< +In() + 2 ¥+ O - %) n(S»-+cxs) (A2)
411 2(1 — x3)

Using unitarity, we can replace B (0; mé, mf]&) by [B,(0; m m ) = By(0; m , 0)] in the first line of ngqlf (0). This we did

when writing the explicit expression.
The ordinary gluon correction reads in Feynman gauge

LL,RR
25[’/1 ( )

A .
= ECF(d - 2)Bl (pz’ m%]i’ O)gfl’

a 1 (p»?—m?  /m
= JC —_ 4+ qi 1
4 F( & (p?)? n<

LR,RL
Ef]f‘/: ( )

a

aS
= 1 Crdmg Bo(p*;mg, 003

qi e p2

1 2. A2
=2Crm _(f +Ma P ln(m
T

2 .2 0 2 2
o P BN Pa oy gn(Z2) —1)s,, + OCe), (A3)
2 fi
m?, »’ 2
2 — P —i0 2\ .3
% ml; : ) - 1n('zq2') + E)aﬁ + O(e). (A4)
qi

Note that Egs. (A3) and (A4) are given in dimensional regularization (not dimensional reduction).

b. Gluino

Here we assume that of the three gaugino masses the gluino mass is chosen to be real, which is always possible. For the

gluino self-energy the part induced by a gluon reads

aY
354(p?) = - CaldmgBy(p*sm3, 0) + (d = 2)By(p*sm3, 0))

which decomposes for on-shell gluinos into

, o, 1,3
EZIéR,RL(mé) — 7CAmg(g + >+ ln(xﬁ)) + 0(e),

2

zgl:L,RR(m%) —

(AS)

- 4—CA< +2 4 In(x2 )) L 0(e),  (A6)

where we inserted the explicit expressions for the loop functions. The part of the gluino self-energy with squarks and
quarks as virtual particles in the approximation m, = 0 is given by

quLR RL( 2) _ 0, quLL RR( )

_4_2trZB(p Om )+B(p Omz))

(AT)
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where the latter reads explicitly for on-shell gluinos

; 1 1 2—1-i0
2R (m2) = —2t [<g+ 2+ ln(xi))n r7s Z(xg +(1 —x§)21n<xis . : )+ In(x2) + (x,— ys))] +0(e),  (A8)
s=1 s
with n; = 6. The quantities %" (mfz) and 2£R (mg) that appear in Eq. (A26) are defined as
EgL,LR(mg) EgLL LR(mQ) n quLL LR(mé)' (A9)
c. Squark
For the squark self-energy we have
— 3¢ gq q
S, = 255t 25 3L, (A10)
where the parts refer to the squark self-energy with gluon
v 2]
25,4 (P) = 7~ Cr2(p? + m3 )Bo(p*; 3, 0) — Ag(mg )3, (Al1)
1
38 4 (n2) = 3% Com (1~ In) + In(e) + )59, + 0e) (A12)
the squark self-energy with quark and gluino
S5 (%) = 25 CrlAgmd) + O = p2)Bo(p? 2, )3,
2 — 1 (A13)
quq 2) = —CF g[— 3-2x2+(2—x})In(x2) + (—2 +x2 — 2) In(1 — x2 — iO)]B” + O(e),
s9t 8 xS

and the squark tadpole self-energy of Fig. 2 [for up (down) type squarks only the diagram with internal up (down) squarks
is nonzero]

;:I:Zj, = = _C‘F(astAO(’/n2 ) -2 Z Z(qu:'is i+3s’ W’/*W‘/ + W’/*W‘/ W;I:Sv’ j+'§t)A0(mq/))
i,j=1g=1

1 .
= —%STCF[&tm ( +1—In(x2) + In(x2, )— 2 Z Z(Wﬁgswlﬂ% Wj‘?qu + WIwi,wr jw)m

Jj+3s
i,j=1s'=1
1
x <_ +1-In(:2) + ln(xi)) + 0(8)]. (Al4)
&
Note that E 7 is independent of the external momentum. 167% u*eere d4¢
The part proport1onal to 8,, in Eq. (A14) is due to Fig. 2(b), By(p*;mi, m3) = i @nr ) ond

while the second part, which is proportional to at least one

element A" LR s generated by Fig. 2(a). X 1 (A16)
Note that in the sum of all contributions to the diagonal [€2 — mi][(€ + p)* — m3]
squark self-energy there is no divergence proportional to 1672 w28 o7 d
) . RIS . T ufe d‘¢
p~, and thus no wave-function renormalization is needed in B,(p? mv mz) pH = ~ [ y
order to render the diagonal squark two point function finite. i (4m) (2m)
oH
2. Loop functions % (2 —m?][(€+ p)*> —m3] (AL7)
The one 100p functions Ag(m?), By(p*;m3, m3), and  Here € = (4 — d)/2 is an artifact of dimensionally regula-
B, (p?; m}, m3) in the previous paragraph are deﬁned as rizing the ultraviolet divergent loop integral. The function
16 26 ye Y 1 Bo(m?, m3), which also appears, is an abbreviation for
Ao(m?) = ™ e (A15) By(0; m}, m3). We give now relations among these func-

(4m)° Qm)? [€* — m*] tions and explicit versions for specific arguments
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w? u? ) — A (2
Ay(m?) = [ +1n( )+1+<7T +1+1In ( )+ —In ( ))s+0( 2)] Bo(m%,mg)ZM’
€ m? 12 m2) 2 m? m? —m3
_ dBg(m?,m3)
aom3

2 2_ 2 2 2_'0
, Bo(PZ;mz,O)Z—ln(r:>+2+ 2p ln<m }52 l)+0(s),

Co(m?, m3, m3) P

1
B, (p?*;m?,0) =272[Ao(m2) — (p* +m?)By(p*;m?,0)],

1
B,(p*:0,m?) = —2[_140("’12) — (p* = m?)By(p*;m*,0)],

1 3 —4x2 +x* + (4x% — 2xY)In(x?)
B (0;m2,m3)=—~(=+1n(x2) + ) Al8
(O ) = = {2+ TnGe) S ) (A18)
with x = m,/m,.
3. One-loop renormalization and counterterms
a. One-loop counterterm diagrams
Squark—mass counterterm diagram:
SR mder — 2 —Cpmy Z omg Wd Wl‘if3sC0(m mg , m3
o .. dm? 1 1
=_—~Cpmz ) Wi Wi ‘“7[1 S+1—3+(1 1= x3 + In(x3)) — 5 1n(x3
5. Cring ; Wik w2 (1= 2P n(x?) x2 + gl In(x2)(1 — x? + In(x?)) 5In (x2)
+ () — D)2 + 1)] (A19)
Gluino mass counterterm diagram:
6
mg A
Syt = 7= Crou, > Wi W (Bo(m2, m2) + 2m2Co(m?, m%, m2))
s=1
6 2 2 2 2 2
_ o d wrd _xs((l + xs)ln(xs) + 2(1 - xs)) N Xs 2 2 2
= 5 Crdu, WLV, :33[ o 5= 40 D)+ 20+ D) )
— (1 4+ DI — ) + @1 — 22) + 21 + 22) In(2) 1n(xi)]]. (A20)
o, counterterm diagram:
6
Sqrn " = Z F W Bo(m, m3 )
: W $ In(x?) x5 2(42 2 2 2
Z MY[ e () — 20~ 21n(xs)ln(xﬂ))i|. (A21)

b. Renormalization of the Yukawa couplings in the MSSM

Because of supersymmetry, the renormalization of the Yukawa coupling in the quark-quark-Higgs vertex Y/ and the one
in squark-squark-Higgs vertex Y% must be identical.'* Indeed, we explicitly find that the counterterms for these couplings
are the same

Y4:3i0) = yaidi + 8Yrdi, SY1di = — :[_ %CFyq, qi (A22)
T e

which even holds in the MS scheme and in the DR scheme at the one-loop level.

"“This also includes that the renormalization of the Yukawa coupling entering the squark mass matrices is the same as the
renormalization of the quark-quark-Higgs coupling.
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c. A-term renormalization

In the approximation m, = 0 the SQCD renormaliza-
tion of the A terms is the same as of the Yukawa
coupling.15

d. Squark mass renormalization

We write the connection between the squares of bare and
the renormalized squark masses as

0)2 — 2 2
(mqt) = (mg,)* + Smg . (A23)
From Egs. (A12)—(A14) and by taking into account that the
second term of Eq. (A14) only renormalizes the Yukawa
coupling (and the A, A’ terms), we can easily read of 5’"%,'

We obtain in the MS scheme

ag 1
c?mér = E‘;_CFmé((x,z +4) — x,z)g, (A24)
where the contribution proportional to (x? + 4) comes
from Egs. (A12) and (A13) while the term —x? stems
from the part of Eq. (A14) proportional to 6.

157f m, # 0, the quark-gluino correction to A terms induced
flavor-nondiagonal (divergent) corrections.

PHYSICAL REVIEW D 87, 015013 (2013)

e. Gluino-mass renormalization

We decompose the gluino self-energy according to
Eq. (1). Expressing the bare mass [marked with the super-
script (0)] in terms of the physical one

we get in the on-shell scheme
- _ LL(,,2) — SLR(;,,2
Smy = —my3gt(mz) — ZR(m3). (A26)

For details see Ref. [38]. In the MS scheme only the diver-
gence of the right-hand side enters; i.e., we getin this scheme

o 1

(A27)
J. Renormalization of g, in the MSSM

In lowest order, the strong coupling constant involved in
C}I.LR is Yukawa type. The relation between the bare and the
renormalized version reads gg’y =(1+ 5Zg\_yy)g&y, where
the renormalization constant in the MS scheme is given by

ag 3 1
8ng,Y = E[trnf - ECA]E

Note that at one loop the renormalization constant is the
same for the MS scheme and the DR scheme.

(A28)
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