
Two-loop supersymmetric QCD corrections to Higgs-quark-quark couplings
in the generic MSSM

Andreas Crivellin* and Christoph Greub†

Albert Einstein Center for Fundamental Physics, Institute for Theoretical Physics, University of Bern, CH-3012 Bern, Switzerland
(Received 6 November 2012; published 8 January 2013)

In this article we compute the two-loop supersymmetric QCD corrections to Higgs-quark-quark

couplings in the generic minimal supersymmetric standard model (MSSM) generated by diagrams

involving squarks and gluinos. We give analytic results for the two-loop contributions in the limit of

vanishing external momenta for general supersymmetry (SUSY) masses valid in the MSSM with general

flavor structure. Working in the decoupling limit (MSUSY � v) we resum all chirally enhanced corrections

(related to Higgs-quark-quark couplings) up to order �ðnþ1Þ
s tann�. This resummation allows for a more

precise determination of the Yukawa coupling and Cabibbo-Kobayashi-Maskawa elements of the MSSM

superpotential necessary for the study of Yukawa coupling unification. The knowledge of the Yukawa

couplings of the MSSM superpotential in addition allows us to derive the effective Higgs-quark-quark

couplings entering flavor changing neutral current processes. These effective vertices can in addition be

used for the calculation of Higgs decays into quarks as long as MSUSY >MHiggs holds. Furthermore, our

calculation is also necessary for consistently including the chirally enhanced self-energy contributions

into the calculation of flavor changing neutral current processes in the MSSM beyond leading order. At

two-loop order, we find an enhancement of the supersymmetry threshold corrections, induced by the quark

self-energies, of approximately 9% for� ¼ MSUSY compared to the one-loop result. At the same time, the

matching scale dependence of the effective Higgs-quark-quark couplings is significantly reduced.
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I. INTRODUCTION

In the MSSM diagrams with sfermions and gauginos as
virtual particles generate important loop corrections to
Higgs-quark-quark couplings. After the spontaneous
breaking of SUð2ÞL �Uð1ÞY at the electroweak scale, the
Higgs fields acquire their vacuum expectation values
(VEVs), and the genuine vertex corrections to Higgs-
quark-quark couplings also generate chirality changing
quark self-energies (or self-masses). Thus, there is a
one to one correspondence between loop corrections to
three-point Higgs-quark-quark functions and quark self-
energies: The correction to a Higgs-quark-quark coupling
is given by the corresponding chirality-changing self-
energy divided by the VEVof the involved Higgs field.

This means that we can simplify the calculation of three-
point functions by reducing the problem to the calculation of
two-point functions (self-energies). In this way, the self-
energy contributions to quark masses can be directly related
to effective Higgs-quark-quark couplings, which allow for an
efficient calculation of the effective Higgs vertices.

The quark self-energies also modify the relation between
the Yukawa couplings of the minimal supersymmetric stan-
dard model (MSSM) superpotential and the quark masses
(extracted from low-energy observables). Especially if tan�
(the ratio of the VEVs of the twoHiggs fields) is large, these
contributions are generically very large and can be of order
one [1–4]. In an analogousway, also the relation between the

Cabibbo-Kobayashi-Maskawa (CKM) matrix of the super-
potential and the physical one is altered (by chargino-squark
diagrams in the MSSM with minimal flavour violation
(MFV) [5–9] and in addition by squark-gluino diagrams in
the general MSSM [10,11]). Because of these corrections
the physical quark masses and the measured CKM elements
no longer equal the ones that appear in the MSSM super-
potential. One says that these relations are modified by so-
called threshold corrections, i.e., by the decoupling of heavy
particles. Since in Higgs decays Higgs mediated flavor
changing neutral currents (FCNCs) (like BsðdÞ mixing and

BsðdÞ ! �þ��) and in Higgsino vertices the Yukawa cou-

plings (of the superpotential) and not the physical quark
masses enter, a precise knowledge of these quantities and
thus of the threshold corrections is necessary. Furthermore,
in grand unified theory models with Yukawa coupling uni-
fication not the effective Yukawa coupling of the SM, but
rather the Yukawas of the superpotential unify, and the
supersymmetry (SUSY) threshold correctionsmust be taken
into account in order to judgewhether they actually do unify
[12,13]. In conclusion, it is desirable to know the relation
between the parameters of theMSSM superpotential and the
physical, i.e., measurable quantities, very precisely.
Having the relation between the Yukawa couplings

(CKM elements) of the superpotential and the physical
quark masses (physical CKM elements) at hand, one can
calculate the effective Higgs couplings entering FCNC
processes that include the SUSY loop corrections. This is
most easily achieved by matching the MSSM on the two-
Higgs-doublet model of type three (2HDM III). The loop-
induced couplings of quarks to the ‘‘wrong’’ Higgs field,
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i.e., to the Higgs that is not involved in the Yukawa term in
the superpotential, induce flavor-changing neutral Higgs
couplings after switching to the physical basis in which the
quark mass matrices are diagonal in flavor space. These
effective Higgs couplings can be expressed entirely in
terms of the physical masses and self-energies depending
on MSSM parameters. Here a complication arises because
these self-energies must be calculated using the Yukawa
couplings and the CKM elements of the superpotential,
which must have been determined previously in the pro-
cess of renormalization by including the loop corrections,
i.e., by resumming the threshold corrections. This problem
can be solved analytically in the decoupling limit of the
generic MSSM in which the self-energies are at most linear
in the Yukawa couplings [14].

The importance of these threshold corrections and thus
of the chirally enhanced self-energies motivates their cal-
culation at next-to-leading order (NLO) in �s. In the
MSSM with MFV these corrections have been calculated
in Refs. [15–19]. Here we want to extend this analysis to
the MSSM with generic sources of flavor violation and
resum all chirally enhanced effects using the results of
Refs. [7,10,14,20]. In addition, working in the approxima-
tion of vanishing external momenta, we are able to give
relatively simple analytic expressions for the self-energies,
and therefore also the resummation of all chirally enhanced
corrections can be (and is) performed analytically.

After discussing the quark self-energies (and their con-
nection to Higgs-quark-quark couplings in the decoupling
limit of the MSSM) in the next section, we derive the
relations between the MSSM Yukawa couplings and the
quark masses at LO in Sec. III. As the main result of this
article we calculate the supersymmetric QCD (SQCD) con-
tribution to the chirality-changing self-energy at the two-
loop level in Sec. IV. In Sec. V we discuss the topics of
Sec. III at NLO. In Sec. IV we derive the effective Higgs-
quark-quark couplings and conclude in Sec. VII. Various
appendices summarize the relevant one-loop results.

II. QUARK SELF-ENERGIES, EFFECTIVE
LAGRANGIAN, AND THE DECOUPLING LIMIT

As described in the Introduction, there is a one to one
correspondence between chirality changing self-energies
and Higgs-quark-quark couplings: In the decoupling limit
of the MSSM (MSUSY > v and MSUSY > p, where p is the
external momentum) chirality changing self-energies are
proportional to one power of a VEV only, and the correc-
tions to the Higgs-quark-quark couplings can be obtained
by dividing the corresponding self-energy by the VEV of
the Higgs field involved. Thus, as long as the momentum
flowing through the Higgs is small compared to the SUSY
masses and the SUSY masses are heavier than the electro-
weak VEV, the decoupling limit is a valid approximation.
In this approximation the calculation of the Higgs-quark-
quark three-point function can be reduced to the calcula-
tion of quark self-energies. For this reason wewill consider

the quark self-energies in this section in some detail and
discuss the decoupling limit. The analysis is valid inde-
pendent of the loop order (concerning �s corrections) at
which the self-energies are calculated.
In general, it is possible to decompose any quark (or any

fermion) self-energy into chirality-flipping and chirality-
conserving parts in the following way:

�q
fiðpÞ ¼ ð�qLR

fi ðp2Þ þ 6p�qRR
fi ðp2ÞÞPR þ ð�qRL

fi ðp2Þ
þ 6p�qLL

fi ðp2ÞÞPL: (1)

Note that the chirality-flipping parts �qRL;LR
fi have dimen-

sion mass, while the chirality conserving parts �qLL;RR
fi are

dimensionless.
In the following wewill be interested in the contributions

to Eq. (1) that involve heavy SUSYparticles. The reason for
this is that only these contributions lead to the threshold
corrections entering the relation between the quark masses
and theYukawa couplings of theMSSMsuperpotential. It is
convenient to work in an effective field theory in which the
part of the effective Lagrangian containing mass terms and
kinetic terms for the quarks is given by

Leff
�qq¼�ðvqY

qi?
tree�fiþCqRL

fi ÞOqRL
fi �ðvqY

qi
tree�fiþCqLR

fi ÞOqLR
fi

þð�fi�CqRR
fi ÞOqRR

fi þð�fi�CqLL
fi ÞOqLL

fi ; (2)

with the operators defined as

OqRL
fi ¼ �qfPLqi; OqLL

fi ¼ i �qf 6@PLqi;

OqLR
fi ¼ �qfPRqi; OqRR

fi ¼ i �qf 6@PRqi:
(3)

Throughout this paper, the Wilson coefficients in the effec-
tive Lagrangian (2) (or, equivalently, the operators) are

renormalized in the MS scheme. The final results for the
Wilson coefficients will be written as an expansion in gs,

where gs is meant to be the MS renormalized strong cou-
pling constant of the effective theory, running with six
(quark) flavors.
In Eq. (2) the term �vqY

qi
tree�fi denotes the part of the

Wilson coefficient of the operatorOqRL
fi that is induced at tree

level by the Yukawa coupling of the MSSM superpotential.

The running of vqY
qi
tree (and also that of C

qRL
fi ) is the same as

the one of the quark mass in the SM (in theMS scheme). At
the matching scale mSUSY, Y

qi
tree is just the Yukawa coupling

Yq of the MSSM superpotential.1 Note that Yqi
tree is not the

1The matching calculation for Yqi
tree is most easily done by

using the MS scheme, both on the MSSM side and on the
effective theory side. When working up to order �s, we get at
the matching scale mSUSY Yqi

tree ¼ Yqi , where Yqi denotes the
Higgs-quark-quark coupling of the MSSM in the MS scheme.
However, it is well known that one should use the DR scheme on
the MSSM side, such that supersymmetry is preserved. This can
be achieved by the shift Yqi ¼ ð1þ �s

4�CFÞYqi
DR

. This issue will

be considered in more detail in Sec. V. The matching condition
then reads Yqi

tree ¼ ð1þ �s

4�CFÞYqi
DR

.
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effective Yukawa coupling of the SM, which instead is
obtained from the physical quark mass [see Eq. (11)].

The Wilson coefficients CqLR;LR
fi and CqLL;RR

fi in Eq. (2)

contain the effects of heavy particles only. Self-energy
diagrams involving no heavy SUSY particles, i.e., ordinary
QCD corrections containing only quarks and gluons, do

not contribute to the Wilson coefficients in the matching
procedure, because they are the same on the full side (the
MSSM) and on the effective side (the 2HDM III or the
SM). At the matching scale mSUSY we find for the Wilson

coefficients of Eq. (2), using the results for �~gLL
qfqið0Þ and

�~gLR
qfqið0Þ given in Eq. (A2):

CqLR
fi ¼ �s

2�W
~q
fsW

~q?
iþ3;sCFm~g

�
x2s lnðx2s Þ
1�x2s

�

CqLL
fi ð0Þ¼��s

4�W
~q
fsW

~q?
is CF

�
lnðx2�Þþ 3�4x2sþx4sþð4x2s�2x4s Þ lnðx2s Þ

2ð1�x2s Þ2
�

Yq
tree¼Yq

9>>>>>>=
>>>>>>;
atLO in�s: (4)

Further, in the following we will focus on the nondecou-
pling pieces of Eq. (1), i.e., those contributions that do
not vanish in the limit MSUSY ! 1 (which also includes
� ! 1). In contrast, all parts that vanish in this limit are
called decoupling. There are two different kinds of decou-
pling contributions concerning self-energies (or effective
Higgs-quark couplings):

(i) The first kind of decoupling effects is related to the
expansion of the self-energies in powers of
p2=M2

SUSY. This expansion is certainly possible in

on-shell configurations because the SUSY particles
are known to be much heavier than the external
quarks. In this series, higher order contributions are
clearly suppressed for all light quarks, and even for
the top quark, nondecoupling corrections are only of
the order m2

t =M
2
SUSY � 4% with respect to the lead-

ing term. Thus, higher orders in p2=M2
SUSY can be

safely neglected as long as the external momentum
p2 is small, which is the case for all low-energy
flavor observables.

(ii) The second kind of decoupling effect is related to
the mixing matrices (and also the physical masses)
of the MSSM particles (squarks and charginos/
neutralinos), which appear because the mass matri-
ces of the SUSY particles are not diagonal in a weak
basis. These mixing matrices and mass eigenvalues
can be expanded in powers of v=MSUSY, and also in
this case it turns out that the decoupling limit (i.e.,
the leading order v=MSUSY) for realistic values of
SUSY masses2 is an excellent approximation to the
full expressions [20]. Beyond the decoupling limit
higher dimensional operators involving several
Higgs fields would appear.

From dimensional analysis we see that all nondecou-

pling contributions are contained in �qRR;LL
fi and �qLR;RL

fi

evaluated at p2 ¼ 0. Furthermore, the nondecoupling part

of �qRR;LL
fi ðp2 ¼ 0Þ is independent of a VEV, while

�qLR;RL
fi ðp2 ¼ 0Þ is linear in v. Thus, in the following we

will work in the limit �qRR;LL
fi ðp2 ¼ 0Þ, �qLR;RL

fi ðp2 ¼ 0Þ,
and only keep the leading term in v that is equivalent to
considering operators up to dimension 4 only. This sim-
plification allows us to perform an analytic resummation of
all chirally enhanced effects as developed in Ref. [14].

There is a fundamental difference between �qLR;RL
fi and

�qRR;LL
fi (and thus also between CqLR;RL

fi and CqRR;LL
fi ) even

though both pieces do not decouple.We explain this issue at

one-loop order: �qRR;LL
fi enters always proportional to the

quark mass itself into the renormalization of the Yukawa
coupling and CKM elements and thus has the same generic
size as an ordinary QCD loop correction (it is of order �s).

Furthermore, as we will see later, the �qRR;LL
fi even do not

contribute to effective Higgs-quark-quark couplings

at the one-loop level [23]. On the other hand, �qLR;RL
fi

can be ‘‘chirally enhanced’’ by a factor of tan� [24] or

Af
ij=ðYf

ijMSUSYÞ [10], which can compensate for the loop

factor. Because of this possible enhancement,�qLR;RL
fi gen-

erates the most important contribution to the threshold
corrections between Yukawa couplings and quark masses.

The resulting Wilson coefficients CqLR;RL
fi can even be of

order one, i.e., numerically as large as the corresponding
physical quantities (mqi in the flavor-conserving case

or Vfi �max½mqi ; mqi� in the flavor-changing one).

Furthermore, concerning flavor-changing neutral Higgs

couplings,�qLR;RL
fi even constitutes the leading order, since

these couplings are first generated at the one-loop level.

Because the gluino contribution to �qLR;RL
fi involves the

strong coupling constant, it is the numerically dominant
contribution to the threshold corrections modifying the
relations between the quark masses and the Yukawa cou-
pling. Regarding flavor changes, in the MSSM with MFV
only the chargino contribution enters the renormalization
of the CKM matrix, but once there are sizable nonminimal
sources of flavor violation, again the gluino contribution

2The new results of the CMS Collaboration [21] and the
ATLAS experiment [22] require that squark and gluino masses
are at least of the order of 1 TeV.
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becomes dominant. The neutralino contribution is in most
regions of parameter space suppressed (except if the gluino
is much heavier than the other SUSY particles). Thus we
consider the gluino contribution in this article. The calcu-
lation of the chargino- and neutralino-induced contribu-
tions to the threshold corrections and the effective
Higgs-quark-quark couplings is work in progress [25].

From the arguments given above we see that at any loop
order (concerning �s corrections) the chirality-flipping
quark self-energy containing at least one gluino and one
squark as virtual particles is always proportional to one3

off-diagonal element �qLR
ij of the squark mass matrix that,

in the super-CKM basis, is given by

�dLR
ij ¼ �vdA

d
ij � vuA

0d
ij � vu�Y

~di�ij;

�uLR
ij ¼ �vuA

u
ij � vdA

0u
ij � vd�Y~ui�ij;

(5)

with �qRL
ij ¼ �qLR?

ji . Note the presence of the tilde in the

Yukawa couplings Y ~qi . This refers to the fact that a squark-
squark-Higgs coupling is involved, while Yqi entering the
Wilson coefficient Yqi

tree in Eq. (2) is a quark-quark-Higgs
coupling. Of course, both of these couplings are a priori
equal in the MSSM owing to supersymmetry and could be
identified with each other from the beginning if the calcu-
lations of the chirality-flipping quark self-energies would
be performed in the DR scheme, in which supersymmetry
is preserved. However, we decided to work out in an
intermediate step the SQCD two-loop corrections to the

self-energies in the MS scheme, i.e., in dimensional regu-
larization followed by modified minimal subtraction rather
than using dimensional reduction. At this level, the two
couplings Yqi and Y ~qi are different and therefore have to be
distinguished in the notation. We will discuss this in more
detail in Sec. V.

The elements �qLR
ij generate chirality-enhanced effects

with respect to the tree-level quark masses if they involve
the large VEV vu ( tan� enhancement for the down quark)

or a trilinear Að0Þq term [Að0Þq
ij =ðYq

ijMSUSYÞ enhancement].

A. Decomposition of quark self-energy contributions

We diagonalize the full 6� 6 squark mass matrices in
the following way4:

W ~qyM2
~qW

~q ¼ diagðm2
~q1
; m2

~q2
; m2

~q3
; m2

~q4
; m2

~q5
; m2

~q6
Þ; (6)

where m~qs (s¼1;...;6) denote the physical squark masses.

In the decoupling limit, i.e., to leading order in
v=MSUSY, the chirality-flipping elements �qLR can be
neglected in the determination of the squark mixing

matrices W ~q and the physical squark masses m2
~qs
. The

down (up) squark mass matrices are then block diagonal

and diagonalized by the mixing matrices �ij
DL, �ij

DR

ð�ij
UL;�

ij
URÞ in the following way:

W ~qy
decM

2
~qW

~q
dec ¼ diagðm2

~qL
1

; m2
~qL
2

; m2
~qL
3

; m2
~qR
1

; m2
~qR
2

; m2
~qR
3

Þ;

W ~q
dec ¼

�QL 0

0 �QR

 !
: (7)

The 3� 3 matrices �ij
QL and �ij

QR ðQ ¼ U;DÞ take into

account the flavor mixing in the left-left and right-right
sector of sfermions, respectively. It is further convenient to
introduce the abbreviations

�qLL
mij ¼�im

QL�
jm?
QL ðq¼u;dÞ; �qRR

mij ¼�im
QR�

jm?
QR ; (8)

where i, j, m ¼ 1, 2, 3, and the index m is not summed
over.
On the other hand, left-right mixing of squarks is not

described by a mixing matrix, but rather treated perturba-
tively in the form of two-point ~qRi -~q

L
j vertices governed

by the couplings �qLR
ji , i.e., by what is called mass inser-

tions [28].
For the relations between the Yukawa couplings and the

quark masses (to be discussed in Sec. III) and for the
effective Higgs-quark-quark vertices (see Sec. VI) it is

necessary to decompose CdLR;RL
ii according to its Yd de-

pendence as

CdLR
ii ¼ CdLR

iiYi

þ �di vuY
~di ; (9)

where, as the notation implies, CdLR

iiYi

is independent of a

Yukawa coupling. Note that we did the decomposition with

respect to the Yukawa coupling Y
~di , as CdLR

fi can only

involve Y
~di but not Ydi [see Eq. (5)].

For the discussion of the effective Higgs-quark-quark

vertices in Sec. VI we also need a decomposition of �qLR
ji

and thus of CqLR
ji into its holomorphic and nonholomorphic

parts.5 In the decoupling limit (and in the approximation
mq ¼ 0) all holomorphic self-energies are proportional toA

terms. Thus we denote the holomorphic part of the Wilson

coefficient as CfLR
jiA , while the nonholomorphic part (which

can be induced by the� term or by anA0 term) is denoted as

C0qLR
ji . This means that we have the relation

CqLR
ji ¼ CqLR

jiA þ C0qLR
ji : (10)

3More precisely, in the decoupling limit �qLR
fi is linear in

�dLR, while beyond the decoupling limit it contains all add
powers of �dLR.

4Note that our mixing matrices W ~q correspond to the
Hermitian conjugate of the matrices �Q defined in Refs. [26,27].

5With (non)holomorphic we mean that the loop-induced
Higgs coupling is to the (opposite) same Higgs doublet as
involved in the corresponding Yukawa coupling of the MSSM
superpotential.
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III. RELATIONS BETWEEN QUARK MASSES AND
YUKAWACOUPLINGS AT LEADING ORDER IN �s

Let us discuss the renormalization6 of quark masses and
Yukawa couplings induced by nondecoupling self-energy

contributions to the Wilson coefficients CqLR;RL
ji and

CqLL;RR
ji in the MSSM. For this purpose we focus on the

flavor-conserving case, but we will return to the flavor-
changing one in Sec. VI. As it turns out, flavor-changing
self-energies only contribute to the relation between quark
masses and Yukawa couplings at higher orders in the
perturbative diagonalization of the quark mass matrices.

For the renormalization and the inclusion of the
threshold corrections it is very important to distinguish
between theYukawa couplings of theMSSMsuperpotential
Yq and the ‘‘effective’’ Yukawa couplings of the SM (or the
2HDM of type III) Yq

eff ¼ mqi=vq. At the matching scale

MSUSY the running quark mass mqi of the SM is related to

the Yukawa coupling of the MSSM in the following way:

vqY
qi
eff ¼mqi ¼ðvqY

qi
treeþCqLR

ii Þ�
�
1þ1

2
ðCqLL

ii þCqRR
ii Þ

�
:

(11)

The term 1
2 ðCqLL

ii þ CqRR
ii Þ originates from rendering the

kinetic terms of the effective theory diagonal or, equiva-
lently, in the full theory from the Lehmann-Symanzik-
Zimmermann factor that originates for the truncation of
the external legs.

As discussed in the last section, only �qLR
ii (or equiva-

lentlyCqLR
ii in the effective theory) can be chirally enhanced.

If we restrict ourselves to this term, we recover (in the

decoupling limit in whichCqLR
ii is proportional to one power

of Ydi at most) the well-known resummation formula for
tan�-enhanced corrections, with an additional correction
attributable to the A terms [15] (and possibly the A0 terms).
The resummation formula at leading order is given by7

Ydi ¼ mdi � CdLRð1Þ
ii

vd

¼
mdi � CdLRð1Þ

iiYi

vdð1þ tan��dð1Þi Þ ; (12)

with �dð1Þi and CdLRð1Þ
iiYi

defined through Eq. (9). The super-

script (1) denotes the fact that a corresponding quantity is
calculated at the one-loop order.

IV. CALCULATION OF THE WILSON
COEFFICIENT CqLR

fi AT NLO

In this section we describe the calculation of the two-

loop contribution to CqLR
fi , discuss the issue of renormal-

ization, show the expected reduction of the matching scale
dependence, and discuss the decoupling limit in which
only one coupling to a VEV of a Higgs field is involved.
To be specific, we describe in the following the calculation
and the results for the down quark, i.e., CdLR

fi , and mention

at the very end how CuLR
ij can be obtained.

In the following we write the Wilson coefficient CdLR
fi as

CdLR
fi ¼ CdLRð1Þ

fi þ CdLRð2Þ
fi þ � � � ; (13)

where CdLRð1Þ
fi and CdLRð2Þ

fi denote the one- and two-loop

contributions, respectively. We perform the two-loop
matching calculation (order �2

s) for the Wilson coefficient
CdLR
fi in D ¼ ð4� 2"Þ dimensions, using dimensional

regularization, both for the full theory (MSSM) and for
the effective theory in Eq. (2). The complete list of
genuine 1-particle irreducible (PI) two-loop diagrams
contributing in the full theory is shown in Fig. 1 (gen-
erated with FeynArts [30,31]).
As the first two diagrams (involving squark tadpoles)

give rise to some subtle points concerning renormalization,
we ignore them in this subsection and take into account
their impact on CdLR

fi only in the next subsection.

A. Matching calculation for CdLRð2Þ
fi ignoring tadpoles

In the full theory we first calculate the 1-PI two-loop
diagrams (diagrams 3–16 in Fig. 1) in the approximation
mq ¼ 0 and p ¼ 0, but to all orders in v=mSUSY (using

exact diagonalization of the squark mass matrices). All
diagrams except diagram 16 can be calculated by naively
setting mq ¼ 0 and p ¼ 0. Diagram 16, however, leads to

two contributions: the hard contribution, which amounts to
the naive limit of vanishing quark masses and external
momenta of the full two-loop diagram, and the soft con-
tribution, which amounts to the same limit but only for the
heavy one-loop subdiagram [32]. As the soft contribution
is identical to the one-loop gluon correction to

�iCdLRð1;DÞ
fi OdLR

fi in the effective theory,8 this contribution

drops out in the matching for CdLRð2Þ
fi . As this soft contri-

bution is the only one that is infrared singular, this means in

particular that CdLRð2Þ
fi is free of infrared problems, as it

should be.
We then add the counterterm contributions in the full

theory, which are induced by the renormalization of the
parameters m2

~qs
, m~g, and �s in the corresponding one-loop

6Throughout this article, renormalization is understood not
only as the process of removing divergences but also as the
altering of the relations between different quantities induced by
loop contributions.

7For large flavor-changing elements also a contribution in-
volving two self-energies can be important for the renormaliza-
tion of the light quark masses [29]. In this case the resummation
formula reads for i ¼ 1:

Yd1 ¼
md1 � CdLR

11Y1

� CdLR
13

CdLR
31

md3

vdð1þ tan��d1Þ
:

8CdLRð1;DÞ
fi is the one-loop Wilson coefficient in D ¼ ð4� 2"Þ

dimensions, i.e., CdLRð1;DÞ
fi ¼ �

~dLR
dfdi

ð0Þ; see Eq. (A2).
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result (where at this level of the calculation these three

parameters are renormalized in the MS scheme). The
explicit expressions are listed in Sec. A3a. In one of these
counterterm contributions the squark-mass counterterm
�m2

~qs
enters. Of course, when ignoring the tadpole dia-

grams in this section, the tadpole contribution to �m2
~qs
also

has to be ignored.
Besides the renormalization of the parameters in the full

theory, we also have to attach one-loop wave function
renormalization constants for the external quark legs to

the corresponding one-loop result. These wave function

renormalization constants have two contributions: One

from a self-energy with a gluon-quark loop, and another

one from a gluino-squark loop. The first one is also present

in the effective theory and consequently drops out in the

determination of CdLRð2Þ
fi , while the second one contributes.

Since we perform the renormalization in the MS scheme,

only the divergent pieces of�~gLL;RR
dfdi

enter CdLRð2Þ
fi while the

finite part gives rise to CdLL;RR
fi .

1

di df

g̃

ds
˜ dt

˜

ur˜

2

di df

g̃

ds
˜ dt

˜

dr
˜

3

di

df

g̃ ds
˜

dj

dt
˜ g̃

4

di

df

di dt
˜

g̃

g g̃

5

di

df

g̃ g

g̃

dt
˜ df

6

di

df

g̃ df

dt
˜

dt
˜ g

7

di

df

di g̃

dt
˜

g dt
˜

8

di

df

g̃ g̃

g

dt
˜ dt

˜

9

di df

g̃

ds
˜

dj

g̃

dt
˜

10

di df

dt
˜

g̃

uj

us˜

g̃

11

di df

dt
˜

g̃

uj

us˜

g̃

12

di df

dt
˜

g̃

dj

ds
˜

g̃

13

di df

dt
˜

g̃

dj

ds
v˜

g̃

14

di df

g̃

dt
˜

dt
˜

g
dt
˜

15

di df

dt
˜

g̃

g̃

g
g̃

16

di df

g

di

g̃

dt
˜

df

FIG. 1. Genuine 1-PI two-loop diagrams involving squarks and gluinos necessary for the calculation of �dLRð2Þ
fi .
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We now turn to the effective theory. Here, we have to

work out one-loop QCD corrections to �iCdLRð1;dÞ
fi OdLR

fi ,

i.e., the 1-PI diagram, attach the wave function renormal-
ization constants and take into account the effect of the

(MS) renormalization constant �ZO of the operator OdLR
fi .

While the first two get canceled against contributions in the
full theory (as already mentioned above), the effect of the
renormalization constant of the operator enters the match-

ing condition for CdLRð2Þ
fi .

Putting things together, we get the following (schematic)
matching equation:

� i�ZOC
dLRð1;dÞ
fi � iCdLRð2Þ

fi

¼D3þ���þD15þDhard
16 � i½CTm~g

þCTm~qs
þCT�s

�

� i
1

2
½�Zheavy

2;f þ�Z
heavy
2;i �CdLRð1;dÞ

fi : (14)

Here CTm~g
, CTm~qs

, and CT�s
stand for the contributions

induced by the insertions of the corresponding counterterms
into the one-loop diagram, and Di represents the contribu-
tion stemming from diagram i of Fig. 1. As already men-
tioned, we did our two-loop calculation in dimensional
regularization. So far the parameters m~g, m~qs , and �s

appearing in the full theory were renormalized according

to the MS scheme. Also the various Z factors appearing in

Eq. (14) are renormalized in theMS scheme. The result for

CdLRð2Þ
fi weget at this level corresponds to the sumof the first

five terms on the right-hand side of Eq. (23). When giving
the explicit expressions for these terms, we freely made use
of the unitarity properties of the W ~q mixing matrices.

We should be more precise concerning gs (or �s). In our
calculation of the full theory side gs stands for gs;Y , i.e., for
the strong coupling constant of the Yukawa type of the full

MSSM renormalized in the MS scheme. As we want to

express the final result for the Wilson coefficient CdLRð2Þ
fi in

terms of gð6Þ
s;MS

, i.e., by the strong coupling constant of the

SM in the MS scheme running with six flavors, we make
use of the relation [33,34]

�s;Yð�Þ¼
�
1þ�s

4�

1

3

�
ðnfþ6Þlnðx2�Þ�

X6
s¼1

ðlnðxsÞþ lnðysÞÞ

þ4CA�3CF

��
�ð6Þ
s;MS

ð�Þ: (15)

Actually, this relation summarizes three steps: first, the

transition from gs;Y in the MS scheme to gs of the full

MSSM in the DR scheme; second, the decoupling of the
SUSY particles, leading to gs running with six (quark)

flavor in the DR scheme; third, the transition to gð6Þ
s;MS

.

Equation (15) leads to the additional piece C
ð2Þ;shift�s

fi in

Eq. (23).

In principlewe should have performed our calculation (of
the full theory side) using dimensional reduction, which
preserves supersymmetry, followed by modified minimal

subtraction. The corresponding result for CdLRð2Þ
fi can be

reconstructed by also shifting the parameter m~qs and m~g

from the MS scheme to the DR scheme in the expression

for CdLRð1Þ
fi . As only m~g gets such a shift at the relevant

order in �s, we denote this contribution in Eq. (23) as

C
ð2Þ;m~g

MS
!m~g

DR

fi .

This completes the derivation of the matching condition

for CdLRð2Þ
fi when ignoring the tadpole contribution (i.e.,

diagrams 1 and 2). Note that we performed our calculation
using the expression for the gluon propagator in an arbitrary

R� gauge and found a gauge-invariant result for C
dLRð2Þ
fi .

B. The squark tadpole

The diagrams containing a squark-tadpole self-energy as
a subdiagram require close examination. Diagram 1 van-
ishes, but the squark-tadpole contained in diagram 2 con-
tains a divergence that enforces a renormalization of both
the physical squark masses and the trilinear couplings of
squarks to the Higgs field (the Yukawa couplings and the A
terms). Thus it has to be decomposed into the correspond-
ing two parts.
Let us first consider the decoupling limit in which the

expressions are simpler but the structure of the divergences
is the same as in the full theory because higher powers (two

or more) of �qLR
ij generate finite contributions only. In the

decoupling limit Eq. (A14) simplifies to

� �s

4�
CF

�
�stm

2
~qs
� 2

X3
i;j¼1

ð�i0þ3;s�
ii0?
QR�

qRL
ij �jj0

QL�j0t

þ �i0s�
ii0?
QL�

qLR
ij �jj0

QR�j0þ3;tÞ
�
1

"
þ finite: (16)

Here we clearly see that to render the first term in Eq. (16)
finite, which is flavor diagonal [corresponding to Fig. 2(b)],
a renormalization of the squark masses is necessary. On the
other hand, for canceling the divergence of the second term
in Eq. (16) [corresponding to Fig. 2(a)], which is propor-

tional to �qLR
ij , a counterterm to the Yukawa coupling and

the A term contained in �qLR
ij is necessary. The latter point

can be seen as follows: In the decoupling limit the ampu-
tated chirality-changing squark two-point function for
~qLj0 ! ~qRi0 is given, at lowest order in �s, by

�ii0?
QR�

qRL
ij �jj0

QL: (17)

From this we can read off the common renormalization
constant ZY of the Yukawa couplings Y~qi and the Aq

ij and

the A0q
ij terms, obtaining in the minimal subtraction scheme

(DR or MS)
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ZY ¼ 1� �s

4�
2CF

1

"
: (18)

In fact, it turns out that this renormalization of the Yukawa
couplings is necessary for maintaining supersymmetry
with respect to the Yukawa coupling involved quark-
quark-Higgs coupling and the one of the squark-squark-
Higgs coupling.

C. Result for CdLR
fi retaining all powers of v=MSUSY

For the Wilson coefficient CdLR
fi of the two-quark opera-

tor �qfPRqi, we write the general decomposition

CdLR
fi ¼ CdLRð1Þ

fi þ CdLRð2Þ
fi � �s

4�
Cð1Þ
fi þ

�
�s

4�

�
2
Cð2Þ
fi : (19)

From Eq. (A2) we directly obtain

Cð1Þ
fi ¼ X6

t¼1

�
4m~gCFW

~d
ftW

~d?
iþ3;t

x2t lnðxtÞ
1� x2t

�
: (20)

Here we introduced the abbreviations

xt ¼ m~dt
=m~g; (21)

and for later convenience we also define

yt ¼ m~ut=m~g; x� ¼ �=m~g; (22)

where � is the renormalization scale.
According to the detailed description in the previous

subsections, we decompose the Wilson coefficient Cð2Þ
fi

into various pieces:

Cð2Þ
fi ¼ Cð2Þ;1

fi þ Cð2Þ;2
fi þ Cð2Þ;3

fi þ Cð2Þ;4
fi þ Cð2Þ;�

fi

þ C
ð2Þ;shift�s

fi þ C
ð2Þ;m~g

MS
!m~g

DR

fi þ Cð2Þ;TP
fi : (23)

We freely made use of the unitarity of the mixing
matrices W ~q and obtain

Cð2Þ;1
fi ¼X3

j¼1

X6
s;t¼1

�
2W

~d
ftW

~d?
jþ3;tW

~d?
iþ3;sW

~d
jþ3;sm~gCFð2CF�CAÞ 1

ð1�x2sÞð1�x2t Þ
½ð1�x2sÞ2Li2ð1�x2sÞ�ð1�x2t Þ2Li2ð1�x2t Þ

þðx2s�x2t Þ2Li2ð1�x2t =x
2
sÞ�4x2t ðx2t �x2sÞlnðxsÞlnðxtÞþ6x2sðx2t �1ÞlnðxsÞ�6x2t ðx2s�1ÞlnðxtÞþ2x2t ðx2s�1Þln2ðxtÞ

þ2ðx4sþx4t �3x2t x
2
sþx2sÞln2ðxsÞ�

�
þX6

t¼1

�
4W

~d
ftW

~d?
iþ3;tm~gCFð2CF�CAÞ x2t

ð1�x2t Þ2
½ð1�2x2t Þln2ðxtÞ�2ð1�x2t ÞlnðxtÞ�

�
;

(24)

Cð2Þ;2
fi ¼ X6

s;t¼1

�W ~d
ftW

~d?
iþ3;t trm~gCF

ð1� x2t Þ2
�
4ð1� x2sÞð�x2s þ 2x2t � 1ÞLi2ð1� x2sÞ � 4ðxs þ xtÞ2ðxs � xtÞ2Li2ð1� x2s=x

2
t Þ

� 4x2t ðð1þ x2t Þ lnðxtÞ þ 1� x2t Þðx2s � 2ð1� x2sÞ2 lnðxsÞÞ � 1

3
½48ðlnðxtÞ lnðxsÞx2sðx2t � x2s � x4t Þ

þ ln2ðxtÞx2t ðx2t � x2sÞ � lnðxtÞx4t � x2t Þ þ 24ðlnðxtÞ lnðxsÞx4sx2t ð1þ x2t Þ þ lnðxsÞx2sx2t ðx2t � 1Þ
þ lnðxtÞx2t þ ln2ðxtÞx4sÞ þ 12ðlnðxtÞx2sx2t ð1� x2t Þ þ lnðxsÞx4sð1� x4t Þ � x2sx

2
t Þ þ 6x2s þ 6x2sx

4
t þ 30x4t þ 18�

��
;

(25)

Cð2Þ;3
fi ¼ Cð2Þ;2

fi ðxs ! ysÞ; (26)

FIG. 2. Decomposition of the squark tadpole that is contained
in diagram 2 of Fig. 1 as a subdiagram: In the decoupling limit
the squark tadpole is either proportional to one element �qLR

ij (a)

or independent of �qLR
ij (b). In the first case, it connects left-

handed with right-handed squarks, while in the second case it is
flavor and chirality conserving (proportional to �st). The diver-
gence of the piece proportional to �qLR

ij is absorbed by the

counterterms to Yq and Aq while the divergence of the piece
stemming from (b) is canceled by a squark mass counterterm.
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Cð2Þ;4
fi ¼ X6

t¼1

�
2W

~d
f;tW

~d?
iþ3;tm~gCF

�
ð�3CA þ 2CFÞLi2ð1� x2t Þ þ 1

3ð1� xtÞ2ð1þ xtÞ2
½trnfðð24ln2ðxtÞ � 12Þx4t

þ ð24 lnðxtÞ þ 12Þx2t Þ þ 6CAðð3ln2ðxtÞ � 11 lnðxtÞ þ 9Þx4t þ ð3 lnðxtÞ � 14Þx2t þ 5Þ þ 3CFð�ð2 lnðxtÞ þ 1Þx4t
� ð12ln2ðxtÞ � 12 lnðxtÞ þ 7Þx2t þ 8 lnðxtÞ þ 8Þ�

��
; (27)

C
ð2Þ;�
fi ¼ X6

t¼1

�
�4W

~d
f;tW

~d?
iþ3;tm~gCF

lnðx2�Þ
ð1� x2t Þ2

�
trnfð�2x2t ðð2 lnðxtÞ � 1Þx2t þ 1ÞÞ þ CAð3x2t ðð2 lnðxtÞ � 1Þx2t þ 1ÞÞ

þ CF

2
ð�ð4 lnðxtÞ � 1Þx4t þ ð2 lnðxtÞ þ 3Þx2t � 8 lnðxtÞ � 4Þ

��
; (28)

C
ð2Þ;shift�s

fi ¼ X6
t¼1

�
� 4W

~d
f;tW

~d?
iþ3;tm~gCFx

2
t lnðxtÞ

3ð1� x2t Þ
�X6
s¼1

ðlnðxsÞ þ lnðysÞÞ � 4CA þ 3CF

�

þ 4ðnf þ 6ÞW ~d
f;tW

~d?
iþ3;tm~gCFx

2
t lnðxtÞ

3ð1� x2t Þ
lnðx2�Þ

�
; (29)

C
ð2Þ;m~g

MS
!m~g

DR

fi ¼ �2
X6
t¼1

�
W

~d
ftW

~d?
iþ3;tm~gCFCA

ð1þ x2t Þð1� x2t þ 2x2t lnðxtÞÞ
ð1� x2t Þ2

�
; (30)

Cð2Þ;TP
fi ¼ �2m~gC

2
F

X6
t¼1

�
W

~d
ftW

~d?
iþ3;t

x2t
ð1� x2t Þ2

ð1� x2t þ 2 lnðxtÞÞð1� 2 lnðxtÞ þ lnðx2�ÞÞ
�

� 8m~gC
2
F

X3
j;j0¼1

X6
s;t;s0¼1

�
W

~d
fsðW ~d?

j0þ3;s
W

~d
j0þ3;t

W
~d?
jt W

~d
js0 þW

~d?
j0sW

~d
j0tW

~d?
jþ3;tW

~d
jþ3;s0 ÞW ~d?

iþ3;s0

� x2t ð2 lnðxtÞ � lnðx2�Þ � 1Þðx2sx2s0 lnðxs0xs Þ þ x2s lnðxsÞ � x2s0 lnðxs0 ÞÞ
ðx2s � x2s0 Þðx2s � 1Þðx2s0 � 1Þ

�
: (31)

In the MSSM we have

CA¼3; CF¼4=3; tr¼1=2; and nf¼6: (32)

To summarize, Eqs. (20) and (23) contain the full result for
the Wilson coefficientCdLR

fi where the A terms, the Yukawa
coupling, and the squark and the gluino masses of the
MSSM are renormalized in the DR scheme, while gs
stands for the strong coupling constant of the SM in the
MS scheme, running with six flavors. The effective opera-
tors, or equivalently the Wilson coefficients, are under-
stood to be renormalized according to the MS scheme.

So far, we discussed the derivations of CdLR
fi . The cor-

responding result CdLR
fi for up quarks can be obtained by

replacing W
~d with W ~u and exchanging x and y.

D. Reduction of the matching scale dependence at NLO

The purpose of our NLO calculation is also the reduction
of the matching scale dependence of the effective Higgs
couplings that can serve as an estimate of the theory
uncertainty. This reduction not only is an improvement

achieved by our NLO calculation but also serves as an
additional check of its correctness.
As we will see in the next section, the quantity directly

related to the Higgs couplings is ĈqLR
fi defined as

Ĉ
qLR
fi ¼ CqLRð1Þ

fi þ CqLRð2Þ
fi þ 1

2
ðCqLL

ff CqLRð1Þ
fi

þ CqLRð1Þ
fi CqLL

ii Þ þOð�2
s ; �

3
s tan�Þ: (33)

We use in the following the decomposition ĈqLR
fi ¼

ĈqLR;ð1Þ
fi þ ĈqLR;ð2Þ

fi . At LO in our counting of �s and tan�

we have ĈqLR;ð1Þ
fi ¼ CqLR;ð1Þ

fi .

ĈqLR
fi (and thus also ĈqLRð1Þ

fi ) at a fixed low scale �low is

obtained from ĈqLR
fi at the matching scale �0 via

Ĉ
qLR
ij ð�lowÞ ¼ Uð�low; �0ÞĈqLR

ij ð�0Þ: (34)

This evolution is the same as for the quark masses in the
SM. The explicit NLO expression can be taken, e.g., from
Eq. (4.81) in Ref. [35]. It is this expression that we use for
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the numerical study in Sec. IVE when doing the evolution
to the low scale �low.

However, for showing analytically the reduced matching
scale dependence, it is sufficient to assume that the scale
�low is close to the matching scale �0 so that it is not
necessary to resum large logarithms. In this case the evo-
lution matrix Uð�low; �0Þ can be expanded as

Uð�low;�0Þ	1þ�sð�0Þ�
ð0Þ
m

8�
ln

�
�2

0

�2
low

�
; �ð0Þ

m ¼6CF:

(35)

At LO ĈqLR
ij depends only implicitly on the renormaliza-

tion scale via the scale dependence of various parameters.
For small changes of the original matching scale �0 to a
new matching scale �, we get

ĈqLRð1Þ
ij ð�Þ

ĈqLRð1Þ
ij ð�0Þ

	 1þ �sð�0Þ
4�

ð�0 þ SÞ ln
�
�2

0

�2

�
: (36)

The contribution involving �0 comes from expressing
�sð�Þ in terms of �sð�0Þ, while the one involving S is
attributable to the corresponding manipulation of the
squark and gluino masses, the Yukawa couplings, and
the A (and A0) terms. Together with Eqs. (34) and (35)
the variation of the matching scale leads to the following
ratio:

Uð�low;�ÞĈqLRð1Þ
ij ð�Þ

Uð�low;�0ÞĈqLRð1Þ
ij ð�0Þ

	1þ�sð�0Þ
4�

�
�0þS��ð0Þ

m

2

�
ln

�
�2

0

�2

�
: (37)

The explicit � dependence proportional to �s in this ratio
has to be compensated when going to NLO.

The piece of ĈqLRð2Þ
ij with explicit scale dependence

[with contributions from Eqs. (28), (29), and (31), and

from Eq. (33) through CqLL
ff and CqLL

ii ], can be compactly

written as

ĈqLRð2Þ;�
ij ð�Þ ¼ �sð�Þ

4�

�
S� 2 trnf þ 3CA � 3CF

þ nf
3
þ 2

�
ĈqLRð1Þ
ij ð�Þ lnðx2�Þ: (38)

Using this information, we finally get at NLO

Uð�low; �ÞĈqLR
ij ð�Þ

Uð�low; �0ÞĈqLR
ij ð�0Þ

	 1þ �sð�0Þ
4�

�
�0 þ S� �ð0Þ

m

2
� Sþ 2 trnf � 3CA

þ 3CF � nf
3
� 2

�
ln

�
�2

0

�2

�
¼ 1; (39)

as expected.

E. Numerics

In this section we study the numerical importance
of our two-loop corrections and the reduced matching
scale dependence compared to the one-loop result.
The matching scale dependence, as shown in Fig. 3

for SUSY masses of 1 TeV, is significantly reduced as
expected from the previous subsection. Note that the rela-
tive importance of the NLO result is to a very good

approximation independent of the size of �qLR
ij .

The relative importance of the two-loop contribution to

ĈqLR
ij ð�Þ is shown in Fig. 4 as a function of the matching

scale �. For SUSY masses of 1 TeV the �2
s corrections

lead to a constructive contribution of approximately 9%
compared to the one-loop result that is in agreement
with Ref. [16]. Again, the relative importance of the
NLO result is to a very good approximation independent

of the size of �qLR
ij .

F. Transition to the decoupling limit

While the two-loop contributions calculated in this sec-
tion are obtained in the approximation p ¼ mq ¼ 0, the

600 800 1000 1200 1400 1600 1800 2000
in GeV0.96

0.97

0.98

0.99

1.00

1.01

1.02

1.03

U low, Cij
qLR

U low,1TeV Cij
qLR

1TeV

FIG. 3 (color online). Dependence on the matching scale � of
the one-loop and two-loop results for ĈqLR

fi ð�lowÞ, using

MSUSY ¼ 1 TeV and �low ¼ mW . Red dashed line: matching
done at LO; blue solid line: matching done at NLO matching. As
expected, the matching scale dependence is significantly re-
duced. For the one-loop result, ĈqLR

fi is understood to be

CqLRð1Þ
fi (see text).
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results given in Sec. IVC still contain all powers v=MSUSY

implicitly via the squark mixing matrices W ~q and the
physical squark masses m~qs involved. The transition to

the decoupling limit, in which all chirally enhanced cor-
rections can be resummed analytically, can be done by the
following prescription.

In all parts of the genuine two-loop contributions listed
above [Eqs. (24)–(30)] only two mixing matrices occur,
except in Eqs. (24) and (31). Equation (24) contains the
following combinations of mixing matrices and a loop
function f, which depends on squarks masses m~qs and m~qt

X6
s;t¼1

X3
j¼1

W
~d
ftW

~d?
jþ3;tW

~d?
iþ3;sW

~d
jþ3;sfðx2s ; x2t Þ: (40)

Note that in the decoupling limit, the squark with index s in
Eq. (40) must be a linear combination of right-handed
squark only, since otherwise at least two chirality changes
(two insertions of �dLR

ij ) would be necessary. Thus we can

replace

W
~d?
iþ3;sW

~d
jþ3;s!�ik?

DR�
jk
DR¼�dRR

kji and x2s !x2Rk; (41)

where k only runs from 1 to 3 and we defined

x2LðRÞk ¼
m2

~qLðRÞ
k

m2
~g

: (42)

The resulting expression

X6
t¼1

X3
k;j¼1

W
~d
ftW

~d?
jþ3;t�

dRR
kji fðx2Rk; x2t Þ (43)

can now be expanded in powers of v=MSUSY, which
amounts at leading order to the replacement

X6
t¼1

W
~d
ftW

~d?
jþ3;tfð. . . ;x2t Þ

! X3
m;n;j0;j00¼1

�dLL
mfj00�

dLR
j00j0 �

dRR
nj0j

fð. . . ;x2LmÞ�fð. . . ;x2RnÞ
m2

~qLm
�m2

~qRn

;

(44)

where the dots represent possible additional dependences
on squark masses. Now we apply Eq. (44) to Eq. (43)
and use

X3
j¼1

�dðLLÞRR
mfj �dðLLÞRR

nji ¼ �dðLLÞRR
mfi �mn: (45)

The final result for Eq. (40) in the decoupling limit is then

X3
m;n;j0;j00¼1

�dLL
mfj00�

dLR
j00j0 �

dRR
nj0i

fðx2Rn;x2LmÞ�fðx2Rn;x2RnÞ
m2

~qLm
�m2

~qRn

: (46)

For Eq. (31) a similar procedure works. It contains the
following combination of mixing matrices with a loop
function depending on three different squark masses with
the indices s, t, and s0

X6
s;t;s0¼1

X3
j;j0¼1

W
~d
fsðW ~d?

j0þ3;sW
~d
j0þ3;tW

~d?
jt W

~d
js0

þW
~d?
j0sW

~d
j0tW

~d?
jþ3;tW

~d
jþ3;s0 ÞW ~d?

iþ3;s0fðx2s ; x2t ; x2s0 Þ: (47)

Note that the first term in Eq. (47) vanishes in the decou-
pling limit since it necessarily involves multiple chirality
flips. For the second term two replacements analogous to
Eq. (41) have to be performed, and after using two times
the relation in Eq. (45) the decoupling limit of Eq. (47)
reads

X3
m;n;j0;j00¼1

�dLL
mfj00�

dLR
j00j0 �

dRR
nj0i

fðx2Lm;x2Lm;x2RnÞ�fðx2Lm;x2Rn;x2RnÞ
m2

~qLm
�m2

~qRn

:

(48)

This result involves the same combination of mixing ma-
trices as the one in Eq. (46).
To all other parts of Cfi the rule in Eq. (44) can be

applied directly to obtain the corresponding expression in
the decoupling limit.

V. RELATIONS BETWEEN QUARK MASSES AND
THE MSSM YUKAWA COUPLINGS AT NLO

Beyond one-loop Eqs. (11) and (12) for the determina-
tion of Yd can easily be generalized to higher loop orders
because the chirality changing self-energy (and also the
resulting Wilson coefficient) is still proportional to one
element �dLR

ij in the decoupling limit, as shown in

Sec. IV F. However, since we are dealing with order one
corrections, we must specify how we count contributions at

600 800 1000 1200 1400 1600 1800 2000
in GeV
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0.08

0.09
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Cij
qLR 2

Cij
qLR 1

FIG. 4 (color online). Relative importance of the two-loop
corrections as a function of the matching scale �. We see that
the two-loop contribution is approximately þ9% of the one-loop
contribution for� ¼ MSUSY ¼ 1 TeV. ĈqLR

fi is defined inEq. (33).
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higher loop orders in�s. C
qLRð1Þ
fi is proportional to�s tan�,

and CqLRð2Þ
fi is proportional to �2

s tan�. Here, tan� stands

schematically for a chiral enhancement factor, also includ-
ing Aq

ij=ðYq
ijMSUSYÞ. We will count �s tan� as order one

and thus �2
s tan� as order �s. Since C

qLL;RR
fi is not chirally

enhanced, the only relevant term in our approximation (of

order �s) is the one-loop contribution. Thus, CqLL;RR
fi is

always understood to be the one-loop contribution propor-
tional to �s.

To derive the relation between the quark masses and the
Yukawa couplings of the MSSM superpotential at NLO,
we also need to specify the renormalization scheme used
for the matching procedure. Let us explicitly denote the
renormalization scheme for the quantities in the matching
condition Eq. (11) (at the scale mSUSY), which is important
at NLO:

vqY
qiMS
eff ¼ mMS

qi

¼ ðvqY
qiMS
tree þ CqLRð1Þ

iiMS
þ CqLRð2Þ

ii Þ

�
�
1þ 1

2
ðCqLL

ii þ CqRR
ii Þ

�
: (49)

Again, YqiMS
tree is the Wilson coefficient induced via the

Yukawa coupling of the MSSM. This means at the match-
ing scale it is given by

YqiMS
tree ð�SUSYÞ ¼ Yqi

MS
ð�SUSYÞ

¼
�
1þ �s

4�
CF

�
Yqi
DR

ð�SUSYÞ: (50)

In our counting in �s and tan� the renormalization scheme

for CqLL
ii and CqRR

ii is irrelevant. Note that the quark mass
mqi is understood to be evaluated at the matching scale.

Further, one should recall from the last section that despite

the fact that we renormalized CqLR
ii in the MS scheme,

it contains parameters given in the DR scheme, e.g.,
Y ~qi ¼ Yqi

DR
. Since we are interested in Y~qi , the Yukawa

coupling of the MSSM superpotential, we must express

YqiMS
tree in Eq. (49) in terms of Y

~qi
DR

via Eq. (50) so that we

can solve for Yqi
DR

.

In conclusion, we arrive at the NLO generalization
(order �2

s tan�) of Eq. (11):

Ydi
DR

¼
mMS

di
� ĈdLR

iiYi

vdð1þ �s

4�CF þ tan��̂di Þ
; (51)

with ĈqLR
fi defined in Eq. (33) and the corresponding equa-

tion for �̂di . Here �
dð1Þ
i and �dð2Þi are defined in direct analogy

to Eq. (13). Further, the Wilson coefficients appearing here
are assumed to be in the decoupling limit. Equation (51)
constitutes the NLO determination of the Yukawa coupling

of the superpotential. When later inserting the Yukawa
coupling into the Wilson coefficients, one has to use this
relation.9

The electroweak contributions (involving charginos and
neutralinos) to the relation between the quark masses and
the Yukawa couplings are in most regions of the parameter
space subleading compared to the strong contributions.
However, the LO electroweak corrections are easily as
large as the NLO SQCD corrections and should be
included in a numerical analysis. This can be achieved
by simply adding the corresponding contributions to

ĈdLR

iiYi
and �̂di in Eq. (51).

VI. EFFECTIVE HIGGS VERTICES

To derive the effective Higgs-quark-quark couplings,10

we have to assume that the external momenta (flowing
through the Higgs-quark-quark vertex) are much smaller
than the masses of the virtual SUSY particles running in
the loop. This assumption limits the applicability of the
resulting Feynman rules. If mH0 , mA0 , mH
 � MSUSY

(H0, A0, and H
 denote the neutral CP-even, CP-odd,
and the charged Higgs boson, respectively), the effective
Feynman rules can be used for the calculation of all
flavor observables (also if the Higgs is propagating in a
loop) and for processes with a Higgs on the mass shell.
If the hierarchy mH0 , mA0 , mH
 � MSUSY is not satisfied,
the effective Higgs vertices can still be used for pro-
cesses in which the momentum flow through the Higgs-
quark-quark vertex is small compared to MSUSY, which
is true for all low-energy flavor observables with tree-
level Higgs exchange (like Bd;s ! �þ��, Bþ ! 	þ

or the double Higgs penguin contributing to �F ¼ 2
processes).
As discussed in the Introduction, we use an effective

field theory approach in our study of the Higgs-quark-
quark couplings, which simplifies the calculations
significantly. This means that we match the MSSM on
the 2HDM of type III at the scale MSUSY rather than
calculating the Higgs-quark-quark coupling within the
MSSM.
Let us first consider the effective Lagrangian of a general

2HDM (including Higgs-quark-quark couplings and
kinetic terms):

9The generalization to the CKM matrix can be achieved
following the procedure of Refs. [7,10,11].
10In principle also the renormalization of the Higgs potential
should be addressed. Our derivation of chirally enhanced flavor
effects does not depend on the specific relations between Higgs
self-couplings and their masses. Since no chirally enhanced
effects occur in the Higgs sector, it is consistent to use the
tree-level values for the Higgs parameters. However, one can
as well use the NLO values for the Higgs masses and mixing
angles, which might be even better from the numerical point of
view.
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Leff ¼ �Qa
fLððYdtree

fiew þ Edew
fi Þ�baHb?

d � E0dew
fi Ha

uÞdiR
þ �Qa

fLððYutree
fiew þ Euew

fi Þ�abHb?
u � E0uew

fi Ha
dÞuiR

þ �dfRi6@ð�fi � Rdew
fi ÞdiR þ �ufRi6@ð�fi � Ruew

fi ÞuiR
þ �Qa

fLi6@ð�fi � Lqew
fi ÞQa

iL; (52)

where adding the Hermitian conjugate of the terms involv-
ing Higgs fields is implicitly meant. The Higgs doublets
are defined as

Hd¼
H1

d

H2
d

 !
¼ H0

d

H�
d

 !
; Hu¼

H1
u

H2
u

 !
¼ Hþ

u

H0
u

 !
: (53)

In Eq. (52) a, b denote SUð2ÞL indices and �ab is the two-
dimensional antisymmetric tensor with �12 ¼ �1. We
introduced the holomorphic couplings Eqew

fi , the nonholo-

morphic couplings E0qew
fi ðq ¼ u; dÞ, and the contributions

to the kinetic terms Rd;uew
fi and Lqew

fi . Here the superscript

‘‘ew’’ refers to the fact that these terms are given in a weak-
interaction eigenbasis. In Eq. (52) we already anticipated

the MSSMwhere the terms Eð0Þqew
fi , Lqew

fi , and Rqew
fi are loop

induced but Yutree
fiew and Ydtree

fiew are generated at tree level via

the MSSM Yukawa couplings.11

To connect the effective theory to the MSSM, we go to
the super-CKM basis, in which the Yukawa couplings are
diagonal, by rotating the fields

qjL;R ! UqL;Rð0Þ
ji qiL;R; (54)

such that

UqLð0Þ?
kf Yqtree

kjewU
qRð0Þ
ji ¼ Yqi

tree�fi: (55)

We now break the electroweak symmetry and write the
effective Lagrangian in component form:

Leff ¼ �ufLV
ð0Þ
fj ððYdj

tree�jiþEd
jiÞH2?

d �E0d
jiH

1
uÞdiRþ �dfLV

ð0Þ?
jf ððYuj

tree�jiþEu
jiÞH1?

u �E0u
jiH

2
dÞuiR� �dfLððYdf

tree�fiþEd
fiÞH1?

d

þE0d
fiH

2
uÞdiR� �ufLððYuf

tree�fiþEu
fiÞH2?

u þE0u
fiH

1
dÞuiRþ �dfRi6@ð�fi�Rd

fiÞdiRþ �ufRi6@ð�fi�Ru
fiÞuiR

þ �dfLi6@ð�fi�Ld
fiÞdiLþ �ufLi6@ð�fi�Lu

fiÞuiL� �dfLððYdf
tree�fiþEd

fiÞvdþE0d
fivuÞdiR

� �ufLððYuf
tree�fiþEu

fiÞvuþE0u
fivdÞuiR; (56)

where Vð0Þ ¼ UuLð0ÞyUdLð0Þ is not the physical CKM ma-
trix, but rather the CKM matrix generated by the misalign-
ment of the Yukawa couplings. Adding the Hermitian
conjugate of the mass terms and the terms involving
Higgs fields is tacitly understood. The terms

Eq
fi¼UqLð0Þ?

kf Eqew
kj UqRð0Þ

ji ; E0q
fi¼UqLð0Þ?

kf E0qew
kj UqRð0Þ

ji ;

Rq
fi¼UqRð0Þ?

kf Rqew
kj UqRð0Þ

ji ; Ld
fi¼UdLð0Þ?

kf Lqew
kj UdLð0Þ

ji ;

Lu
fi¼UuLð0Þ?

kf Lqew
kj UuLð0Þ

ji ¼Vð0Þ
fk L

d
kjV

ð0Þ?
ij

(57)

are now given in the super-CKM basis. Note that this is the
same basis as the one in which the effective Lagrangian of
Eq. (2) is given (and the same basis in which we calculated
the MSSM contributions to the Wilson coefficients). Thus,
comparing the last four lines of Eq. (56) to Eq. (2) we have
the following relation between the Wilson coefficients and
the terms of the 2HDM III Lagrangian (at an arbitrary loop
order):

Ed
fi ¼

CdLR
fiA

vd

; E0d
fi ¼

C0dLR
fi

vu

; Eu
fi ¼

CuLR
fiA

vu

;

E0u
fi ¼

C0uLR
fi

vd

; Lq
fi ¼ CqLL

fi ; Rq
fi ¼ CqRR

fi :

(58)

Now we want to go to the physical basis with flavor-
diagonal mass terms and canonical kinetic terms. As a first
step we render the kinetic terms canonical by a field
redefinition:

qiL!
�
�ijþ1

2
Lq
ij

�
qjL; qiR!

�
�ijþ1

2
Rq
ij

�
qjR: (59)

Consider now the quark mass matrices. The redefinition of
the fields in Eq. (59) also leads to a shift in down-quark
mass matrix so that it is now given by

md
fi¼ð ^̂Ed

fiþ ^̂Y
dtree
fi Þvdþvu

^̂E
0d
fi¼ ^̂C

dLR
fi þvd

^̂Y
dtree
fi ;

mu
fi¼ð ^̂Eu

fiþ ^̂Y
utree
fi Þvuþvd

^̂E
0u
fi¼ ^̂C

uLR
fi þvu

^̂Y
utree
fi ;

(60)

where we have defined

11In principle, without knowing anything about the MSSM, the
holomorphic corrections could be absorbed into an effective
Yukawa coupling (and also the corrections to the kinetic terms
Rd;uew
fi and Lqew

fi would not be physical). However, once we go
back to the MSSM with the SUSY breaking terms as input
parameters, the holomorphic corrections also become physical.
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^̂E
ð0Þq
fi ¼Eð0Þq

fi þ1

2

X3
j¼1

ðLq
fjE

ð0Þq
ji þEð0Þq

fj Rq
jiÞ;

^̂Y
qtree
fi ¼Yqi

tree�fiþ1

2

X3
j¼1

ðCqLL
fj Yqi

tree�jiþY
qf
tree�fjC

qRR
ji Þ;

^̂C
qLR
fi ¼CqLR

fi þ1

2

X3
j¼1

ðCqLL
fj CqLR

ji þCqLR
fj CqRR

ji Þ:

(61)

Note that the quantities with a double hat contain
also the contributions from flavor-changing left-left (LL)
and right-right (RR) Wilson coefficients, while the quanti-
ties with one hat [see Eqs. (33) and (67)] contain only the
flavor-conserving LL and RRWilson coefficients.

We now diagonalize the quark mass matrices by a
bi-unitary transformation

UqL?
kf mq

kjU
qR
ji ¼ mqi�fi; (62)

where the rotation matrices

UqL ¼

1
mq

12

mq2

mq
13

mq3

�mq?
12

mq2

1
mq

23

mq3

�mq?
13

mq3

þ mq?
12
mq?

23

mq2
mq3

�mq?
23

mq3

1

0
BBBBBB@

1
CCCCCCA;

UqR ¼

1
mq?

21

mq2

mq?
31

mq3

�mq
21

mq2

1
mq?

32

mq3

�mq
31

mq3

þ mq
32
mq

21

mq2
mq3

�mq?
32

mq3

1

0
BBBBBBB@

1
CCCCCCCA

(63)

are obtained from a perturbative diagonalization of the
quark mass matrix.12

Switching to the physical basis in which the quark mass
matrices are diagonal, these rotations modify the effective
Lagrangian as follows [20]:

Leff ¼ �ufLU
uL?
kf Vð0Þ

kk0

�md
k0j

vd

H2?
d � ^̂E

0d
k0jðH1

uþ tanð�ÞH2?
d Þ

�
UdR

ji diRþ �dfLU
dL?
kf Vð0Þ?

k0k

�mu
k0j

vu

H1?
u � ^̂E

0u
k0jðH2

dþcotð�ÞH1?
u Þ
�
UdR

ji uiR

� �dfLU
dL?
kf

�md
kj

vd

H1?
d þ ^̂E

0d
kjðH2

u� tanð�ÞH1?
d Þ
�
UdR

ji diR� �uafLU
uL?
kf

�mu
kj

vu

H2?
u þ ^̂E

0u
kjðH1

d�cotð�ÞH2?
u Þ

�
UuR

ji uiRþH:c:;

(64)

where we skipped the mass terms and the kinetic terms. This can be further simplified by using the physical CKM matrix
given by

Vfi ¼ UuL?
jf Vð0Þ

jk U
dL
ki : (65)

In addition, we define the abbreviations

~E0q
fi ¼ UqL?

kf
^̂E
0q
kjU

qR
ji ¼ Ê0q

fi �
0 Ê0q

22ĉ
qLR
12 Ê0q

33ðĉqLR13 � ĉqLR12 ĉqLR23 Þ
Ê0q
22ĉ

qLR
21 0 Ê0q

33ĉ
qLR
23

Ê0q
33ðĉqLR31 � ĉqLR32 ĉqLR21 Þ Ê0q

33ĉ
qLR
32 0

0
BBB@

1
CCCA

fi

� Ê0q
fi � �Ê0q

fi: (66)

Note that in this expression only quantities with a single hat defined as

Ê
ð0Þq
fi ¼ Eð0Þq

fi þ 1

2
ðLq

ffE
ð0Þq
fi þ Eð0Þq

fi Rq
iiÞ; (67)

and ĉqLRij defined by combining Eq. (33) with

cqLRji ¼ CqLR
ji

maxfmqj; mqig
; (68)

enter. This is in agreement with the finding of Ref. [23] that the effect of the flavor-changing LL and RR self-energies drops
out in the effective Higgs vertices.

Finally, to arrive at the effective Feynman rules, we project the fields H0
u and H0

d onto the physical components H0, h0,
A0, and H
 as

12Note that these rotations are identical to the ones obtained in the diagrammatic approach (see Ref. [20] for details).
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H0
u¼ 1ffiffiffi

2
p ðH0 sin�þh0 cos�þ iA0 cos�Þ;

H0
d¼

1ffiffiffi
2

p ðH0 cos��h0 sin�þ iA0 sin�Þ;

H1?
u ¼ cosð�ÞH�; H2

d¼ sinð�ÞH�:

(69)

Using Eqs. (65), (66), and (69), the effective Lagrangian
in Eq. (64) leads to the following effective Higgs-quark-
quark Feynman rules13 shown in Fig. 5 (note that the CKM
matrixV in the chargedHiggs coupling is the physical one):

�
LRH0

k
ufui ¼ xku

�
mui

vu

�fi � ~E0u
fi cot�

�
þ xk?d

~E0u
fi;

�
LRH0

k

dfdi
¼ xkd

�
mdi

vd

�fi � ~E0d
fi tan�

�
þ xk?u ~E0d

fi;

�LRH

ufdi

¼ X3
j¼1

sin�Vfj

�
mdi

vd

�ji � ~E0d
ji tan�

�
;

�LRH

dfui

¼ X3
j¼1

cos�V?
jf

�
mui

vu

�ji � ~E0u
ji tan�

�
;

(70)

where forH0
k ¼ ðH0; h0; A0Þ the coefficients xkq are given by

xkd ¼
�
� 1ffiffiffi

2
p cos�;

1ffiffiffi
2

p sin�;
iffiffiffi
2

p sin�

�
;

xku ¼
�
� 1ffiffiffi

2
p sin�;� 1ffiffiffi

2
p cos�;

iffiffiffi
2

p cos�

�
:

(71)

It is important to keep in mind that the ĉqLRij in Eq. (66) must

be calculated using the quantities Yq and Vð0Þ of the MSSM
superpotential.

Note that without the nonholomorphic corrections E0q
ij

the rotation matrices UqL;R would simultaneously

diagonalize the effective mass terms and the neutral
Higgs couplings in Eq. (64). However, in the presence of
nonholomorphic corrections this is no longer the case, and
apart from a flavor-changing nonholomorphic correction a
term proportional to a flavor-conserving nonholomorphic
correction times a flavor-changing self-energy is also
generated.

A. Effective Higgs-quark-quark vertices at NLO

The effective Higgs-quark-quark vertices at NLO in the
MSSM are obtain in the following way: After inserting the

definition for ~E0q
fi [see Eq. (66)] into Eq. (70) we express

Êð0Þq
fi through Ĉð0Þq

fi according to Eq. (58).

VII. CONCLUSIONS

In this article we computed the genuine two-loop SQCD
corrections to the chirality-changing quark self-energies.
In the limit where the external momentum and the quark
mass are zero, we presented relatively simple analytic
results without making further assumptions on the SUSY
spectrum. Because of the one-to-one correspondence (in
the decoupling limit) between chirality-changing quark
self-energies and Higgs-quark-quark vertices, this is an
efficient and elegant way of calculating at the same time
not only effective Higgs vertices but also the Yukawa
couplings and CKM elements of the MSSM superpotential
in terms of the physical quark masses and the physical
CKM matrix.
Our next-to-leading order results increase the values of

Wilson coefficients CqLR
fi of the operators �qfPRqi by ap-

proximately 9% compared to the values obtained at leading
order. This means that, since at large tan� the threshold
corrections to the Yukawa couplings are of order one, the
effect on the down-quark Yukawa couplings of the two-
loop corrections isOð10%Þ. At the same time the matching
scale uncertainty of the effective Higgs-quark-quark cou-
plings and of the corresponding Wilson coefficients is
significantly reduced (see Fig. 3).
We resummed all chirally enhanced corrections modify-

ing the relation between the quark masses and the Yukawa
couplings of the MSSM superpotential up to order
�nþ1
s tann� [see Eq. (51)]. The resulting MSSM Yukawa

couplings can be used for a precision study of Yukawa
unification. Furthermore, using these Yukawa couplings,
we derived effective Higgs-quark-quark vertices [see
Eq. (70)] entering the calculation of FCNC processes and
also of Higgs decays, as long as the momentum transfer is
small compared to the SUSY scale.
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FIG. 5. Higgs-quark vertices with the corresponding Feynman
rules. The couplings with exchanged chirality structure are
obtained from Eq. (70) by using �RLH

qfqi ¼ �LRH?
qiqf .

13Note that some of the Higgs-quark-quark couplings are sup-
pressed by a factor cos� or sin� stemming from the Higgs
mixing matrices. If one decides to keep these suppressed cou-
plings, one should be aware of the fact that they receive proper
vertex corrections in which the suppression factor does not occur
and which are thus tan� enhanced with respect to the tree-level
couplings. Such enhanced corrections to the coupling of H
 to
right-handed up quarks are important for b ! s� [36,37].
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APPENDIX: ONE-LOOP RESULTS

Here we summarize various one-loop results necessary
for the two-loop calculation of the chirality flipping self-
energy (see Ref. [38] for details). Unless stated otherwise,
all expressions appearing in this appendix were obtained in
dimensional regularization. The matrices Wq diagonalize
the squark mass matrices according to Eq. (6), and we use
the definitions

xs ¼
m~ds

m~g

; ys ¼
m~us

m~g

; x� ¼ �

m~g

: (A1)

1. Self-energies

Here we give the explicit one-loop results for quark,
gluino, and squark self-energies in dimensional regulari-
zation, where we put D ¼ 4� 2" and write the renormal-

ization scale in the form �e�=2=ð ffiffiffiffiffiffiffi
4�

p Þ. Our conventions
are such that the calculation of the truncated self-energy
diagrams give �i�.

a. Quark

The one-loop quark self-energies induced by gluinos
and squarks are given by

�~gLR
qfqið0Þ ¼

�s

2�
W ~q

fsW
~q?
iþ3;sCFm~gB0ð0;m2

~g; m
2
~qs
Þ

¼ �s

2�
W ~q

fsW
~q?
iþ3;sCFm~g

�
x2s lnðx2sÞ
1� x2s

� "
x2sðln2ðx2sÞ � 2 lnðx2sÞ � 2 lnðx2sÞ lnðx2�ÞÞ

2ð1� x2sÞ
þOð"2Þ

�
;

�~gLL
qfqið0Þ ¼

�s

2�
W ~q

fsW
~q?
i;s CFB1ð0;m2

~g; m
2
~qs
Þ

¼ � �s

4�
W ~q

fsW
~q?
is CF

�
1

"
þ lnðx2�Þ þ 3� 4x2s þ x4s þ ð4x2s � 2x4sÞ lnðx2sÞ

2ð1� x2sÞ2
�
þOð"Þ: (A2)

Using unitarity, we can replace B0ð0;m2
~g; m

2
~qs
Þ by ½B0ð0;m2

~g; m
2
~qs
Þ � B0ð0;m2

~g; 0Þ� in the first line of �~gLR
qfqið0Þ. This we did

when writing the explicit expression.
The ordinary gluon correction reads in Feynman gauge

�gLL;RR
qfqi ðp2Þ ¼ �s

4�
CFðd� 2ÞB1ðp2;m2

qi ; 0Þ�fi;

¼ �s

4�
CF

�
� 1

"
þ ðp2Þ2 �m4

qi

ðp2Þ2 ln

�
m2

qi � p2 � i0

m2
qi

�
�m2

qi

p2
þ ln

�
m2

qi

�2

�
� 1

�
�fi þOð"Þ; (A3)

�gLR;RL
qfqi ðp2Þ ¼ �s

4�
CFdmqiB0ðp2;m2

qi ; 0Þ�fi;

¼ �s

�
CFmqi

�
1

"
þm2

qi � p2

p2
ln

�
m2

qi � p2 � i0

m2
qi

�
� ln

�
m2

qi

�2

�
þ 3

2

�
�fi þOð"Þ: (A4)

Note that Eqs. (A3) and (A4) are given in dimensional regularization (not dimensional reduction).

b. Gluino

Here we assume that of the three gaugino masses the gluino mass is chosen to be real, which is always possible. For the
gluino self-energy the part induced by a gluon reads

�g
~g ~gðp2Þ ¼ �s

4�
CAðdm~gB0ðp2;m2

~g; 0Þ þ 6pðd� 2ÞB1ðp2;m2
~g; 0ÞÞ; (A5)

which decomposes for on-shell gluinos into

�gLR;RL
~g ~g ðm2

~gÞ ¼
�s

�
CAm~g

�
1

"
þ 3

2
þ lnðx2�Þ

�
þOð"Þ; �gLL;RR

~g ~g ðm2
~gÞ ¼ � �s

4�
CA

�
1

"
þ 2þ lnðx2�Þ

�
þOð"Þ; (A6)

where we inserted the explicit expressions for the loop functions. The part of the gluino self-energy with squarks and
quarks as virtual particles in the approximation mq ¼ 0 is given by

�q~qLR;RL
~g ~g ðp2Þ ¼ 0; �q~qLL;RR

~g ~g ðp2Þ ¼ �s

4�
2 tr

X6
s¼1

ðB1ðp2; 0; m2
~ds
Þ þ B1ðp2; 0; m2

~us
ÞÞ; (A7)
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where the latter reads explicitly for on-shell gluinos

�q~qLL;RR
~g~g ðm2

~gÞ¼��s

4�
2tr

��
1

"
þ2þ lnðx2�Þ

�
nf�1

2

X6
s¼1

�
x2sþð1�x2sÞ2 ln

�
x2s�1�i0

x2s

�
þ lnðx2sÞþðxs!ysÞ

��
þOð"Þ; (A8)

with nf ¼ 6. The quantities �LL
~g ðm2

~gÞ and �LR
~g ðm2

~gÞ that appear in Eq. (A26) are defined as

�LL;LR
~g ðm2

~gÞ ¼ �gLL;LR
~g ~g ðm2

~gÞ þ �q~qLL;LR
~g ~g ðm2

~gÞ: (A9)

c. Squark

For the squark self-energy we have

�~qs~qt ¼ �g
~qs~qt

þ �~gq
~qs~qt

þ �~q
~qs~qt

; (A10)

where the parts refer to the squark self-energy with gluon

�g
~qs~qt

ðp2Þ ¼ �s

4�
CFð2ðp2 þm2

~qs
ÞB0ðp2;m2

~qs
; 0Þ � A0ðm2

~qs
ÞÞ�st; (A11)

�g
~qs~qt

ðm2
~qs
Þ ¼ 3

�s

4�
CFm

2
~qs

�
1

"
� lnðx2sÞ þ lnðx2�Þ þ 7

3

�
�st þOð"Þ; (A12)

the squark self-energy with quark and gluino

�~gq
~qs~qt

ðp2Þ ¼ �s

2�
CFðA0ðm2

~gÞ þ ðm2
~g � p2ÞB0ðp2;m2

~g; 0ÞÞ�st;

�~gq
~qs~qt

ðm2
~qs
Þ ¼ �s

2�
CFm

2
~g

�
2� x2s

"
þ 3� 2x2s þ ð2� x2sÞ lnðx2�Þ þ

�
1

x2s
þ x2s � 2

�
lnð1� x2s � i0Þ

�
�st þOð"Þ;

(A13)

and the squark tadpole self-energy of Fig. 2 [for up (down) type squarks only the diagram with internal up (down) squarks
is nonzero]

�~q ~q
~qs~qt

¼ � �s

4�
CFð�stA0ðm2

~qs
Þ � 2

X3
i;j¼1

X6
s0¼1

ðW ~q?
iþ3sW

~q
iþ3s0W

~q?
js0 W

~q
jt þW ~q?

is W ~q
is0W

~q?
jþ3s0W

~q
jþ3tÞA0ðm2

~qs0
ÞÞ

¼ � �s

4�
CF

�
�stm

2
~qs

�
1

"
þ 1� lnðx2sÞ þ lnðx2�Þ

�
� 2

X3
i;j¼1

X6
s0¼1

ðW ~q?
iþ3sW

~q
iþ3s0W

~q?
js0 W

~q
jt þW ~q?

is W ~q
is0W

~q?
jþ3s0W

~q
jþ3tÞm2

~qs0

�
�
1

"
þ 1� lnðx2s0 Þ þ lnðx2�Þ

�
þOð"Þ

�
: (A14)

Note that �~q ~q
~qs~qt

is independent of the external momentum.
The part proportional to �st in Eq. (A14) is due to Fig. 2(b),
while the second part, which is proportional to at least one
element �qLR

ij , is generated by Fig. 2(a).
Note that in the sum of all contributions to the diagonal

squark self-energy there is no divergence proportional to
p2, and thus no wave-function renormalization is needed in
order to render the diagonal squark two point function finite.

2. Loop functions

The one-loop functions A0ðm2Þ, B0ðp2;m2
1; m

2
2Þ, and

B1ðp2;m2
1; m

2
2Þ in the previous paragraph are defined as

A0ðm2Þ ¼ 16�2

i

�2"e�"

ð4�Þ"
Z dd‘

ð2�Þd
1

½‘2 �m2� ; (A15)

B0ðp2;m2
1; m

2
2Þ ¼

16�2

i

�2"e�"

ð4�Þ"
Z dd‘

ð2�Þd

� 1

½‘2 �m2
1�½ð‘þ pÞ2 �m2

2�
; (A16)

B1ðp2;m2
1;m

2
2Þp�¼16�2

i

�2"e�"

ð4�Þ"
Z dd‘

ð2�Þd

� ‘�

½‘2�m2
1�½ð‘þpÞ2�m2

2�
: (A17)

Here � ¼ ð4� dÞ=2 is an artifact of dimensionally regula-
rizing the ultraviolet divergent loop integral. The function
B0ðm2

1; m
2
2Þ, which also appears, is an abbreviation for

B0ð0;m2
1; m

2
2Þ. We give now relations among these func-

tions and explicit versions for specific arguments
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A0ðm2Þ¼m2

�
1

"
þ ln

�
�2

m2

�
þ1þ

�
�2

12
þ1þ ln

�
�2

m2

�
þ1

2
ln2
�
�2

m2

��
"þOð"2Þ

�
; B0ðm2

1;m
2
2Þ¼

A0ðm2
1Þ�A0ðm2

2Þ
m2

1�m2
2

;

C0ðm2
1;m

2
2;m

2
2Þ¼

@B0ðm2
1;m

2
2Þ

@m2
2

; B0ðp2;m2;0Þ¼ 1

"
� ln

�
m2

�2

�
þ2þm2�p2

p2
ln

�
m2�p2� i0

m2

�
þOð"Þ;

B1ðp2;m2;0Þ¼ 1

2p2
½A0ðm2Þ�ðp2þm2ÞB0ðp2;m2;0Þ�;

B1ðp2;0;m2Þ¼ 1

2p2
½�A0ðm2Þ�ðp2�m2ÞB0ðp2;m2;0Þ�;

B1ð0;m2
1;m

2
2Þ¼�1

2

�
1

"
þ lnðx2�Þþ3�4x2þx4þð4x2�2x4Þ lnðx2Þ

2ð1�x2Þ2
�
; (A18)

with x ¼ m2=m1.

3. One-loop renormalization and counterterms

a. One-loop counterterm diagrams

Squark-mass counterterm diagram:

�LR m~qCT
qfqi ¼ �s

2�
CFm~g

X6
s¼1

�m2
~qs
W

~d
fsW

~d?
iþ3sC0ðm2

~qs
; m2

~qs
; m2

~gÞ

¼ �s

2�
CFm~g

X6
s¼1

W
~d
fsW

~d?
iþ3s

�m2
~qs

m2
~g

1

ð1� x2sÞ2
�
lnðx2sÞ þ 1� x2s þ "

�
lnðx2�Þð1� x2s þ lnðx2sÞÞ � 1

2
ln2ðx2sÞ

þ ðlnðx2sÞ � 1Þx2s þ 1

��
: (A19)

Gluino mass counterterm diagram:

�LR m~gCT
qfqi ¼ �s

2�
CF�m~g

X6
s¼1

W
~d
fsW

~d?
iþ3sðB0ðm2

~g; m
2
~qs
Þ þ 2m2

~gC0ðm2
~qs
; m2

~g; m
2
~gÞÞ

¼ �s

2�
CF�m~g

X6
s¼1

W
~d
fsW

~d?
iþ3s

��x2sðð1þ x2sÞ lnðx2sÞ þ 2ð1� x2sÞÞ
ð1� x2sÞ2

� "
x2s

2ð1� x2sÞ2
½4ð1� x2sÞ þ 2ð1þ x2sÞ lnðx2sÞ

� ð1þ x2sÞln2ð1� x2sÞ þ ð4ð1� x2sÞ þ 2ð1þ x2sÞ lnðx2sÞÞ lnðx2�Þ�
�
: (A20)

�s counterterm diagram:

�LR�sCT
qfqi ¼ ��s

2�
CFm~g

X6
s¼1

W
~d
fsW

~d?
iþ3sB0ðm2

~g; m
2
~qs
Þ

¼ ��s

2�
CFm~g

X6
s¼1

W ~q
fsW

~q?
iþ3;s

�
x2s lnðx2sÞ
1� x2s

� "
x2s

2ð1� x2sÞ
ðln2ðx2sÞ � 2 lnðx2sÞ � 2 lnðx2sÞ lnðx2�ÞÞ

�
: (A21)

b. Renormalization of the Yukawa couplings in the MSSM

Because of supersymmetry, the renormalization of the Yukawa coupling in the quark-quark-Higgs vertex Yqi and the one
in squark-squark-Higgs vertex Y~qi must be identical.14 Indeed, we explicitly find that the counterterms for these couplings
are the same

Yqi;~qið0Þ ¼ Yqi;~qi þ �Yqi;~qi ; �Yqi;~qi ¼ � �s

4�

2

"
CFY

qi;~qi ; (A22)

which even holds in the MS scheme and in the DR scheme at the one-loop level.

14This also includes that the renormalization of the Yukawa coupling entering the squark mass matrices is the same as the
renormalization of the quark-quark-Higgs coupling.
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c. A-term renormalization

In the approximation mq ¼ 0 the SQCD renormaliza-

tion of the A terms is the same as of the Yukawa
coupling.15

d. Squark mass renormalization

Wewrite the connection between the squares of bare and
the renormalized squark masses as

ðm0
~qt
Þ2 ¼ ðm~qtÞ2 þ �m2

~qt
: (A23)

From Eqs. (A12)–(A14) and by taking into account that the
second term of Eq. (A14) only renormalizes the Yukawa
coupling (and the A, A0 terms), we can easily read of �m2

~qt
.

We obtain in the MS scheme

�m2
~qt
¼ �s

4�
CFm

2
~gððx2t þ 4Þ � x2t Þ 1" ; (A24)

where the contribution proportional to (x2t þ 4) comes
from Eqs. (A12) and (A13) while the term �x2t stems
from the part of Eq. (A14) proportional to �st.

e. Gluino-mass renormalization

We decompose the gluino self-energy according to
Eq. (1). Expressing the bare mass [marked with the super-
script (0)] in terms of the physical one

m0
~g ¼ m~g þ �m~g; (A25)

we get in the on-shell scheme

�m~g ¼ �m~g�
LL
~g ðm2

~gÞ ��LR
~g ðm2

~gÞ: (A26)

For details see Ref. [38]. In the MS scheme only the diver-
gence of the right-hand side enters; i.e., weget in this scheme

�m~g ¼ � �s

4�
m~gð3CA � 2 trnfÞ 1" : (A27)

f. Renormalization of gs in the MSSM

In lowest order, the strong coupling constant involved in

CqLR
fi is Yukawa type. The relation between the bare and the

renormalized version reads g0s;Y ¼ ð1þ �Zgs;Y Þgs;Y , where
the renormalization constant in theMS scheme is given by

�Zgs;Y ¼ �s

4�

�
trnf � 3

2
CA

�
1

"
: (A28)

Note that at one loop the renormalization constant is the

same for the MS scheme and the DR scheme.
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