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We investigate the spectrum of supersymmetric grand unification models based on the gauge groups

SUð5Þ, SOð10Þ and E6, paying particular attention to the first and second generation. We demonstrate how

the measurement of the first or second generation sfermion spectrum may be used to constrain the

underlying grand unification structure. The smallness of first and second generation Yukawa interactions

allows us to perform an analytic analysis, deriving expressions for the high scale parameters in terms of

the low scale sfermion masses. We also describe a sum rule that provides an SOð10Þ mass prediction,

distinct from SUð5Þ, and discuss E6 models, both with and without extra exotic matter at low energies. The

derived relations are compared with numerical results including two-loop running and the full Yukawa

dependence.
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I. INTRODUCTION

Recent searches for squarks and gluinos at the Large
Hadron Collider (LHC) [1,2] have greatly constrained the
parameter space of low energy supersymmetry. These
searches have mainly been done within the context of the
constrained minimal supersymmetric standard model
(cMSSM, for a review see Ref. [3]) where the soft super-
symmetry breaking masses are unified at the energy scale
where a grand unified theory (GUT) is presumed to exist.
Within this framework, the experiments find that squarks
must be heavier than about 1.5 TeV and gluinos above
about 850 GeV to remain unobserved at the LHC.

While these results certainly put pressure on the
cMSSM, there is still plenty of room for the discovery of
supersymmetry at the LHC, particularly if one is willing to
allow supersymmetry to have a relatively heavy spectrum.
The desire to keep the supersymmetric spectrum light is
driven by the desire for supersymmetry to be the solution
of the hierarchy problem, using top squark loops to cancel
the quadratic divergence of the Higgs mass arising from
top quark loops. The remaining uncanceled logarithmic
divergence will again require fine-tuning if the stops
become too heavy. Of course, this left over little hierarchy
problem is still vastly less problematic than the required
fine-tuning of the standard model (SM) Higgs sector.
Furthermore, searches for the third generation squarks
remain relatively weak [4]. One could imagine a super-
symmetric model where the first two generations are rela-
tively heavy, avoiding the current LHC constraints, but the
third generation is still rather light, diluting the required
fine-tuning. Indeed, such a scenario is perfectly reasonable
even for GUT constrained supersymmetry, which has no

a priori requirement for a common supersymmetry break-
ing mass scale across the generations. While vastly differ-
ing scales would be difficult to generate using the same
mechanism, hierarchies of a few orders of magnitude
should not be surprising (and are present already in the
SM masses).
Irrespective of the details of the mass spectrum, it is still

not unreasonable to suppose that our first sight of super-
symmetry will be the discovery of squarks and gluinos with
masses of a few TeV. If a hierarchy between the genera-
tions does exist, the exclusion limits set by the LHC would
be weakened [5] since only one generation of squarks
could be available to produce instead of two. If this
generation were the second generation (that is, an inverted
hierarchy with the undetected third generation the lightest
and the first generation the heaviest) the limits would be
further reduced since one could not rely on the valence
content of the proton to enhance squark production. After
such a discovery, our task will be to examine the super-
symmetric spectrum in detail, determine the underlying
mechanism for supersymmetry breaking (see for example
Ref. [6]) and hopefully build a new theory that explains
some of the unanswered questions of the SM.
One such question is, why is the SM built upon the

gauge structure SUð3Þ � SUð2Þ �Uð1Þ? Is this a remnant
of some larger simple group that is spontaneously broken
at a high scale [7]? A GUT scenario of this type is strongly
motivated by the running gauge couplings, which within
supersymmetric models appear to have a common value at
a scale of about MGUT ¼ 2� 1016 GeV [8]. Fixing two of
the gauge couplings by experiment, the third becomes a
successful prediction (or rather postdiction) of supersym-
metric unification.
The most popular candidates of a unified gauge group

are the rank-4, -5, and -6 groups, SUð5Þ, SOð10Þ and E6

respectively (for a review see Ref. [9]), and one expects
this underlying gauge structure should leave an imprint on
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the low scale mass spectrum. In this paper, wewill examine
how we may determine, or constrain, this choice of the
underlying group using only the first or second generation
of squarks and sleptons, and the accompanying gauge
sector. To do this, we will use the renormalization group
equations (RGEs) for the first and second generations,
which allows us to neglect Yukawa couplings and analyti-
cally integrate the one-loop RGEs. When we have a uni-
fication group of rank higher than 4 (the rank of the SM
gauge group), the breaking mechanism generates extra
D-term contributions to the soft SUSY breaking scalar
masses [10]. This is the case of SOð10Þ and E6 and these
D terms will be included in our analysis.

For SUð5Þ, the fermions (and accompanying sfermions)
are embedded in a 10 � �5 representation, so their soft
scalar (GUT scale) masses take on values of m10 or m�5,
depending on which representation they occupy. This is in
contrast to the cMSSM [11], where all sfermions share a
common universal scalar mass m0. For SOð10Þ, although
we have a single 16-dimensional irreducible representation
(irrep) for all the sfermions, 16, with a common scalar
mass m16, the group is rank-5 and must be broken to the
rank-4 gauge group of the SM. The subsequent rank reduc-
tion providesD-term contributions splitting the soft masses
at the GUT scale. E6 is particularly interesting since it is
the largest gauge group that supports the chiral structure of
weak interaction in four dimensions. In this model all the
matter is contained in a single irrep, 27, but the large
representation provides left over room for extra states.
These states could be left at the high scale, and therefore
not contribute to the electroweak (EW) scale spectrum,
or may survive down to low scales and be potentially
discoverable at the LHC. We will consider both cases
here. We will explore all these different possibilities for
the underlying theory being broken at the GUT scale and
its consequences for the observable sfermions masses at
the EW scale.

Generally, in GUT scenarios, extra superheavy gauge
bosons also arise from the adjoint representation of the
unified gauge group, and may mediate baryon number
violating interactions causing proton decay. However, the
supersymmetric GUT scale is considerably higher than that
of a nonsupersymmetric scenario, causing proton decay
through gauge boson interactions to become sufficiently
suppressed. Proton decay may still be problematic, how-
ever, due to the presence of higher dimensional operators
[12]. In this paper, we will assume that this problem is
solved by some unknown mechanism at the GUT scale,
such as embedding the model in higher dimensions [13].
Furthermore, we will assume that contributions from col-
ored triplets arising from higher dimensional Higgs repre-
sentations are absent due to similar considerations that
solve the doublet-triplet splitting problem [14].

This paper is organized as follows. In Sec. II, the ana-
lytic solution of the first and second generation sfermion

mass RGEs is described, allowing us to define the various
coefficients and parameters. In Sec. III, we apply different
boundary conditions to the sfermion masses, and show how
the determination of the soft masses can be used to dis-
tinguish between different supersymmetric grand unifica-
tion scenarios. The SUð5Þ, SOð10Þ and E6 boundary
conditions are considered, and we also describe how the
different GUT boundary conditions provide further con-
straints. Since the E6 27-plet has room for additional exotic
matter, in Sec. IV we also discuss an example of an E6

inspired model containing additional matter at the low
scale, the E6SSM [15]. In Sec. V we demonstrate that the
sum rules are robust to the inclusion of Yukawa couplings
and two-loop effects by comparing with the program
SOFTSUSY [16]. In Sec. VI we briefly discuss the fine-

tuning problem in the light of the recent observation of a
Higgs candidate at the LHC, and conclude in Sec. VII.

II. INTEGRATION OF THE RENORMALIZATION
GROUP EQUATIONS

In this section we will reproduce the analytic scale
dependence of the first or second generation scalar masses,
as well as some sum rules that are applicable independently
of the choice of high scale boundary conditions. These
results are largely available in the literature (see for ex-
ample Ref. [17]) so we include them here for completeness
and to set the notation for the discussion to come.
Neglecting Yukawa couplings, the RGEs for the first or

second generation scalar masses in the minimal supersym-
metric standard model (MSSM) [17,18], to one-loop accu-
racy, are
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¼ � 32

3
g23M

2
3 � 6g22M

2
2 �

2

15
g21M

2
1 þ

1

5
g21S;

(1)

16�2
dm2

~uR

dt
¼ � 32

3
g23M

2
3 �

32

15
g21M

2
1 �

4

5
g21S; (2)

16�2
dm2

~dR

dt
¼ � 32

3
g23M

2
3 �

8

15
g21M

2
1 þ

2

5
g21S; (3)

16�2
dm2

~LL

dt
¼ �6g22M

2
2 �

6

5
g21M

2
1 �

3

5
g21S; (4)

16�2
dm2

~eR

dt
¼ � 24

5
g21M

2
1 þ

6

5
g21S; (5)

where t � logðQ=Q0Þ, with Q the energy scale of interest
and Q0 the unification scale, for which we will use
Q0 ¼ 1:9� 1016 GeV throughout. M1;2;3 are the gaugino

masses corresponding to the usual g1;2;3 gauge couplings,

with RGEs
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8�2 dMi

dt
¼ big

2
i Mi; bi ¼

�
33

5
; 1;�3

�
: (6)

These are identical to the RGEs appearing in Ref. [17],
though our convention for bi differs by a sign.

S is only nonzero if the sfermion masses are not univer-
sal at the GUT scale; it is given by [19,20]

S � TrðYm2Þ
¼ m2

Hu
�m2

Hd

þ X
generations

ðm2
~QL

� 2m2
~uR
þm2

~dR
�m2

~LL
þm2

~eR
Þ: (7)

Notice that the sum over generations results in S also
depending on the third generation soft scalar masses, and
therefore implicitly on the third generation Yukawa
couplings, which cannot be neglected. However, when
constructing the evolution equation for S from the above
definition, one finds that these Yukawa couplings cancel
(for the same reason that the gravitational anomaly
cancels), so an analytic solution is still possible. Indeed,
only terms proportional to S itself survive and one finds

dS

dt
¼ 66

5

�1

4�
S ) SðtÞ ¼ S0

�1ðtÞ
�1ð0Þ : (8)

Here S0 � Sð0Þ is the value of S at the GUT scale and
�1 ¼ g21=4� as usual.

The absence of Yukawa and trilinear couplings allows
Eqs. (1)–(5) to be solved analytically. Furthermore, since
only gauge interactions contribute to the running, if the
sfermion squared mass matrices are flavor-blind at the
input scale, the squared masses of the gauge eigenstates
for the first two generations will remain diagonal at the
supersymmetry breaking scale, with nearly degenerate left/
right masses given by

Lmass ¼ � ’�
L ’�

R

� � m2
’L

þ�’L
0

0 m2
’R

þ�’R

 !
’L

’R

 !
:

(9)

Here ’L=R represents any left-/right-handed squark or

slepton of the first two generations. �’L;R
is a D-term

contribution arising from the breaking of the electroweak
symmetry, SUð2ÞL �Uð1ÞY ! Uð1Þem,

�’L;R
¼ M2

ZðT3’L;R
�Q’L;R

sin2�WÞ cos2�; (10)

where MZ is the Z-boson mass, T3’L;R
the third component

of the weak isospin, Q’L;R
the electric charge and tan� ¼

vu=vd with vu and vd the up-type and down-type Higgs
vacuum expectation values (vevs), respectively. The solu-
tion of Eqs. (1)–(5) is given by [17,19]

m2
~uL
ðtÞ ¼ m2

~QL
ð0Þ þ C3 þ C2 þ 1

36
C1 þ �uL �

1

5
K; (11)

m2
~dL
ðtÞ ¼ m2
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36
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1

5
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m2
~uR
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~uR
ð0Þ þ C3 þ 4

9
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4

5
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~dR
ð0Þ þ C3 þ 1

9
C1 þ �dR �

2

5
K; (14)

m2
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~LL
ð0Þ þ C2 þ 1

4
C1 þ�eL þ

3
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K; (15)

m2
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~LL
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4
C1 þ��L

þ 3

5
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m2
~eR
ðtÞ ¼ m2
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ð0Þ þ C1 þ�eR �

6

5
K; (17)

where we have

CiðtÞ ¼ M2
i ð0Þ

�
Ai

�2
i ð0Þ � �2

i ðtÞ
�2
i ð0Þ

�
� M2

i ð0Þ �ciðtÞ;

i ¼ f1; 2; 3g;
(18)

with

Ai ¼
�
2

11
;
3

2
;� 8

9

�
; (19)

and

KðtÞ ¼ 1

2b1
S0

�
1� �1ðtÞ

�1ð0Þ
�
; (20)

where b1 ¼ 33=5. The equivalence in Eq. (18) defines
�ciðtÞ. Since the squared mass matrices of the squarks and
sleptons in the gauge-eigenstate basis are diagonal for the
first two generations, Eqs. (11)–(17) represent the approxi-
mate physical masses. Again, these equations directly
correspond to those of Ref. [17] except for the inclusion
of the nonuniversal sfermion contribution K and minor
notational differences.
The form of Eqs. (11)–(17) immediately allows one to

write down some simple sum rules relating the running
sfermion masses that are independent of the specific GUT
boundary conditions. For example,

m2
~uL
�m2

~dL
¼m2

~eL
�m2

~�L
¼M2

Zð1�sin2�WÞcos2�; (21)

which are the predictions of Eqs. (3.4) and (3.5) in
Ref. [17]. Since the right-hand side of this equation is
rather small, this also tells us that the left-handed squarks
and left-handed sleptons will, separately, be approximately
degenerate. Two other useful sum rules are

m2
~uL
þm2

~dL
�m2

~uR
�m2

~eR
¼ C3 þ 2C2 � 25

18
C1 � 4:8M2

1=2;

(22)
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and

1

2
ðm2

~uL
þm2

~dL
�m2

~eL
�m2

~�L
Þ þm2

~dR
�m2

~eR

¼ 2C3 � 10

9
C1 � 8:1M2

1=2: (23)

The left equality in Eqs. (22) and (23) is independent of the
GUT scale boundary conditions and true for all values of t.
However, the right equality is assuming the boundary
conditionM1ð0Þ ¼ M2ð0Þ ¼ M3ð0Þ ¼ M1=2 and the values

for Ci were obtained at a scale Q ¼ 1 TeV.

III. BOUNDARY CONDITIONS

We will now consider the effect of fixing boundary
conditions at the GUT scale according to the GUT groups
SUð5Þ, SOð10Þ and E6.

A. SUð5Þ
We first consider an SUð5Þ supersymmetric GUT, break-

ing directly to SUð3Þ � SUð2ÞL �Uð1Þ at the GUT scale,
Q0. Under this gauge group, all the SM fermions as well as
their scalar partners are embedded in a 10 � �5 dimensional

representation, where ~LL and ~dR are in the �5, and ~QL, ~uR
and ~eR are in the 10. With this construction we do not have
a universal scalar mass m0 at the GUT scale, as in the
cMSSM, but instead have a common m10 for the matter in
the 10-plet and a common m�5 for the matter in the 5-plet.
For the minimal SUð5Þ supersymmetric GUT, the Higgs
fields Hu and Hd belong to two distinct five-dimensional
representations, 50 and �50 respectively, so their masses at
the GUT scale are unrelated. For the gaugino mass, we
consider the simplest scenario, where the chiral superfields
in the gauge-kinetic function are in a singlet representation
of SUð5Þ [21]. We then have a common gaugino mass,
M1=2, at the GUT scale. For a discussion of an SUð5Þ GUT
including b-� Yukawa unification, see Ref. [22]. Leaving
the doublet-triplet splitting problem aside, our boundary
conditions are

m2
~QL
ð0Þ ¼ m2

~uR
ð0Þ ¼ m2

~eR
ð0Þ ¼ m2

10; (24)

m2
~dR
ð0Þ ¼ m2

~LL
ð0Þ ¼ m2

�5
; (25)

m2
Hu
ð0Þ ¼ m2

50 ; (26)

m2
Hd
ð0Þ ¼ m2

�50 ; (27)

M2
1ð0Þ ¼ M2

2ð0Þ ¼ M2
3ð0Þ ¼ M2

1=2: (28)

Note that inserting Eqs. (24)–(27) into Eq. (7), we find
S0 ¼ m2

50 �m2
�50 � 0, soK, as defined by Eq. (40), does not

vanish at the EW scale. Considering only the sfermion
sector, we have five unknowns, m�5, m10, M1=2, cos2�
and K, and seven equations, (11)–(17), that relate these

unknowns to (in principle) measurable scalar masses. If we

know the EW scale mass of five sfermions, say ~uL, ~dL, ~eR,

~uR and ~dR, we have an invertible system of equations and
can fully determine our five parameters:

M2
~uL

M2
~dL

M2
~eR

M2
~uR

M2
~dR

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA
¼

0 1 c~uL �~uL � 1
5

0 1 c~dL
�~dL

� 1
5

0 1 c~eR �~eR � 6
5

0 1 c~uR �~uR
4
5

1 0 c~dR
�~dR

� 2
5

0
BBBBBBBBBB@

1
CCCCCCCCCCA

m2
�5

m2
10

M2
1=2

cos2�

K

0
BBBBBBBBB@

1
CCCCCCCCCA
: (29)

In this equation, and throughout the rest of the text, we
have used a capital M to denote the measured low energy
masses, e.g., M~uL ¼ m~uLðM~uLÞ. Also, we have defined

�’ � �’ cos2�; ð’ ¼ ~uL; ~dL; ~eR; ~uR; ~dRÞ; (30)

c~uL � �c3ðM~uLÞ þ �c2ðM~uLÞ þ
1

36
�c1ðM~uLÞ; (31)

c~dL
� �c3ðM~dL

Þ þ �c2ðM~dL
Þ þ 1

36
�c1ðM~dL

Þ; (32)

c~eR � �c1ðM~eRÞ; (33)

c~uR � �c3ðM~uRÞ þ
4

9
�c1ðM~uRÞ; (34)

c~dR
� �c3ðM~dR

Þ þ 1

9
�c1ðM~dR

Þ: (35)

The explicit solutions determining m�5, m10, M1=2, cos2�
and K as a function of the low energy masses are then1

m2
�5
¼ 1

5X5

½ðc~uL þ c~dL
ÞðM2

~uR
þ 5M2

~dR
�M2

~eR
Þ

� c~uRðM2
~uL
þM2

~dL
þ 5M2

~dR
� 2M2

~eR
Þ

� 5c~dR
ðM2

~uL
þM2

~dL
�M2

~uR
�M2

~eR
Þ

þ c~eRðM2
~uL
þM2

~dL
� 2M2

~uR
� 5M2

~dR
Þ�; (36)

m2
10 ¼

1

5X5

½ðc~uL þ c~dL
Þð3M2

~uR
þ 2M2

~eR
Þ

� c~uRð3M2
~uL
þ 3M2

~dL
�M2

~eR
Þ

� c~eRð2M2
~uL
þ 2M2

~dL
þM2

~uR
Þ�; (37)

M2
1=2 ¼

1

X5

ðM2
~uL
þM2

~dL
�M2

~uR
�M2

~eR
Þ; (38)

1The results obtained for SUð5Þ differ from those in Ref. [19],
where in the expression for cos2� the first term is absent.
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cos2� ¼ 1

X5M
2
Zðsin2�W � 1Þ ½c~uL ð2M

2
~dL
�M2

~uR
�M2

~eR
Þ

� c~dL
ð2M2

~uL
�M2

~uR
�M2

~eR
Þ

þ ðc~uR þ c~eRÞðM2
~uL
�M2

~dL
Þ�; (39)

K¼ 1

6X5ðsin2�W�1Þ½�3ðc~uLþc~dL
ÞðM2

~uR
�M2

~eR
Þ

þ3c~uRðM2
~uL
þM2

~dL
�2M2

~eR
Þ�3c~eRðM2

~uL
þM2

~dL
�2M2

~uR
Þ

þ2sin2�Wðc~uLð4M2
~uR
�5M2

~dL
þM2

~eR
Þ

þc~dL
ð5M2

~uL
�M2

~uR
�4M2

~eR
Þ�c~uRð4M2

~uL
�M2

~dL
�3M2

~eR
Þ

�c~eRðM2
~uL
�4M2

~dL
þ3M2

~uR
ÞÞ�; (40)

where X5 is given by

X5 ¼ c~uL þ c~dL
� c~uR � c~eR : (41)

We had seven equations, (11)–(17), but only five
unknowns, so we should have two constraints left over.
These are provided by the sum rules. The unused equations
are (15) and (16); their difference provides the second
equality of Eq. (21) while their sum is part of Eq. (23),
where it has been combined with other masses to remove
the non-Ci terms. The other sum rule, equation (22), is just
a re-expression of Eq. (38).

Some simplification of Eqs. (11)–(17) is possible by
allowing more approximations. For example, since the
running of the gauge couplings is logarithmic, �ci only
have a rather small dependence on the scale where they
are evaluated, and so c~uL � c~dL

. Also �c1 is numerically

rather small and its contribution is diminished by its small
coefficients in Eqs. (34) and (35), so c~uR � c~dR

and c~eR can

be neglected. Furthermore, for TeV scale sfermions,
the contribution from the electroweak D term is small,
since it is added in quadrature, allowing one to neglect
�’. Finally, evaluating the masses at a common scale one

finds

m2
�5
� 1

5X5

½2cLðm2
~uR
þ 5m2

~dR
�m2

~eR
Þ

� cRð12m2
~uL
þ 5m2

~dR
� 5m2

~uR
� 7M2

~eR
Þ�; (42)

m2
10 �

1

5X5

½2cLð3m2
~uR
þ 2m2

~eR
Þ � cRð6m2

~uL
�m2

~eR
Þ�; (43)

M2
1=2 �

1

X5

ð2m2
~uL
�m2

~uR
�m2

~eR
Þ; (44)

K � 1

X5

½cLðm2
~uR
�m2

~eR
Þ � cRðm2

~uL
�m2

~eR
Þ�; (45)

and X5 takes the simplified form

X5 ¼ 2cL � cR: (46)

In an obvious notation, cL � c~uL � c~dL
and cR � c~uR �

c~dR
. The equation for cos2� has dropped out of these

approximate equations since the electroweak D term has
been neglected.

B. SOð10Þ
We now consider grand unification with boundary con-

ditions of SOð10Þ. Now all the squarks and sleptons are
embedded in the fundamental 16-dimensional irrep of
SOð10Þ, including the right-handed sneutrino. We shall
consider here the breaking scenario

SOð10Þ ! SUð5Þ �Uð1Þx ! SUð3Þ � SUð2ÞL �Uð1Þ;
(47)

where we assume that the intermediate breakings all occur
around the GUT scale, motivated by the successful uni-
fication of the gauge couplings in the MSSM. It is impor-
tant to note that SOð10Þ is a gauge group of rank-5, which
means that the breaking chain (47) involves the reduction
of rank from 5 to 4. In general, if one considers a super-
symmetric model with n extra Uð1Þ’s and assumes a Higgs
type mechanism, the extra Uð1Þ’s may be spontaneously
broken by the vevs of the scalar components of the Higgs

superfields � and ��, with charges Qk� and �Qk� respec-
tively. The scalar supersymmetric potential with D terms
included is

VSUSY ¼ 1

M4n�6
ðj�j2 þ j ��j2Þj� ��j2n�2

þX
k

g2k
2

�
Qk�ðj�j2 � j ��j2Þ þX

a

Qka’
2
a

�
2

(48)

and the additional soft SUSY breaking terms have the
form [10]

Vsoft ¼ m2
�j�j2 þm2

��
j ��j2; (49)

where’a plays the role of the usual MSSM scalar fields, gk
are the diverse Uð1Þk gauge couplings,m2

� and m2
��
are soft

scalar masses and M is a mass of order the Planck scale.
The scalar potential is assumed to receive a nontrivial vev
in a nearly D-flat direction of the form

h�i2 � h ��i2 �
��ðm2

��
þm2

�ÞM4n�6

4n� 2

�
1=ð2n�2Þ

; (50)

wherem2
��
þm2

� must be negative at the scale of h�i. After
integrating out the superfields � and ��, the corrections to
the soft scalar masses for the surviving fields ’a are
proportional to their charges under the broken Uð1Þk, hav-
ing the form

�m2
a ¼

X
k

Qkag
2
kDk; (51)
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where the D term is given by2

Dk ¼
1
2 ðm2

��
�m2

�ÞQk�P
l

g2l Q
2
l�

: (52)

One can see that the D terms depend only on the soft
masses m�, m �� and on the Uð1Þk charges, and not on the
form of the scalar potential (48) itself. Even if the scale of
spontaneous symmetry breaking governed by Eq. (50) is
well above m2

soft, the D-term contributions will remain of

order the square of the soft scalar masses.
With this in mind, the breaking of the additionalUð1Þx in

the chain of Eq. (47) at the high scale will involve aD-term
contribution of order m2

soft. For the Higgs sector, we will

consider a simple scenario where both the up-type and
down-type Higgs fields are embedded in a 10-dimensional
irrep of SOð10Þ. Then we have a common scalar mass m16

for the sfermions at the GUT scale, and a common mass
m10 for the Higgs fields. Additionally, due to rank reduc-
tion after the breaking of SOð10Þ, one has D-term contri-
butions of the form of Eq. (51). For the gaugino masses, the
argument that justifies the common GUT scale mass M1=2

for SUð5Þ remains valid. We have then the following
boundary conditions:

m2
~QL
ð0Þ ¼ m2

~uR
ð0Þ ¼ m2

~eR
ð0Þ ¼ m2

16 þ g210D; (53)

m2
~dR
ð0Þ ¼ m2

~LL
ð0Þ ¼ m2

16 � 3g210D; (54)

m2
Hu
ð0Þ ¼ m102 � 2g210D; (55)

m2
Hd
ð0Þ ¼ m102 þ 2g210D; (56)

M1ð0Þ ¼ M2ð0Þ ¼ M3ð0Þ ¼ M1=2; (57)

where g10 is the common value of the gauge couplings at
the GUT scale.

One interesting difference between this scenario and
SUð5Þ unification is the extra relation between Higgs
masses at the GUT scale, which, when inserted into
Eq. (7), results in

S0 ¼ �4g210D: (58)

As before, considering only the sfermion sector we have
five unknowns, m16, g

2
10D, M1=2, cos2� and K, with seven

equations. The measurement of M~uL , M~dL
, M~eR , M~uR and

M~dR
is sufficient to determine these five parameters using

the invertible system

M2
~uL

M2
~dL

M2
~eR

M2
~uR

M2
~dR

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA
¼

1 1 c~uL �~uL � 1
5

1 1 c~dL
�~dL

� 1
5

1 1 c~eR �~eR � 6
5

1 1 c~uR �~uR
4
5

1 �3 c~dR
�~dR

� 2
5

0
BBBBBBBBBB@

1
CCCCCCCCCCA

m2
16

g210D

M2
1=2

cos2�

K

0
BBBBBBBBB@

1
CCCCCCCCCA
: (59)

Here, M1=2 and cos2� and K are given by the same

expressions as for SUð5Þ, Eqs. (38)–(40), whereas m16

and g210D are given by3

m2
16 ¼

1

4X5

½�c~uRð2M2
~dL
þM2

~dR
�M2

~eR
þ 2M2

~uL
Þ

� c~eRðM2
~dL
þM2

~dR
þM2

~uL
þM2

~uR
Þ

þ ðc~dL
þ c~uL ÞðM2

~dR
þM2

~eR
þ 2M2

~uR
Þ

þ c~dR
ð�M2

~dL
þM2

~eR
�M2

~uL
þM2

~uR
Þ�; (60)

g210D ¼ 1

20X5

½�c~uRð2M2
~dL
� 5M2

~dR
þM2

~eR
þ 2M2

~uL
Þ

þ c~eRð�3M2
~dL
þ 5M2

~dR
� 3M2

~uL
þM2

~uR
Þ

� ðc~dL
þ c~uLÞð5M2

~dR
� 3M2

~eR
� 2M2

~uR
Þ

þ 5c~dR
ðM2

~dL
�M2

~eR
þM2

~uL
�M2

~uR
Þ�: (61)

The choice of the Higgs fields in a 10-plet enables us to
relate their GUT scale masses through the relation (58). If
we plug this expression into Eq. (40), we obtain

KðtÞ ¼ �4g210D

2b1

�
1� �1ðtÞ

�1ð0Þ
�
: (62)

Using the expressions for K, Eq. (40), and for g210D,

Eq. (61), which are explicitly dependent on the low energy
squark and slepton masses, we have a further constraint
upon the sfermion masses.
This new relation is useful in distinguishing between

GUT groups since it provides a direct constraint involving
only the sfermion masses. If we do indeed find a first (and/
or second) generation of sfermions at the LHC, measuring
four of these masses will provide an SOð10Þ prediction of
the fifth. To see the significance of this, suppose that we
find a first or second generation of sfermions, and measure
the five masses M~uL , M~dL

, M~eR , M~uR and M~dR
. We cannot

yet use Eqs. (36)–(40) or (60) and (61) to determine the
model parameters since we do not yet know which bound-
ary conditions to apply. However, after inserting the
expressions for K and g210D found in Eqs. (40) and (61),

respectively, Eq. (62) provides an SOð10Þ prediction of the
M~dR

which we can compare to the measured value. One can
2In principle, the form of the D terms can be rather more

complicated, reflecting nontrivial features of the breaking
mechanism. Usually, one considers Dk to be a parameter of
our ignorance of these details.

3The result obtained form16 differ from that in Ref. [19], in the
term proportional to c~dR

.
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see an example of this in Table I (lower section), where
we have presented three scenarios, whose details we
will use for a numerical comparison with SOFTSUSY in
Sec. V.

In this table, values of the masses M~uL , M~dL
, M~eR and

M~uR have been chosen, consistent with unification and

�1< cos2�< 0. For SUð5Þ we have no constraint on
the value of M~dR

so must also treat this as an input, but

for SOð10Þ, expression (62) fixes the value of M~dR
as

shown. Also note that some choices for the masses M~uL ,

M~dL
, M~eR and M~uR , that are acceptable for SUð5Þ and for

which a Eq. (62) provides a seemingly reasonable solution
for M~rR in SOð10Þ, may actually be forbidden for SOð10Þ
since m2

16 < 3g210D and thus m2
~dR
ð0Þ< 0 (though this is not

the case for any of the scenarios shown).
As mentioned earlier, some caution is required, since

this additional sum rule is characteristic of the choosing the
Higgs fields to be in the 10 of SOð10Þ. It would be inter-
esting to perform further studies to investigate which con-
straints on the masses would arise with Higgs embedded in
a 120, or a 126, or even combinations of them.

C. E6

For unification under the group E6, the fundamental
sfermions and Higgs are embedded in a 27 irrep together
with additional exotic matter. For now, let us consider a
simple scenario where all the extra fields (i.e., those that
don’t appear in the MSSM) are integrated out at the high
scale and where the intermediate breaking of E6 subgroups
all occur around the GUT scale. Our motivation is to
explore further constraints on the squark and slepton
masses due to placing all our matter in a 27-plet with a
common scalar massm27 at the GUT scale with GUT scale
masses separated only by D terms.

We consider the breaking

E6 ! SOð10Þ �Uð1ÞS ! SUð5Þ �Uð1ÞS �Uð1ÞX
! SUð3Þ � SUð2ÞL �Uð1Þ: (63)

E6 is a rank-6 group, so the breaking to the SM group
involves a rank reduction of two units and we have two
D-term contributions from the breaking of Uð1ÞS and
Uð1ÞX at the high scale, where the common gauge coupling
has the value g26. As for SUð5Þ and SOð10Þ, we assume a

common value M1=2 for the gaugino masses at the high

scale. The boundary conditions are then

m2
~QL
ð0Þ ¼ m2

~uR
ð0Þ ¼ m2

~eR
ð0Þ ¼ m2

27 � g26DS þ g26DX;

(64)

m2
~dR
ð0Þ ¼ m2

~LL
ð0Þ ¼ m2

27 � g26DS � 3g26DX; (65)

m2
Hu
ð0Þ ¼ m2

27 þ 2g26DS � 2g26DX; (66)

m2
Hd
ð0Þ ¼ m2

27 þ 2g26DS þ 2g26DX; (67)

M1ð0Þ ¼ M2ð0Þ ¼ M3ð0Þ ¼ M1=2; (68)

where at the GUT scale we have

S0 ¼ �4g26DX: (69)

We have six unknowns,m27, g
2
6DS, g

2
6DX,M1=2, cos2� and

K, with seven equations. However, all the sfermions have
the same Uð1ÞS charge, so m2

27 and g26DS always appear in

the combination m2
27 � g26DS in the sfermion boundary

conditions, and cannot be disentangled without extra input
from the Higgs sector. Given that we assume E6 breaks to
SOð10Þ �Uð1ÞS we may identify m2

16 with m2
27 � g26DS

and m2
10 with m2

27 þ 2g26DS. Then the previous equations

TABLE I. Example scenarios to demonstrate the use of the additional SOð10Þ sum rule
and test the sum rules with SOFTSUSY. All masses are GeV (though S0 and g210D have

dimension mass2).

Scenario 1 Scenario 2 Scenario 3

SUð5Þ m�5 781.7 893.7 2856.6

m10 654.8 1385.0 2690.5

m�50 800 1800 2700

SOð10Þ m16 669.9 1268.9 2811.6

m10 800 1800 2700

g210D �19:971� 103 308:263� 103 �666:100� 103

SUð5Þ and SOð10Þ S0 79:886� 103 �1233:05� 103 2664:40� 103

tan� 6.1 8.0 4.6

SUð5Þ and SOð10Þ M~uL 1550 1951 3550

M~dL
1552 1953 3551

M~eR 700 1430 2700

M~uR 1500 1898 3500

SUð5Þ M~dR
1550 1600 3600

SOð10Þ M~dR
1518 1566 3830
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for SOð10Þ, Eqs. (38)–(40), (60), and (61), apply with m2
16

replaced by m2
27 � g26DS. The analysis is then reduced to

that of SOð10Þ.

IV. INCLUDING ADDITIONAL MATTER:
THE E6SSM

In Sec. III we demonstrated that one may determine
some of the free parameters of a grand unified model just
by the measurement of the sfermion masses. For SUð5Þ and
SOð10Þ we found analytic solutions for those parameters
and additional constraints on the squark and slepton masses
of the first two generations. In Sec. III C we considered the
GUT group E6 and found that it is not possible to deter-
mine all the boundary condition parameters of the sfermion
sector from the sfermion masses alone, since one could not
disentangle the 27-plet mass from the Uð1ÞS D term. The
analysis of the mass spectrum reduced to that of SOð10Þ
with an effective m16.

However, this E6 analysis was done with the assumption
that the extra matter that fills up the 27-plet remains at the
high scale, so that the RGEs remain as they were for SUð5Þ
and SOð10Þ. In principle, there is no reason why this
additional matter should not be present at low energy
scales, as described by the exceptional supersymmetric
standard model (E6SSM) [15]. This model is inspired by
the breaking of a GUT symmetry E6 down to the gauge
group of the SM with an additional Uð1ÞN . The particular
choice ofUð1ÞN remaining at low energies is such that only
the right-handed neutrino is left neutral allowing it to
naturally maintain a high mass, thereby facilitating the
seesaw mechanism for neutrino masses.

In order to preserve gauge coupling unification, two
additional SUð2ÞL doublets, H0 and �H0, are required.

These are presumed to arise from incomplete 270 and 270
irreps respectively and lead to a doublet-25-plet splitting
similar to the doublet-triplet splitting problem that we can
find both in SUð5Þ and SOð10Þ GUTs. These additional
fields are also useful in providing a solution to the baryon
asymmetry problem [23]. The Higgs fields are now
embedded in the 27-plet, so three generations of Higgs
are required (as well as an additional singlet Higgs for each
generation), though only the third generation Higgs gain
vevs. This latter requirement is arranged using an approxi-
mate ZH

2 symmetry, and additional ZB
2 or ZL

2 symmetries
(analogous to R parity) may be invoked to prevent flavor
changing neutral currents. The theory gives rise to a dis-
tinctive low energy spectrum [24,25], which includes color
triplet fermions that may be discovered at the LHC. In
Refs. [15,24] these color triplet fermions are labeledD and
�D, but here since we have so many Ds already, we shall
refer to them as T and �T (where ‘‘T’’ stands for triplet).

To perform an analysis of the first and/or second gen-
eration sfermion sector, along the lines of our analysis of
SUð5Þ and SOð10Þ, we must take into account the contri-
bution of the extra fields, and the extra Uð1ÞN symmetry, to

the RGEs. In particular we will have an extra S0 contribu-
tion from the extra Uð1ÞN , a D term from the breaking of
Uð1ÞN at the TeV scale, g021 D

0, analogous to the electro-
weak �� and a high scale D term g26D arising from the

breaking of the additional Uð1Þ combination orthogonal to
Uð1ÞN , which we shall refer to as Uð1ÞM. The charges of
the fields in the 27 with respect to Uð1ÞN and Uð1ÞM are
given in Table II.
One finds that the RGEs for S and S0 are coupled,

dS

dt
¼ 96

5

�1

4�
S� 1

5

�0
1

4�
S0; (70)

dS0

dt
¼ � 24

5

�1

4�
Sþ 94

5

�0
1

4�
S0; (71)

so a simple analytical expression of the form of Eq. (8), as
one had for SUð5Þ and SOð10Þ, is not available. Since most
of the E6 matter is now in a single multiplet, their contri-
butions to S cancel, leaving only the contributions from H0
and �H0, giving

S0 � Sð0Þ ¼ �m2
270 þm2

270
; (72)

S00 � S0ð0Þ ¼ 4m2
270 � 4m2

270
: (73)

Therefore in scenarios with unified H0 and �H0 masses, the
SðtÞ and S0ðtÞ terms will be identically zero for all scales.
Integrating (70) and (71) we get the coupled equations,

SðtÞ ¼ S0 þ 1

5
K0ðtÞ � 96

5
KðtÞ; (74)

S0ðtÞ ¼ � 1

4
S0 � 94

5
K0ðtÞ þ 24

5
KðtÞ; (75)

where we have used S00 ¼ �4S0. Here K0 is the Uð1ÞN
equivalent of K with a definition analogous to Eq. (40).
The integrated RGEs are now

m2
~uL
ðtÞ ¼ m2

~QL
ð0Þ þ CE6

3 þ CE6

2 þ 1

36
CE6

1 þ 1

4
C0
1 þ �uL

þ�0
uL �

1

5
K � 1

20
K0 � g26D; (76)

m2
~dL
ðtÞ ¼ m2

~QL
ð0Þ þ CE6

3 þ CE6

2 þ 1

36
CE6

1 þ 1

4
C0
1

þ�dL þ �0
dL

� 1

5
K � 1

20
K0 � g26D; (77)

TABLE II. Uð1ÞN and Uð1ÞM normalized charges of the fields
in the 27 of E6.

QL uR dR LL eR NR S H2 H1 T �Tffiffiffiffiffiffi
40

p
QN 1 1 2 2 1 0 5 �2 �3 �2 �3ffiffiffiffiffiffi

200
3

q
QM 1 1 �2 �2 1 4 1 �2 1 �2 1
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m2
~uR
ðtÞ ¼ m2

~uR
ð0Þ þ CE6

3 þ 4

9
CE6

1 þ 1

4
C0
1 þ �uR

þ�0
uR þ

4

5
K � 1

20
K0 � g26D; (78)

m2
~dR
ðtÞ ¼ m2

~dR
ð0Þ þ C

E6

3 þ 1

9
C
E6

1 þ C0
1 þ�dR

þ �0
dR

� 2

5
K � 1

10
K0 þ 2g26D; (79)

m2
~eL
ðtÞ ¼ m2

~LL
ð0Þ þ CE6

2 þ 1

4
CE6

1 þ C0
1 þ �eL

þ�0
eL þ

3

5
K � 1

10
K0 þ 2g26D; (80)

m2
~�L
ðtÞ ¼ m2

~LL
ð0Þ þ C

E6

2 þ 1

4
C
E6

1 þ C0
1 þ ��L

þ�0
�L

þ 3

5
K � 1

10
K0 þ 2g26D; (81)

m2
~eR
ðtÞ ¼ m2

~eR
ð0Þ þ CE6

1 þ C0
1 þ�eR þ�0

eR �
6

5
K

� 1

20
K0 � g26D; (82)

where

CE6

i ðtÞ ¼ M2
i ð0Þ

�
AE6

i

�2
i ð0Þ � �2

i ðtÞ
�2
i ð0Þ

�
¼ M2

i ð0Þ �cE6

i ðtÞ;

i ¼ f1; 2; 3; 4g;
(83)

with

AE6

i ¼
�
1

8
;
3

8
;
20

3
;
1

47

�
: (84)

Note that here we have identified C
E6

4 � C0
1, andM4 as the

mass of the Uð1ÞN gaugino. Also, the Uð1ÞN D term is

�0
’ ¼ g021

2
ffiffiffiffiffiffi
40

p QN
’D

0; (85)

where we define

D0 � ffiffiffiffiffiffi
40

p ðQN
H1
v2
d þQN

H2
v2
u þQN

S v
2
sÞ; (86)

with QN
’ the Uð1ÞN charges of the field ’ and vd;u;s the

down-type, up-type and singlet Higgs vevs respectively. In
principle this D0 is entirely measurable at low energies
from the Higgs properties and Z0 mass, but this will be
very challenging and we will here assume that D0 is an
unknown.

Inserting the Uð1ÞN charges into �0
’ in Eqs. (76)–(82),

we notice that the K0 and the g021 D
0 always appear in the

combination

20DN � 1

4
g021 D

0 � K0; (87)

and so cannot be disentangled without extra information
(the factor 20 is for later notational convenience).
We have six unknowns and seven equations so this

time we must make use of either m2
~eL
ðtÞ or m2

~�L
ðtÞ.

Unfortunately, neither is a good choice since they fail to
provide orthogonal information on the system, preventing
us from determining all six parameters. To overcome this,
it may be possible to also consider the first and second
generation exotic colored triplet fields, T1;2 or �T1;2, or more

precisely their scalar partners. In order to provide analytic
solutions, as our previous treatment, we require small
Yukawa couplings, 	1;2. Further discussion of these fields

can be found in Ref. [24]. If 	1;2 are small we have an extra

equation for the ~T1;2 mass,

m2
~T1;2

ðtÞ ¼ m2
~T1;2

ð0Þ þ CE6

3 þ 1

9
CE6

1 þ C0
1 þ�T1;2

þ �0
T1;2

þ 2

5
K þ 1

10
K0 þ 2g26D: (88)

We now have sufficient equations to solve for the six
unknowns m27, DN, M1=2, cos2�, K and g26D, which, as

in the previous cases, are now fully determined by the low
energy sfermion masses:

M2
~uL

M2
~dL

M2
~eR

M2
~uR

M2
~dR

M2
~T1;2

0
BBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCA

¼

1 c~uL �~uL � 1
5 �1 �1

1 c~dL
�~dL

� 1
5 �1 �1

1 c~eR �~eR � 6
5 �1 �1

1 c~uR �~uR
4
5 �1 �1

1 c~dR
�~dR

� 2
5 �2 2

1 c ~T1;2
� ~T1;2

2
5 2 2

0
BBBBBBBBBBBBB@

1
CCCCCCCCCCCCCA

m2
27

M2
1=2

cos2�

K

DN

g26D

0
BBBBBBBBBBBB@

1
CCCCCCCCCCCCA
:

(89)

This provides us with the same results as before for M1=2,

cos2� and K, and the additional expressions

m2
27 ¼

1

3X5

½�c~uRðM2
~dL
þM2

~T1;2
þM2

~uL
Þ

� c~eRðM2
~dL
þM2

~T1;2
þM2

~uL
Þ

þ ðc~dL
þ c~uLÞðM2

~T1;2
þM2

~eR
þM2

~uR
Þ

þ c ~T1;2
ð�M2

~dL
þM2

~eR
�M2

~uL
þM2

~uR
Þ�; (90)

DN ¼ 1

20X5

½c~eR ð�2M2
~dL
þ5M2

~dR
�5M2

~T1;2
�2M2

~uL
þ4M2

~uR
Þ

þc~uRð2M2
~dL
þ5M2

~dR
�5M2

~T1;2
�4M2

~eR
þ2M2

~uL
Þ

þðc~dL
þc~uLÞð�5M2

~dR
þ5M2

~T1;2
þ2M2

~eR
�2M2

~uR
Þ

þðc~dR
�c ~T1;2

ÞðM2
~dL
�M2

~eR
þM2

~uL
�M2

~uR
Þ�; (91)
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g26D ¼ 1

12X5

½c~eRð2M2
~dL
� 3M2

~dR
�M2

~T1;2
þ 2M2

~uL
Þ

þ c~uRð2M2
~dL
� 3M2

~dR
�M2

~T1;2
þ 2M2

~uL
Þ

þ ðc~dL
þ c~uL Þð3M2

~dR
þM2

~T1;2
� 2M2

~eR
� 2M2

~uR
Þ

þ ð3c~dR
þ c ~T1;2

Þð�M2
~dL
þM2

~eR
�M2

~uL
þM2

~uR
Þ�:
(92)

The sum rule of Eq. (21) remains unchanged since
the extra E6 contributions cancel [in particular ~uL and ~eL
have the same Uð1ÞN charges as ~dL and ~�L respectively].
However, equations (22) and (23) are changed by the
presence of extra matter. Eliminating m2

’ð0Þ, �’, K and

DN from Eqs. (76)–(82), we find

m2
~uL
þm2

~dL
�m2

~uR
�m2

~eR
¼ CE6

3 þ 2CE6

2 � 25

18
CE6

1 � 3

4
C0
1

� 2:8M2
1=2; (93)

and

1

2
ðm2

~uL
þm2

~dL
�m2

~eL
�m2

~�L
Þ þm2

~dR
�m2

~eR

¼ 2CE6

3 � 10

9
CE6

1 � 3

4
C0
1 � 4:4M2

1=2: (94)

These are considerably different from the sum rules for
SUð5Þ, SOð10Þ and E6 (with no extra matter) and so should
allow us to distinguish the E6SSM even without seeing the
additional exotic T1;2, �T1;2 or their scalar partners.

V. A COMPARISON WITH SOFTSUSY

In this section, we will check that the SUð5Þ and SOð10Þ
sum rules obtained from the one-loop RGEs for the first and
second generations are consistent with the results arising
from SOFTSUSY 3.3.0 [16], when SUð5Þ and SOð10Þ boundary
conditions are imposed. This will then assess the impact of
including the full Yukawa couplings as well as the two-loop
corrections. We will not compare the E6SSM sum rule
results, since this requires the implementation of new
RGEs into SOFTSUSY. While this is in principle available
(see Ref. [24]) we leave this for a future study.

A. SUð5Þ boundary conditions

To test the sum rules of Eqs. (22) and (23), one would
like to fix all but one of the sparticle masses on the left-
hand side of the equations. One could then vary M1=2 and

compare the remaining mass prediction from the sum rule
with the equivalent prediction from SOFTSUSY including
two-loop running and a full dependence on the Yukawa
couplings. This would tell us how robust these sum rules
are under removal of the assumptions used to provide an
analytic solution. However, since all of the masses on the
left-hand sides are outputs of SOFTSUSY, this is rather tricky
to do. Instead, we define

�1 � M2
~uL
þM2

~dL
�M2

~uR
�M2

~eR
; (95)

�2 � 1

2
ðM2

~uL
þM2

~dL
�M2

~eL
�M2

~�L
Þ þM2

~dR
�M2

~eR
; (96)

so that the sum rules become

�1 ¼ 4:8M2
1=2; (97)

�2 ¼ 8:1M2
1=2: (98)

Now we fix all the input parameters except for M1=2 and

compare the predictions for �1 and �2 both from these
simple sum rules and from SOFTSUSY as M1=2 is varied.

The required inputs are tan� and the boundary condi-
tions at the unification scale. For SUð5Þ, these are the
common scalar masses m�5, m10, m�50 and m50 , the common
universal gaugino mass M1=2, and a common universal

trilinear coupling A0. Note that the choice of A0 is unim-
portant, since the contributions from trilinear terms are
negligible for the first and second generations. However,
one should ensure that the choice of A0 does not generate
an unstable vacuum; a safe choice is to set A0 ¼ 0. For m�5

and m10 and tan�, we choose SUð5Þ inputs that generate
the masses of scenarios 1, 2, and 3 we already examined in
Sec. III. These SUð5Þ inputs are shown in Table I. The
Higgs masses m�50 and m50 are related through the parame-
ter S0, and we choose to fix S0 to reproduce the three
scenarios. Then, the only additional input required is m�50 ,
which was not needed in the earlier analysis. The chosen
values for m�50 are given in Table I and then m50 is fixed by

m50 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S0 þm2

�50

q
: (99)

We make no attempt to constrain m�50 here using the LHC
Higgs mass constraints [26] since our only motivation is to
show that these sum rules are robust to the inclusion of
higher orders and the Yukawa couplings.
The results are shown in Fig. 1, where the solid lines are

the sum rules of Eqs. (97) and (98) and the corresponding
dashed lines are the results obtained from SOFTSUSY. We
observe good agreement between the analytic sum rules
and the masses obtained from SOFTSUSY at two loops,
indicating that these sum rules are robust.

B. SOð10Þ boundary conditions

We also test the sum rules for SOð10Þ boundary con-
ditions. Now, in addition to tan�, we have a common mass
for the sfermions, m16, a common mass for the Higgs, m10,
and D term arising from the breaking of SOð10Þ, g210D. As

before, we chose our inputs, m16, tan� and g210D, such that

they reproduce our example scenarios. Again, the common
Higgs mass was not needed for the earlier examples, but
now we must fix it within SOFTSUSY and use the values
given in Table I. The results of this analysis are the two
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upper sets of curves in Fig. 2. Once again, the analytic sum
rules are in good agreement with SOFTSUSY.

We saw earlier that SOð10Þ also implied an extra con-
straint, Eq. (62), which relates K (and therefore S0) to the
D term. Since K and g210D are both functions of the low

energy masses, Eqs. (40) and (61), this provides us with an
additional sum rule. As for the previous sum rules, this
form is a little hard to check in SOFTSUSY since both sides
of the equation are outputs of SOFTSUSY. We therefore first
make a few manipulations to bring an input onto one side
of the equation, allowing us to vary the input and check the
robustness of the sum rule. Substituting Eq. (38) into (61)
one can write

g210D ¼ Dþ 5c~dR

M2
1=2

20
; (100)

where

D � 1

20X5

½�c~uRð2M2
~dL
� 5M2

~dR
þM2

~eR
þ 2M2

~uL
Þ

� c~eRð�3M2
~dL
þ 5M2

~dR
� 3M2

~uL
þM2

~uR
Þ

þ ðc~dL
þ c~uLÞð5M2

~dR
� 3M2

~eR
� 2M2

~uR
Þ�: (101)

Substituting this back into the constraint, Eq. (62), and
rearranging to place M1=2 on the right-hand side, we find

�3 ¼ 1

4
M2

1=2; (102)

where

�3 � 1

c~dR

�
� 1

2
b1K

�
1� �1ðtÞ

�1ð0Þ
��1 �D

�
: (103)

All the masses in K and D, and hence �3, are outputs, so
the sum rule may be compared with SOFTSUSY as the input
M1=2 is varied. These comparisons are shown as the lower

set of curves in Fig. 2, where the solid curve is the simple
analytic expression and the dashed curve is the SOFTSUSY

result. Once again we have good agreement indicating that
these rules are robust.

VI. THE 125 GEV HIGGS CANDIDATE
AND FINE-TUNING

The recent observation of a 125 GeV Higgs candidate at
the LHC [26] raises further questions. In general, the Higgs
boson has little effect on the first and second generation
spectrum since the corresponding Yukawa couplings are
very small. However, it does constrain the third generation,
so in models with a unified high scale physics, it will
naively restrict the GUT scale scalar mass from which
the first and second generation masses must be run. A
125 GeV Higgs is approaching the limit of feasibility for
MSSM models; to provide such a heavy Higgs one needs a
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FIG. 1. A comparison of the SUð5Þ analytic sum rules with SOFTSUSY for example scenarios 1, 2, and 3. The lower solid line is the
sum rule of Eq. (97) while the upper solid line is that for Eq. (98). The corresponding dashed lines are the results obtained from
SOFTSUSY.
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large stop mass, so in a SUð5Þ GUT one might expect to
need a value of m10 approaching a few TeV. However, this
is not the full story since other parameters, such as the
gaugino mass, also provide a significant contribution to the
stop mass, and may be enough to provide a heavy enough
stop to force a 125 GeV Higgs without requiring a large
value of m10. The interplay of the various parameters
quickly becomes rather complicated and is beyond the
scope of this paper, so we reserve this topic for a future
publication.

It seems fairly generally true that, irrespective of the
source of the stop mass, the thus far absence of super-
symmetry at the LHC indicates that the supersymmet-
ric spectrum, if it exists, must be heavier than was once
hoped. This leads to the models requiring some degree
of fine-tuning in order to get the correct Z-boson mass,
doing damage to one of supersymmetry’s most com-
pelling motivations. We close with two further com-
ments on this matter. First, let us not throw the baby
out with the bath water; even a multi-TeV supersym-
metric spectrum is less fine-tuned than the standard
model and its hierarchy problem. Supersymmetric
models, and in particular supersymmetric GUTs, have
many desirable features and solve so many problems
that we should continue to explore their possibility.
Second, fine-tuning should not be used as a razor to
remove misbehaving theories, but as an indicator of
where theories are incomplete and can be improved.

With this in mind, an observation of a multi-TeV
supersymmetry spectrum, most probably with the first
and second generation sfermions, would provide an
opportunity to probe the high scale physics using the
techniques described here, possibly leading to new
theoretical developments and a physical explanation
of why the Z-boson mass and supersymmetry in gen-
eral are not fine-tuned after all.

VII. DISCUSSION AND CONCLUSION

In this paper we have studied the RGEs of the sfermion
masses of the first and second generations for SUð5Þ,
SOð10Þ and E6 boundary conditions. Neglecting Yukawa
couplings in the one-loop RGEs for the first two genera-
tions allows an analytical analysis. The parameters of the
underlying theory were determined as explicit functions of
the low scale squark and slepton masses. An SOð10Þ super-
symmetric GUT, with the choice of Higgs fields in a
10-dimensional representation, provides further con-
straints on the low scale masses when compared to
SUð5Þ. A simplistic E6 model that breaks to SOð10Þ �
Uð1Þ at the GUT scale, with no extra matter below the
GUT scale, presents a similar picture to SOð10Þ only with
m2

16 replaced with the combination m2
27 þ 2g26DS. The

same analysis was also done for the E6SSM, where an
extra Uð1Þ and additional matter survive down to the
electroweak scale. These new effects alter the RGEs as
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FIG. 2 (color online). A comparison of the SOð10Þ analytic sum rules with SOFTSUSY for example scenarios 1, 2, and 3. The lower
solid line is now the sum rule of Eq. (102), while the middle solid line and the upper solid line are the sum rules given by Eqs. (97) and
(98), respectively. The corresponding dashed lines are the results obtained from SOFTSUSY.
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well as introduce new D terms, at both the GUT and
electroweak scales.

The possibility of performing an analytical study of the
RGEs of the first and second families allowed us to obtain
sum rules for the different models, and we observe that the
E6SSM is clearly distinguishable from the other three
cases. These sum rules can therefore be used to quickly
identify the GUT gauge group from the spectrum of the
first two generations.

Of course, the underlying GUT scale parameters will
also affect the RGEs of the third generation. Analytic
expressions for these parameters in terms of the low scale
first or second generation masses allow one to use the first
or second generation masses as inputs to the analysis of
the third generation. Since the experimental constraints on
the supersymmetric parameter space come mainly from the
first and second generation, using these as inputs may
provide a more efficient methodology for exploring the
third generation parameter space of grand unified models.
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