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The Lee-Wick (LW) formulation of higher-derivative theories can be extended from one in which the

extra degrees of freedom are represented as a single, heavy, negative-norm partner for each known particle

(N ¼ 2), to one in which a second, positive-norm partner appears (N ¼ 3). We explore the extent to which

the presence of these additional states in a LW Standard Model affect precision electroweak observables,

and find that they tend to have either a marginal effect (e.g., quark partners on T) or a substantial beneficial

effect (e.g., Higgs partners on the Zb �b couplings). We find that precision constraints allow LW partners to

exist in broad regions of mass parameter space accessible at the LHC, making LW theories a viable

Beyond Standard Model candidate.
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I. INTRODUCTION

If the particle of mass 126 GeV recently discovered [1,2]
at the Large Hadron Collider (LHC) turns out (as is widely
expected) to be the Higgs scalar, then particle physics will
have at last undeniably moved into the Beyond Standard
Model (BSM) era. The theoretical difficulties of a universe
in which the Standard Model (SM) is the ultimate theory of
particle physics are well known: In addition to requiring
three complete generations of fermions, and ignoring grav-
ity but nevertheless incorporating three distinct fundamen-
tal interactions, the SM suffers from the famous hierarchy
problem of a scalar particle whose renormalized mass lies
quite close to the scale of electroweak symmetry breaking,
rather than being driven to GUT- or Planck-scale values by
the exigencies of regularizing a quadratic divergence. The
most popular BSM remedies for the hierarchy problem
are also well known: Low-scale supersymmetry (SUSY),
large extra spacetime dimensions, and little Higgs models.
As the LHC continues to generate vast amounts of new
experimental data, the constraints of phenomenological
viability are pushing each approach into ever smaller
regions of its respective parameter space. The moment of
truth for many BSM models is rapidly approaching.

The same can be said for a less well-studied approach,
the Lee-Wick Standard Model (LWSM) of Grinstein,
O’Connell, and Wise [3]. Inspired by the Lee and Wick
(LW) program [4] of performing renormalization by pro-
moting the spurious Pauli-Villars regulator to the status of
a full, dynamical, negative-norm field, Ref. [3] showed that
introducing LW partners for SM particles with the same
gauge couplings eliminates quadratic divergences in loop
calculations. The cancellation between positive- and
negative-norm states in loops resembles the cancellation
between fermions and bosons in SUSY, while the fact that
the particle and its LW partner share the same statistics but

carry an opposite type of parity is reminiscent of the
bottom of a tower of Kaluza-Klein excitations in extra-
dimension models.
The latter analogy becomes more apparent when one

realizes that LW models need not terminate with a single
partner. As shown in Ref. [3], the LW Lagrangian is
equivalent to a particular higher derivative (HD) theory;
in particular, it is one in which four-derivative bosonic and
three-derivative fermionic interaction terms appear, and
the full HD field consists of both the conventional field
and its LW partner. Of course, not just any HD Lagrangian
produces an equivalent LW theory; only those that produce
propagator poles at real mass values are valid for the pur-
pose. Labeling theories byN, the number of poles in the HD
field propagator, the conventional single-pole theory is
labeled as N ¼ 1, and the original LW theory is labeled as
N ¼ 2, but in principle nothing prevents the construction of
N � 3 theories [5]. In such theories, one can show that the
partner states alternate in norm as their mass parameters
increase. The cancellation of quadratic divergences requires
the participation of all N states through delicate sum rules
among their couplings that seem conspiratorial at the level
of the LW theory, but merely reflect the improved power
counting of the equivalent HD theory.
While not as thoroughly studied as other BSM

approaches, the original LWSM approach [3] has never-
theless inspired research leading to numerous publications
in several different areas, including early universe models,
quantum gravity, thermodynamics, and formal studies of
field theory. The last of these deserves special mention,
because negative-norm states in field theory are peculiar
objects. As has been known for decades [6], the apparent
violation of unitarity induced by such states can be traded
for the imposition of future boundary conditions that intro-
duce causality violation at microscopic levels. To date, no
logical argument precludes the existence of such exotic
behavior, and the existence of microcausality violation can
only be bounded experimentally by measurements at suc-
cessively higher energy scales.
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For the purposes of this paper, we avoid such thorny
issues and adopt instead the pragmatic viewpoint that LW
theories (or their HD equivalents) should merely be treated
as effective theories good to scales of at least 14 TeV, the
upper limit of physics to be probed at the LHC in the near
future. The question of the viability of LWSM variants then
relies upon whether the new states can be produced and
observed directly, and for what mass ranges they satisfy the
stringent experimental constraints imposed by electroweak
precision tests (EWPT). Both of these questions have been
studied in some detail in the original N ¼ 2 LWSM; in the
case of direct production, Refs. [7,8] find that N ¼ 2 LW
gauge bosons, for example, can readily be produced at the
LHC, but they may be difficult to distinguish from novel
states from other scenarios, such as extra-dimension mod-
els. Precision observables in theN ¼ 2 theory, on the other
hand, have been examined in a succession of improve-
ments (by scanning the LW parameter space [9]; by includ-
ing only LW masses for the fields most important for the
hierarchy problem [10]; by using not just oblique parame-
ters S, T, but also the ‘‘post-LEP’’ parameters W, Y [11];
and by including bounds from the Zb �b direct correction
[12]), with the consensus conclusion that LW gauge boson
masses must be well over 2 TeV, and in such cases, the LW
fermion masses must be substantially higher (perhaps as
much as 10 TeV). If all LW masses are comparable, then
the lower bound on this scale is typically�7 TeV. The LW
Higgs partners, on the other hand, appear to be much less
tightly constrained and produce milder constraints on col-
lider phenomenology [13–16].

In comparison, only one collider physics study of the
N ¼ 3 LWSM has thus far appeared [17], a paper by the
present authors generalizing the study of W boson produc-
tion in Ref. [7], and showing not only that such bosons can
readily be produced, but also that their mass spectrum gen-
erates a signature likely unique among known BSM models.
The next logical step is, of course, a study of EWPT in the
N ¼ 3 LWSM, which is the purpose of this paper.

On general principles, one naturally expects the N ¼ 3
LWSM to allow for less stringent lower bounds on new
particle masses compared to the N ¼ 2 model, making for
earlier discovery potential at the LHC. Of course, simply
by adding new degrees of freedom to the theory (extending
from N ¼ 2 to N ¼ 3) and then fitting to EWPT, one
expects the bounds to relax; however, in LW models, one
might expect the effect to be more pronounced because the
negative-norm states and the new positive-norm states can
produce a substantial numerical cancellation just between
themselves (although the SM state must also be included in
order to cancel the quadratic divergences). Since theN ¼ 2
LWSM may be thought of as an N ¼ 3model in which the
masses of the negative-norm states are fixed and the masses
of the additional positive-norm states are taken to infinity,
one expects a substantial relaxation of tension in EWPT
compared to the N ¼ 2 LWSM when the positive-norm

masses are adjusted to lie not excessively higher than the
negative-norm masses. In detailed fits, we find that this
reasoning holds up to scrutiny in the scalar sector, while the
addition of N ¼ 3 fermions generates much more nuanced
changes, sometimes even moving in the same direction as
the N ¼ 2 contribution. After a detailed analysis, one finds
that a large parameter space of LHC-accessible masses
remains open to LW partner states, making the N ¼ 3
LWSM phenomenologically viable and attractive.
This paper is organized as follows: In Sec. II, we review

the formalism of the N ¼ 3 LWSM. Section III defines the
oblique EWPT parameters used in the fits, while Sec. IV
considers an important nonoblique EWPT variable, the
ZbL �bL coupling. In Sec. V, we analyze the effects of
EWPT and present bounds on the N ¼ 3 LWSM particle
masses. Section VI offers discussion and concluding remarks.

II. REVIEW OF THE N ¼ 3 LEE-WICK
STANDARD MODEL

A Lee-Wick theory of degree N for a given field �̂ is a
particular higher-derivative theory in which the original
Lagrangianwith a canonical kinetic energy term is augmented
by the addition of terms containing up to 2N additional
covariant derivatives. Such a Lagrangian may be reexpressed

in terms of an equivalent auxiliary field formalism inwhich �̂

is a linear combination ofN fields�ð1Þ;ð2Þ;...;ðNÞ that alternate in
the sign of their quantum-mechanical norm. As shown in
Ref. [5] and summarized in this section, this construction

can be implemented independently for fields �̂ that are real
or complex scalars, fermions, or gauge fields. In particular, no
obvious theory constraint fixes the mass parameters that
appear with each additional pair of derivatives acting upon
each field, so that onemay consider scenarios, for example, in
which only some of the SM particles have one LW partner,
some have two, and some have none.
In the N ¼ 2 LW theory, the opposite-sign norms are

incorporated by the fields corresponding to particles and
their partners that appear in the Lagrangian with a relative

sign, i.e., �̂ ¼ �ð1Þ ��ð2Þ. For any integer N > 2, the
origin of the equivalence between the LW theory and its
HD form is imposed by means of a set of fixed parameters
�1;2;...;N . For N ¼ 3 they read [5]

�1 � �4

ðm2
2 �m2

1Þðm2
3 �m2

1Þ
; (2.1)

�2 � �4

ðm2
1 �m2

2Þðm2
3 �m2

2Þ
; (2.2)

�3 � �4

ðm2
1 �m2

3Þðm2
2 �m2

3Þ
; (2.3)

where m1 <m2 <m3 are the masses of the original state
and its two LW partners, and �4 � m2

1m
2
2 þm2

1m
2
3 þ

m2
2m

2
3. The parameters satisfy a variety of sum rules,
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X3
i¼1

m2n
i �i ¼ 0 ðn ¼ 0; 1Þ; (2.4)

X3
i¼1

m2n
i �i ¼ �4 ðn ¼ 2Þ; (2.5)

m2
1m

2
2�3 þm2

2m
2
3�1 þm2

3m
2
1�2 ¼ �4; (2.6)

that provide the means by which cancellations of quadratic
loop divergences are guaranteed. They appear in slightly
different permutations in fields of different spin.

A. Neutral scalar fields

Upon writing

�̂ ¼ ffiffiffiffiffiffi
�1

p
�ð1Þ � ffiffiffiffiffiffiffiffiffiffi��2

p
�ð2Þ þ ffiffiffiffiffiffi

�3
p

�ð3Þ; (2.7)

an N ¼ 3 HD Lagrangian of the general form

LN¼3
HD ¼ � 1

2
�̂h�̂� 1

2M2
1

�̂h2�̂� 1

2M4
2

�̂h3�̂

� 1

2
m2

��̂
2 þLintð�̂Þ (2.8)

is equivalent at the quantum level to the LW Lagrangian
(note the alternation of norm):

LN¼3
LW ¼ � 1

2
�ð1Þðhþm2

1Þ�ð1Þ þ 1

2
�ð2Þðhþm2

2Þ�ð2Þ

� 1

2
�ð3Þðhþm2

3Þ�ð3Þ þLintð�̂Þ; (2.9)

provided one identifies

m2
� ¼ ðm2

1m
2
2m

2
3Þ=�4; (2.10)

M2
1 ¼ �4=ðm2

1 þm2
2 þm2

3Þ; (2.11)

M2
2 ¼ �2: (2.12)

B. Yang-Mills fields

The analogue to Eq. (2.7) reads

Â� ¼ A
�
1 �

ffiffiffiffiffiffiffiffiffiffi��2

�1

s
A
�
2 þ

ffiffiffiffiffiffi
�3

�1

s
A
�
3 ; (2.13)

with m1 set to zero to guarantee the masslessness of the
gauge field A�

1 . One defines the field strength and covariant

derivative acting upon an adjoint representation field X in
the usual way:

F̂�� � @�Â� � @�Â� � ig½Â�; Â��; (2.14)

D̂�X � @�X � ig½Â�; X�: (2.15)

Then the N ¼ 3 HD Lagrangian,

LN¼3
HD ¼ � 1

2
TrF̂��F̂

�� �
�
1

m2
2

þ 1

m2
3

�
TrF̂��D̂

�D̂�F̂
��

� 1

m2
2m

2
3

TrF̂��D̂
�D̂�D̂

½�D̂�F̂
���; (2.16)

where the superscript brackets indicate antisymmetrization
of just the first and last indices (� and � here), is equivalent
to the LW Lagrangian

LN¼3
LW ¼ � 1

2
TrF��

1 F1�� þ 1

2
TrðD�A2� �D�A2�Þ2

� 1

2
TrðD�A3� �D�A3�Þ2 �m2

2TrA
�
2 A2�

þm2
3TrA

�
3 A3�; (2.17)

which includes all of the kinetic and mass terms, plus more
involved but still fairly compact expressions for cubic and
quartic terms given explicitly in Ref. [5]. The alternation of
norm is again apparent.

C. Chiral fermion fields

Chiral fermions are only slightly more complicated
because their LW partners have explicit LW Dirac mass
partners. For a conventional left-handedWeyl fermion field
�L, the analogue of Eq. (2.7) reads

�̂L ¼ �ð1Þ
L �

ffiffiffiffiffiffiffiffiffiffi��2

�1

s
�ð2Þ

L þ
ffiffiffiffiffiffi
�3

�1

s
�ð3Þ

L ; (2.18)

and the LW partner fields �ð2Þ;ð3Þ
L possess their own chiral

partners �ð2Þ;ð3Þ
R that arise from the process of converting

the HD Lagrangian into an equivalent LW form. Defining
then for each LW partner the combined field � � �L þ
�R and noting that m1 ¼ 0, the HD form reads

LN¼3
HD ¼ 1

m2
2m

2
3

�̂�L½ði ^6DÞ2 �m2
2�½ði ^6DÞ2 �m2

3�i ^6D�̂L;

(2.19)

where ^6D includes both the gauge bosons and their LW
partners. The equivalent LW Lagrangian then reads

LN¼3
LW ¼ ��ð1Þ

L i ^6D�ð1Þ
L � ��ð2Þði ^6D�m2Þ�ð2Þ

þ ��ð3Þði ^6D�m3Þ�ð3Þ: (2.20)

In the case of a fundamental right-handed Weyl field �R

contained in a HD Lagrangian field �̂R, the definitions
proceed exactly as above, with the substitution L $ R.
However, one should note that the R chiral partners in-

duced in the �̂L construction are distinct fields from those

appearing directly in the definition �̂R, and vice versa for L
chiral partners.
The original paper (Ref. [3]) adopts the notation of

placing a prime on fields that appear not through HD
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superfields but rather through their Dirac mass terms1; for
example, in the third generation, the SM fields tL, bL
transforming under SUð2Þ �Uð1Þ as ð2;þ 1

6Þ are joined

by N ¼ 2 LW partners ~tL, ~bL, and the latter have Dirac

mass partners (mass parameterMq) ~t
0
R,

~b0R, respectively, all
of which transform as ð2;þ 1

6Þ. The SM fields tR and bR,

transforming as ð1;þ 2
3Þ and ð1;� 1

3Þ, respectively, have
N ¼ 2 LW partners ~tR, ~bR, which in turn have Dirac

mass partners ~t0L (mass Mt), ~b
0
L (mass Mb), respectively.

For N > 2, we retain the prime convention of Ref. [3],
replace the tildes with superscripts ð2Þ; ð3Þ; . . . , and attach
corresponding subscripts to the masses (e.g., Mq2, Mb3).

For purposes of numerical analysis, the fields are more
conveniently collected [10] by flavor and chirality, rather
than by SUð2Þ �Uð1Þ quantum numbers. In the N ¼ 3
case,

TT
L;R � ðtð1ÞL;R; t

ð2Þ
L;R; t

0 ð2Þ
L;R ; t

ð3Þ
L;R; t

0 ð3Þ
L;R Þ;

BT
L;R � ðbð1ÞL;R; b

ð2Þ
L;R; b

0 ð2Þ
L;R ; b

ð3Þ
L;R; b

0 ð3Þ
L;R Þ:

(2.21)

D. Complex scalar fields

The generalization of the real scalar field� to a complex
scalar multiplet H transforming in the fundamental repre-
sentation of a non-Abelian gauge group requires only the
promotion of ordinary derivatives to covariant ones. The
analogue of Eq. (2.7) reads

Ĥ ¼ ffiffiffiffiffiffi
�1

p
Hð1Þ � ffiffiffiffiffiffiffiffiffiffi��2

p
Hð2Þ þ ffiffiffiffiffiffi

�3
p

Hð3Þ (2.22)

and relates the HD form

LN¼3
HD ¼ D̂�Ĥ

yD̂�Ĥ�m2
HĤ

yĤ � 1

M2
1

ĤyðD̂�D̂
�Þ2Ĥ

� 1

M4
2

ĤyðD̂�D̂
�Þ3Ĥ þLintðĤÞ (2.23)

to the equivalent LW form

LN¼3
LW ¼ �Hð1ÞyðD̂�D̂

� þm2
1ÞHð1Þ

þHð2ÞyðD̂�D̂
� þm2

2ÞHð2Þ

�Hð3ÞyðD̂�D̂
� þm2

3ÞHð3Þ þLintðĤÞ; (2.24)

with the mass parameters related as in Eqs. (2.10), (2.11),
and (2.12), with m� ! mH.

In the particular case of the SM Higgs multiplet,m1¼0,
and the lightest scalar obtains mass only through sponta-
neous symmetry breaking with the vacuum expectation
value v. Writing

LN¼3
HD ¼ LN¼3

HD ðm2
H ¼ 0Þ þ ~LintðĤÞ; (2.25)

� ~LintðĤÞ � �

4

�
ĤyĤ � v2

2

�
2
; (2.26)

the equivalent LW Lagrangian reads

LN¼3
LW ¼ D̂�H

ð1ÞyD̂�Hð1Þ � D̂�H
ð2ÞyD̂�Hð2Þ

þ D̂�H
ð3ÞyD̂�Hð3Þ þm2

2H
ð2ÞyHð2Þ

�m2
3H

ð3ÞyHð3Þ þ ~LintðĤÞ: (2.27)

In unitary gauge,

Hð1Þ ¼
0

1ffiffi
2

p ðvþ h1Þ
 !

;

Hð2Þ ¼
ihþ2

1ffiffi
2

p ðh2 þ iP2Þ

0
@

1
A;

Hð3Þ ¼
ihþ3

1ffiffi
2

p ðh3 þ iP3Þ

0
@

1
A;

(2.28)

where the fields hi, Pi, and hþi denote the scalar, pseudo-
scalar, and charged Higgs components, respectively. The
mass terms in Eq. (2.27) read

LN¼3
mass ¼1

2
m2

2ð2h�2 hþ2 þh22þP2
2Þ�

1

2
m2

3ð2h�3 hþ3 þh23þP2
3Þ

�1

2
m2ðh1� ffiffiffiffiffiffiffiffiffiffi��2

p
h2þ ffiffiffiffiffiffi

�3
p

h3Þ2; (2.29)

with m2 ¼ �v2=2. The pseudoscalar and charged scalar
fields therefore have mass eigenvalues m2;3, while the

neutral scalar fields are mixed. The mass eigenvectors h0

in the mixed sector are obtained by a symplectic trans-
formation S that preserves the relative signs of the kinetic
terms via a metric � ¼ diagðþ;�;þÞ but diagonalizes the
mass matrix M in hyM�h:

h0 ¼ S�1h; Sy�S ¼ �; (2.30)

so that

M0� ¼ SyM�S: (2.31)

In the N ¼ 2 case [3], the elements of S consist of sinh�
and cosh� of a single ‘‘Euler angle’’ �. For higher N, S is
similarly expressible as the symplectic analogue to a multi-
dimensional Euler rotation matrix. In any case, the trans-
formation S for any given mixing matrixM is easily found
numerically.

E. Fermion mass diagonalization

Since the Yukawa couplings appear as

LYuk ¼ �yt �̂qLĤb̂R � yb �̂qLð�ĤyÞt̂R þ H:c:; (2.32)

where � � i	2, the fermion mass terms may be expressed
in terms of the ratios of �’s appearing in Eq. (2.18).
In the case of t quarks for N ¼ 3, one may abbreviate

mt � ytv=
ffiffiffi
2

p
, and

1In contrast, Ref. [12] uses primes exclusively for the right-
handed HD superfields and Dirac mass partners of its component
fields.
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cosh�q¼
Mq3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

M2
q3�M2

q2

q ; sinh�q¼
Mq2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

M2
q3�M2

q2

q ;

cosh�t¼ Mt3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

t3�M2
t2

q ; sinh�t¼ Mt2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

t3�M2
t2

q ; (2.33)

which give mass terms, using the notation of Eq. (2.21), of
the form

LN¼3
tmass ¼ � �TL�M

y
t TR þ H:c:; (2.34)

where

MN¼3
t � ¼

mt �mt cosh�q 0 mt sinh�q 0

�mt cosh�t mt cosh�q cosh�t �Mt2 �mt sinh�q cosh�t 0

0 �Mq2 0 0 0

mt sinh�t �mt cosh�q sinh�t 0 mt sinh�q sinh�t þMt3

0 0 0 þMq3 0

0
BBBBBBBB@

1
CCCCCCCCA
; (2.35)

where the metric � ¼ diagðþ;�;�;þ;þÞ reflects the
norms of the component states, and thus also appears
in the corresponding kinetic terms. The diagonalization
of the mass matrix to a form Mt0 with positive eigenval-
ues therefore requires independent transformation matri-
ces StL;R for each quark flavor (here, t) satisfying the
constraints

SyL�SL ¼ �; SyR�SR ¼ �; M0� ¼ SyRM�SL;

(2.36)

so that the mass eigenstates are obtained as

T0
L;R ¼ ðStL;RÞ�1TL;R; (2.37)

and similarly for the B sector. Obtaining numerical
solutions for StL;R is most efficiently accomplished by
converting this system into an equivalent eigenvalue
problem [16].

III. BOUNDS ON OBLIQUE PARAMETERS

A. Formalism and tree-level contributions

Bounds on BSM physics are typically expressed in terms
of oblique (flavor-universal, arising from gauge boson
vacuum polarization loops) and direct (flavor-specific, aris-
ing from vertex, box, etc., corrections) parameters [18].
The best-known oblique electroweak observables are the
dimensionless Peskin-Takeuchi (PT) parameters [19] S, T,
U, which represent all independent finite combinations
obtained from differences of the vacuum polarization func-
tions and their first derivatives. As better data (particularly
from LEP2) became available in the 1990s, probing the
oblique corrections to second-derivative order became
possible; Barbieri et al. [20] developed a complete set of

such post-LEP parameters, Ŝ, T̂, Û (the PT parameters with
different normalizations2), V, W, X, Y, and Z. Just as
Ref. [19] argued that U is numerically small, Ref. [20]

argued that V, X, and Z can be neglected in EWPT, leaving

only Ŝ, T̂, W, and Y as the important independent oblique
parameters. As argued in Ref. [20], the post-LEP parame-
ters are essential for describing EWPT in all ‘‘universal’’
models, defined as those in which deviations from the SM
appear only in gauge boson self-energy contributions, and
are coupled to the light fermion currents in the usual gJ � A
manner; as shown in Ref. [11], the (N ¼ 2) LWSM is of
this type.
The primitive electroweak parameters are obtained in

Ref. [20] as

1

g02
� �0

B̂ B̂
ð0Þ; 1

g2
� �0

ŴþŴ�ð0Þ; (3.1)

1ffiffiffi
2

p
GF

¼ �4�ŴþŴ�ð0Þ ¼ v2: (3.2)

In the tree-level SM, these just give the usual parameters
g0 ¼ g1, g ¼ g2, and v; however, these relations persist in
the LWSM as well. The reciprocal powers of coupling
constant arises from the choice of a noncanonical normal-
ization of the field strengths [20], designed to give a
convenient separation of g0, g, and v in Eqs. (3.1) and
(3.2). From Eq. (2.16), one quickly extracts for the N ¼ 3

model [where, e.g., Mð3Þ
1 indicates the third LW partner

mass for the Uð1Þ SM gauge group]:

�ŴþŴ�ðq2Þ ¼ �Ŵ3Ŵ3ðq2Þ

¼ q2

g22
� ðq2Þ2

g22

�
1

Mð2Þ2
2

þ 1

Mð3Þ2
2

�
� v2

4
;

�Ŵ3B̂ðq2Þ ¼
v2

4
;

�B̂ B̂ðq2Þ ¼
q2

g21
� ðq2Þ2

g21

�
1

Mð2Þ2
1

þ 1

Mð3Þ2
1

�
� v2

4
;

(3.3)

fromwhich one sees that the relations g0 ¼ g1, g ¼ g2, and
Eq. (3.2) are preserved. In addition, one can easily compute
the tree-level oblique electroweak parameters as done for
the N ¼ 2 model in Ref. [11]:

2Note that the vacuum polarization functions �ðq2Þ of
Ref. [20] are opposite in sign to those as defined in Ref. [19].
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Ŝ � g2�0
Ŵ3B̂

ð0Þ ¼ 0; (3.4)

T̂ � g2

m2
W

h
�Ŵ3Ŵ3ð0Þ ��ŴþŴ�ð0Þ

i
¼ 0; (3.5)

W � 1

2
g2m2

W�
00
Ŵ3Ŵ3ð0Þ ¼ �m2

W

�
1

Mð1Þ2
2

þ 1

Mð2Þ2
2

�
; (3.6)

Y � 1

2
g02m2

W�
00
B̂ B̂

ð0Þ ¼ �m2
W

�
1

Mð2Þ2
1

þ 1

Mð3Þ2
1

�
: (3.7)

Here, the first equality in each equation defines the corre-
sponding post-LEP parameter [20]. The absence of tree-

level contributions to Ŝ and T̂ was first noted in Ref. [11].
Moreover, Ref. [12] noted that the scheme defining
Eq. (3.7) precludes fermionic one-loop corrections to Y,
while W (which is defined in terms of �Ŵ3Ŵ3 rather than
�ŴþŴ� , even when loop corrections are included) was
found to have fermionic one-loop corrections that are
numerically small compared to the tree-level value given
in Eq. (3.6). At this level of analysis, one therefore only

needs to compute one-loop contributions to Ŝ and T̂, as was
done for the N ¼ 2 LWSM in Ref. [12].

B. Fermion loop contributions

After the tree-level contributions, the most important
contributions to the oblique parameters (indeed, the lead-

ing ones for Ŝ and T̂) arise from one-loop diagrams of the t
and b quarks, as depicted in Fig. 1.
Consider the one-loop fermionic contributions to the

self-energy connecting generic gauge bosons Â and B̂

(the latter not to be confused with the actual B̂ field in
the Standard Model). To do so, we begin with mass-
diagonalized fermion fields labeled by i, j, and write the
interaction Lagrangian:

L ¼ ��0
i 


�½Â�ðAL;�
ij PL þ AR;�

ij PRÞ
þ B̂�ðBL;�

ij PL þ BR;�
ij PRÞ��0

j : (3.8)

The fermionic mass eigenstate fields ð�0
i ÞT are defined by

combining Eqs. (2.21) and (2.37). The coupling matrices

are the charges in mass basis, e.g., AL;�
ij ¼ S�y

L Q�
A;L�S

�
L .

Here, Q�
A is the matrix of fermion charges under the gauge

group A, and the superscript � may refer to a single flavor
(as for 
, Z0) or a specific flavor transition (as forW�). The
right-handed coupling matrices are obtained by exchang-
ing L $ R.
In accord with the noncanonical normalization

of fields inherited by the polarization functions in
Eqs. (3.1) and (3.2), the fermionic one-loop contribution

FIG. 1. Fermion vacuum polarization Feynman diagrams that provide the dominant contributions to the electroweak precision
observables Ŝ and T̂.
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to the self-energy contains no gauge coupling constants,
and is expressed as

�ABðq2Þ ¼ C

8�2

X
�¼T;B

X
i;j

�ii�jj½ðAL;�
ij BL;�

ji

þ AR;�
ij BR;�

ji ÞI1ðq2Þ
þ ðAL;�

ij BR;�
ji þ AR;�

ij BL;�
ji ÞI2ðq2Þmimj�; (3.9)

where C is a color factor ( ¼ Nc for quarks coupling to
colorless gauge bosons). Defining � � �q2xð1� xÞ þ
m2

i xþm2
j ð1� xÞ for the usual two-propagator factor,

and using primes to indicate q2 derivatives and the sub-
script 0 to indicate a function evaluated at q2 ¼ 0 so that
�0 ¼ m2

i xþm2
j ð1� xÞ, �0

0 ¼ �xð1� xÞ, and �00
0 ¼ 0,

the integrals are defined as follows:

I1ðq2Þ �
Z 1

0
dxð2�� �0Þ lnð�=M2Þ; (3.10)

I2ðq2Þ � �
Z 1

0
dx lnð�=M2Þ: (3.11)

One then obtains the moments of the integrals relevant to
the oblique parameters:

I10 ¼
Z 1

0
dx�0 lnð�0=M

2Þ; (3.12)

I20 ¼ �
Z 1

0
dx lnð�0=M

2Þ; (3.13)

I010 ¼
Z 1

0
dx�0

0½1þ 2 lnð�0=M
2Þ�; (3.14)

I020 ¼ �
Z 1

0
dx�0

0=�0; (3.15)

I0010 ¼ 3
Z 1

0
dxð�0

0Þ2=�0; (3.16)

I0020 ¼
Z 1

0
dxð�0

0=�0Þ2: (3.17)

The factor M2 contains the parameter of the logarithmic
divergence and various subtraction constants associated
with the regularization procedure. Of course, M2 must
cancel from the complete expressions for the oblique pa-
rameters, since they are observables. The individual inte-
grals are straightforward and give

I10 ¼ � 1

4
ðm2

i þm2
j Þ

þ 1

2

m4
i lnðm2

i =M
2Þ �m4

j lnðm2
j=M

2Þ
m2

i �m2
j

;

! m2
i ln

m2
i

M2
; mj ! mi; (3.18)

I20 ¼ 1�m2
i lnðm2

i =M
2Þ �m2

j lnðm2
j=M

2Þ
m2

i �m2
j

;

! � ln
m2

i

M2
; mj ! mi; (3.19)

I010 ¼�1

3

�m4
i ðm2

i �3m2
j Þ

ðm2
i �m2

j Þ3
ln

�
m2

i

M2

�
�m4

j ðm2
j �3m2

i Þ
ðm2

i �m2
j Þ3

ln

�m2
j

M2

�

þm4
i �8m2

i m
2
j þm4

j

3ðm2
i �m2

j Þ2
�
;

!�1

6

�
1þ2ln

�
m2

i

M2

��
; mj !mi; (3.20)

I020 ¼ � ðmimjÞ2
ðm2

i �m2
j Þ3

ln

�
m2

i

m2
j

�
þ m2

i þm2
j

2ðm2
i �m2

j Þ2
;

! 1

6m2
i

; mj ! mi; (3.21)

I0010 ¼
3ðmimjÞ4
ðm2

i �m2
j Þ5

ln

�
m2

i

m2
j

�

þ ðm2
i þm2

j Þðm2
j � 8m2

i m
2
j þm4

i Þ
4ðm2

i �m2
j Þ4

;

! 1

10m2
i

; mj ! mi; (3.22)

I0020 ¼ � 2ðmimjÞ2ðm2
i þm2

j Þ
ðm2

i �m2
j Þ5

ln

�
m2

i

m2
j

�

þm4
i þ 10m2

i m
2
j þm4

j

3ðm2
i �m2

j Þ4
;

! 1

30m4
i

; mj ! mi: (3.23)

These expressions are inserted into Eq. (3.9) to produce
the full results for the fermionic one-loop contributions;
however, the SL;R matrices enter the couplings A, B (and

both SL;R are required [Eq. (2.36)] to produce the fermion

mass eigenvalues). While analytic expansions for SL;R
appear in the literature [9,13], in practice we perform the
calculations numerically and therefore do not present the
full cumbersome expressions for the oblique parameters.

IV. CONSTRAINTS FROM THE ZbL �bL COUPLING

One of the more interesting direct electroweak precision
observables in terms of the tension between the experi-
mental measurement and its SM prediction is the ZbL �bL
coupling. As noted long ago [21], its leading contribution
in the gaugeless limit [i.e., ignoring effects suppressed by
ðmZ0=mtÞ2] is most easily obtained by computing the tri-
angle loop diagram of Fig. 2, in which a Goldstone boson

PRECISION ELECTROWEAK CONSTRAINTS ON THE . . . PHYSICAL REVIEW D 87, 015006 (2013)

015006-7



�0 (the one eaten by the Z0) of momentum p splits into a t�t
pair, which subsequently (via exchange of a charged
scalar) decays to bL �bL. The invariant amplitude for this
triangle loop diagram in the p ! 0 limit can be parame-
trized as

iM ¼ � 2

v
ð�gb �b

L Þ6pPL: (4.1)

The coupling gb
�b

L is derived from a combination of the
Z0 ! b �b branching fraction Rb and its forward-backward
asymmetry Ab; an indication of its sensitivity to small
changes in both is given in Ref. [22]:

�gb
�b

L � gb
�b;exp

L � gb
�b;SM

L ¼ �1:731�Rb � 0:1502�Ab;

(4.2)

where the normalization has been adjusted [i.e., removing
the e=ðsin
W cos
WÞ coefficient] to match that used
elsewhere in this section. Its most recent experimental

value g
b �b;exp
L ¼ �0:4182ð15Þ has not changed since the

combined LEP/SLD 2005 analysis [23]. The SM value

gb
�b;SM

L ¼ �0:42114þ45
�24 from Ref. [23] gives �gb

�b
L ¼

þ2:94ð157Þ � 10�3, meaning that the SM value was 	
2	 low, thus strongly disfavoring any new physics contri-

bution with �gb
�b

L < 0. The current Particle Data Group
[24] values for RSM

b and ASM
b , however, lead [via

Eq. (4.2)] to a somewhat relaxed bound,

�gb
�b

L ¼ þ2:69ð157Þ � 10�3; (4.3)

which we use in our analysis.

The effect of N ¼ 2 LWSM states on �gb
�b

L has been
considered twice in the literature. The central result of
Ref. [14] is that current precision bounds allow LW
Higgs partner masses to be significantly lighter than other

LW states. Therefore, Ref. [14] effectively computes �gb
�b

L

by including only a LW Higgs partner in the triangle loop
diagram, giving (in our normalization)

�gb
�b

L ¼ � m2
t

16�2v2

�
R

R� 1
� R lnR

ðR� 1Þ2
�
; (4.4)

where R ¼ ðmt=mh2Þ2, so that �gb �b
L < 0. The value �gb

�b
R in

the LWSM is driven bymb, and hence is numerically much

smaller. Since �gb
�b

L and �Rb are anticorrelated [Eq. (4.2)],
and since �Rb is positive [23,24], Ref. [14] then states
that the LW Higgs partner contribution acts in the direction

of reconciling the discrepancy, and concludes that �gb
�b

L

analysis gives no meaningful bound on the LW scalar

mass. However, Eq. (4.2) shows that �gb
�b

L also depends
strongly upon �Ab, and the combined effect is to create the

situation described above, in which new physics �gb
�b

L < 0
contributions are actually more difficult to accommodate.
We take this additional effect into account in our analysis.

On the other hand, Ref. [12] uses the full �gb
�b

L bound
from Refs. [23,24] described above, but includes only
LW t-quark partners in the triangle diagram, thus produc-
ing the result

�gb
�b

L ¼ � m4
t

32�2v2M2
q

�
5 ln

M2
q

m2
t

� 49

6

�
(4.5)

at leading orders in m2
t =M

2
q. The result of Ref. [12]

obtained from this observable is the most stringent in their
entire analysis, giving a lower bound of Mq * 4 TeV.

However, the LW correction in Eq. (4.5) is a very shallow
function of Mq (see their Fig. 8), and the small change in

the SM value of gb
�b

L described above is alone enough to
push the bound back to about Mq * 1:2 TeV. Obviously,

the contribution from the LW Higgs partner must also be
included in a global analysis, and since it is also negative
(and indeed, turns out to be comparable in magnitude to the
LW t contribution), all of the mass lower bounds in such a
circumstance would be higher, but these multiple consid-
erations should serve to illustrate that room exists in mass
parameter space to accommodate interesting LWSM pos-
sibilities even in the N ¼ 2 case.
Here, we examine the N ¼ 3 LWSM contribution to

�gb
�b

L ; since the N ¼ 2 effect was computed in Ref. [12],
we closely follow the notation introduced there. The
Yukawa Lagrangian

LYuk ¼ �iyt
X
i;j

�
1ffiffiffi
2

p �̂0½�ij �tiPRtj � �ji �tiPLtj�

þ �ij½�̂� �biPRtj � �̂þ �tjPLbi�
�

(4.6)

has couplings� and� closely related to the ones appearing
in the mass matrix in Eq. (2.35) with the Dirac mass
parameters excluded. Specifically,

� � ðStLÞy�0S
t
R; � � ðSbLÞy�0S

t
R; (4.7)

where, for the example of the N ¼ 3 case,

FIG. 2. Dominant diagram contributing to the ZbL �bL coupling.
Here �0 is the Goldstone boson eaten by the Z0, and the indices
i, j, k denote mass eigenstates. The coupling is defined in the
limit p ! 0.
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�N¼3
0 ¼ �N¼3

0 �

1 � cosh�q 0 sinh�q 0

� cosh�t cosh�q cosh�t 0 � sinh�q cosh�t 0

0 0 0 0 0

sinh�t � cosh�q sinh�t 0 sinh�q sinh�t 0

0 0 0 0 0

0
BBBBBBBB@

1
CCCCCCCCA
: (4.8)

The most important distinction between the expressions
here and those in Ref. [12] is actually not the addition of
the N ¼ 3 fermion partners, but rather the presence of the
entire HD scalar fields �̂0, �̂� whose SM content is the set
of Goldstone bosons, and that enter with the relative
weights as in Eq. (2.22). As indicated in Eqs. (2.28) and
(2.29), the LW partners to these fields are physical, massive
states that must be included in the calculation of �gb

�b
L but

were omitted in Ref. [12].

The basic result of the �gb
�b

L calculation in Ref. [12] is
that the LW t-quark partners in the loop tend to slightly
exacerbate the tension with the measured value, thus

forcing an even more stringent lower bound on the LW

quark mass (4 TeV) than that obtained from T̂. As pointed
out in Ref. [14], however, the heavy h�2 can be much lighter
( * 500 GeV) and still satisfy all precision constraints.
Noting first from Eq. (2.29) that the charged scalar
masses do not mix, and recalling that the virtual scalar in

the �gb
�b

L diagram is charged, the extra signs in the h�2;3
propagators can be used to oppose the contribution from
the original diagram with a virtual ��, thus relieving

much of the additional tension in �gb
�b

L . The full expression
reads

�gb
�b

L ¼ 1

16�2
� y

3
t v

2
ffiffiffi
2

p
�X

i

�k�
2
0i�ii

mti

m2
ti �m2

hk

�
1� m2

hk

m2
ti �m2

hk

ln

�
m2

ti

m2
hk

��

þ X
i�j;k

ð�1Þiþj�k�0i�0j�jimtj

� �1

m2
ti �m2

tj

� 1
2

�
m2

ti

m2
ti �m2

hk

þ m2
tj

m2
tj �m2

hk

�
þ m2

ti

2ðm2
ti �m2

tjÞ2
�2m2

ti �m2
tj

m2
ti �m2

hk

þ m2
tj

m2
tj �m2

hk

�

� ln

�
m2

ti

m2
tj

�
� m2

hk

2ðm2
ti �m2

hk
Þðm2

tj �m2
hk
Þ
�2m2

ti �m2
hk

m2
ti �m2

hk

ln

�m2
tj

m2
hk

�
� m2

hk

m2
tj �m2

hk

ln

�
m2

ti

m2
hk

��

� m2
hk

2ðm2
ti �m2

tjÞ
ln

�
m2

ti

m2
tj

��
m2

ti

ðm2
ti �m2

hk
Þ2 �

m2
tj

ðm2
tj �m2

hk
Þ2
���

: (4.9)

The coefficients �k here are ones that appear in Eq. (2.22).
This expression reduces, in the limitsmh1 ! 0 andmh2;3 !1, to Eq. (A6) of Ref. [12] [which, in turn, reduces to
Eq. (4.5) in the further limit mt 
 mt2;3]. Alternately, it
reduces in the limitmt2;3 ,mh3 ! 1 to Eq. (4.4), as was used
in Ref. [14].

V. ANALYSIS

We use the definitions of the post-LEP oblique parame-
ters in Eqs. (3.4), (3.5), (3.6), and (3.7). As discussed above,
the tree-level expressions forW and Y are sufficient for our
analysis (and provide the most useful bounds on electro-
weak gauge boson partner masses), while the leading con-

tributions to Ŝ and T̂ arise from one-loop fermion effects.
Since the sums in Eq. (3.9) include the SM quarks, their

effects must be subtracted from the full result, giving Ŝnew �
Ŝ� ŜSM and T̂new � T̂ � T̂SM. In our subsequent discus-

sion, Ŝ, T̂ are understood to mean Ŝnew, T̂new, respectively.
As a benchmark for the magnitude of new physics effects,

one finds ŜSM ¼ �1:98� 10�3, T̂SM ¼ þ9:25� 10�3.

As seen in Ref. [20], the measured values of the parame-

ters Ŝ, T̂, W, and Y are all of order 10�3, and they are
correlated. However, for simplicity we use the values listed
in Table 4 of Ref. [20] with 2	 uncertainties:

103Ŝ ¼ 0:0� 2:6; (5.1)

103T̂ ¼ 0:1� 1:8; (5.2)

103W ¼ �0:4� 1:6; (5.3)

103Y ¼ 0:1� 2:4: (5.4)

To this list we add the bound on �gb
�b

L in Eq. (4.3), which
serves to constrain both LW fermion masses and scalar
masses, as discussed in the previous section.
First note that theN ¼ 2 andN ¼ 3 gauge boson masses

contribute at tree level in Eqs. (3.6) and (3.7) additively,
and therefore the bounds that hold for the N ¼ 2 theory

(e.g., Mð2Þ
1 ¼ Mð2Þ

2 � 2:4 TeV according to Ref. [12]) are
tightened by the addition of N ¼ 3 partners. In Fig. 3, one
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sees that takingMð2Þ
2 ¼ 2 TeV requires Mð3Þ

2 * 4 TeV, the
latter likely outside the discovery range of the current
LHC. In particular, the discovery scenario described in

Ref. [17] of Mð2Þ
2 ¼ 2:0 TeV, Mð3Þ

2 ¼ 2:5 TeV is unlikely

unless the bounds on W are not as stringent as given in

Eq. (5.3). Likewise, for Y, Fig. 3 indicatesMð2Þ
1 ¼ 1:8 TeV

is possible for Mð3Þ
1 * 3:5 TeV. If, however, the N ¼ 2

and N ¼ 3 masses are quasidegenerate, universal values
* 2:5 TeV remain possible.

The constraints from Ŝ are much less restrictive. Unlike
in other BSM scenarios where the addition of extra chiral
fermions create insurmountable tension with the measured

value of Ŝ, the extra fermions in the LWSM are all vector-

like, and contribute to Ŝ only through diagonalization
with the chiral fermion mass parameters arising through
Yukawa couplings. Assuming for simplicity the degenerate
caseMq2 ¼ Mt2 ¼ Mb2 studied in Ref. [12] and extending

to Mq3 ¼ Mt3 ¼ Mb3, one finds no meaningful constraint

on the fermion mass parameters Mq2 or Mq3.

The bounds from T̂ are much more interesting; they were
found in Ref. [12] (Fig. 5) to require Mq2 � 1:5 TeV in

order for T̂ to lie no more than 2	 below its measured
central value, and provide one of the strongest constraints
on LW quark partner masses. At the inception of this work,
it was believed that the opposite signs of the N ¼ 2 and
N ¼ 3 LW quark propagators would allow for a near-
complete cancellation of their loop effects, essentially

removing the T̂ constraint as a significant bound on the
quark partners if their masses were sufficiently close.
However, the detailed result in fact requires much greater
care in its analysis: While the N ¼ 2 and N ¼ 3 loops do
indeed cancel to a large extent, the propagating fermions in
the loops are the mass eigenstates. The act of mass diag-
onalization not only shifts mass eigenvalues of the heavy
states slightly away from Mq2 and Mq3, but also modifies

the strength of the contribution of the N ¼ 1 (SM) quarks

to T̂. The effect of this shift is pronounced due to the large
size of the SM tYukawa coupling; it actually serves to push

the full value of T̂ slightly further from its measured central
value, thus forcing an allowableN ¼ 2 LWmassMq2 to be

slightly larger than before the addition of the N ¼ 3 state.
However, the effect is not extreme; from Fig. 4, one sees
that Mq2 ¼ 1:5 TeV remains viable for Mq3 * 9 TeV,
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FIG. 3 (color online). Bounds on LW gauge boson mass partners from the oblique parameters W and Y. The shaded area (blue
online) is experimentally allowed at 2	.
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while increasing Mq2 only slightly, to 1.8 TeV, allows Mq3

to be & 2:8 TeV. The transition between extremely strong
and extremely weak Mq3 bounds occurs in a very narrow

window of Mq2 values.

Finally, consider constraints from �gb
�b

L , which in
Ref. [12] provide the most stringent bounds on the quark
partner masses, Mq2 * 4 TeV. However, as noted in the

previous section, the bottom of the 2	-allowed region has

since moved slightly downward. Since �gb
�b

L is a very
shallow function of Mq2, this small change dramatically

alters the bound toMq2 * 1:2 TeV, as seen in the first inset

of Fig. 5. The N ¼ 3 theory is used in the second inset of
Fig. 5, where one sees that raising Mq2 only slightly

(to 1.4 TeV) allows Mq3 * 2:3 TeV. On the other hand,

if the LW quark masses are assumed sufficiently large to

decouple, �gb
�b

L provides a lower bound on the N ¼ 2 LW
scalar of mh2 * 640 GeV (first inset of Fig. 6), as would

have been found in a more complete calculation (including
not only Rb but also Ab bounds) by Ref. [14]. The fact that
the Zb �b vertex constrains the masses of heavy t’s more

strongly than those of the scalars appears to follow directly
from Eq. (4.9) being / y3t [and indeed, in certain limits,
such as in Eq. (4.5), / y4t ], and because the act of mass

diagonalization among the fermions allows ytv=
ffiffiffi
2

p
to shift

substantially from the physical t mass (as was noted in the

analysis of T̂). Since mass diagonalization does not mix the
charged scalar parameters, including the N ¼ 3 LW state
leads to a dramatic cancellation: For example, in the sec-
ond inset of Fig. 6 one sees that mh2 ¼ 400 GeV, mh3 &

850 GeV satisfies the �gb
�b

L constraint. In retrospect, the

bounds on charged scalar masses in the N ¼ 2 theory
obtained by Ref. [14] from B �B mixing and b ! s

now lead to weaker constraints (mh2 > 463 GeV) than

that from �gb
�b

L , and the former bounds moreover would

also likely be significantly softened by the addition of an
N ¼ 3 charged scalar due to the cancellations described
above. When both LW quarks and charged scalars are
included, the bounds again become more constrained, but
many interesting scenarios remain possible; for example,
Fig. 7 shows that the combined set Mq2 ¼ 2:5 TeV,
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Mq3 ¼ 4 TeV, mh2 ¼ 400 GeV, mh3 ¼ 600 GeV satisfies

the �gb
�b

L constraint.

VI. DISCUSSION AND CONCLUSIONS

The Lee-Wick approach to extending the Standard
Model provides a variety of interesting effects that can be
tested experimentally. Since the couplings of the new
particles equal those of the SM fields and only their masses
remain as free parameters, one can obtain bounds on these
masses from electroweak precision constraints. For such
particles for which the masses are & 3 TeV, one can even
hope to directly produce the particles at the current incar-
nation of the LHC. On the other hand, the LWSM was
originally motivated by its potential to provide an alternate
resolution to the hierarchy problem, which ideally requires
fields with masses in the several hundred GeV range. In our
calculations, we find that only the scalar partners to the
Higgs can be so light, and therefore the LWSM does not
offer an especially natural resolution of the hierarchy,
although by construction all quadratic divergences in
loop diagrams cancel.

Nevertheless, we find that the imposition of precision
constraints on the N ¼ 3 LWSM still allows masses for
LW partner states to lie in large swaths of the parameter

space directly accessible at the LHC, providing phenome-
nological significance to the LWSM. In particular, we
have found that the post-LEP oblique parameters
W and Y require the N ¼ 2 partners of the W and B to
be* 2:0 and 1.8 TeV, respectively, and the N ¼ 3 partners
to be substantially heavier; or, by the same bound, they
could be quasidegenerate and all * 2:5 TeV. The LW

quark masses are constrained by custodial isospin (T̂)

and the Zb �b coupling gb
�b

L to be at least 1.5 TeV; one of
the most interesting results of this work was the discovery
that, as expected, theN ¼ 3 quarks loops do cancel against
theN ¼ 2 loops, but this cancellation is largely nullified by
the effects arising from the diagonalization of quark
masses amongst the SM quarks and its LW partners.
Even so, LW quark masses in the range Mq2 * 1:8 TeV

remain viable if the N ¼ 3 partner is somewhat heavier
( * 2:8 TeV). The least constrained masses, like in the
original SM, appear to be in the scalar sector. From the
Zb �b coupling alone, values in the few hundred GeV range
remain viable in the N ¼ 3 theory due to the presence of a
more complete cancellation between the N ¼ 2 and N ¼ 3
states, although a full analysis including b ! s
 and B �B
mixing should be undertaken to obtain global constraints.
Furthermore, the current LHC value for the h0 ! 


branching ratio [1,2] shows a significant excess compared
to the SM, while the N ¼ 2 LWSM prediction differs from
the SM value by only a few percent [13,15]; the N ¼ 3
LWSM, with a larger parameter space, offers the oppor-
tunity to produce a larger effect.
In summary, the LWSM is alive and well, particularly its

N ¼ 3 variant. Some of the gauge boson and fermion
partners may be difficult to discern directly at the LHC,
but the potential for direct discovery remains. The scalar
sector, whose exploration is arguably the central business
of the LHC, is the least constrained and therefore the most
interesting from the immediate phenomenological point
of view.
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