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We study multiparticle-state contributions to the QCD two-point functions of the axial-vector and

pseudoscalar quark bilinears in a finite spatial volume. For sufficiently small quark masses one expects

three-meson states with two additional pions at rest to have the lowest total energy after the ground state.

We calculate this three-meson-state contribution using chiral perturbation theory. We find it to be strongly

suppressed and too small to be seen in present-day lattice simulations.

DOI: 10.1103/PhysRevD.87.014505 PACS numbers: 11.15.Ha, 12.38.Gc, 12.39.Fe

I. INTRODUCTION

Hadron spectroscopy is one of the prime applications of
lattice QCD simulations. Recent results for the light hadron
spectrum in 2þ 1 flavor simulations show an agreement
with the experimentally measured values to an accuracy of
a few percent [1,2]. The computation of the excited-state
spectrum is much more complicated, and the numerical
results are not as satisfactory as those for stable hadrons
[3,4]. Still, steady progress in excited-state spectroscopy
has been made over the last years (for a recent review see
Ref. [5]).

One feature of unquenched lattice simulations is the
presence of multiparticle states in the correlation functions
measured to obtain the spectrum. In particular, with the up
and down quark masses getting closer to their physical
values, one may expect three-particle states with two addi-
tional pions at rest to contribute dominantly after the
ground state in a given channel. Evidence for this expec-
tation has been reported, for example, in Refs. [6,7]. There,
results for the two-point correlation function CðtÞ of the
pseudoscalar density were analyzed, as a function of the
time separation t. The data were well described by an
ansatz involving two exponentials,

CðtÞ ¼ c0e
�Mt þ c1e

�M0t; (1.1)

withM0 ¼ Mþ 2m� and the other three parameters deter-
mined by the fit.1 A significant dependence of the correla-
tor on the sea-quark mass was observed, supporting the
interpretation of the second term in Eq. (1.1) as a three-
particle contribution.

The question here is whether one really sees a three-
particle state and not a genuine one-particle excited state.
In fact, the results in Refs. [6,7] are somewhat surprising.

On theoretical grounds one expects the coefficient c1 of a
three-particle state to be suppressed by two powers of the
(spatial) lattice volume and therefore to be rather small. In
principle, this volume dependence of the three-particle
state can be monitored, providing a strong check for the
three-particle state hypothesis. However, this would
require lattice data at various volumes, and these are often
not available.
The main observation in this paper is that the correlation

function of the pseudoscalar density and the axial-vector
current can be calculated reliably in chiral perturbation
theory (ChPT) [8–10]. ChPT is expected to give good
estimates for the coefficients c0 and c1 for small pion
masses where the exponential suppression of the three-
particle-state contribution in the correlator is less strong.
Moreover, to leading order (LO) in the chiral expansion, the
coefficients c0 and c1 depend only on the pseudoscalar
masses and decay constants, hence they are related. It turns
out that, in the case of both the axial-vector and pseudosca-
lar correlation functions, the coefficient c1 of the three-
particle state is completely determined in terms of c0 and
the Goldstone-meson masses, reducing the number of fit
parameters in Eq. (1.1) from three to two.
Our results show that the ratio c1=c0 is very small,

even smaller than a naive analysis would suggest. For
typical pion masses and lattice volumes of present lattice
simulations it is of order 10�4–10�3. Therefore, the size
of the three-pion contribution is smaller than typical
statistical errors in the lattice data and it plays no role
in practice. This seemingly negative result can actually
be viewed as a positive result, if one is interested in
‘‘genuine’’ excited QCD states, and not in the
multiparticle-state contaminations.
This paper is organized as follows. After a brief, more

general discussion of correlators in a finite volume
(Sec. II), we present our results in Sec. III, with
Secs. III A and III B containing technicalities. Section IV
confronts our results with lattice data, and Sec. V contains
our conclusions and some further discussion.

*Permanent address: Department of Physics and Astronomy,
San Francisco State University, San Francisco, CA 94132, USA.

1To be precise, what was analyzed is the effective mass, equal
to minus the time derivative of logCðtÞ.
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II. QCD CORRELATORS IN A FINITE
SPATIAL VOLUME

Throughout this article we will consider QCD in a finite
spatial box with length L in each direction and periodic
boundary conditions. The Euclidean time extent, however,
is assumed to be infinite. This choice simplifies our calcu-
lations, and is justified as a good approximation for the
many lattice QCD simulations with T * 2L.

We are interested in the two-point correlation functions
of the (zero component of the) axial-vector current and the
pseudoscalar density:

Ca
AAðtÞ ¼

Z
L3
d3xhAa

0ð ~x; tÞAa
0ð0; 0Þi; (2.1)

Ca
PPðtÞ ¼

Z
L3
d3xhPað ~x; tÞPað0; 0Þi; (2.2)

where the flavor nonsinglet current and density are defined
as usual by

Aa
� ¼ �c���5T

ac ; Pa ¼ �c�5T
ac : (2.3)

Unless stated otherwise, we consider 2þ 1 flavor QCD
with degenerate up and down quarks with mass m and a
heavier strange quark with mass ms. Therefore, the flavor
index a runs from 1 to 8, and the SU(3) group generators
Ta are chosen equal to �a=2, with �a the usual Gell-Mann
matrices.

With our choice for the quark masses the correlators
obey isospin symmetry, so it is sufficient to study the two
cases a ¼ 1 and a ¼ 4. In addition, the correlators (2.1)
and (2.2) are not independent because the axial-vector
current and the pseudoscalar density are related by the
partially conserved axial-vector current (PCAC) relations,

@�A
1
� ¼ 2mP1; @�A

4
� ¼ ðmþmsÞP4: (2.4)

Using these relations the pseudoscalar correlator can be
obtained from the axial-vector one by taking two time
derivatives. In the following we will thus focus on
Ca
AAðtÞ, although much of the following discussion applies

to Ca
PPðtÞ as well.

The integration over the spatial volume in Eqs. (2.1) and
(2.2) projects on states with zero total momentum. Hence,
the dominant contribution comes from the single-particle
state with the particle being the appropriate pseudoscalar
meson at rest. For the axial-vector correlator we obtain

Ca
AA;1�ðtÞ ¼

1

2ma

e�majtjjh0jAa
0ð0Þj�að ~p ¼ 0Þij2: (2.5)

In order to keep the notation simple we will often refer to
all pseudoscalars as pions and denote them by �a, even
though for a > 3 they correspond to the kaons and the eta.
The same applies to the corresponding masses ma, which
will denote either the pion, kaon, or eta mass, depending on
the value of the index a. In addition, wewill always assume
that t > 0, so that jtj ¼ t.

Note that for Eq. (2.5) we assumed the standard normal-
ization of one-particle states,

h�að ~qÞj�bð ~pÞi ¼ �abL
32E ~p;a� ~p; ~q; (2.6)

in a finite volume. Here E ~p;a ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~p2 þm2

a

p
is the energy of

the pion �a, and � ~p; ~q is a Kronecker delta. With this

convention the state j�að ~pÞi and all other one-particle
states have mass dimension �1. Consequently, the matrix
element that defines the decay constant fa,

h0jAa
0ð0Þj�að ~p ¼ 0Þi � mafa; (2.7)

and the correlator Ca
AA;1� have their standard mass dimen-

sions of two and three, respectively.
The axial-vector current excites other states with the

same quantum numbers as well. The contribution of an
excited pion �0

a has the same form as Eq. (2.5) with the
appropriate mass m0

a � ma. However, for sufficiently
small pion masses one expects the three-particle state
with two additional pions to have a smaller energy than
this excited state. For this three-particle contribution one
finds

Ca
AA;3�ðtÞ ¼

1

L6

X
~p; ~q; ~k

� ~pþ ~qþ ~k;0

1

8E ~p;aE~q;bE ~k;b

� jh0jA0ð0Þj�að ~pÞ�bð ~qÞ�bð ~kÞij2e�Etott; (2.8)

where Etot is the total energy of the state, and we did not
show a possible wave-function renormalization. For
weakly interacting pions Etot equals approximately the
sum E ~p;a þ E~q;b þ E~k;b of the individual pion energies

and we expect the wave-function renormalization to be
close to one.
In a finite volume with periodic boundary conditions the

momenta ~p ¼ 2�~n=L are quantized, with ~n having
integer-valued components. If 2�=ðm�LÞ is not much
smaller than one, states with at least one of the pions
having a nonzero momentum will be signficantly more
energetic than those in which all three particles are at
rest, and it is sufficient to keep the latter contribution
only, i.e.,

Ca
AA;3�ðtÞ ¼

1

L6

1

8mam
2
b

� jh0jA0ð0Þj�að ~p¼ 0Þ�bð ~q¼ 0Þ�bð ~k¼ 0Þij2
� e�ðmaþ2mbÞt: (2.9)

Here the index b is restricted to the values 1, 2, and 3, such
that the three-particle state is indeed a ‘‘pseudoscalar-plus-
two-pion-state.’’ This state is also lighter than a three-
particle state with two additional kaons. Note that the
dimensions in Eq. (2.9) come out right: the matrix element
on the right-hand side is dimensionless, so the left-hand
side has dimension three, as the leading one-particle
contribution.
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The three-particle contribution is suppressed by 1=L6.
This factor is usually taken to argue that the three-particle
contribution in the correlator is small despite the fact that it
might be the most important excited-state contribution
according to the exponential suppression. To make this a
little more quantitative consider the ratio of the three-
particle and the one-particle contributions, assuming on
dimensional grounds that the matrix element in Eq. (2.9) is
of the order m�=f� (for a ¼ 1). We thus estimate

C1
AA;3�ðtÞ

C1
AA;1�ðtÞ

� 1

4ðf�LÞ4ðm�LÞ2
e�2m�t: (2.10)

This is a very small number indeed. Typical values form�L
in present-day lattice simulations are of order 4, while f�L
is of order 1.5, leading to a prefactor of the order 10�2 or
10�3. In the next section more precise results will be
obtained within ChPT.

III. THE CORRELATORS IN CHPT

We now turn to a calculation of the ratio (2.10) for
various mesonic ground states in three-flavor ChPT. We
will first set up the framework in Secs. III A and III B, after
which we will present results for the axial-vector correlator
in Sec. III C and for the pseudoscalar density correlator in
Sec. III D. In Sec. III E we extend our results to include the
case of a ground-state meson made out of two different
quarks both with masses equal to the strange quark mass,
which is helpful for interpreting some of the results of
Refs. [6,7].

A. Basic definitions

We consider standard finite-volume ChPT for 2þ 1
flavors in Euclidean space-time [10,11]. The LO chiral
Lagrangian we use reads

L � ¼ 1

4
f2 trð@��@��yÞ � 1

2
f2B trðMy�þ �yMÞ;

(3.1)

where the field � is the standard SU(3)-valued chiral field
containing the pseudoscalar fields

� ¼ exp

�
2i

f

X8
a¼1

�aT
a

�
: (3.2)

B and f are the familiar low-energy coefficients related to
the chiral condensate and the decay constant in the chiral
limit. To LO we have f ¼ f� ¼ fK, and our conventions
correspond to f� ¼ 92:2 MeV. The mass matrix M in the
mass term of the chiral Lagrangian is, according to our
setup in the previous section, given by

M ¼ diagðm;m;msÞ: (3.3)

Expanding the chiral Lagrangian in powers of the pion
fields we obtain the well-known LO pseudoscalar masses

m2
a ¼

8>>><
>>>:
2Bm � m2

�; a ¼ 1; 2; 3;

BðmþmsÞ � m2
K; a ¼ 4; . . . ; 7;

2
3Bðmþ 2msÞ � m2

�; a ¼ 8:

(3.4)

With the spatial momentum discretized in a finite volume,
the (Euclidean) pseudoscalar propagators are given by

Gabð ~x� ~y; t� t0Þ ¼ h�að ~x; tÞ�bð ~y; t0Þi

¼ �ab

1

L3

X
~p

ei ~p�ð ~x� ~yÞ 1

2E ~p;a

e�E~p;ajt�t0j;

(3.5)

with the energy E ~p;a ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~p2 þma

p
.

The axial-vector current and the pseudoscalar density
corresponding to the definitions in Eq. (2.3) are

Aa
� ¼ 1

2
f2 trðTað�y@��� �@��

yÞÞ; (3.6)

Pa ¼ 1

2
f2B trðTað�� �yÞÞ: (3.7)

Since we will be working to LO in this article, we will only
need these LO expressions. Higher-order terms, involving
Gasser-Leutwyler coefficients [10], will thus not be
needed.
Expanding Eqs. (3.6) and (3.7) to first order in the pion

fields and substituting into Eqs. (2.1) and (2.2) it is simple
to obtain

Ca
AAðtÞ ¼

1

2
f2mae

�mat; (3.8)

Ca
PPðtÞ ¼ � f2B2

2ma

e�mat: (3.9)

As already mentioned, these correlators are not indepen-
dent, but related by the PCAC relations (2.4), which can be
used to show that

Ca
PPðtÞ ¼ � B2

m4
a

@2t C
a
AAðtÞ; (3.10)

which is indeed satisfied by Eqs. (3.8) and (3.9). The PCAC
relations hold to all orders in the chiral expansion and for
all n-particle contributions. We will use it in Sec. III D to
calculate the three-pion contribution in Ca

PPðtÞ.
A graphical representation of these LO correlation func-

tions is given in Fig. 1(a). The two open squares represent
the one-pion terms for either the current or the density,
which (after contraction of the fields) result in the propa-
gator represented by the line.

B. Multimeson-state contribution to the correlators

The results (3.8) and (3.9) fall off exponentially with the
pion and kaon mass for a ¼ 1 and a ¼ 4, respectively. The
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diagrams in Figs. 1(b)–1(e) lead to contributions with the
anticipated exponential decay with rates 3m� for a ¼ 1
and mK þ 2m� for a ¼ 4. In these diagrams the solid
square represents the three-pion terms of the current or
density. These terms contain three pseudoscalar fields
leading to three propagator lines emanating from them. If
two of the three propagators correspond to pion propaga-
tors the diagram leads to an exponential with exponent
�ðma þ 2m�Þt. Similarly, the circle represents the inser-
tion of an interaction vertex stemming from terms with four
pseudoscalar fields in the chiral Lagrangian. The vertex
includes an integration over the intermediate space-time
point where the vertex is placed. Also, Fig. 1(e) with two
LO currents or densities placed at times t and 0 and two
inner pion propagators has a contribution with the time
dependence exp½�ðma þ 2m�Þt�.

Note that all diagrams in Figs. 1(b)–1(e) are of the same
order in the chiral expansion. In order to see this, recall the
power counting of finite-volume ChPT in the p-regime
[11–14], for which

mquark �Oðp2Þ; 1=L� @� �OðpÞ; �a �OðpÞ:
(3.11)

With these counting rules Fig. 1(a) counts as order p4,
since each axial-vector current involves one pion field and

one derivative. Figure 1(b) counts as order p8, since here
each current consists of three pseudoscalar fields and one
derivative. For Figs. 1(c)–1(e) with one or two vertex
insertions, note that each vertex involves four pseudoscalar
fields associated with either two derivatives or one power
of mquark. This is of order p6. Taking into account the

integration over space-time, which counts as order p�4, a
vertex insertion effectively counts as order p2. Hence, the
diagrams in Figs. 1(c)–1(e) count as order p8 as well.
Similar arguments can be made for the pseudoscalar
correlator, and one finds again that the diagrams in
Figs. 1(b)–1(e) are all of the same order in the chiral
expansion. Diagrams involving Gasser-Leutwyler coeffi-
cients Li, stemming from higher-order terms in the current
and the chiral Lagrangian [10], are at least of order p2

higher since they contain either two more partial deriva-
tives or one extra power of the quark mass.
We are interested in the contributions to the correlator

that decay with 3m� (a ¼ 1) or mK þ 2m� (a ¼ 4). This
allows us to simplify the calculation by ignoring many
terms in the expressions for the axial-vector current and
the interaction vertices that do not contribute. For the
correlator Ca

AA;3� we need to keep only those terms in Aa
0

that involve one �a field and two light fields, i.e., fields
with flavor index 1, 2, or 3. For the interaction vertices we
need to keep the vertices with at least one �a in order to
contract with a field from the current. Two more fields need
to be light fields in order to end up with two pion propa-
gators in the intermediate lines in the diagrams. With these
restrictions in mind we can work with the following
(incomplete!) currents:

A1
�;NLO ¼ 2i

3f
ð�1�2@��2 � @��1�

2
2 þ ð2 ! 3ÞÞ þ � � � ;

(3.12)

A4
�;NLO ¼ i

6f
ð�4�b@��b � @��4�

2
bÞ þ � � � ; (3.13)

where the dots indicate the terms not needed for our
calculation. In the first line one has to add the same terms
with the replacement 2 ! 3 for the flavor index, as indi-
cated. In the second line a sum over the light flavors is
implied (b ¼ 1, 2, 3).
The relevant interaction vertices needed for

Figs. 1(b)–1(e) read

v1 ¼ � 1

24f2
ð�4�2

1ð@��2Þ2 þ 8�1@��1�2@��2

� 4ð@��1Þ2�2
2 þ ð2 ! 3Þ

þm2
�ð�4

1 þ 2�2
1�

2
2 þ 2�2

1�
2
3ÞÞ þ � � � ; (3.14)

a)

b)

d)c)

e)

FIG. 1. Feynman diagrams for the axial-vector correlation
function. The squares represent the axial-vector current at times
t and 0, where the open and solid squares denote the one-pion
and three-pion terms in the current, respectively. The circles
represent a vertex insertion at an intermediate space-time point;
an integration over these points is implicitly assumed. The lines
represent propagators in position space. At least two of the three
lines connecting a solid square or circle are pion propagators in
our calculation.
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v4 ¼ � 1

24f2
ð�2

4ð@��bÞ2 � 2�4@��4ð�b@��bÞ

þ ð@��4Þ2�2
b þ ðm2

K þm2
�Þ�2

4�
2
bÞ þ � � � ; (3.15)

where again the dots stand for terms not needed for our
calculation, and in v4 a sum over b ¼ 1, 2, 3 is implied.

C. Results for the axial-vector correlator

The diagrams in Fig. 1 are straightforwardly calculated.
Two remarks, however, seem to be appropriate. First, recall
that we are interested only in the contribution with all
particles at rest. Hence, although Figs. 1(b)–1(e) are two-
loop diagrams, we do not need to perform the sum over
internal momenta, cf. Eq. (2.8). Obviously, this simplifies
the calculation significantly. Second, note that Fig. 1(e)
also contains contributions with a time dependence pro-
portional to t expð�matÞ. These contributions result in the
standard renormalization of the pseudoscalar masses, and
can simply be omitted for our purposes.

For the pion correlator (a ¼ 1) we find

C1
AAðtÞ ¼

1

2
f2�m�e

�m�t

�
1þ 5

512ðf�LÞ4ðm�LÞ2
e�2m�t

�
:

(3.16)

In writing Eq. (3.16), we have made the replacement
f ! f� in the three-pion contribution, since the difference
is of higher order in the chiral counting. Note that the
prefactor of the three-pion contribution is of the same
form as in Eq. (2.10). There is a numerical factor 5=512
in the ChPT result which leads to an even larger suppres-
sion of the three-pion contribution in comparison with our
naive estimate (2.10).

For the kaon correlator (a ¼ 4) we obtain

C4
AAðtÞ ¼

1

2
f2KmKe

�mKt

�
1þ 1

24ðfKLÞ4ðm�LÞ2

� h1

�
m�

mK

�
e�2m�t

�
; (3.17)

where the function h1ðxÞ is given by

h1ðxÞ ¼
�
1� xþ 1þ 2x2

4ð1þ xÞ
�
2
: (3.18)

As in Eq. (3.16), we have here substituted f ! fK.
However, to the order we are working we could equally
well substitute f ! f� or replace ðfKLÞ4 by ðfKLÞ2ðf�LÞ2
in the denominator of Eq. (3.17). The difference is of
higher order in the chiral expansion than we consider here.

The function h1ðxÞ is a well-behaved function of the
mass ratiom�=mK, monotonically falling from about 0.9 at
the physical mass ratio x ¼ 139=493 � 0:3 to about 1=7 at
equal masses (see Fig. 2).

Note that the result (3.17) is not applicable for m� equal
or nearmK. The reason for this is that we omitted the three-
kaon contribution to the correlator, because we assumed

the kaon to be significantly heavier than the pion. Because
of this Eq. (3.17) does not reproduce Eq. (3.16) for
mK ¼ m�.
As a technical aside we mention that Figs. 1(b)–1(d)

vanish in the calculation of Eq. (3.16). This is due to
isospin symmetry and the fact that all pions have vanishing
spatial momenta. The particular form of the current (3.12)
implies that Figs. 1(b)–1(d) are proportional to energy
differences of the pions and thus vanish if all pions have
equal spatial momenta. Therefore, only Fig. 1(e) contrib-
utes to C1

AA;3�ðtÞ.
We emphasize that the three-pion contribution in

Eq. (3.16) is completely determined in terms of the leading
one-pion contribution: only f� and m� appear as non-
trivial, unknown parameters. In other words, employing
Eq. (3.16) in the analysis of actual lattice data leads essen-
tially to a two-parameter fit, involving the same unknowns
as a standard single-exponential fit. The same applies to the
kaon correlator once f� and m� have been determined.

D. Results for the pseudoscalar correlator

The pseudoscalar correlators are easily obtained using
the PCAC relations (2.4). For flavor index a ¼ 1 we obtain

C1
PPðtÞ ¼ � f2B2

2m�

e�m�t

�
1þ 45

512ðf�LÞ4ðm�LÞ2
e�2m�t

�
:

(3.19)

The three-pion contribution is enhanced by a factor of 9
compared to Eq. (3.16). This is a simple consequence of the
two time derivatives in Eq. (3.10) acting on the exponential
expð�3m�tÞ. These result in a factor of 9m2

�, with the 9
multiplying the factor 5=512.
The kaon correlator is obtained analogously. In this

case the enhancement factor is given by the ratio
ðmK þ 2m�Þ2=m2

K, so we find

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

2.5

x

h
1

h
2

FIG. 2. The functions hiðxÞ, i ¼ 1, 2 that enter the results for
C4
AAðtÞ and C4

PPðtÞ.

EXCITED-STATE CONTRIBUTION TO THE AXIAL- . . . PHYSICAL REVIEW D 87, 014505 (2013)

014505-5



C4
PPðtÞ ¼ � f2KB

2

2mK

e�mKt

�
�
1þ 1

24ðfKLÞ4ðm�LÞ2
h2

�
m�

mK

�
e�2m�t

�
:

(3.20)

The function h2ðxÞ is related to the previously defined
h1ðxÞ by

h2ðxÞ ¼ ð1þ 2xÞ2h1ðxÞ; (3.21)

and is sketched in Fig. 2.
In principle, the enhancement up to a factor of 9 of the

pseudoscalar correlator gives some preference to the axial-
vector correlator in the determination of the mass and
decay constant of the pion and kaon. However, the three-
particle contribution is very small for both correlators so
that it does not play a role in practice in any case.

E. Partially quenched mesons with
one or two heavy quarks

So far we have considered 2þ 1 flavor QCD and ChPT.
Useful extensions are the partially quenched (PQ) variants
in which the masses of some of the valence quarks are
chosen to be different from any of the sea-quark masses
[15]. Theoretically, these theories have a larger field
content due to the presence of additional ghost fields.
Although technically more involved, the calculation of
the previous section can in principle be repeated for the
PQ case. A full PQ calculation is beyond the scope of this
paper, but for this subsection we only need to consider two
special cases.

First, we claim that the result (3.17) for the kaon corre-
lator applies without change to the Nf ¼ 2 theory with

two light-quark flavors and a quenched strange quark.
Quenching of the strange quark is achieved by introducing
a ghost quark with mass ms which exactly cancels the
contribution of the strange quark to the fermion determi-
nant. In PQChPT the larger field content appears explicitly
because the nonlinear � matrix of Eq. (3.2) becomes a
4� 4 matrix. The mass matrix in Eq. (3.3) changes to
M ¼ diagðm;m;ms;msÞ.

Now suppose we are interested in the exp½�ðmK þ
2m�Þt� contribution to the axial-vector correlation function
C4
AA. As before we can simplify the calculation of

Figs. 1(b)–1(e) by dropping terms in the axial-vector cur-
rent and interaction vertices that do not contribute to the
exponential we are interested in. Doing this, we end up
with the same expressions as in Eqs. (3.13) and (3.15): the
three-pion term in the axial-vector current needs to contain
at least one �4 field and two more light pion fields. There
are no other terms than those already shown in Eq. (3.13)
fulfilling this requirement, with or without the ghost fields.
The same is true for the vertices. Three of the four pion
fields in the vertices need to be one �4 and two light fields,
and Eq. (3.15) contains all of those. We conclude that the

result (3.17) for the 2þ 1 flavor theory applies to the
theory in which the strange quark is quenched as well.
Next, we want to generalize our results to a partially

quenched setup with two light flavors and two quenched
heavy flavors. We will refer to these heavy flavors as
strange and charm, even though we consider the case
with equal quark masses only, takingmc ¼ ms. This theory
contains a ‘‘Ds’’ meson, made of the strange and charm
quarks, even though with our choice for the quark masses
its mass is not the physical Ds meson mass. Nevertheless,
we are interested in the axial-vector correlation function
that projects on this Ds meson.
The full PQ theory would contain two ghost fields

compensating the effects of charm and strange in the
fermion determinant. In the corresponding chiral effective
theory the field � becomes a 6� 6 matrix. However,
applying the same arguments as before, one can convince
oneself that all the additional fields due to the presence of
the ghosts do not contribute to the terms in the correlator
we are interested in. It is therefore sufficient to consider
standard ChPTwith four flavors in order to calculate these
terms. In this theory the flavor index a in Eq. (3.2) runs
from 1 to 15 and the mass matrix (again) assumes the form
M ¼ diagðm;m;ms;msÞ. For the group generators Ta we
take the obvious generalization of the Gell-Mann matrices
to the group SU(4).
Expanding the chiral Lagrangian in powers of the

pseudoscalar fields we obtain, in addition to the masses
in Eq. (3.4),

m2
a ¼

8>>><
>>>:
BðmþmsÞ � m2

K; a ¼ 9; . . . ; 12;

2Bms � m2
Ds
; a ¼ 13; 14;

2
3Bðmþ 5msÞ � m2

~�; a ¼ 15:

(3.22)

Note that with our choice for the quark masses we have the
relation

m2
Ds

¼ 2m2
K �m2

� (3.23)

between the LO masses.
The axial-vector correlation function that projects on the

Ds meson is the one with flavor index a ¼ 13 or 14. To LO
we find the results already given in Eqs. (3.8) and (3.9) for
the correlators. The dominant three-meson contribution is
the one with two kaons (defined as a meson made out of
either the strange or charm quark and one of the light
quarks) and one pion, as one can easily see from the
quark-flow equivalents of Fig. 1. The Ds þ 2� state, on
the other hand, does not couple to C13

AA to the order we are

working here. Calculating Figs. 1(b)–1(e) and keeping
only the contributions with the exponential falloff
exp½�ð2mK þm�Þt�, we find
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C13
AAðtÞ ¼

f2Ds
mDs

2
e�mDs t

�
1þ 1

3ðf�LÞ4ðm�LÞ2

� m�

mDs

h3

�
m�

mK

�
e�ð2mKþm��mDs Þt

�
; (3.24)

where the function h3ðxÞ is given by

h3ðxÞ ¼
�
1� x� 2� 4x� 2x2 þ x3

4ð1þ xÞ2
�
2
: (3.25)

As before, the pseudoscalar density correlator is easily
obtained from Eq. (3.24) using the PCAC relation. Here
the enhancement factor of the three-meson contribution is
ð2mK þm�Þ2=m2

Ds
, so we find

C13
PPðtÞ ¼ � f2D

2mDs

e�mDs t

�
1þ 1

3ðf�LÞ4ðm�LÞ2

� m�

mDs

h4

�
m�

mK

�
e�ð2mKþm��mDs Þt

�
; (3.26)

with h4ðxÞ defined by

h4ðxÞ ¼ ð2þ xÞ2
2� x2

h3ðxÞ: (3.27)

Comparing the results (3.24) and (3.26) with their coun-
terparts (3.17) and (3.20) for the kaon correlator there
appears to be an enhancement factor of 8 for the three-
meson contribution (1=3 versus 1=24). However, this is
not the case when one takes into account all factors.

Incorporating the factor m�=mDs
¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2=ð2� x2Þp
, x ¼

m�=mK, Fig. 3 shows the functions

hi;effðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

2� x2

s
hiðxÞ; i ¼ 3; 4 (3.28)

that enter the results for the correlators. These functions are
roughly a factor of 4 smaller than the ones shown in Fig. 2,
effectively reducing the enhancement to a factor of about 2.

F. A comment on higher-order contributions

We have assumed that we can take the energy of the
three-particle state to be equal to just the sum of the
individual masses, as would be the case if the three mesons
would not interact. The pseudo-Goldstone boson character
of the pions implies that they interact only weakly if all
three pions have small (or vanishing) spatial momenta.
Interaction corrections thus appear only at higher order in
the chiral expansion and are suppressed by additional
inverse powers of the volume. Figure 4 shows an example
of a higher-order diagram, generated by a vertex insertion
into Fig. 1(b). It consists of two more propagators and one
more vertex than in Fig. 1(b). According to the counting
rules of Sec. III B, it is suppressed by an additional factor
1=L3. The time integration leads to a term with a time
dependence �t expð�3m�tÞ, which, after exponentiating,
corresponds to the expected energy shift of order L�3 [16].
These corrections, however, are of higher order than those
considered in this paper and we therefore ignore them.

G. An estimate for contributions with nonzero-
momentum pions

In Sec. II we assumed that the three-particle contribution
to the correlators is dominated by the state with all three
mesons at rest, cf. Eqs. (2.9) and (2.8). For a sufficiently
large spatial extent L (at fixed pion mass) this is not
justified because the ‘‘nonzero-momentum states,’’ i.e.,
states where some of the pions have nonzero spatial
momentum, are no longer well-separated from the one
with all momenta equal to zero. The calculation of the
contributions due to the nonzero-momentum states is beyond
the scope of the present paper. However, a simple estimate
for this contribution will be useful in the next section.
Let us consider the first subleading contribution in

Eq. (2.8) with two of the three pions having opposite
momenta with magnitude 2�=L. The energy of such a
pion can be written as spm� with the scaling factor

sp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4�2

ðm�LÞ2
s

; (3.29)

hence Etot ¼ m�ð2sp þ 1Þ and 8E ~pE~qE ~k ¼ 8m3
�s

2
p for the

contribution of this state to Eq. (2.8). Defining rðtÞ as the

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

x

h
3, eff

h
4,eff

FIG. 3. The functions hi;effðxÞ, i ¼ 3, 4 that enter the results for
C13
AAðtÞ and C13

PPðtÞ.
FIG. 4. Higher-order Feynman diagram for the axial-vector
correlation function.
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ratio of this contribution to the dominant one in Eq. (2.9)
we obtain the simple estimate

rðtÞ ¼ 18

s2p
e�2m�ðsp�1Þt: (3.30)

The 18 in the numerator is the multiplicity of the nonzero-
momentum state, counting the number of different ways
two nonzero and opposite momenta can be distributed
among the three pions. As mentioned before, by making
L larger at fixedm� the ratio rwill eventually grow and the
nonzero-momentum state contribution cannot be ignored.

In the case of the kaon correlator (a ¼ 4) there is a
second state where one nonzero momentum is carried
by the kaon. This leads to a somewhat different estimate,
but for order-of-magnitude estimates Eq. (3.30) will be
sufficient.

IV. CONFRONTING LATTICE DATA

Two collaborations [6,7,17] provide sufficient informa-
tion in order to compare our results with data. In these
references plots are shown for the effective mass associated
with the pseudoscalar correlation function, with the effec-
tive mass defined by

ma;effðtÞ ¼ � d

dt
logCa

PPðtÞ: (4.1)

If only the ground state contributed to the correlator, the
effective mass would be equal to the ground-state massma,
and hence would be constant in time. Any deviation from a
constant value originates from excited and multiparticle
states. Our results for the three-particle contribution can be
written in the generic form

ma;effðtÞ ¼ mað1þ kae
�ðm0

a�maÞtÞ; (4.2)

with ma and m0
a denoting the ground-state and three-me-

son-state masses, respectively, and a coefficient ka, deter-
mined by the results of the previous section.

Consider first the data reported in Ref. [17]. These data
were generated with Nf ¼ 2 OðaÞ-improved Wilson fer-

mions. One data set, labeled by ‘‘O7,’’ has a pion mass of
270 MeV and a spatial extent L such that m�L ¼ 4:21.2

The pion mass is sufficiently light that we may expect
ChPT to be applicable. The measured pseudoscalar decay
constant is such that f�L ¼ 1:58.3 The combinations m�L
and f�L are the only unknowns entering the coefficient k1
in the pionic effective mass (a ¼ 1),

k1 ¼ 90

512ðf�LÞ4ðm�LÞ2
: (4.3)

With the particular values given above we obtain

k1 � 1:6� 10�3: (4.4)

This is a tiny number, leading to less than a per mille
contribution to the effective mass. Figure 5 shows the
effective mass for the O7 data set together with the ChPT
prediction given by Eqs. (4.2) and (4.4).4 The latter appears
as a straight horizontal line in this plot. Apparently, the
statistically significant deviation from a constant value in
the effective mass data cannot be attributed to the three-
pion-state contribution.
Let us turn to the data from the CERN group [6,7].

Figure 2 of Ref. [6] shows the effective mass of the
pseudoscalar correlator for two different lattices, labelled
D2 andD4, respectively. These lattices were also generated
with two flavors of nonperturbatively OðaÞ-improved
Wilson fermions. The measured values for the pseudosca-
lar masses and decay constants are collected in Tables 9
and 10 of Ref. [7].
For the D2 lattice we focus on the data set with equal

sea- and valence-quark masses.5 Here we find f�L ¼ 1:0
and m�L ¼ 5:9. Note that for this data set the pion mass is
about 620 MeV and the applicability of ChPT is question-
able. Nevertheless, here we find the value

k1 � 4:4� 10�3; (4.5)

which is of the same order as Eq. (4.4). Again, this value is
orders of magnitude too small to explain the curvature in
the left panel of Fig. 2 of Ref. [6]. Strictly speaking, our
calculation for k1 does not exactly correspond to the lattice
data shown in the left panel of Fig. 2, because it shows PQ

0 10 20 30 40 50 60
0.064

0.066

0.068

0.07

0.072

0.074

0.076

0.078

0.08

t / a

a 
M

 e
ff

lattice
ChPT

FIG. 5 (color online). The effective mass for the O7 data of
Ref. [17] (also shown in Fig. 2 of this reference.) The solid blue
line corresponds to the ChPT predicition for the three-pion-state
contribution to the effective mass.

2The results we need are found in Tables 1 and 18 of Ref. [17].
3ZA necessary to obtain this value can be obtained with

Eq. (B.1) of Ref. [17]. Note that we converted f�L to our
convention in which its physical value is 92.2 MeV.

4We thank Francesco Virotta and Rainer Sommer for providing
us with the lattice data for this plot.

5Second row for the D2 run in Tables 9 and 10 of Ref. [7].
ZA ¼ 0:75 is given in Ref. [18].
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data with the average valence-quark mass roughly ten
percent smaller than the sea-quark mass. However, this is
a small effect that cannot account for the huge discrepancy
between the data and our ChPT result.

The right panel of Fig. 2 in Ref. [6] shows the result for
the effective mass with two heavy valence quarks or, with
our nomenclature of Sec. III E, for m13;effðtÞ. The data

comes from the D4 run with f�L ¼ 0:91 and m�L ¼
4:1. The Ds mass is not given in Ref. [7], but the value
mDs

¼ 567 MeV can be read off from Fig. 2.6 The kaon

mass mK ¼ 502 MeV for this lattice follows from
Eq. (3.23). Using these values in

k13 ¼ 1

3ðf�LÞ4ðm�LÞ2
ð2mK þm� �mDs

Þm�

m2
Ds

h4

�
m�

mK

�
(4.6)

we obtain the estimate

k13 � 2:1� 10�2: (4.7)

As in the previous cases, this value is too small to account
for the curvature in the right panel of Fig. 2 of Ref. [6].

Result (4.7) for k13 is larger by a factor of 4.7 compared
to k1 in Eq. (4.5). Most of this enhancement stems from the
smaller pion mass on the D4 lattice; a smaller part is a
partial quenching effect. In order to roughly disentangle
both effects let us compute k1 for the D4 lattice:

k1 � 1:5� 10�2: (4.8)

This is already 3.4 times larger than Eq. (4.5). The remain-
ing factor of 1.4 compared to Eq. (4.7) can be attributed to
the valence-quark masses being heavier than the sea-quark
masses.

Finally, let us estimate the contribution of the nonzero-
momentum state using Eq. (3.30). We choose a sufficiently
small time separation t where the exponential factor does
not completely suppress this contribution and where the
data differs significantly from the leading ChPT result.

For the ALPHA data shown in Fig. 5 we choose t=a ¼
14, leading to rðtÞ � 1:3. Thus, the nonzero-momentum-
state contribution is not negligible. Still, even if we allow
for a few nonzero-momentum states their cumulative con-
tribution is still too small to describe the data. The same
conclusion can be drawn for the data of the CERN group. If
we choose t ¼ 0:7 fmwe obtain rðtÞ � 1:3 (left panel) and
rðtÞ � 0:5 (right panel).

V. CONCLUDING REMARKS

Our results make it extremely unlikely that a multipion
state is seen in pseudoscalar density and axial-vector cor-
relation functions. The overlap of these local operators
with multipion states is tiny, much too small to be seen
in current lattice QCD data. This result is qualitatively in

accord with findings in excited-state spectroscopy [3–5],
where the data showed no indication for the presence of
multimeson states, and extended operators need to be
employed in order to uncover such states.
Of course, it is interesting to speculate on how the

dependence of the effective mass plots of Ref. [6] on the
(sea-) pion mass might be explained. Possible excited
states are the single-particle resonance corresponding to
the �ð1300Þ, and, for instance, the �� � or 	ð500Þ � �
excited states.
The latter two are again multiparticle states, but will be

suppressed by only a factor linear in the spatial volume,
instead of quadratic. Therefore, the factors corresponding
to ka in Eq. (4.2) will be enhanced compared to the cases
we considered in Sec. IV. For the pseudoscalar channel, a
�� � two-particle state has angular momentum L ¼ 1,
and therefore the � and �mesons should each have at least
one unit of momentum 	2�=L. Using lattice data for the
vector meson provided in Ref. [7] the two-particle
energies are at least about 2 GeV for both cases considered
in Sec. IV, respectively. This is probably too large to
fit the time dependence of the effective mass plots in
Ref. [6].
Assuming that the overlap of a 	ð500Þ � � two-particle

state with the local pseudoscalar density is very small, we
speculate that the mass m0

a in Eq. (4.2) may be a resonance
for the simulations of Refs. [6,7]. From Fig. 2 of Ref. [6]
we estimate m0

a and ka, finding for the left panel m0
a �

1:7 GeV and ka � 1:8, and for the right panel m0
a �

1:5 GeV and ka � 2:2.7 We may fit the dependence on
the sea-pion mass using the simple form

m0
a ¼ m0

0 þ bm2
�; ka ¼ k0 þ am2

�: (5.1)

From such a simple-minded fit we find m0
a � 1:3 GeV

at the physical pion mass, and the estimates a �
�2:0 GeV�2 and b � 1:0 GeV�1. While we cannot tell
from this simple exercise whether this is the correct inter-
pretation of the time dependence of the effective masses in
Ref. [6], these numbers appear to be quite reasonable, and
suggest that the first excited state seen in Ref. [6] might
correspond to the �ð1300Þ. Of course, a much more
detailed investigation, including multiple operators and
several spatial volumes, would be needed to determine
the nature of the time dependence seen in Ref. [6].
Finally, we anticipate that conclusions similar to those

reported here should also hold for other correlaters, such as
for instance a nucleon correlator. Chiral symmetry relates
processes with different numbers of soft pions, and thus we
expect that the contribution from a state with two extra
pions at rest in the nucleon channel can also be estimated
using the appropriate chiral effective theory.

6The figure shows the result for 
r ¼ 
s ¼ 0:13590 [19].

7These values form0
a are significantly lower than our estimates

for the energies of �� � states.
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