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We introduce an operator depending on the ‘‘transverse velocity’’ r that describes the effect of hadron

masses on the leading 1=Q power correction to event-shape observables. Here, Q is the scale of the hard

collision. This work builds on earlier studies of mass effects by Salam and Wicke [J. High Energy Phys. 05

(2001) 061] and of operators by Lee and Sterman [Phys. Rev. D 75, 014022 (2007)]. Despite the fact that

different event shapes have different hadron mass dependence, we provide a simple method to identify

universality classes of event shapes whose power corrections depend on a common nonperturbative

parameter. We also develop an operator basis to show that at a fixed value of Q, the power corrections for

many classic observables can be determined by two independent nonperturbative matrix elements at the

10% level. We compute the anomalous dimension of the transverse velocity operator, which is multi-

plicative in r and causes the power correction to exhibit nontrivial dependence on Q. The existence of

universality classes and the relevance of anomalous dimensions are reproduced by the hadronization

models in Pythia 8 and Herwigþþ , though the two programs differ in the values of their low-energy

matrix elements.
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I. INTRODUCTION

Event shapes have played a key role in establishing the
structure of quantum chromodynamics (QCD). Indeed, the
jetlike behavior of QCD collisions at high energies was
established in 1975 by measuring the event shape spheric-
ity in eþe� collisions [1]. Event shapes are used for
precision determinations of the strong coupling constant
�s using e

þe� data [2], and the same event shapes are used
to tune Monte Carlo hadronization models to help make
particle-level predictions for the Large Hadron Collider
(LHC) (see e.g., Ref. [3]). Recently, there has also been a
resurgence of interest in event shapes because they are
closely related to jet shapes, which are a sensitive probe
of jet substructure [4,5].

Event shapes require both perturbative and nonperturba-
tive contributions from QCD. Therefore, power corrections
are an important theoretical ingredient for making event
shape predictions. In the kinematic tail region, the leading
nonperturbative effect is simply to shift perturbative event
shape distributions by an amount suppressed by 1=Q [6].
Such 1=Qn effects are known as power corrections, where
Q is the scale of the hard collision. Some power corrections
are known to exhibit universality, in the sense that the same
nonperturbative shift parameter describes more than one
event shape. Power corrections also encode the effect of
hadron masses on event shape distributions [7], since
different methods for treating the energy/momentum of
soft hadrons with mass mH can change event shapes by
OðmH=QÞ.

In this paper, we revisit the theoretical underpinnings of
power corrections for eþe� event shapes, with a particular
focus on universality and hadron masses. Building on the

work of Salam and Wicke [7], we show that hadron mass
effects break traditional power correction universality, but
we are still able to define universality classes of event
shapes with a common power correction. Building on the
work of Lee and Sterman [8], we provide an operator
definition of the leading power correction that demon-
strates that its hadron mass dependence is described by a
‘‘transverse velocity’’ distribution. Transverse velocity r is
defined as

r � p?ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
? þm2

H

q ; (1)

where the transverse momentum p? is measured with
respect to the thrust axis. The transverse velocity operator
has nontrivial renormalization group evolution (RGE)
which is multiplicative in r, such that the leading power
correction includes a term behaving as ð�s lnQÞ=Q.
To put our work in context, it is worthwhile to review

some of the key literature on event shapes and power
corrections. Examples of classic eþe� dijet event shapes
are thrust [9], the C parameter [10,11], hemisphere jet
masses [12–14], jet broadening [15], and angularities
[16], all of which were measured at the CERN LEP. The
theoretical understanding of event shapes has undergone
substantial progress in recent years, especially for pertur-
bative calculations. Fixed-order corrections to event-shape
distributions have been calculated up to Oð�3

sÞ precision
[17–23], and large singular logs have been resummed to
N3LL accuracy for thrust [24] and heavy jet mass [25], and
to next-to-leading logarithm for jet broadening [26–28].
For certain event shapes e, it can be demonstrated that the
leading power correction parameter�e

1 appears both in the

PHYSICAL REVIEW D 87, 014025 (2013)

1550-7998=2013=87(1)=014025(25) 014025-1 � 2013 American Physical Society

http://dx.doi.org/10.1103/PhysRevD.87.014025


mean value of the event shapes as well as in the tail region
of the full event shape distribution [6]. This fact was
discussed using a factorization theorem for thrust in
Ref. [29], and used to simultaneously extract �sðmZÞ and
��

1 from thrust data at N3LLþOð�3
sÞ in Refs. [29,30].

It is worth noting that heavy hadrons and heavy quark
masses do not play a direct role in the OðmH=QÞ power
corrections. Hadrons containing a heavy quark decay
before reaching the detector, so mH here refers to only
light hadrons. At the partonic level, it is straightforward to
include the effect of heavy quark masses analytically
[31–33]. Up to the one-loop level in the corresponding
factorization theorem, it is known that only the kinematic
threshold and jet function are modified [34,35], plus
smaller contributions from nonsingular terms [30].

To study nonperturbative power corrections, there have
been two broad strategies. The first strategy is to build
analytic models to describe the nonperturbative physics.
For example, in the dispersive approach [36–38], one
introduces an infrared cutoff �I below which the strong
coupling constant is replaced by an effective coupling �eff .
Perturbative infrared effects coming from scales below
the cutoff are subtracted, and nonperturbative effects are
parametrized in terms of an average value for the effective
coupling �0 times �I.

1 The original dispersive approach
relied on the single-gluon approximation. In Refs. [38,45],
the Milan factor was introduced as a refinement to handle
multigluon diagrams. Another renormalon-inspired analytic
model is provided in the dressed gluon approach [46–48].

A key prediction that emerged from these analytic
models (first seen in the dispersive approach) was
universality of power corrections [36,40] (see also
Ref. [44]). Universality posits that the leading power
correction �e

1 to an event shape e can be separated
into two pieces, a calculable coefficient ce which
depends on the event shape in question times a universal
nonperturbative parameter � common to all event shape
observables:

�e
1 ! ce�: (2)

Because of universality, one can extract the power cor-
rection � from one event-shape measurement and apply
it to another one, as studied in Refs. [8,38,45,48–53].

The second strategy to understand power corrections is
based on QCD factorization, which implements a separa-
tion of perturbative and nonperturbative contributions.
The shape function was introduced in Refs. [52,54] to

describe nonperturbative corrections, and it accounts
for a whole range of power corrections of the order
ð�QCD=eQÞn. In the tail region where �QCD � Qe � Q,

the shape function can be expanded in terms of derivatives
of the Dirac delta function, and this translates into an
operator expansion for the event-shape distribution. This
shape function can be derived in the Collins-Soper-
Sterman approach to factorization [16,52,54–56]. The
shape function also emerges naturally from factorization
properties of soft-collinear effective theory [57–61]. Here,
methods exist to systematically improve the description of
the shape function [62,63], and to sum large logs present in
the subtractions needed to define the power corrections in a
scheme that is free from the leading renormalon ambiguity
[64,65].
The key advantage of the factorization-based strategy is

that one can express nonperturbative parameters in terms
of matrix elements involving QCD fields. For example, the
leading power correction �1 can be expressed in terms of
the energy flow operator [8,66–68]. Using this fact, Lee
and Sterman [8] rigorously derived universality for the
leading power correction without relying on an analytic
model. This proof of power correction universality solely
uses QCD first principles.
The drawback of both of the two above strategies is that

they start by making the assumption that all final-state
hadrons can be considered to be massless. (An important
exception to this is Refs. [39,43], where mass effects were
studied with renormalons using massive gluons.) The
massless assumption is certainly valid at the parton level,
but the actual hadrons measured in an event shape are of
course massive. One might erroneously argue that at very
high energies, the hadron masses can be safely neglected,
but because nonperturbative effects are caused by soft
particles whose momenta are of order �QCD �mH, their

masses contribute at order mH=Q, which is the same order
as the leading power correction. One could try to study the
effect of hadron masses by using Monte Carlo hadroniza-
tion models, but this approach is not fully satisfactory since
there is no clean separation between perturbative parton
shower evolution and nonperturbative hadronization ef-
fects, and there is no guarantee that one can systematically
improve the accuracy of the treatment of hadronization
effects.
The first serious study of hadron mass effects on power

corrections was performed by Salam and Wicke [7], where
they argued that universality does not hold for event shapes
such as thrust, jet masses, or the C parameter with their
traditional definitions. However, they showed that univer-
sality can be restored if one makes measurements in the E
scheme, where one performs the following substitution in
the event shape definition:

~p i ! Ei

j ~pij ~pi: (3)

1The dispersive approach was motivated by the study of
renormalons (see Ref. [39] for a review). Renormalons refer to
an ambiguity in a resummed perturbative series of order ð�=QÞp,
and this ambiguity is related to the nonperturbative power
correction. Renormalon-based models were originally applied
to the mean values of the event-shape distributions [36,40–42]
(see also Ref. [43]) and later generalized to the dijet limit of
distributions as well [6,44].
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Reference [7] also argues that hadron mass effects, in
addition to breaking universality, generate a power correc-
tion of the form ðlnQÞA=Q, with A� 1:5.

In this paper, we will devise a rigorous operator-
based method of treating hadron mass effects in the
leading event-shape power correction by defining a trans-
verse velocity operator. We generalize �e

1 to a function
�1ðr;�Þ which accounts for both the transverse velocity
dependence through r as well as renormalization group
evolution through�. Using this operator we derive univer-
sality classes for event shapes in the presence of hadron
masses, following the treatment of Ref. [8], and show that
each event shape belongs to a unique class. From studying
the r and� dependence, we will largely confirm the results
of Salam and Wicke.

The remainder of this paper is organized as follows.
In Sec. II, we set the notation for event shapes and power
corrections. In Sec. III, we introduce the transverse veloc-
ity operator whose matrix elements yield the leading power
correction. We explore the consequences of universality
classes in Sec. IV, and use a complete operator basis to
derive approximate universality relations. We consider the
effect of renormalization group evolution in Sec. V, where
we derive the anomalous dimension for �1ðr;�Þ and
compare to the hadronization models of Pythia 8 and
Herwigþþ . We conclude in Sec. VI with a discussion of
the implications and extensions of our results, in particular,
for the LHC.

II. POWER CORRECTIONS FOR DIJET
EVENT SHAPES

We begin by reviewing the notation for kinematics and
event shapes in Sec. II A, various hadron mass schemes in
Sec. II B, and the basics of how power corrections impact
event shapes in Sec. II C. Readers familiar with these
topics can skip to Sec. III, where we introduce the trans-
verse velocity operator.

A. Event shapes with transverse velocity

A dimensionless event shape e is an observable de-
fined on final-state particles which can be used to describe
the jetlike structure of an event. To describe particle
momenta, we use rapidity y, pseudorapidity �, transverse
momenta p? ¼ j ~p?j, and transverse mass m?, where

m? ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
? þm2

q
for a particle of mass m. Defining

rapidities and transverse momenta relative to the ẑ axis, a
4-momentum p� ¼ ðE; ~pÞ can be written in two equivalent
forms as

p� ¼ ðm? coshy; ~p?; m? sinhyÞ
¼ ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ p2

?cosh
2�

q
; ~p?; p? sinh�Þ: (4)

In terms of the polar angle � from the ẑ axis, � ¼
� ln tanð�=2Þ. The standard velocity of a relativistic

particle is v ¼ j ~pj=E. In our analysis, an important role
will be played by the transverse velocity r defined by

r ¼ p?
m?

¼ p?ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
? þm2

q : (5)

In general, the pseudorapidity and velocity of a particle can
be expressed in terms of r and y:

� ¼ �ðr; yÞ ¼ ln

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ sinh2y

p þ sinhy

r

�
;

v ¼ vðr; yÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ sinh2y

p
coshy

:

(6)

For massless particles, r ¼ v ¼ 1 and � ¼ y.
Our focus will be on dijet event shapes in eþe� colli-

sions, which have the property that e ! 0 implies back-to-
back pencil-like jets (and e ¼ 0 for the lowest-order
partonic configuration eþe� ! q �q). To maintain simplic-
ity, we will not include recoil sensitive observables such as
broadening [69] in our analysis.2 The event shapes we
consider are also bounded as 0 � e � emax, where the
maximum value emax depends on the observable in ques-
tion but is typically Oð1Þ. For the e � emax limit, one can
sometimes simplify the expression defining e by neglecting
corrections of Oðe2Þ. We will distinguish expressions for
event shapes that are valid under this approximation by
adding a bar, �e.
Various examples of dijet event shapes are shown

in Table I, including their original definitions e and
expressions �e valid when e � emax. For angularities and
2-jettiness, there are no simplifications in the dijet limit, so
�e ¼ e without higher-order terms. The notation for various
items in the table require explanation. The normalization
factors are defined by

Qp ¼ X
i

j ~pij; Q ¼ X
i

Ei: (7)

The unit vector t̂ obtained in the minimization defining
thrust � is referred to as the thrust axis, and we have taken it
to be aligned with ẑ to define rapidities. The angle between
particles i and j is denoted by �ij, and the angle between

particle i and t̂ is denoted by �i. Finally, the � labels refer
to each of the two hemispheres defined by the plane normal
to the thrust axis. For later convenience, we have written all
�e formulas in terms of p?, m?, y, and/or �. Note that we
can always replace Qp ! Q in the overall normalization

for �e, since the correction in doing so is beyond the order to
which we are working.
For a dijet event shape e, the largest part of the cross

section comes from e � emax, as do the most important

2For a recoil sensitive observable, the axis used to compute e
(typically, the thrust axis t̂) differs from the axis which mini-
mizes e by an amount that can have an Oð1Þ effect on the value
of e.

POWER CORRECTIONS TO EVENT SHAPES WITH MASS- . . . PHYSICAL REVIEW D 87, 014025 (2013)

014025-3



hadronization corrections which are the focus of this
paper. The simplicity of the dijet limit makes it possible
to derive factorization theorems3 for these cross sections
which facilitate calculations of higher-order perturbative

corrections / �j
sðlnkeÞ=e, as well as defining nonperturba-

tive corrections in terms of field-theoretic matrix elements.
For our purposes, the relevant point is that at leading order
in the nonperturbative corrections, we can split �e into
perturbative (ep) and nonperturbative (e�) contributions

4

�e ¼ ep þ e�: (8)

The ep term is generated by particles with momenta p� �
�QCD, and here we can neglect corrections from hadron

masses mH up to second order in the mH=Q expansion.
The e� term involves corrections from soft particles with
momenta p� ��QCD, and from Table I, we see that e� �
�=Q where ��mH ��QCD. Thus, simple power count-

ing dictates that to determine e�, we cannot neglect hadron
mass effects in the definition of �e.

For our analysis, we will find it convenient to character-
ize each event shape by a function feðr; yÞ of the transverse
velocity r and rapidity y, which we define from the e �
emax limit via

�e ¼ 1

Q

X
i

m?
i feðri; yiÞ: (9)

The various examples in Table I have the following feðr; yÞ
functions:

f�ðr; yÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ sinh2ðyÞ

q
� sinhjyj;

f�2ðr; yÞ ¼ e�jyj;

f�ðaÞ ðr; yÞ ¼ ra
@�ðr; yÞ

@y

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ sinh2y

q
� sinhjyj

� �
1�a

;

fCðr; yÞ ¼ 3r2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ sinh2y

p ; f��ðr; yÞ ¼ �ð�yÞe�y;

(10)

where

E

j ~pj ¼
coshyffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2 þ sinh2y
p ¼ @�ðr; yÞ

@y
¼ 1

v
: (11)

The translation from the notation of Ref. [7] (denoted with
superscripts SW) to our notation is fSWe ðy;m2=p2

?Þ ¼
feðr; yÞ=r.

B. Hadron mass schemes

In experimental analyses, different ‘‘schemes’’ are often
adopted for the treatment of hadron masses depending on
the available information. In the context of event shapes, a
detailed discussion of these schemes is given in Ref. [7].
These schemes correspond to different choices for feðr; yÞ
that yield the same value for the perturbative contribution
ep but potentially different values for the nonperturbative

TABLE I. Examples of event shapes e with their original definitions, as well as formulas �e that are valid for e � emax. See the text
below Eq. (7) for a further description of the notation.

Thrust [9]a: � ¼ 1
Qp

mint̂
P

iðj ~pij � j ~pi 	 t̂jÞ, �� ¼ Qp�

Q ¼ 1
Q

P
ip

?
i e

�j�ij,

2-jettiness [70]: �2 ¼ 1
Qmint̂

P
iðEi � j ~pi 	 t̂jÞ, ��2 ¼ �2 ¼ 1

Q

P
im

?
i e

�jyij,
Angulariites [16]b: �ðaÞ ¼ 1

Q

P
iEiðsin�iÞað1� j cos�ijÞ1�a, ��ðaÞ ¼ �ðaÞ ¼ 1

Q

P
ip

?
i

Ei

j ~pij e
�j�ijð1�aÞ,

C parameter [10,11]c: C ¼ 3
2Q2

p

P
i;jj ~pijj ~pjjsin2�ij, �C ¼ 3

Q

P
i

p?
i

coshð�iÞ ,

Jet masses [12–14]: �� ¼ 1
Q2

�P
i2�p

�
i

�
2
, ��� ¼ 1

Q

P
im

?
i �ð�yiÞe�yi ,

aThe original thrust variable is T ¼ 1� �.
bFor a ¼ 1, angularities reduce to jet broadening and hence are recoil sensitive. Throughout this paper, we assume that a < 1 by an
amount that allows recoil effects to be neglected.
cThe shape parameter H2 introduced in Refs. [71,72] is equivalent to the C parameter with the substitution Q ! Qp.

TABLE II. The functions feðr; yÞ of transverse velocity r and
rapidity y for various dijet event shapes using several different
schemes for treating hadron mass effects. Here, � ¼ �ðr; yÞ and
v ¼ vðr; yÞ are given in Eq. (6).

feðr; yÞ � �2 �ðaÞ C ��
Original re�j�j e�jyj r

v e
�j�jð1�aÞ 3r

cosh� �ð�yÞe�y

P scheme re�j�j re�j�j re�j�jð1�aÞ 3r
cosh� r�ð��Þe��

E scheme r
v e

�j�j r
v e

�j�j r
v e

�j�jð1�aÞ r
v

3
cosh�

r
v �ð��Þe��

R scheme re�jyj re�jyj re�jyjð1�aÞ 3r
coshy r�ð�yÞe�y

J scheme e�jyj e�jyj e�jyjð1�aÞ 3
coshy �ð�yÞe�y

3The simplest examples of dijet factorization rely on being
able to write the dijet event shape as a sum of contributions from
energetic collinear particles in the � hemispheres ðn; �nÞ, soft
perturbative particles (s), and soft nonperturbative particles (�),
via �e ¼ en þ e �n þ es þ e�. See for example Ref. [68].

4The heavy jet mass event shape �H ¼ maxf�þ; ��g does not
admit such a decomposition, and correspondingly, its factoriza-
tion formula is a bit more complicated. The light jet mass �L ¼
minf�þ; ��g is not a true dijet event shape since �L ! 0 does
not imply a dijet configuration.
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contribution e�. The schemes considered in this paper are
summarized in Table II.

In the ‘‘P scheme,’’ one makes measurements with only
3-momentum information. One performs the substitution
Ei ! j ~pij in the formula for event shapes, and correspond-
ingly m? ! rm? in Eq. (9). To satisfy infrared safety, the
original feðr; yÞ must tend to a constant value (possibly
zero) in the r ! 0 limit, and this implies that the P-scheme
event shapes will always vanish linearly with r. The
P-scheme replacement affects the jet masses, angularities,
and 2-jettiness which become

�P2 ¼ 1

Qp

X
i

p?
i e

�j�ij ¼ �;

�PðaÞ ¼
1

Qp

X
i

j ~pijðsin�iÞað1� j cos�ijÞ1�a;

�P� ¼ 2

Q2
p

X
ði;jÞ2�

j ~pijj ~pjjsin2
�ij
2
:

(12)

Another scheme discussed in Ref. [7] is the ‘‘E scheme’’
(see Refs. [44,54,66,73] for earlier discussions), where
only measurements of energies and angles are used to
construct observables. Compared to the P scheme, one
makes the substitution

~pi ! Ei

j ~pij ~pi (13)

in the formula for event shapes. This modifies all examples
in Table I except for angularities:

�E ¼ �E2 ¼ 1

Q

X
i

Eið1� j cos�ijÞ;

�E� ¼ 2

Q2

X
ði;jÞ2�

EiEjsin
2
�ij
2
;

CE ¼ 3

2Q2

X
i;j

EiEjsin
2�ij:

(14)

Note that thrust and 2-jettiness are identical in the E
scheme, �E2 ¼ �E. In the P scheme, the event shapes are
all linear in r, and hence the corresponding E scheme
results for feðr; yÞ are simply obtained by multiplying by
E=j ~pj ¼ 1=v. Note that the E scheme and P scheme are
defined in terms of pseudorapidity � (equivalently, the
polar angle �).

In order to consider a wider range of observables, we
will introduce two new schemes. In the ‘‘R scheme’’
(rapidity scheme), we take event shapes defined in the P
scheme and make the replacement � ! y. To define
R-scheme event shapes where �e � e, we carry out this
replacement for �e, and then define eR ¼ �eR. The
‘‘J scheme’’ is the closest to the jet mass observables,
and is defined by taking the R-scheme result and setting
r ¼ 1, feJ ðr; yÞ ¼ feRð1; yÞ.

We emphasize that the naming of schemes discussed
here is set simply by convention. For understanding power
corrections, one only needs to know the functional form of
feðr; yÞ.

C. Effect of power corrections on cross sections

For recoil-less dijet event shapes that satisfy Eq. (8),
the perturbative/nonperturbative factorization of the
differential distribution in the e ! 0 limit implies

d�

de
¼

Z
d‘

d�̂

de

�
e� ‘

Q

�
Feð‘Þ½1þOðeÞ
: (15)

Here, d�̂=de is the most singular perturbative cross section
to all orders in �s, and contains the full leading power
perturbative soft function. Fe is the shape function that
depends on the specific event shape one is interested in. It
contains nonperturbative power corrections (and, as we
will see, perturbative corrections). If Qe��QCD, then

the entire function Feð‘Þ has an important impact on the
cross section, and in practice, one models it with a few
coefficients which can be fit to data [52,54], or uses a
complete basis which can be systematically improved [63].
For Qe � �QCD, the function Feð‘Þ can be expanded

for ‘ � �QCD in terms of nonperturbative matrix elements

of operators. The first terms are

Feð‘Þ ¼ �ð‘Þ � �0ð‘Þ�e
1 þO

�
�s�QCD

‘2

�
þO

��2
QCD

‘3

�
;

(16)

where �e
1ð�Þ is a dimension-1 nonperturbative matrix

element (defined here in the MS scheme) that encodes
the power corrections we wish to study. It is defined by

�e
1 ¼ h0j �Yy

�nY
y
n ðQêÞYn

�Y �nj0i; (17)

where (Qê) is aQ-independent field-theoretic operator that
measures the combination Q �e, and Y ( �Y) are Wilson lines
with gluon fields in the fundamental (antifundamental)
color representation along the directions specified by
n ¼ ð1; t̂Þ and �n ¼ ð1;�t̂Þ. For example,

Yn ¼ P exp

�
ig

Z 1

0
ds n 	 AðnsÞ

�
; (18)

where P stands for path ordering and A� is the gluon field.
The fact that the dimension-1 matrix element �e

1 is non-
perturbative is easy to understand on dimensional grounds
since the only scale for this QCD vacuummatrix element is
�QCD. In Eq. (16), the Oð�s�QCD=‘

2Þ term involves per-

turbative corrections to the leading power correction which
will be discussed in Sec. VB.
Plugging Eq. (16) into Eq. (15) for the event shape

distribution, one finds

d�

de
¼ d�̂

de
��e

1

Q

d

de

d�̂

de
þ 	 	 	 ; (19)
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where the ellipsis denotes higher-order terms in �s

and �QCD=‘. Equation (19) corresponds to a shift

e ! e��e
1=Q to first order in 1=Q, and reproduces

the known shift found in the dispersive approach
[36–38]. Thus, the dominant effect of power corrections
(hadronization) on dijet event shapes for Qe � �QCD is

simply a shift in the distribution.
Following Ref. [30], we note that as long as d�̂=de tends

to zero in the far tail region, one can derive an operator
product expansion for the first moment of the distribution
as well. Defining the full and perturbative moments as

hei �
Z

dee
1

�

d�

de
; heipert �

Z
dee

1

�̂

d�̂

de
; (20)

one can use the factorization in Eq. (15) and the expansion
of the shape function in Eq. (16) to show

hei ¼ heipert þ�e
1

Q
þ 	 	 	 ; (21)

where again the ellipsis denotes higher-order terms. For the
event shapes in Table I, all the event shapes except for C
tend to zero in the far tail region, so the leading power
correction generates a Q-dependent shift of their first
moment. We will use this feature to extract �e

1 from the
Pythia 8 andHerwigþþ hadronization models in Sec. VD.
See Ref. [52] for a discussion of the modification necessary
for the C-parameter moment.

III. THE TRANSVERSE VELOCITY OPERATOR

The goal of this paper is to study the effect of hadron
masses on the power correction in Eq. (17). In order to
formulate the operator (Qê) appearing in the definition of
�e

1, we will follow the energy-momentum tensor approach
of Refs. [8,68], and generalize it so that we can treat the
dependence on the transverse velocity r. In particular, the
event shape e will be written as the eigenvalue of an
operator acting on the final state which includes hadron
mass effects. In Sec. III B, we consider the crucial role of
boost invariance for identifying universality classes.

A. Comparison to transverse energy flow

To set up our analysis, it will be convenient to first
review definitions from the literature that do not account
for hadron mass effects in the event shapes. These corre-
spond to setting r ¼ 1 for the event shapes defined by

Eq. (9). The transverse energy flow operator ÊTð�Þ is
defined by [8]

Ê Tð�ÞjXi ¼
X
i2X

p?
i �ð�� �iÞjXi: (22)

(Here and below, we suppress the dependence on the thrust

axis t̂.) The operator ÊTð�Þ is related to the energy-
momentum tensor T�	ðt; ~xÞ by [66–68,74]

Ê Tð�Þ ¼ 1

cosh3�

Z 2


0
d� lim

R!1R
2
Z 1

0
dt n̂iT

0iðt; Rn̂Þ;
(23)

where n̂ is a unit vector pointing in the ð�;�Þ direction for

the � corresponding to �.5 Using ÊTð�Þ, we can define an
operator for the event shape �e by [8]

ê 0jXi � 1

Q

Z
d�feð�ÞÊTð�ÞjXi; (24)

where in the notation defined in Eq. (9), this feð�Þ ¼
feðr ¼ 1; y ¼ �Þ. For massless particles with r ¼ 1, this
operator satisfies ê0jXi ¼ �eðXÞjXi, so the measurement

operator in Eq. (17) is given by M̂e ¼ Qê0.
To generalize this operator formalism to include hadron

masses, we require a transverse momentum flow operator

that is more differential, namely a ÊTðr; yÞ which can pick
out states that have a particular transverse velocity r.
We will refer to this simply as the ‘‘transverse velocity
operator’’ and define it by its action on a state

Ê Tðr; yÞjXi ¼
X
i2X

m?
i �ðr� riÞ�ðy� yiÞjXi: (25)

Note that here we use rapidity y rather than pseudorapidity

�. In Appendix A, we show that ÊTðr; yÞ can be defined in
terms of the energy-momentum tensor as

Ê Tðr; yÞ ¼ r sech4yffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ sinh2y

p lim
R!1R

3
Z 2


0
d�n̂iT

0iðR;Rvn̂Þ;

(26)

where v ¼ vðr; yÞ and � ¼ �ðr; yÞ are given in Eq. (6).
The unit vector n̂ again points in the ð�;�Þ direction and
hence depends on y and r through its dependence on
� ¼ � ln tanð�=2Þ.
The physical picture for the distinction between ÊTð�Þ

and ÊTðr; yÞ is shown in Fig. 1. The energy flow operator

ÊTð�Þ involves an expanding sphere of radius R integrated
over all time, and measures the total transverse momentum
for rapidities in an infinitesimal interval �� about �. The

transverse velocity operator ÊTðr; yÞ involves a spheroid
that expands in both space and time with a finite velocity v,
and it measures the total transverse mass for particles in an
infinitesimal interval in both � and the velocity v (or
equivalently, an infinitesimal interval in y and r). Using

ÊTðr; yÞ, the value of an event shape �e for a state jXi with
massive or massless particles is given by êjXi ¼ �eðXÞjXi
where the operator

5In the proof of Ref. [68] in which Eq. (23) reproduces
Eq. (22) for scalars and fermions, one assumes that all particles
are massless. If the energy-momentum tensor is considered for
massive fields, then Eq. (23) yields Eq. (22), but � must be
identified with pseudorapidity and the factor p?

i ! m?
i .

VICENT MATEU, IAIN W. STEWART, AND JESSE THALER PHYSICAL REVIEW D 87, 014025 (2013)

014025-6



ê � 1

Q

Z þ1

�1
dy

Z 1

0
dr feðr; yÞÊTðr; yÞ (27)

involves feðr; yÞ defined in Eq. (9). This is the desired
generalization of Eq. (24) that will allow us to treat the
effect of hadron masses on event-shape power corrections.
The result in Eq. (27) completes the matrix element
definition of �e

1 given in Eq. (17).

B. Boost invariance

Both ÊTð�Þ and ÊTðr; yÞ have nice transformation
properties under longitudinal boosts. These arguments

were first given in Ref. [8] in the context of ÊTð�Þ to prove
universality of power corrections for massless particles,

and we will extend the logic for ÊTðr; yÞ to develop the
notion of universality classes which account for hadron
masses in the next section.

For the case of massless particles in Ref. [8], � ¼ y, and
it was shown that under a boost of rapidity y0 along the
thrust axis

Uðy0ÞÊTðyÞUðy0Þy ¼ ÊTðyþ y0Þ: (28)

Due to the invariance of the vacuum j0i and Wilson lines
Yn and Y �n under this boost, we can choose y0 ¼ �y so

h0j �Yy
�nY

y
n ETðyÞYn

�Y �nj0i ¼ h0j �Yy
�nY

y
n ETð0ÞYn

�Y �nj0i: (29)

Using Eq. (24), again with � ¼ y, the power correction in
Eq. (17) simplifies to

�Z þ1

�1
d�feð�Þ

�
h0j �Yy

�nY
y
nETð0ÞYn

�Y �nj0i: (30)

Thus, as argued in Ref. [8], the power correction is
universal if one neglects hadron mass effects, since it
depends on a common nonperturbative matrix element
times a calculable � integral specific to an event shape.
This result agrees with the dispersive approach [36–38],
and also explains why it only applies for the first power
correction in the expansion of Eq. (16).
We can apply the same logic to our transverse velocity

operator in Eq. (25), now accounting for the effect of
hadron masses. Under a boost of rapidity y0,

Uðy0ÞÊTðr; yÞUðy0Þy ¼ ÊTðr; yþ y0Þ: (31)

Choosing y0 ¼ �y, we find that the leading power
corrections to dijet event shapes are all described by the
nonperturbative matrix element

�1ðrÞ � h0j �Yy
�nY

y
n ÊTðr; 0ÞYn

�Y �nj0i; (32)

which depends only on r and is independent of the event
shape e. Using Eq. (27), the power correction�e

1 simplifies to

�e
1 ¼

Z 1

0
dr

�Z þ1

�1
dy feðr; yÞ

�
�1ðrÞ: (33)

We will consider the implications of Eqs. (32) and (33) for
universality in the next section. Note that there is no limit
where Eq. (33) approaches the massless approximation in
Eq. (30).

IV. UNIVERSALITY FOR EVENT SHAPES

A. Universality classes defined by gðrÞ
The boost invariance logic of the previous section shows

that for the power correction �e
1, we can factor out the

rapidity dependence from the nonperturbative matrix
element. We define the integral appearing in Eq. (33) asZ þ1

�1
dy feðr; yÞ � cegeðrÞ; (34)

where geð1Þ ¼ 1 and

ce ¼
Z þ1

�1
dyfeð1; yÞ; geðrÞ ¼ 1

ce

Z þ1

�1
dyfeðr; yÞ:

(35)

[For the special case of event shapes that vanish for
massless partons,

R
dyfeð1; yÞ ¼ 0, we define ce ¼ 1 and

let geð1Þ ¼ 0.] Thus, the leading power correction for an
event shape e can be written as

�e
1 ¼ ce�

ge
1 ; �ge

1 �
Z 1

0
drgeðrÞ�1ðrÞ; (36)

where �1ðrÞ is given in Eq. (32).
Using the fact that for massless hadrons feð�Þ¼

feðr¼1;y¼�Þ in Eq. (30), we see that the coefficients

FIG. 1. The energy flow operator (top) compared to the
transverse velocity operator (bottom). Measurements are made
with respect to the thrust axis t̂. The dashed arrows correspond to
particles with lengths given by the particle velocities. Shading
indicates which particles are measured by the operator. Note that
the velocity vðr; yÞ and pseudorapidity �ðr; yÞ are functions of
the transverse velocity r and rapidity y.
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ce are precisely the classic universality prefactors that one
derives neglecting the hadron mass dependence of event
shapes [6,8,36,37,44,54,74–76]. The function geðrÞ then
encodes the effect of hadron masses through the nonper-
turbative parameter �ge

1 .

The key result from Eq. (36) is that each unique function
geðrÞ defines a universality class for dijet event shapes.
In particular, for two different event-shape variables a
and b, if gaðrÞ ¼ gbðrÞ, then �ga

1 ¼ �gb
1 (equivalently,

�a
1=ca ¼ �b

1=cb), so their power corrections agree up to
the calculable constants ca and cb. We say that two such
event shapes belong to the same universality class, and we
will often refer to �g

1 as the universal power correction

defined by gðrÞ.
Recall from Table I that the feðr; yÞ functions, in general,

depend on the measurement scheme used for treating had-
ron mass effects (E scheme, P scheme, etc.). The functions
geðrÞ will also, in general, vary with the measurement
scheme. However, the ce coefficients are independent of
the scheme for treating hadron masses since they are
defined with r ¼ 1 corresponding to the massless limit,
and feðr ¼ 1; yÞ is the same in all schemes. Our classifica-
tion of universality classes with common gðrÞ’s is the same
as the identification of event shapes that have the same
hadron mass effects made in Ref. [7], and we will elaborate
on the precise notational relationship in Sec. IVC below.

A summary of coefficients ce, functions geðrÞ, and uni-
versality classes is given in Tables III, IV, and V, and will be
discussed in detail in Secs. IVB and IVC below. Since
many of the standard event shapes have different gðrÞ
functions, their power corrections are not related by univer-
sality. We will take up the question of numerically approxi-
mate relations between power corrections in different
universality classes in Sec. IVD. Finally, in Sec. IVE, we
consider the impact of changing the renormalization scheme

defining �1ðrÞ from MS to a renormalon-free scheme.

B. Generalized angularities

In order to see how universality works in practice, it is
instructive to consider a family of event shapes which are a
simple generalization of angularities, and are labeled by
two numbers n � 0 and a < 1:

�ðn;aÞ �
X
i

m?
i r

n
i e

�jyijð1�aÞ: (37)

This corresponds to extending the R-scheme definition
of angularities by incorporating a positive power n of
r ¼ p?=m?, and this n dependence allows the event shape
to directly probe hadron mass effects. In terms of Eq. (9),
one trivially finds

fn;aðr; yÞ ¼ rne�jyjð1�aÞ: (38)

These generalized angularities all have the same value
of ce,

cn;a ¼
Z þ1

�1
dye�jyjð1�aÞ ¼ 2

1� a
� ca; (39)

which from Table III is also the same as for classic
angularities �ðaÞ. (Again, a < 1 here.) Computing the

function encoding the mass dependence, we have

gn;aðrÞ ¼ ð1� aÞ
2

Z
dyrne�jyjð1�aÞ ¼ rn: (40)

Thus, the �ðn;aÞ event shapes belong to universality classes

labeled by n, and represented by the functions

gnðrÞ ¼ rn: (41)

Each value of n defines a different universality class, so in
general, there are infinitely many different event-shape
universality classes. For the rn class, the universal power
correction from Eq. (36) is

�n
1 �

Z 1

0
drrn�1ðrÞ: (42)

This procedure, of generalizing an event shape to obtain
different sensitivity to hadron mass effects by multiplying

TABLE III. Expression for the ce coefficients for various dijet
event shapes from Table II. Since ce are defined using feð1; yÞ,
they have the same value in each class.

ce � �2 �ðaÞ C ��
Common 2 2 2

1�a 3
 1

TABLE IV. The functions geðrÞ of transverse velocity r for
various dijet event shapes from Table II. Event shapes with the
same gðrÞ belong to the same universality class.

geðrÞ � �2 �ðaÞ C ��
Original g�ðrÞ 1 r 2r2


 Kð1� r2Þ 1

P scheme g�ðrÞ g�ðrÞ g�a ðrÞ 2r2


 Kð1� r2Þ g�ðrÞ
E scheme r r r r r
R scheme r r r r r
J scheme 1 1 1 1 1

TABLE V. Event shape classes with a universal first power
correction parameter�ge

1 . For a given event shape, the full power

correction is �e
1 ¼ ce�

ge
1 .

Class gðrÞ Event shape

Jet mass class (�0
1 or �

�
1 ) 1 ��, �2, �J , �JðaÞ, C

J

E-scheme class (�1
1 or �E

1 ) r �ðaÞ, �E ¼ �E2 , C
E, �E�, �R,

�RðaÞ, C
R, �R�

rn class (�n
1) rn Generalized angularities

�ðn;aÞ in Eq. (37)

Thrust class (�g�
1 ) g�ðrÞ �, �P�, �P2

C-parameter class (�
gC
1 ) gCðrÞ C

r2 class (�2
1) r2 �ð2;aÞ, �Pða!�1Þ
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by rn, can just as easily be applied to event shapes other
than angularities. By choosing large values of n, we pref-
erentially select out particles whose transverse momentum
is large compared to its mass. This might be useful in an
experimental context to deweight the contribution of soft
particles to event shapes, beyond the linear suppression in
m? necessary for infrared safety.

We have included a summary of some common univer-
sality classes in Table V. For n ¼ 0 and n ¼ 1, the univer-
sality classes correspond with two that appear for classic
event shapes, so we will also refer to gðrÞ ¼ 1 as the jet
mass class and gðrÞ ¼ r as the E-scheme class.

In Sec. VD, we will show that Pythia 8 and Herwigþþ
do indeed exhibit universality when holding n fixed but
varying a, but as expected, yield different power correction
parameters �n

1 when n is varied.

C. Classic event shapes and mass schemes

In this subsection, we discuss ce and geðrÞ for the more
traditional event shapes enumerated in Table I, and show
how geðrÞ changes when using various measurement
schemes for hadron masses. Results for the corresponding
feðr; yÞ were summarized above in Table II. As already
mentioned, the results for ce are independent of the mea-
surement scheme for hadron masses and can be computed
directly with Eq. (35). For the various classic event shapes,
they are summarized in Table III.

For the event shapes in Table I with their original
definitions, integrating their feðr; yÞ over y, we find

g�ðrÞ ¼ 1� Eð1� r2Þ þ r2Kð1� r2Þ;
g�2ðrÞ ¼ g��ðrÞ ¼ 1; g�ðaÞ ðrÞ ¼ r;

gCðrÞ ¼ 2r2



Kð1� r2Þ;

(43)

where E and K are the complete elliptic integrals

EðxÞ ¼
Z 
=2

0
d�ð1� x sin2�Þ1=2;

KðxÞ ¼
Z 
=2

0
d�ð1� x sin2�Þ�1=2:

(44)

A plot of the gðrÞ’s in Eq. (43) is displayed in Fig. 2.
Direct analogs of g�ðrÞ, gCðrÞ, g��ðrÞ were computed

in Ref. [7]. The translation from their notation
(superscripts SW) to ours is cSWe ¼ ce and�c

SW
e ðm2=p2

?Þ ¼
ce½geðrÞ=r� 1
. Figure 1 of Ref. [7] plots (1þ �cSWe =cSWe )
versus p?=m, which is the direct analog of our Fig. 2.
In our figure, the function is bounded because of our
use of the r ¼ p?=m? variable rather than p?=m. These
bounded gðrÞ functions are more convenient for our basis
discussion in Sec. IVD below.
By looking for event shapes with common gðrÞ’s in

Eq. (43) or Fig. 2, we see that �� and �2 are in the ‘‘jet
mass’’ universality class, and that the angularities �ðaÞ for
any a belong to the E-scheme universality class. Defining
��

1 and �E
1 as the universal power corrections for the jet

mass and E-scheme classes, respectively, and accounting
for the ce factors, we have

��2
1 ¼ 2�

�
1 ; �

�ðaÞ
1 ¼ 2

1� a
�E

1 : (45)

Thrust and the C parameter have their own gðrÞ functions
and hence, among these event shapes, are alone in their
universality classes, with power corrections ��

1 and �C
1 .

6

We now consider the various hadron mass schemes. For
all of the event shapes in Table I in the E scheme, one has a
common geðrÞ ¼ r, so they all belong to the E-scheme
universality class. It was for this reason that Ref. [7] con-
sidered the E scheme to be a privileged hadron mass
scheme. In this sense, universality in the E scheme is
closest to the universality for massless particles, since
any event shape that can be written as a function of four-
vectors has an E-scheme definition, and they all have the
same universal power correction. For event shapes defined
directly in terms of m?, r, and y [e.g., the generalized
angularities in Eq. (37)], the E scheme can be defined by
first expressing the event shape in terms of four-vectors
(with no explicit m dependence), and then applying the
E-scheme replacement in Eq. (13). Then, any E-scheme
observable has gðrÞ ¼ r and hence is in the E-scheme
class. An example of an exception are event shapes that
vanish in the massless limit, geðr¼1Þ¼0, which do not
have a meaningful E-scheme definition.
From Table IV, we see that the event shapes measured in

the R scheme also fall into the E-scheme class [gðrÞ ¼ r],
while event shapes measured in the J scheme fall into the jet
mass class [gðrÞ ¼ 1]. The fact thatE-scheme andR-scheme

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

r

g e
r

Thrust
C parameter

1
P

Angularities
Jet masses, 2

FIG. 2 (color online). From top to bottom, the geðrÞ functions
for jet masses and 2-jettiness, angularities, C parameter, thrust,
and the P-scheme angularity with a ¼ �1. Lines correspond to
exact numerical values, open circles to two terms from the basis
of Sec. IVD, and filled circles to three terms from the basis.

6Accounting for the ce dependence, the universal power cor-
rections for the thrust and C-parameter classes are �g�

1 ¼ ��
1=2

and �
gC
1 ¼ �C

1 =3
.
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jet shapes are in a common universality class is a nontrivial
consequence of the relation @�=@y ¼ 1=v from Eq. (11).

For the P scheme, universality classes are more
complicated. Carrying out the integral in Eq. (35) to find
the gðrÞ’s, one finds that thrust and the C parameter
are unchanged. For the jet masses and 2-jettiness
g�P

�ðrÞ ¼ g�P
2
ðrÞ ¼ g�ðrÞ, so both �P� and �P2 belong to

the thrust universality class:

�
�P
�

1 ¼ 1

2
�

�P2
1 ¼ 1

2
��

1 � �g�
1 : (46)

ForP-scheme angularities, g�PðaÞ
ðrÞ does not appear to have a

simple analytic formula for arbitrary a (although it is easy to
compute numerically). By making a change of variables
y ¼ � ln tanð�=2Þ, a convenient way of writing it is

g�PðaÞ
ðrÞ ¼ ð1�aÞ

Z 
=2

0
d�

ð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�ð1� r2Þsin2�p þ cos�Þa�1

ra�2sina�
:

(47)

For integer values, it is simple to find an analytic form, and
for a ¼ �1, �2, we find7

g�Pð�1Þ
ðrÞ¼2�r�2

�
1

r
�r

�
lnð1þrÞ;

g�Pð�2Þ
ðrÞ¼9� 8

r2
�
�
7� 8

r2

�
Eð1�r2Þ�ð4�3r2ÞKð1�r2Þ:

(48)

For any a, g�PðaÞ
ð0Þ ¼ 0 and g�PðaÞ

ð1Þ ¼ 1. For large negative

values of a, one finds

g�Pða!�1Þ
ðrÞ ¼ r2: (49)

Hence, angularities in the P scheme for large negative a
belong to the same class as the generalized angularities in

Eq. (37) for n ¼ 2, with �
�Pða!�1Þ
1 ¼ �

�ð2;aÞ
1 .

In practice, g�PðaÞ
ðrÞ for arbitrary a quickly converges

toward g�Pð�1Þ
ðrÞ, and hence there is a quasiuniversality for

angularities in the P scheme. Also, gCðrÞ and g�ðrÞ are not
so different from g�Pð�1Þ

ðrÞ, implying an approximate univer-

sality between event shapes in different classes for all event
shapes in the P scheme. This was already noted for thrust
and the C parameter in Ref. [7]. We will next develop a
complete basis for describing geðrÞ functions that will allow
us to make this observation more quantitative.

D. Orthogonal basis for �1ðrÞ
Many geðrÞ curves are still parametrically close, even if

the corresponding event shapes are formally in different

universality classes. Examples are thrust, C parameter, and
�Pð�1Þ angularity shown in Fig. 2. To get a quantitative

handle on this observation, we can use a complete set of
orthonormal functions for r 2 ½0; 1
:

hnðrÞ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2nþ 1

p
Pnð2r� 1Þ;Z 1

0
dr hnðrÞhmðrÞ ¼ �nm;

(50)

where Pn are the Legendre polynomials. Now, we can
decompose any of the geðrÞ functions in this basis in the
usual way:

geðrÞ ¼
X1
n¼0

benhnðrÞ; ben ¼
Z 1

0
dr geðrÞhnðrÞ: (51)

Since the gðrÞ functions for classic event shapes are fairly
close to low-order polynomials, the first few terms in the
basis will provide an accurate approximation.
The values of the ben coefficients are shown in Table VI

for the classic event shapes. The approximation for the
geðrÞ functions are plotted in Fig. 2, where the exact values
are shown by lines, and the approximation with two terms
from the basis ðb0; b1Þ are shown by hollow circles, and
with three terms ðb0; b1; b2Þ by filled circles. For the jet
masses, 2-jettiness, and angularities, the approximate
result is exact with two terms in the basis. For the remain-
ing events shapes, the approximation with two terms is
likely sufficiently accurate at the level one expects of
current experimental and perturbative precision.With three
terms, the approximation is excellent in all cases, so the
third term can be regarded as a high-precision correction.
This is also apparent from the values in Table VI, where b0
and b1 are much larger than b2 (and computing bn>2, one
finds they are negligible).
Using Eq. (50), one can write any �e

1 in terms of a
denumerable set of power correction parameters:

�e
1 ¼

X1
n¼0

ben�
ðnÞ
1 ; �ðnÞ

1 ¼
Z 1

0
dr hnðrÞ�1ðrÞ: (52)

Only the first few terms will be numerically relevant for
most event shape observables. Using Eqs. (51) and (52)
and the results in Table VI, we can make the following
exact identifications:

TABLE VI. Numerical value of the coefficients of the
complete basis for the various geðrÞ functions.

b0 b1 b2 b3

Jet masses, �2 1 0 0 0

Angularities 1
2

1
2
ffiffi
3

p 0 0

Thrust 0.383 0.299 0.050 �0:006
�Pð�1Þ 0.355 0.295 0.064 �0:004

C parameter 0.393 0.300 0.046 �0:007

�Pða!�1Þ
1
3

1
2
ffiffi
3

p 1
6
ffiffi
5

p 0

7In general, for odd a, gðrÞ involves only lnð1þ rÞ, and for
even a, only the elliptic functions Kð1� r2Þ and Eð1� r2Þ
appear.
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�ð0Þ
1 ¼ ��

1 ; �ð1Þ
1 ¼ 2

ffiffiffi
3

p
�E

1 � ffiffiffi
3

p
��

1 : (53)

Thus, the power correction parameters for the jet mass
class and E-scheme class already give an excellent ap-
proximation for the various classic event shapes. To refine
the prediction even further, one can use the next term in the

basis, �ð2Þ
1 .8 Writing the leading power correction for the

other event shapes in terms of �
�
1 , �

E
1 , and �ð2Þ

1 , we have

��
1 ¼ 1:034�E

1 � 0:135�
�
1 þ 0:050�ð2Þ

1 ;

�C
1 ¼ 1:039�E

1 � 0:127�
�
1 þ 0:046�ð2Þ

1 ;

�
�Pð�1Þ
1 ¼ 1:022�E

1 � 0:156��
1 þ 0:064�ð2Þ

1 :

(54)

In general, both the �E
1 and ��

1 terms are numerically

important since the experiment favors values �E
1 �

�
�
1=2, and�

ð2Þ
1 can be typically neglected. However, since

the numerical coefficients in Eq. (54) are so close, one is

justified in using the approximation��
1 ’ �C

1 ’ �
�P�1

1 up to
corrections of �15%.

We note that the above basis analysis is valid only at a
fixed value of Q since �1ðr;�Þ has an anomalous dimen-
sion which we will compute in Sec. V, and the appropriate
� scales with Q. As we will see in Sec. VC, we will
need to refine the above analysis in order to relate power
corrections at different values of Q.

E. Renormalon-free definition of �1ðrÞ
It is well known that the first moment of a perturbative

event shape distribution has a�QCD renormalon ambiguity

in theMS scheme [77], which corresponds to a renormalon

in the MS power correction parameter �e
1 that we have

been considering so far. To our knowledge, the only
renormalon-based analysis of event shapes that observes
sensitivity to hadron masses is Ref. [39] (which, in turn,
called into question the massless universality results). In
this section, we argue that the universality relations given
in Sec. IVAwill remain unchanged as long as one defines
appropriate renormalon-free schemes for the 1=Q power
corrections.

In general, the�QCD renormalon is removed by convert-

ing the power correction parameter to a new scheme

�e
1ðR;�Þ � �e

1ð�Þ � �eðR;�Þ; (55)

where �eðR;�Þ is a series in �sð�Þ. There is a correspond-
ing change to the perturbative part of the cross section that
depends on this same series. Writing �̂eðxÞ for the Fourier
transform of d�̂=de, this change is

�̂eðxÞ ! ~�eðxÞ ¼ �̂eðxÞe�ix�eðR;�Þ=Q: (56)

Recall that universality classes relate �e
1ð�Þ for different

event shapes e, and that the relations are nonperturbative.
Hence, it is clear that one has the same renormalon ambi-
guity for event shapes that are members of the same class
(differing only by the proportionality constants ce). Thus, it
is sufficient to adopt a common scheme change for mem-
bers of the same class via any scheme satisfying

�eðR;�Þ ¼ ceRe
E

X1
n¼1

�
�sð�Þ
4


�
n
�
ðge0 Þ
n ð�=RÞ: (57)

Here, the �
ðge0 Þ
n ð�=RÞ coefficients involve factors of

lnð�=RÞ and are chosen such that the new �e
1ðR;�Þ

is free of the leading �QCD renormalon ambiguity. The

numerical values for �
ðge0 Þ
n will depend on the representa-

tive e0 that we choose, but any representative has the same
renormalon and hence is a valid subtraction series for all
members of the ge class.
One popular scheme for fixing the coefficients

�
ðge0 Þ
n ð�=RÞ is based on the dispersive approach, where

R ¼ �I [36–38]. In this framework to obtain an appropri-
ate subtraction at Oð�2

sÞ, one must also include the Milan
factor [38,45]. As is typical of scheme changes based on
QCD perturbation theory, this scheme removes the renor-
malon for the massless limit r ¼ 1.
At higher orders in �s, a more convenient scheme uses

the leading power perturbative soft function itself [62],

S
pert
e , which does not require additional computations be-

yond those needed for a resummed analysis of the event
shape. Again, this scheme change removes the renormalon
for the massless limit r ¼ 1. For each ge universality class,
we pick a representative e0 that is a member of the class.
Then, for all event shapes e 2 ge, we define

9

�eðR;�Þ ¼ ce
ce0

ReE
d

d lnðixÞ lnS
pert
e0 ðx;�Þjx¼ðiReE Þ�1 : (58)

For e ¼ �, Eq. (58) yields the subtractions for thrust defined
in Ref. [78]. Given that renormalons probe the infrared
structure of amplitudes, one might naively expect that differ-
ent subtractions would be necessary for the different univer-
sality classes, since they treat hadron masses differently.
However, the scheme change in Eq. (58) is based solely

on the QCD perturbative calculation of Spert
e0 with r ¼ 1, so

only the ce coefficients will differ in subtractions for differ-
ent event shapes. Thus, in this setup, the same subtraction
�e0 ðR;�Þ can be chosen for all universality classes.
In Appendix B, we carry out a standard renormalon

bubble sum calculation for an arbitrary dijet event shape
e satisfying Eq. (9) and demonstrate that Eq. (58) yields a
perturbative cross section ~�eðxÞ and power correction

8In principle, we could extract �ð2Þ
1 exactly from the �Pða!�1Þ

power correction, since from Table VI, we see that g�Pða!�1Þ
ðrÞ is

saturated by the first three terms in the Legendre expansion.

9To facilitate a multiplicative renormalization structure and to
account for non-Abelian exponentiation, one uses the logarith-
mic derivative of the position space soft function S

pert
e ðx;�Þ [78],

a definition adapted from the top jet mass definition of Ref. [79].
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parameter �1ðR;�Þ that are free from the �QCD renorma-

lon probed by this method. It might be interesting to
consider extensions of Eq. (58) that satisfy Eq. (57) but
have additional dependence on hadron mass effects.

V. ANOMALOUS DIMENSION OF �1ðrÞ
A. Running at one loop

In this section, we compute the one-loop anomalous
dimension of the QCD matrix element �1ðr;�Þ in the

MS scheme, with details given in Appendix C. We regulate
the UV with dimensional regularization using d ¼ 4� 2�.

Since �1ðrÞ has mass dimension one and is proportional
to the infrared (IR) scale �QCD, one must be careful to

establish IR regulators for the perturbative calculation in
such a way that there is nonzero overlap with the operator
matrix element. This requires at least one dimensionful IR
regulator, as well as a mechanism to probe different values
of r. With this, we can then compute the anomalous dimen-
sion just as we would for any external operator in QCD. The
anomalous dimension will be independent of the precise IR
procedure used to identify the matrix element.

A convenient choice for the IR regulator is obtained by
coupling a massive adjoint background source J�A to the
Wilson lines in �1ðrÞ by the replacement

A�AðxÞ ! A�AðxÞ þ J�AðxÞ (59)

in Eq. (18) and in the QCD Lagrangian. There is no
Lagrangian mass term for the source J�A, but for it to
serve as an IR regulator, we will consider it to carry a
massive particle momentum q� where q2 ¼ m2. Recall
from Eq. (25) that the ETðr; 0Þ operator in �1ðrÞ sums
over contributions from individual particles in the final
state. If ETðr; 0Þ acts on any particle other than J�A, then
the corresponding phase space integral is scaleless and
dimensionful, and hence vanishes in dimensional regulari-
zation. Thus, the first nonzero contribution occurs where
ETðr; 0Þ acts on a J�A (and we then set all other J�A’s to
zero). This IR regulator is convenient for bookkeeping and
does not overly complicate the evaluation of loop integrals.
Effectively, it amounts to considering one of the final-state
gluons, namely the one acted upon by ETðr; 0Þ, as having
mass m and thus r � 1. For convenience when drawing
Feynman diagrams, we use the same notation for massless
gluons and the source, and simply note that we must sum
over the cases where each final-state gluon is the source.

At tree level, as shown in Fig. 3, we have only the source
line. This yields the nonzero matrix element

Mtree
1 ðrÞ ¼ 2�sCF




mr

ð1� r2Þ32 : (60)

Hence, our setup provides nonzero overlap with the
operator in �1ðrÞ.

We now turn our attention to the Oð�2
sÞ corrections.

Here, we must fix a gauge for the A�A massless gluons.

We have carried out all our calculations both with tradi-
tional Feynman gauge and with a background field
Feynman gauge where the source J�A takes the place of
the external background field. Both yield the same results.
In addition to J�A, we must introduce extra IR regulators
specific to individual diagrams. We find that shifting eiko-
nal propagators involving the loop or phase-space momen-
tum k� by n 	 k ! n 	 kþ�n and �n 	 k ! �n 	 kþ��n

suffices to regulate other IR divergences.
For the diagrams in Fig. 4 which involve two particles

in the final state through either a ghost bubble or a
gluon bubble, the sum of graphs does not involve a UV
divergence (moreover, these graphs are IR finite). Hence,
they can be ignored for the purposes of calculating
the anomalous dimension. The remaining diagrams are
either Abelian with color factor C2

F or non-Abelian with
color factor CFCA. Abelian contributions are shown in
Figs. 5 and 6, and in the sum over Abelian diagrams, the
real radiation and virtual contributions exactly cancel
(for all �). It is easy to prove that this cancellation happens
to all orders in perturbation theory. This proof uses the fact
that Y½Aþ J
 ¼ Y½A
Y½J
 for an Abelian theory with no
light quarks, and that Y½A
Yy½A
 ¼ 1.

FIG. 3. Tree-level graphs for �1ðr;�Þ.

FIG. 4. Diagrams involving gluon or ghost bubbles with two
cut particles. The four additional diagrams obtained by a flip
about the horizontal or vertical axis are not shown. Diagrams
with one cut particle for wave function renormalization and
coupling renormalization are also not displayed.
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This leaves just the non-Abelian diagrams coming from
Fig. 6, and triple gluon vertex diagrams in Fig. 7. There is
also a contribution from gauge coupling renormalization
which is not just canceled by the vacuum polarization
graphs in many gauges. For the 1=� poles, we can take
�n; �n ! 0 in the sum of graphs in Fig. 6 and separately in

Fig. 7, so the extra IR regulators cancel out of the UV terms
as expected. The sum of diagrams in Fig. 6 and the sum in
Fig. 7 each have 1=�2 poles, but these cancel in the
complete sum. This leaves only a nonzero 1=� pole which
will yield the anomalous dimension.

The final result for the UV divergence in the matrix
element of the bare �1ðrÞ operator is

M1-loop
1 ðrÞ ¼

�
��sCA

2
�
lnð1� r2Þ

�
Mtree

1 ðrÞ: (61)

We define the renormalized MS operator by

�bare
1 ðrÞ ¼ Zðr;�; �Þ�1ðr;�Þ; (62)

so Eq. (61) determines Zðr; �; �Þ at Oð�sÞ. Using
�d�s=d� ¼ �2��s þ . . . , the one-loop anomalous
dimension of �1ðrÞ is

�
d

d�
�1ðr;�Þ ¼

�
��sCA



lnð1� r2Þ

�
�1ðr; �Þ: (63)

Note that this anomalous dimension is positive since
lnð1� r2Þ< 0.
Intriguingly, the anomalous dimension is r dependent,

showing the important role of hadron masses. However,
there is no mixing for operators at different values of r, so
this renormalization group evolution equation can be
solved exactly to yield

�1ðr;�Þ ¼ �1ðr; �0Þ
�
�sð�Þ
�sð�0Þ

�2CA
�0

lnð1�r2Þ

¼ �1ðr; �0Þ½1� r2

2CA
�0

ln �sð�Þ
�s ð�0Þ: (64)

Here, one can consider �0 � 2 GeV as the low-energy
hadronic scale where we specify the nonperturbative
matrix element, and � as a high-energy scale that is
appropriate for the observable being considered. In
Sec. VB, we will show that � ’ Qe for the region of
event-shape distributions with e � emax and Qe �
�QCD, and � ’ Qemax for first moments of event shapes.

In order to use the resummed expression for�1ðr; �Þ to
predict the evolution from �e

1ð�0Þ to �e
1ð�Þ, one would

need to know the full r dependence of�1ðr;�0Þ to perform
the integral over geðrÞ. We will see how to approximately
circumvent this problem in Sec. VC.
One can also consider expanding Eq. (64) perturbatively

in �sð�0Þ which yields

�1ðr;�Þ¼�1ðr;�0Þ
�
1��sð�0ÞCA




�ln

�
�

�0

�
lnð1�r2Þþ			

�
: (65)

If one truncates at Oð�sÞ, then one only needs two non-
perturbative parameters defined at �0 to determine the
power corrections for an event shape at a higher scale �:

�e
1ð�Þ ¼ �e

1ð�0Þ þ �sð�0ÞCA



ln

�
�

�0

�
�e;ln

1 ð�0Þ: (66)

Here, �e
1ð�0Þ is our standard power correction parameter

at the scale �0 given by Eq. (36) with �1ðr; �0Þ, and the

slope parameter �e;ln
1 ð�0Þ is defined by

�e;ln
1 ð�0Þ � �

Z
dr lnð1� r2ÞcegeðrÞ�1ðr;�0Þ: (67)

FIG. 6. Independent emission diagrams with Abelian and non-
Abelian contributions. The four additional diagrams obtained by
a horizontal flip or complex conjugation are not shown.

FIG. 5. Purely AbelianOð�2
sÞ diagrams. Either gluon line cross-

ing the cut can be the source. The 4 additional diagrams obtained
by a flip about the horizontal or vertical axis are not shown.

FIG. 7. Triple gluon Y-diagrams for the Oð�2
sÞ correction to

�1ðrÞ. The 12 additional diagrams obtained by a horizontal flip
or complex conjugation are not shown. Diagrams with all 3
gluons coupled to Wilson lines of the same direction vanish.
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The expanded form in Eq. (66) is a reasonable approxima-
tion if � is not too different from �0. It works for a larger
range than one would naively expect since there are
numerical cancellations in the Oð�2

sÞ term between
ln2ð1� rÞ and lnð1� rÞ contributions.

B. The Wilson coefficient of �1ðr;�Þ
Having established that the nonperturbative matrix ele-

ment�1ðr; �0Þ runs, we reconsider the operator expansion
of the shape function Feð‘Þ in Eq. (16), now incorporating
�s corrections through a Wilson coefficient Ce

1ð‘; r; �Þ for
�1ðr;�Þ. The formula in Eq. (16) becomes

Feð‘Þ¼�ð‘Þþ
Z
drCe

1ð‘;r;�ÞcegeðrÞ�1ðr;�Þ

þO
��2

QCD

‘3

�
: (68)

As usual, the � dependence of Ce
1ð‘; r; �Þ cancels that of

�1ðr;�Þ. The dependence of Ce
1ð‘; r;�Þ on ‘ and � will

determine the appropriate scale � where there are no large
logarithms in this Wilson coefficient. This in turn will
determine the appropriate perturbative scale � for the
endpoint of the evolution derived in Eq. (64). Since the ‘
dependence is treated differently by event-shape distribu-
tions and by their first moments, a different scale �will be
found for these two observables.

Taking Eq. (63) together with the cancellation of the �
dependence implies

�
d

d�
Ce
1ð‘; r;�Þ ¼ CA�sð�Þ



lnð1� r2ÞCe

1ð‘; r;�Þ: (69)

At order �s using Eq. (16), this becomes

�
d

d�
Ce
1ð‘; r; �Þ ¼ �CA�sð�Þ



lnð1� r2Þ�0ð‘Þ: (70)

Note that Ce
1ð‘; r; �Þ must have mass dimension �2. At

Oð�sÞ, the simplest potential solution has the dependence
lnð�=�Þ�0ð‘Þ, but by dimensional analysis, the only possi-
bility for � is ‘ which leads to a singular result. The correct
solution is

Ce
1ð‘;r;�Þ¼��0ð‘ÞþCA�sð�Þ



lnð1�r2Þ d

d‘

�
1

�

�
�

‘

�
þ

�

þ�sð�Þ



�0ð‘Þde1ðrÞþOð�2
sÞ; (71)

which can be deduced since the derivative of the plus
function has the right dimension and has the required
logarithmic scale dependence

�
d

d�

d

d‘

1

�

�
�

‘

�
þ
¼ ��0ð‘Þ: (72)

In this way, the plus function term in the Wilson coefficient
exactly compensates for the first-order �sð�Þ lnð�Þ depen-
dence in�1ðr; �Þ. Note that

d

d‘

1

�

�
�

‘

�
þ
¼ � 1

�2

�
�2

‘2

�
þþ

þ 1

�
�ð‘Þ; (73)

where the þþ -distribution induces two subtractions about
‘ ¼ 0 and is defined so that its zeroth and first moments
integrate to zero for the limits ‘=� 2 ½0; 1
.
The function de1ðrÞ in Eq. (71) is also a perturbatively

computable contribution to the Wilson coefficient. The
matching calculation for this term involves considering
the difference between renormalized Feynman diagrams
for the full theory soft function matrix element

Seð‘Þ ¼ h0j �Yy
�nY

y
n �ð‘�QêÞYn

�Y �nj0i; (74)

and for the low-energy matrix elements describing
�1ðr;�Þ. A complete one-loop calculation of de1ðrÞ is
beyond the scope of our work. In Appendix D, we carry
out this matching procedure for thrust in order to directly
derive the term that involves the derivative of the plus
function shown in Eq. (71). Many of the complications
required to derive de1ðrÞ do not enter for this term.
Next, consider the impact of Ce

1ð‘; r;�Þ on the distribu-
tion and first moment event-shape observables discussed in
Sec. II C, in order to determine the appropriate scale �
where large logs are minimized. For the differential distri-
bution, we find

d�

de
¼d�̂

de
þ 1

Q

Z
d‘

Z
dr

d�̂

de

�
e� ‘

Q

�
Ce
1ð‘;r;�ÞcegeðrÞ�1ðr;�Þ

¼d�̂

de
� 1

Q

�
�e

1ð�Þþ�sð�Þ



�e;d
1 ð�Þ

�
d2�̂

de2
ðeÞþ�e;ln

1 ð�Þ
Q

�sð�ÞCA




�
ln

�
�

eQ

�
d2�̂

de2
ðeÞ�

Z eQ

0

d‘

‘

�
d2�̂

de2

�
e� ‘

Q

�
�d2�̂

de2
ðeÞ

�	
;

(75)

where the nonperturbative parameter �e;ln
1 ð�Þ is given in

Eq. (67), and

�e;d1
1 ð�Þ ¼

Z
drde1ðrÞcegeðrÞ�1ðr; �Þ: (76)

The explicit lnð�=QeÞ in Eq. (75) implies that for the

distribution, the appropriate scale to run the power correc-

tion to is � ¼ Qe.
For the first moment, we find
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hei ¼
Z emax

0
dee

Z
d‘

1

�̂

d�̂

de

�
e� ‘

Q

�
Feð‘Þ ¼

Z
de

Z
d‘�

�
em � e� ‘

Q

��
eþ ‘

Q

�
1

�̂

d�̂

de
ðeÞFeð‘Þ

¼ heipert þ�e
1ð�Þ
Q

þ �sð�Þ



�e;d
1

Q
þ�e;ln

1 ð�Þ
Q

CA�sð�Þ



Z emax

0
de

1

�̂

d�̂

de
ðeÞ

�
ln

�
�

Qðemax � eÞ
�
� e2

emaxðemax � eÞ
�
; (77)

where the notation heipert is defined in Eq. (20). Since the
perturbative moments generate a rapidly convergent series,
we can expand the perturbative coefficient of �e;ln

1 ð�Þ in
(e=em) to obtain

Z emax

0
de

1

�̂

d�̂

de
ðeÞ

�
ln

�
�

Qðemax � eÞ
�
� e2

emaxðemax � eÞ
�

¼ ln

�
�

Qemax

�
þ heipert

emax

� he2ipert
2e2max

þ 	 	 	 : (78)

Thus, for the first moment, the appropriate scale to run the
power correction to is � ¼ Qemax.

C. Orthogonal basis for �1ðr;�Þ
In Sec. IVD, we showed that the power corrections for

observables in different universality classes could be ap-
proximately related by expanding out geðrÞ and�1ðr;�Þ in
a suitable basis. Since the appropriate scale � for �1 is Q
dependent, this is true if all measurements are performed at
a single Q. From Secs. VA and VB, we know that the
leading power correction has nontrivialQ dependence, and
we would like to incorporate this information in our
description of �1ðrÞ.

Immediately from Eq. (64), we see that �1ðr;�Þ will
diverge as r ! 1. Even if�1ðr;�0Þ is regular at some scale
�0, it will quickly develop a singularity at r ¼ 1 as �
evolves. This singularity can be physically interpreted as
the propensity ofWilson lines to emit soft massless particles.
Of course, this singularity is still square-integrable, and thus
the power correction is still well defined.10 However, the
singularity at r ¼ 1 means that if the Legendre polynomial
basis in Sec. IVD is used at a scale �0 to define a basis for

power corrections �ðnÞ
1 ð�0Þ, then it converges very slowly

when trying to use these same parameters to describe power
corrections for scales � � �0 or� � �0.

Looking at the �s expansion of the running formula in
Eq. (66), we see that to describe the power correction for a
range ofQ values, we must find a suitable basis to describe
not only geðrÞ and �1ðr;�0Þ but also geðrÞ lnð1� r2Þ.
Since lnð1� r2Þ is unbounded at r ¼ 1 (but still square-
integrable), we will use the freedom to introduce additional
square-integrable basis elements ð1� rÞ�k for suitable
values 0< k< 1=2. As long as we are content to work
with a finite number of basis elements, we can always
make such a basis orthonormal via the Gram-Schmidt

procedure. Adding these additional functional forms will,
in general, yield an over-complete basis, but this is not an
issue in practice since we will only ever consider a finite
number of basis elements.
The situation becomes a bit more complicated if we

consider the full running in Eq. (64). In general, any finite
basis we choose to describe�1ðr; �Þ at one value ofQ will
not provide a good description at a different value of Q due
to the running. In particular, a basis that is orthonormal at
one value of �0 will no longer be orthonormal at another
scale. Instead of trying to find a basis that works for any Q,
we instead choose a scale�0 at which we model�1ðr; �0Þ,
and then evolve according to Eq. (64). We then fit for the
basis coefficients by using information at different values of
Q. This procedure is philosophically the same as the proce-
dure used to determine parton distribution functions, where
the parton distribution functions are modeled at a low scale
and then evolved to higher Q values via the Dokshizer-
Gribov-Lipatov-Altarelli-Parisi equations [80–82].

D. Comparison to Monte Carlo

We now show that power correction universality and
running is exhibited by two widely used Monte Carlo
programs: Pythia 8.162 [83] and Herwigþþ 2.6.0 [84].
The hadronization model in Pythia 8 is based on string
fragmentation while Herwigþþ is based on cluster frag-
mentation.11 The default hadronization parameters in both
programs have been tuned to reproduce LEP eþe� event
shapes at the Z pole. We will consider eþe� ! hadrons at
various Q values, turning off initial-state electromagnetic
radiation to avoid the radiative return process.
Our study will use the generalized angularities �ðn;aÞ

defined in Eq. (37). Via the arguments in Sec. IVB, we
know that the power corrections for different values of a
are related via the ca ¼ 2=ð1� aÞ coefficients in Eq. (39),

�
�ðn;aÞ
1 ð�Þ ¼ ca�

n
1ð�Þ; (79)

where �n
1ð�Þ is the universal power correction for the rn

class given in Eq. (42).
From Eq. (21), we know that the leading power correc-

tion shifts the moments of event shapes, so we can extract

10For evolution over a large enough Q range, the singularity
may no longer be integrable, and may turn into a distribution, but
we do not encounter this subtlety in our analysis.

11The two programs also have different showering models, with
Pythia 8 using a p?-ordered shower and Herwigþþ using an
angular-ordered shower. Since the showers are evolved down to
the nonperturbative scale, part of the renormalization group
evolution of the power correction may be captured by the
showering algorithm, and not just the hadronization model.
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the universal power corrections for the generalized angu-
larities via the first moment

�n
1ð�QÞ ¼ 1

ca
ðQh�ðn;aÞi �Qh�ðn;aÞipertÞ; (80)

up to small higher-order corrections. Since the maximum
value of thrust (a ¼ 0) is 1=2, we take�Q ¼ Q=2 to avoid
having large logs in these higher-order corrections, which
were displayed above in Eq. (78).12 The perturbative
moment h�ðn;aÞipert is the same for event shapes with a

common r ! 1 limit. To form a combination that is sensi-
tive to the power corrections in the Monte Carlo programs
without having to know about their perturbative contribu-
tions, we consider the difference �ð0;aÞ � �ðn;aÞ which com-

pares the same value of a at two different values of n. For
this combination, we have

�0
1ð�QÞ ��n

1ð�QÞ ¼ Q

ca
ðh�ð0;aÞi � h�ðn;aÞiÞ: (81)

Note that this difference is also independent of the additive
scheme change that removes the renormalon from �e

1ð�Þ,
given by Eq. (55) with Eq. (58). Therefore, we emphasize
that our analysis in this section only probes the running in
Eq. (63) and not the R evolution [64,65] associated with
�e

1ðR;�Þ.
In Fig. 8, we plot�0

1 ��n
1 for a ¼ 0,�1,�2, n ¼ 1, 2,

3, and Q values ranging from 20 GeV to 200 TeV. At a
fixed scale Q, the power corrections are independent of a
with at most 5% variations, thus demonstrating the antici-
pated universality.13) Note that both programs were tuned
to LEP Z pole and low-energy data, so it is not surprising
that they have the same power corrections atQ�mZ. More
interestingly, both programs show logarithmic growth inQ
for the power correction, as expected from our results in
Sec. VA. Numerically, this growth is consistent with the
form ðlnQÞA=Q found in Ref. [7], and the exponent A ’
4CA=�0 � 1:5 is presumably related to the exponent in
Eq. (64). A more concrete comparison is difficult since
the analysis in Ref. [7] effectively expands about r ¼ 1,
and parametrizes the extra resulting logarithmic singularity
by a lnð�=�QCDÞ factor that cancels an �sð�Þ.

To show the importance of resummation, we fit for the
functional form of �ðr;�0Þ. The solid lines in Fig. 8 have
the full running in Eq. (64), while the dashed lines corre-
spond to the expansion in Eq. (66). These curves were
obtained following the procedure of Sec. VC, where
�ðr; �0Þ is modeled using the three basis functions

f1; r; ð1� rÞ�1=4g; (82)

suitably orthonormalized. The inclusion of ð1� rÞ�1=4

is needed to capture the (integrable) peak of �ðr; �0Þ at

r ¼ 1, though other choices ð1� rÞk give comparable
results. We apply the fit form at Q ¼ 100 GeV and use
Eq. (64) to determine�ðr;�Þ over the wholeQ range.14 To
show that this framework has some predictive power, we fit
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FIG. 8 (color online). Universal power corrections extracted
from Pythia 8.162 (upper solid and dashed lines and dots)
and Herwigþþ 2.6.0 (lower solid and dashed lines and dots)
for the generalized angularities �ðn;aÞ. We use the measured

power corrections in the first two plots to fit for �ðr;�0Þ at
Q ¼ 100 GeV, using Eq. (64) to evolve to different Q scales.
The curves in the third plot are then predicted. The dashed curves
show the approximate formula in Eq. (66).

12The angularities with a � 1 have different values for emax,
but this is an Oð1Þ change to the � scale, and hence not relevant.
13The leading violation of universality can be attributed to
different matching coefficients de1ðrÞ in Eq. (71).

14As mentioned below Eq. (64), a more natural strategy would
be to apply the fit form at �0 ¼ 2 GeV. Because of a large range
of scales in Fig. 8, resummation is always important with that
choice. By using �0 ¼ ð100 GeVÞ=2, we are using the same
scale where Monte Carlos have been tuned, and we can also
better highlight the difference between the full and expanded
running.
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�ðr; �0Þ using information from n ¼ 1 and n ¼ 2 over the
whole Q range, and then extrapolate to n ¼ 3.

Because we are measuring the difference �ð0;aÞ � �ðn;aÞ,
we are relatively insensitive to the functional form of
�ðr; �0Þ near r ¼ 1. We are effectively measuring event
shapes in the universality class geðrÞ ¼ 1� rn where
geð1Þ ¼ 0, and therefore our extraction of the raw power
correction �n

1 has large uncertainties. On the other hand,
the extraction of power correction differences is stable at
the 10–20% level as the fit form is adjusted, and these
differences are shown in Table VII for the basis choice in
Eq. (82).

We also show the best fit values for �n;ln
1 , defined as

�n;ln
1 ð�0Þ � �

Z
dr lnð1� r2Þrn�1ðr;�0Þ; (83)

which is a hadronic parameter related to the slope of the
expanded running in Eq. (66). We see that Pythia 8 and
Herwigþþ have similar power corrections �n

1 at Q ¼
100 GeV, but the slopes�n;ln

1 are larger in Pythia 8, leading

to larger values of�n
1 atQ ¼ 104 GeV. This slope parameter

is interesting since it provides an example of a hadronization
effect that can only be accurately determined using data at
multiple Q values. Parameters of this type presumably
dominate the uncertainty one has when describing hadro-
nization effects in high-energy data using Monte Carlo
models that were only tuned at much lower energies.

Finally, we remark that one strategy to extract �n
1

directly from these Monte Carlo programs would be to
turn off the hadronization model and calculate h�ðn;aÞipert
from the parton shower alone. However, there is no guar-
antee of a one-to-one map between hadronization model-
ing and operator-derived power corrections. In the context
of a Monte Carlo program, the perturbative parton shower
is first evolved to the shower cutoff of order 1 GeV>
�QCD before applying the hadronization model, whereas

from Sec. VB, the natural scale to evaluate the power
correction is Qe (for the distribution) or Qemax (for the
first moment). For this reason, there is an ambiguous
separation between perturbative parton shower evolution

and nonperturbative hadronization modeling, and there is
no guarantee that hadronization models by themselves will
respect the renormalization group evolution of Eq. (64).15

It would be interesting to understand to what extent parton
shower evolution can mimic Eq. (64), and whether there
are ways to adjust hadronization models to satisfy the
renormalization group properties expected of power cor-
rections. Ultimately, one would want to test the power
correction evolution by performing event-shape measure-
ments at high Q.

VI. CONCLUSIONS

In this paper, we revisited the important issue of power
corrections for eþe� dijet event shapes. By casting the
leading power correction in terms of matrix elements of a
transverse velocity operator, we were able to robustly treat
the effect of hadron masses. Depending on the measurement
scheme, event shapes fall into different universality classes
that share a universal power correction�ge

1 . Moreover, these

nonperturbative matrix elements have perturbatively calcu-
lable anomalous dimensions, which introduce additional
dependence on the scale Q of the hard collision.
SinceMonte Carlo programs play such a key role in LHC

data analysis, it is satisfying to see that both universality
and Q evolution are exhibited by the hadronization models
of Pythia 8 andHerwigþþ , albeit with different choices of
the nonperturbative matrix elements. An interesting differ-
ence is in their values for hadronic slope parameters that
play an important role in the extrapolation to high energies
of hadronization effects which are fit at low energies.
Our study motivates a reanalysis of eþe� event-shape

data with a more explicit treatment of hadron mass effects.
As an exercise, we have studied the effect of including the
anomalous dimension of the leading power correction on the
determination of �sðmZÞ from the thrust distribution. We
have repeated the analysis of Ref. [30] at N3LL þOð�3

sÞ,

TABLE VII. Power correction differences extracted from the fits in Fig. 8. The slope
parameter �n;ln

1 is defined in Eq. (83). These values have 10–20% uncertainties from the choice

of functional fit form.

Q ¼ 100 GeV Q ¼ 104 GeV

Pythia 8 (GeV) Herwigþþ (GeV) Pythia 8 (GeV) Herwigþþ (GeV)

�0
1 ��1

1 0.7 0.6 1.3 0.9

�0;ln
1 ��1;ln

1 0.9 0.5 2.4 1.1

�0
1 ��2

1 1.1 1.0 2.3 1.6

�0;ln
1 ��2;ln

1 1.8 1.0 4.6 2.0

�0
1 ��3

1 1.5 1.3 3.2 2.1

�0;ln
1 ��3;ln

1 2.6 1.3 6.6 2.8

15For example, if we were to extract �0
1 from Pythia 8 by

turning hadronization on and off, we would find almost no
running with Q (i.e., �0;ln

1 ’ 0).
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using the same data set and procedure, but replacing the
power correction to include a logarithmic slope term

2�1 ! 2�1 � �sð�sÞCA



�ln

1 log

�
�s

2 GeV

�
; (84)

where �sð�Þ �Q�. With the current experimental data,�1

and �ln
1 are highly correlated and cannot be determined

simultaneously. Therefore, we plug in the estimate �ln
1 ¼

�0:35 GeV���1, and repeat the fit for �sðmZÞ and �1.
We find that the effect of this term on �sðmZÞ is �0:0005,
which is roughly half of the total uncertainty�0:0011 found
in Ref. [30]. For �1, the effect is �0:03 GeV, which is
comparable to the previous uncertainty of �0:05 GeV.
Accounting for this additional source of uncertainty in quad-
rature changes the total uncertainty in this analysis from
�0:0011 ! �0:0012 for �sðmZÞ, and from �0:05 !
�0:06 for �1.

If LEP data are successfully preserved [85,86], then one
could compare different mass schemes to better separate
perturbative physics from nonperturbative physics. Such
studies would be interesting in their own right, but would
also give additional input for tuning Monte Carlo hadroni-
zation models.

An obvious generalization is to go beyond dijet event
shapes and consider shape functions for more than two
Wilson lines. This is relevant not only for multijet studies at
eþe� colliders, but also for treating the beam directions in
hadron colliders like the LHC. For example, the event-shape
N-jettiness [70] is a convenient variable to define exclusive
N-jet cross sections at the LHC, and its shape function
involves 2þ N Wilson lines. The anomalous dimension cal-
culation for multiple Wilson lines is technically more chal-
lenging but conceptually similar to the calculation presented

here. In particular, the same ÊTðr; y; t̂Þ can be considered for
this analysis (where here we add t̂ in order to emphasize that
rapidity y is defined with respect to the axis t̂). On the other
hand, it is not clear which aspects of universality will carry
over to the multijet case, since universality of dijet power
corrections relied crucially on longitudinal boost invariance.

Finally, our study sheds light on recent studies of jet
substructure at the LHC. The jet shape N-subjettiness was
introduced in Refs. [87,88] (see also Ref. [89]) as a com-
plement to the event-shape N-jettiness. The ratio of
2-subjettiness to 1-subjettiness (�2=1) can be used to dis-

tinguish boosted W=Z bosons from the background of
ordinary quark and gluon jets. From Table I, we see that
2-jettiness and thrust are closely related, and Ref. [90] used
this fact to perform a precision calculation of �2=1 for

boosted W=Z bosons at the LHC by recycling the known
resummation for thrust in eþe� ! hadrons. However,
Table V shows that the original definitions of 2-jettiness
and thrust are not in the same universality class, which
explains why Ref. [90] required a value of the power
correction �1 � �

�
1 that was roughly a factor of 2 bigger

than the value for ��
1 obtained in Refs. [29,30]. To a good

approximation, the power correction for boosted W=Z
bosons generates a shift of the �2=1 distribution by 
 times

��
1 [90], making it all the more crucial to choose the proper

power correction. Thus, a proper treatment of hadron
masses and power corrections will be essential for preci-
sion jet substructure studies at the LHC.
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APPENDIX A: DERIVATION OF THE
TRANSVERSE VELOCITY OPERATOR

In this appendix, we show that the transverse velocity

operator ÊTðr; yÞ can be expressed in terms of the energy-
momentum tensor as in Eq. (26). Our analysis is analogous

to that for ÊTð�Þ in Ref. [68], where it was performed for
scalar and spin-1=2 hadrons, as well as that of Ref. [66].
We will carry out our proof for scalar fields.
Consider the energy-momentum tensor of a free scalar

particle with mass m (we will see below that interaction
terms are suppressed):

T�	 ¼ @��@	�� g�	L; (A1)

where the plane wave expansion for the scalar field is

�ðxÞ ¼
Z d3 ~p

ð2
Þ32Ep

ða ~pe
�ix	p þ ay~pe

ix	pÞ; (A2)

where Ep ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

p
. We will use the stationary phase

approximation

lim
k!1

Z
dxfðxÞeikgðxÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2


kjg00ðx0Þj

s
fðx0Þeikgðx0Þei
4 sign½g00ðx0Þ
;

(A3)

where g0ðx0Þ ¼ 0. For this formula to be applicable, gðxÞ
must attain a minimum or a maximum in the range of
integration.
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After plugging the plane wave expansion of the free field
� in Eq. (A2) into the energy-momentum tensor in
Eq. (A1), one can perform all the angular integrations
using Eq. (A3), obtaining

lim
R!1R

3n̂iT
0iðR; Rvn̂Þ

¼ lim
R!1R

Z dp dqpq2

4ð2
Þ4Eqv
2
ða ~pn̂

a ~qn̂e
iRðvp�Epþvq�EqÞ

þ a ~pn̂
ay~qn̂e

iRðvp�Ep�vqþEqÞ þ ðh:c: and p $ qÞÞ;
(A4)

where ~pn̂ ¼ pn̂ and ~qn̂ ¼ qn̂. The p and q integrals can be
performed, again using Eq. (A3), to yield

lim
R!1R

3n̂iT
0iðR;vRn̂Þ¼ 1

4ð2
Þ3
m3v

ð1�v2Þ52 ða~pa
y
~pþay~pa~pÞ;

(A5)

where ~p ¼ mvffiffiffiffiffiffiffiffiffi
1�v2

p n̂. Note that terms involving two creation

or two annihilation operators drop out, since they vanish as
1=R when integrated against any function of v [in particu-
lar, our geðrÞ in Eq. (36)]. At this point, we can also see why
interaction terms in the energy-momentum tensor can be
neglected. Such terms involve additional fields and there-
fore additional integrations when they are expanded in
plane waves. These additional integrals can be performed
using the stationary phase approximation and vanish as
R ! 1 due to the presence of additional powers of 1=R.

After normal ordering, Eq. (A5) can be written as

lim
R!1R

3n̂iT
0iðR; vRn̂Þ ¼

Z d3 ~p

ð2
Þ32Ep

aypap
Ep

v

� �

�
v� j ~pj

Ep

�
�2ðp̂� n̂Þ: (A6)

Using the fact that Ep ¼ ðp? cosh�Þ=v andZ 2


0
d��2ðp̂� n̂Þ ¼ cosh2��ð�� �pÞ; (A7)

we obtain the operator

Ê Tðv;�Þ ¼ v2

cosh3�
lim
R!1R

3
Z 2


0
d�n̂iT

0iðR;Rvn̂Þ; (A8)

which is differential in velocity and pseudorapidity and
satisfies

Ê Tðv; �ÞjXi ¼
X
i2X

p?
i �ðv� viÞ�ð�� �iÞjXi: (A9)

Note that if we integrate this operator over 0< v< 1, we
recover the expression in Ref. [66] for the energy flow

operator ÊTð�Þ.
Finally, to obtain from ÊTðv; �Þ the desired ÊTðr; yÞ that

satisfies Eq. (25), one needs to multiply by the Jacobian
factor

@ðv;�Þ
@ðr; yÞ ¼ sech2y

r
; (A10)

and include a factor 1=r to convert p? to m?, yielding

Ê Tðr; yÞ ¼ sech2y

r2
ÊTðvðr; yÞ; �ðr; yÞÞ; (A11)

which agrees with Eq. (26).

APPENDIX B: RENORMALON COMPUTATION
FOR GENERIC EVENT SHAPE

Here, we show that the definition �eðR;�Þ ¼
ðce=ce0 Þ�e0 ðR;�Þ in Eq. (58) yields a perturbative cross
section ~�eðxÞ in Eq. (56) that is independent of the leading
�QCD renormalon when probed by a standard fermion

bubble chain. Since the renormalon cancels between the

MS series �̂eðxÞ and �e
1ð�Þ, this implies that �e

1ðR;�Þ is
also free of the �QCD renormalon.

The �QCD renormalon corresponds to a u ¼ 1=2 pole in
the Borel transform. For a function fð�sÞ that is an infinite
series in �sð�Þ, the Borel transform B½f
ðuÞ is obtained by
replacing �

�0�sð�Þ
4


�
nþ1 ! un

n!
: (B1)

Following Ref. [62], we make use of the fact that the
perturbative soft function carries the leading renormalon,

and hence carry out our computation for S
pert
e ðx;�Þ rather

than the cross section �̂ðxÞ.16 Since the soft function obeys
non-Abelian exponentiation [91,92], it is useful to write the
perturbative scheme change in Eq. (56) as

ln~Sperte ðx;�Þ ¼ lnSperte ðx;�Þ � ix�eðR;�Þ; (B2)

and then demonstrate that ln~S
pert
e ðx;�Þ does not have a

u ¼ 1=2 pole.
The use of the soft function allows us to perform the

bubble chain analysis for an arbitrary event shape specified
by feðr; yÞ and Eq. (9). To study the first contribution to the
u ¼ 1=2 pole, we can work in d ¼ 4 dimensions, and we
only need to dress a single real gluon with a bubble chain.
We parametrize the gluon phase space with ~p? and y,

d3 ~p

ð2
Þ32Ep

¼ dy

4


d2 ~p?
ð2
Þ2 : (B3)

Since the final state gluon is on shell, we have r ¼ 1. For
the event shape e, the Fourier transform givesZ

dee�iexQ�

�
e� 1

Q
p?feð1; yÞ

�
¼ e�ixp?feð1;yÞ: (B4)

Taking the sum of all dressed real radiation diagrams with
a single gluon and swapping nf ! �3�0=2, we find the

Borel transform

16Note that x is a dimensionless variable in �̂ðxÞ but is a
variable with mass dimension �1 in Sepertðx;�Þ.
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B½lnSbubblese ðx;�Þ
ðuÞ ¼ 8CFð�2e5=3Þu
�0�ð1þ uÞ�ð1� uÞ

Z þ1

�1
dy

Z 1

0
dp?p�1�2u

? e�ixp?feð1;yÞ

¼ 8CFð�2e5=3Þu
�0�ð1þ uÞ�ð1� uÞ

Z þ1

�1
dyfeð1; yÞ2u

Z 1

0
dhh�1�2ue�ixh

¼ 8CFð�2e5=3Þu
�0�ð1þ uÞ�ð1� uÞ�ð�2uÞðixÞ2u

Z þ1

�1
dyfeð1; yÞ2u: (B5)

Here, �0 ¼ 11CA=3� 2nf=3, and in the second equality,
we used the change of variables h ¼ p?feð1; yÞ.
Expanding about u ¼ 1=2 and using

R
dyfeð1; yÞ ¼ ce,

we arrive at the final expression for the u ¼ 1=2 pole,

B½lnSbubblese ðx;�Þ
ðuÞ ¼ ce
8CFe

5=6


�0ðu� 1
2Þ
ðix�Þ: (B6)

Here, (ix) corresponds to the �0ð‘Þ present in Eq. (16).
Using Eq. (B6), we can compute the Borel transform of

the subtraction series �e0 ðR;�Þ for the reference event
shape e0, which is defined by Eq. (58). We find

B½�e0 ðR;�Þ
ðuÞ ¼ ce0
8CFe

5=6


�0ðu� 1
2Þ
�: (B7)

Finally, computing the leading renormalon ambiguity in

ln~Sepert, using Eq. (58) to define �eðR;�Þ, we find
B½ln~Sperte ðx; �Þ
ðuÞ

¼ B½lnSperte ðx;�Þ
ðuÞ � ixB½�eðR;�Þ
ðuÞ
¼ B½lnSperte ðx;�Þ
ðuÞ � ix

ce
ce0

B½�e0 ðR;�Þ
ðuÞ

¼ 0

u� 1
2

; (B8)

as promised. Note the importance of using the same scale

� for the perturbative soft function S
pert
e ðx;�Þ and its

subtractions �eðR;�Þ.
As a final comment, we remark that the renormalon

analysis in this appendix takes r ¼ 1 and hence does not
fully probe infrared effects that depend on hadron masses.

APPENDIX C: ONE-LOOP
ANOMALOUS DIMENSION

In this appendix, we provide details on the calculation
which yields the anomalous dimension formula in Eq. (61).
The integrals involved in determining the one-loop anoma-
lous dimension of �1ðr;�Þ from Figs. 4–7 are somewhat
different from the phase space integrals for QCD gluons
attached to eikonal lines, which occur for the leading
power perturbative soft function calculation. In particular,
the amplitudes are similar to those occurring in recent two-
loop soft function calculations [93–95], but a different
measurement is made.

As explained in Sec. V, one of the cut gluons corre-

sponds to a massive adjoint source field, and ÊTðr; yÞ acts
on this object. We will call the momentum of this source
q�, where q2 ¼ m2 � 0. The remaining gluon lines are
standard massless QCD gluons, and we will denote the
momentum of virtual loop integrals by k, and the momenta
of real gluon radiation by p, where p2 ¼ 0.
The phase space integral over q for the source is com-

pletely fixed by the measurement, up to one trivial angular
integral for �q in the transverse plane. Taking the three

phase space variables to be qþ, q�, and�q, the former two

are fixed by the � functions from Eq. (25):

m?
q �ðr� rqÞ�ðy� yqÞ ¼ m?

q

2m2r

ð1� r2Þ2 �
�
qþ � meyffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� r2
p

�

� �

�
q� � me�yffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� r2
p

�
; (C1)

where m?
q ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2? þm2

q
, rq ¼ q?=m?

q , and yq ¼
1=2 lnðqþ=q�Þ. For notational convenience, we define an

object �̂ðr; yÞ that contains common factors associated
with the source that appear in all Feynman diagrams,

�̂ðr; yÞ ¼ 16
�sCF

ð2
Þn
Z dn ~q

2Eq

m?
q �ðr� rqÞ�ðy� yqÞ

qþq�
;

(C2)

where n ¼ d� 1 ¼ 3� 2�. Here, �̂ðr; yÞ should be
considered to be an operator that can act on additional
qþ and q� dependence in loop and phase space integrals,
and which replaces q� by the functions ofm, r, y occurring

in the � functions in Eq. (C1). �̂ðr; yÞ is normalized so that
acting on unity with n ¼ 3, the integral in Eq. (C2) yields
the tree-level result in Eq. (60).
The general strategy to compute the anomalous dimen-

sion is to reduce each graph to a set of master integrals. We
will always partial fraction eikonal propagators and shift
numerators to obtain a set of integrals that involve only one
pþ (kþ) and/or one p� (k�) in a denominator. To regulate
potential IR singularities, we shift the eikonal propagators
by taking k� ! k� þ�n; �n or p� ! p� þ �n; �n. We will

treat the �n; �n as infinitesimal IR regulators, which are

expanded whenever possible.
We start with graphs which involve independent emis-

sion of gluons in Figs. 5 and 6. A useful identity between
real emission phase space and virtual integrals is
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I1ðA; BÞ ¼ ~�2�
Z dd�1 ~p

2j ~pjð2
Þd�1

1

ðpþ þ AÞ
1

ðp� þ BÞ
¼ i ~�2�

Z ddk

ð2
Þd
1

ðkþ þ AÞ
1

ðk� þ BÞ
1

k2 þ i0

¼ 1

ð4
Þ2 �ð�Þ
2�ð1� �Þ

�
eE

�2

AB

�
�
; (C3)

where ~� ¼ �eE=ð4
Þ.17 Using Eq. (C3), it is easy to
determine that the purely Abelian terms proportional to
C2
F vanish (virtual graphs cancel real radiation graphs). In

addition, in the sum of non-Abelian contributions from the
graphs in Fig. 6, there are no IR divergences regulated by �
or �n; �n, so all 1=�’s correspond to UV divergences. The

result for these non-Abelian independent emission contri-
butions is

MEFT
ie ¼ �8
�sCA�̂ðr; yÞI1ðqþ; q�Þ

¼ �CA�s

2

�̂ðr; yÞ

�
1

�2
� 1

�
ln

�
qþq�

�2

�
þ 
2

4

þ 1

2
ln2

�
qþq�

�2

��
: (C4)

Note that we refer to the results of this section as effective
field theory (EFT) contributions since we are performing
calculations in a theory where the soft perturbative scale
(�S �Qe) has been integrated out.

Graphs involving the triple gluon vertex are more
involved. Here, individual virtual radiation graphs have
an imaginary part, which arises from the fact that q2 ¼
m2 > 0 while all virtual particles have massless propaga-
tors. Nevertheless, the virtual diagrams can always be
paired with a complex conjugate so one only needs the
real parts. To determine the anomalous dimension for
�1ðr;�Þ, we only need the UV-divergent terms. The finite
terms would be necessary for the matching computation of
de1ðrÞ in Eq. (71), which is not our goal here. We will
therefore focus on graphs which contain 1=� UV divergen-
ces and � dependence. The �-dependent terms will be
needed for Appendix D.

It is straightforward to verify that the sum of double cut
vacuum polarization graphs in Fig. 4 does not have a 1=�
UV divergence. This sum of graphs also do not require � to
regulate IR divergences, and hence have no explicit �
dependence. Thus, they do not contribute to our calculation
here.

The remaining triple gluon vertex diagrams shown in
Fig. 7 involve single cut virtual graphs and double cut real
emission graphs. The only required UV-divergent and
�-dependent loop integral is

I2ðA;qþ;mÞ

¼Re

�
i ~�2�

Z ddk

ð2
Þd
1

ðkþþAÞ
1

k2þ i0

1

ðk�qÞ2þ i0

�

¼ �1

ð4
Þ2�ð�Þcosð�
Þ
�
eE

�2

m2

�
�Z 1

0
dx

½xð1�xÞ
��

Aþxqþ
:

(C5)

The result is IR safe for all the cases we need (A � 0 and
A � �qþ), yielding

I2ðA; qþ; mÞ ¼ � 1

ð4
Þ2qþ
�
1

�
� 2 ln

�
m

�

��

� ln

�
1þ qþ

A

�
þ 	 	 	 ; (C6)

where the þ . . . refers to UV-finite and �-independent
terms. The real radiation master integral is

I3ðA; qþ; mÞ

¼ ~�2�
Z dd�1 ~p

2j ~pjð2
Þd�1

1

ðpþ þ AÞ
1

ð2p 	 qþm2Þ
¼ �ð�Þ

ð4
Þ2
�
eE

�2

m2

�
� Z 1

0
dx

½xð1þ xÞ
��

Aþ xqþ
;

which is IR safe for all cases we need (A � 0), yielding

I3ðA; qþ; mÞ ¼ 1

ð4
Þ2
1

qþ

�
1

2�2
� 1

�
ln

�
m

�

�
þ ln2

�
m

�

�

� ln

�
A

qþ

��
1

�
� 2 ln

�
m

�

��	
þ 	 	 	 (C7)

Here, all 1=� poles are UV divergences, and again, the
þ . . . represent UV-finite and �-independent terms. We
can always group terms with IR divergences as �n; �n ! 0
into the IR-finite combination

I23ðqþ; mÞ � I3ð�; qþ; mÞ þ I2ð�; qþ; mÞ: (C8)

The result is independent of �,

I23ðqþ;m2Þ ¼ 1

ð4
Þ2
1

qþ

�
1

2�2
� 1

�
ln

�
m

�

�
þ ln2

�
m

�

�
þ 		 	

�
:

(C9)

The sum of all diagrams in Fig. 7 is

MEFT
ggg ¼ 4
�sCA�̂ðr; yÞ½q�I23ðq�; mÞ þ qþI23ðqþ; mÞ

þ q�I3ðq�; q�; mÞ þ qþI3ðqþ; qþ; mÞ þ . . .

¼ CA�s

2

�̂ðr; yÞ

�
1

�2
� 2

�
ln

�
m

�

�
þ 2ln2

�
m

�

�
þ 	 	 	

�
:

(C10)

Finally, adding all one-loop diagrams, the 1=�2 terms
vanish, and we get the following final result for the UV-
divergent and�-dependent terms from the graphs in Fig. 7:

17Equation (C3) has IR divergences regulated by � for either A
or B zero (strictly speaking, UV divergences cancel IR diver-
gences in pure dimensional regularization, and the integral is
zero). The equality between real and virtual integrals is still valid
for these cases.
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MEFT
1loop ¼ �̂ðr; yÞ�sCA



ln

�
qþq�

m2

��
1

2�
� ln

�
m

�

��
þ 	 	 	

(C11)

Due to �̂ðr; yÞ, we have lnðqþq�=m2Þ ¼ � lnð1� r2Þ, and
this result reproduces the 1=� term shown in Eq (61).18

The expression in Eq. (C11) corresponds to a bare result
in the EFT. The renormalized result �MEFT

1loop is simply

obtained in minimal subtraction by canceling the UV
singularity with a counterterm Zðr;�; �Þ, and will be
used in Appendix D. For that purpose, we also note that
the sum of independent emission and triple-gluon virtual
graphs is UV finite, so the entire contribution shown in
Eq. (C11) comes from the real emission diagrams.

APPENDIX D: ONE-LOOP MATCHING
FOR THRUST

In this appendix, we consider the one-loop matching
computation that determines Ce

1ð‘; r;�Þ in Eq. (68) for
the case where e is thrust. Only �-dependent terms will
be considered since our goal is to see how the function
d=d‘½1=�ð�=‘Þþ
 arises from the matching computation.

A matching computation is performed by considering
the difference of renormalized full theory and renormal-
ized effective theory matrix elements, which are calculated
with precisely the same infrared regulator(s). For our com-
putation, the full theory corresponds to matrix elements of
the soft function. For an event shape e, it is

Seð‘Þ ¼ h0j �Yy
�nY

y
n �ð‘�QêÞYn

�Y �nj0i
¼ X

X

h0j �Yy
�nY

y
n jXi�½‘�QeðXÞ
hXjYn

�Y �nj0i; (D1)

where the sum is over all possible intermediate states and
includes also integrals over phase space. The EFT for this
computation corresponds to the field theory obtained by

integrating out the scale ‘, and involves matrix elements
like �1ðrÞ in Eq. (32). In this language, the anomalous
dimension calculation in Appendix C corresponded to
finding the UV counterterm for the �1ðrÞ matrix element
in the EFT. For a matching computation that only considers
�-dependent terms, the required renormalized EFT matrix
element corresponds to the lnðm=�Þ term in Eq. (C11).
This result is independent of the event shape e, in contrast
to the de1ðrÞ term in Eq. (71) which is event-shape specific.
Here, we perform a computation of the corresponding

full theory matrix elements in Eq. (D1) with the same IR
regulators, which includes the use of the source J�A field of
momentum q� where q2 ¼ m2. Since some parts of this
computation depend on the choice of e, we will restrict
ourselves to a computation for thrust. We will use the same
notation as Appendix C for loop and phase space integrals.
Unlike the EFT, the full theory results involve hierarchical
scales, ‘ � q� �m, and hence, the final full theory result
must be expanded before subtracting the EFT result.
At the order of our calculation, we can split the

P
X in

Eq. (D1) into terms with no source term (which gives rise
to the purely perturbative soft function), and terms with
one source term. In general, the expansion ‘ � q should
only be performed after carrying out the full theory loop
and phase space integrals, but in cases where the expansion
and integration commute, we can do them in either order.
One example where this is useful is in the measurement
function �ð‘�QeðXÞÞ. Denoting by eðqÞ the contribution
from the source, and eðpiÞ the contribution from all other
real radiation gluons, we can expand ‘�QeðpiÞ �
QeðqÞ. Keeping the first two terms only gives

�½‘�QeðpiÞ �QeðqÞ
 ¼ �½‘�QeðpiÞ

�QeðqÞ�0½‘�QeðpiÞ
: (D2)

For the corresponding terms in Seð‘Þ, this yields

Seð‘Þ ¼ S
pert
e ðeÞ � d

d‘

X
fpig;q

QeðqÞ�½‘�QeðpiÞ


� h0j �Yy
�nY

y
n jpi; qihpi; qjYn

�Y �nj0i: (D3)

The first term corresponds to the leading power perturba-
tive soft function, and the second term provides the full
theory contribution to the matching we are interested in.
The analog of Eq. (D2) for the EFT computation is

�½‘�QeðpiÞ�QeðqÞ
¼�ð‘Þ��0ð‘Þ½QeðqÞþQeðpiÞ
;
(D4)

where the term QeðpiÞ is scaleless and vanishes. From this
result, we see that the EFT contribution to the matching is
proportional to ��0ð‘Þ.
It is easy to check that the matching is simple for

an Abelian theory. Due to the exponentiation and

18This same result can also be obtained setting �n; �n ¼ 0 from
the start and using dimensional regularization for the IR diver-
gences. In this case, we would use

I2ð0; qþ; m2Þ ¼ �I2ð�qþ; qþ; m2Þ

¼ �1

ð4
Þ2
�ð�Þ�ð��Þ�ð1� �Þ

�ð1� 2�Þ
1

qþ
cosð�
Þ

�
�
eE

�2

m2

�
�
;

and

I3ð0; qþ; mÞ ¼ �I3ðqþ; qþ; mÞ ¼ �ð2�Þ�ð��Þ
ð4
Þ2

1

qþ

�
eE

�2

m2

�
�

¼ �1

ð4
Þ2
1

qþ

�
1

2�2
� 1

�
ln

�
m

�

�
þ ln2

�
m

�

�
þ 5
2

24

�
:

In this case, the sum of all diagrams is again IR finite and again
reproduces Eq. (C11).
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factorization properties of the Abelian eikonal matrix ele-
ments, we obtain

�Xh0j �Yy
�nY

y
n jpi; qi�0½‘�QeðpiÞ
QeðqÞhpi; qjYn

�Y �nj0i

¼ � d

d‘
S
pert
e ð‘Þh0j �Yy

�nY
y
n ðQêÞYn

�Y �nj0i

¼ � d

d‘
Sperte ð‘Þ�e

1: (D5)

This result holds even if we consider including more than
one source term. In Ref. [30], it was assumed that Eq. (D5)
also encoded all non-Abelian contributions. While these
non-Abelian contributions are indeed present, Eq. (71)
implies that, in general, there are additional non-Abelian
corrections from the þ-function and de1ðrÞ terms. The flaw
in the argument in Appendix B of Ref. [30] is that the

dimension-1 operator ÊTð�Þ is not unique, since there

exists an entire family of operators ÊTðy; rÞ parametrized
by r.

To carry out the full non-Abelian calculation for the
second term in Eq. (D3), we use Eqs. (25) and (27) to
decompose QeðqÞ and write the full amplitude as

AFull
� ð‘Þ ¼

Z
dr dyf�ðr; yÞMFull

� ð‘; r; yÞ: (D6)

Results for MFull
� ð‘; r; yÞ can then be compared directly to

the analogous results for �MEFTðr; yÞ�0ð‘Þ obtained with
various MEFT results from Appendix C. Here, MFull

� still
depends on the thrust event shape because it contains
�ð‘�QeðpiÞÞ.

The computation with one source and no additional
gluons is very simple, and we find

MFull
tree ¼ ��̂ðr; yÞ�0ð‘Þ; (D7)

where �̂ðr; yÞ is given in Eq. (C2). Next, consider the
computation for thrust at one loop. One performs the
master-integral decomposition in the same way as for
the anomalous dimension computation. The sum of all
full theory virtual diagrams is UV finite and� independent
(once one performs the usual QCD renormalization). In
fact, the sum of diagrams involving a virtual gluon is
identical in the full and EFT computations, and hence,
these contributions cancel when subtracting to determine
the matching.

Thus, we only need master integrals involving full the-
ory diagrams with real radiation to complete the calcula-
tion. For these contributions, only two newmaster integrals
are required to compute the �-dependent pieces. For the
thrust measurement on the real radiation gluon, we will use
the short-hand notation

M�ð‘; p�Þ � � d

d‘
½�ð‘� pþÞ�ðp� � pþÞ

þ �ð‘� p�Þ�ðpþ � p�Þ
; (D8)

and to expand the master integrals with q � ‘, we will use
the identity

x�

xþ �
¼

�
1

x

�
þ
� �ðxÞ lnð�Þ þ �

�
lnðxÞ
x

�
þ

� ��ðxÞ
�
1

2
ln2�þ 
2

6

�
þOð�2; �Þ: (D9)

The first master integral shows up in the independent
emission diagrams of Fig. 6 and when expanded for q � ‘
gives

~�2�
Z dd�1 ~p

2j ~pjð2
Þd�1

1

pþ þ A

1

p� þ B
M�ð‘; p�Þ

¼ �1

ð4
Þ2
d

d‘

�
1

�

�
2

�

�
�

‘

�
þ
� �ð‘Þ ln

�
AB

�2

��

� 4

�

�
�

‘
ln

�
�

‘

��
þ
þ �ð‘Þ

�
ln2

�
A

�

�

þ ln2
�
B

�

�
þ 2
2

3

�	
: (D10)

The second master integral appears in the double cut
graphs involving the triple gluon vertex in Fig. 7 and
when expanded for q � ‘ reads

~�2�
Z dd�1 ~p

2j ~pjð2
Þd�1

1

pþ þ A

1

2p 	 qþm2
M�ð‘; p�Þ

¼ �1

ð4
Þ2
1

qþ
d

d‘

��
1

�
� ln

�
m2

qþ2

��

�
�
1

�

�
�

‘

�
þ
� �ð‘Þ ln

�
A

�

��

� 2

�

�
�

‘
ln

�
�

‘

��
þ
þ �ð‘Þln2

�
A

�

�	
þ 	 	 	 ; (D11)

where the omitted terms in theþ . . . are� independent and
UV finite.
Adding up all the �-dependent full theory (real radia-

tion) diagrams, we find

MFull
1loopðr; yÞ ¼ �̂ðr; yÞCA�s



lnð1� r2Þ

�
d

d‘

1

�

�
�

‘

�
þ

� �0ð‘Þ ln
�
m

�

�	
þ 	 	 	 (D12)

Note that �d=d�MFull
1 loopðr; yÞ ¼ 0 since the two contribu-

tions cancel each other. This is consistent with the fact that
there was no UVor IR divergence regulated by �. We still
refer to them as �-dependent terms since they have differ-
ent functional dependence on ‘. In Eq. (D12),� is simply a
placeholder scale for splitting the result into þ-function
and �-function terms. For the corresponding EFT result,
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using Eq. (C11) to get the sum of renormalized diagrams,
we have

��0ð‘Þ �MEFT
1loop ¼��0ð‘Þ�̂ðr;yÞCA�s



lnð1� r2Þ ln

�
m

�

�
þ			
(D13)

When we subtract Eq. (D13) from Eq. (D12), we are
left with only the �-dependent þ-function term.

Identifying
R
drdyf�ðr; yÞ�̂ðr; yÞ ¼ ��

1, this reproduces

the �-dependent term in the matching result given in
Eq. (71).
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