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We propose to describe the process p �p ! �D0D0 in a perturbative QCD motivated framework where a

double-handbag hard process ud �u �d ! �cc factorizes from transition distribution amplitudes, which are

quasiforward hadronic matrix elements of�q�q�c operators, where q denotes light quarks and c denotes

the heavy quark. We advocate that the charm-quark mass acts as the large scale allowing this factorization.

We calculate this process in the simplified framework of the scalar diquark model and present the expected

cross sections for the PANDA experiment at GSI-FAIR.
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I. INTRODUCTION

The collinear factorization framework allows us to calcu-
late a number of hard exclusive amplitudes in terms of
perturbatively calculable coefficient functions and nonper-
turbative hadronic matrix elements of light-cone operators.
The prime example is the calculation of the deeply virtual
Compton-scattering amplitude in the handbag approxima-
tion with generalized parton distributions, nonforward
matrix elements of a quark-antiquark nonlocal operator

�ðzÞ ��ð0Þ between an incoming and an outgoing baryon
state. Strictly speaking, this description is only valid in a
restricted kinematical region, called the generalized Bjorken
scaling region, for a few specific reactions, and in the leading-
twist approximation. It is, however, suggestive to extend this
framework to the description of other reactions where the
presence of a hard scale seems to justify the factorization of
a short-distance dominated partonic subprocess from long-
distance hadronic matrix elements. Such an extension has,
in particular, been proposed in Ref. [1] for the reaction

p �p ! �c
��c with nucleon to charmed baryon generalized

parton distributions. The extension of the collinear facto-
rization framework to the backward region of deeply
virtual Compton scattering and deep exclusive meson
production [2,3] leads to the definition of transition distri-
bution amplitudes (TDAs) as nonforward matrix elements
of a three-quark nonlocal operator�ðzÞ�ðyÞ�ð0Þ between
an incoming and an outgoing state carrying a different
baryon number. Here, too, this description is likely to be
valid in a restricted kinematical region, for a few specific
reactions, and in the leading twist approximation. We
propose here to extend the approach of Ref. [1] to the
reaction p �p ! �D0D0 which will be measured with the
PANDA [4] detector at GSI-FAIR. For this process

the baryon number exchanged in the t channel implies
that hadronic matrix elements with �ðzÞ�ðyÞ�ð0Þ opera-
tors enter the game. Let us stress that we have no proof of
the validity of this approximation but take it as an assump-
tion to be confronted with experimental data. For this
approach to be testable, one needs to model the occurring
nucleon to charmed meson TDAs. In contrast to the N !
� TDAs, which have been much discussed [5], we do not
have any soft meson limit to normalize these TDAs. We
will rather use an overlap representation in the spirit of
Ref. [6].

II. HADRON KINEMATICS

The kinematical situation for p �p ! �D0D0 scattering
is sketched in Fig. 1. The momenta and helicities of the
incoming proton and antiproton are denoted by p, �
and q, � and the momenta of the outgoing �D0 and D0 by
p0 and q0, respectively. The mass of the proton is
denoted by m and that of the D0 by M. We choose a
symmetric center-of-momentum system (CMS) in which
the longitudinal direction is defined by the average
momentum of the incoming proton and the outgoing
�D0, respectively. The transverse momentum transfer
is symmetrically shared between the incoming and out-
going hadrons.
In light-cone coordinates the hadronic momenta are

parameterized as follows:

p ¼
�
ð1þ �Þ �pþ;

m2 þ�2
?=4

2ð1þ �Þ �pþ ;��?
2

�
;

p0 ¼
�
ð1� �Þ �pþ;

M2 þ�2
?=4

2ð1� �Þ �pþ ;þ�?
2

�
;

q ¼
�
m2 þ�2

?=4
2ð1þ �Þ �pþ ; ð1þ �Þ �pþ;þ�?

2

�
;

q0 ¼
�
M2 þ�2

?=4
2ð1� �Þ �pþ ; ð1� �Þ �pþ;��?

2

�
;

(1)
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where we have introduced sums and differences of the
hadron momenta,

�p :¼ 1

2
ðpþ p0Þ; �q :¼ 1

2
ðqþ q0Þ and

� :¼ p0 � p ¼ q� q0: (2)

The minus momentum components can be obtained by
using the on-mass shell conditions p2 ¼ q2 ¼ m2 and
p02 ¼ q02 ¼ M2. The skewness parameter � gives the rela-
tive momentum transfer in the plus direction, i.e.,

� :¼ pþ � p0þ

pþ þ p0þ ¼ � �þ

2 �pþ : (3)

The Mandelstam variable s is given by

s ¼ ðpþ qÞ2 ¼ ðp0 þ q0Þ2: (4)

In order to produce a �D0D0 pair, smust be larger than 4M2.
The remaining Mandelstam variables, t and u, read

t ¼ �2 ¼ ðp0 � pÞ2 ¼ ðq� q0Þ2 (5)

and

u ¼ ðq0 � pÞ2 ¼ ðp0 � qÞ2; (6)

so that sþ tþ u ¼ 2M2 þ 2m2. For later convenience we
also introduce the abbreviations

�m :¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4m2=s

q
and �M :¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4M2=s

q
: (7)

For further relations between the kinematical quantities,
see Appendix A.

III. DOUBLE HANDBAG MECHANISM

The double handbag mechanism which we use to
describe p �p ! �D0D0 is shown in Fig. 2. It is understood
that the proton emits an S½ud� diquark with momentum k1
and the antiproton a S½ud� diquark with momentum k2.
They undergo a scattering with each other, i.e., they anni-
hilate in our case into a gluon which subsequently decays
into the heavy �cc pair. Those produced heavy partons,
characterized by k01, �

0
1 and k02, �

0
2, are reabsorbed by the

remnants of the proton and the antiproton to form the
�D0 and the D0, respectively. One could, of course, also
think of vector-diquark configurations in the proton and

V½ud�V½ud� annihilation to produce the c �c pair. But in
common diquark models of the proton, it is usually
assumed that the probability to find a V½ud� diquark is
smaller than the one for the S½ud� diquark. Further sup-
pression of V½ud� diquarks as compared to S½ud� diquarks
occurs in hard processes via diquark form factors at the
diquark-gluon vertices [7]. We thus expect that our final
estimate of the �D0D0 cross section will not be drastically
altered by the inclusion of vector-diquark contributions,
and we stick to the simpler scalar diquark model.
The whole hadronic four-momentum transfer � is also

exchanged between the active partons in the partonic
subprocess

S½ud�ðk1ÞS½ud�ðk2Þ ! �cðk01; �0
1Þcðk02; �0

2Þ: (8)

In Eq. (8) we neglect the mass of the S½ud� (anti)diquark,
but take into account the heavy (anti)charm-quark mass
mc. In order to produce the heavy �cc pair, the Mandelstam
variable ŝ of the partonic subprocess has to be

ŝ � 4m2
c; (9)

where 4m2
c � 6:5 GeV2. We have taken the (central) value

for the charm-quark mass from the Particle Data Group [8],
which gives mc ¼ 1:275� 0:025 GeV. Thus, the heavy-
quark mass mc is a natural intrinsic hard scale which
demands that the intermediate gluon has to be highly virtual.
This allows us to treat the partonic subprocess perturbatively,
even at small�t, by evaluating the corresponding Feynman

FIG. 2 (color online). The handbag contribution to the process
p �p ! �D0D0. The momenta and helicities of the baryons and
quarks are specified.

FIG. 1 (color online). Kinematics of p �p ! �D0D0 in the
symmetric CMS.
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diagram. All the other nonactive partons inside the parent
hadrons are unaffected by the hard scattering and thus act as
spectators.

For the double handbag mechanism the hadronic
p �p ! �D0D0 amplitude can be written as

M�� ¼ X
að0Þ
i

X
�0
i

Z
d4 �k1�ð �kþ1 Þ

Z d4z1
ð2�Þ4 e

i �k1z1
Z

d4 �k2�ð �k�2 Þ

�
Z d4z2

ð2�Þ4 e
i �k2z2h �D0:p0jT�c

a0
1
�0
1
ð�z1=2Þ

��S½ud�
a1 ðþz1=2Þjp:p;�i ~H

að0Þi �0
i
ð �k1; �k2Þ

� hD0:q0jT�S½ud�y
a2 ðþz2=2Þ ��c

a02�
0
2
ð�z2=2Þj �p:q; �i;

(10)

where the assignment of momenta, helicities, etc., can be

seen in Fig. 2. að0Þi and �0
i denote color and spinor indices,

respectively. In analogy to the hadronic level we have intro-
duced the average partonic momenta �ki :¼ ðki þ k0iÞ=2,
i ¼ 1, 2, of the active partons. We note once more that
the full hadronic momentum transfer is also transferred
between the active partons, i.e., k1 � k01 ¼ p� p0 ¼ k02 �
k2 ¼ q0 � q. The hard scattering kernel, denoted by
~H
að0Þi �0

i
ð �k1; �k2Þ, describes the hard S½ud�S½ud� ! �cc subpro-

cess. The soft part of thep ! �D0 transition is encoded in the
Fourier transform of a hadronic matrix element which is a
time-ordered, bilocal product of a quark and a diquark field
operator:

Z d4z1
ð2�Þ4e

i �k1z1h �D0:p0jT�c
a01�

0
1
ð�z1=2Þ

��S½ud�
a1 ðþz1=2Þjp:p;�i: (11)

In Eq. (11) �S½ud�ðþz1=2Þ takes out an S½ud� diquark from
the proton state jp:p;�i at the space-time point z1=2. The
S½ud� diquark then takes part in the hard partonic subprocess.
The �cð�z1=2Þ reinserts the �c quark at �z1=2 into the
remnant of the proton which gives the desired final hadronic
�D0 state j �D0:p0i. At this stage the appropriate time-ordering
of the quark field operators (denoted by the symbolT ) has to
be taken into account. The remnant of the proton,which does
not participate in the hard partonic subprocess, constitutes
the spectator system. For the �p ! D0 transition we have the
Fourier transform

Z d4z2
ð2�Þ4e

i �k2z2hD0:q0jT�S½ud�y
a2 ðþz2=2Þ

� ��c
a0
2
�0
2
ð�z2=2Þj �p:q;�i; (12)

which can be interpreted in a way analogous to Eq. (11). The
p �p ! �D0D0 amplitude (10) is thus a convolution of a hard
scattering kernel with hadronic matrix elements Fourier

transformed with respect to the average momenta �k1 and �k2
of the active partons.
For the active partons we can now introduce the momen-

tum fractions

x1 :¼ kþ1
pþ and x01 :¼

k0þ1
p0þ : (13)

For later convenience we also introduce the average fraction

�x1 ¼ kþ1 þ k0þ1
pþ þ p0þ ¼

�kþ1
�pþ ; (14)

which is related to x1 and x01 by

x1 ¼ �x1 þ �

1þ �
and x01 ¼

�x1 � �

1� �
; (15)

respectively.
As for the processes in Refs. [1,9], due to the large

intrinsic scale given by the heavy quark mass mc, the
transverse and minus (plus) components of the active
(anti)parton momenta in the hard scattering kernel ~H are
small as compared to their plus (minus) components. Thus,
the parton momenta can be replaced by vectors lying in the
scattering plane formed by the parent hadron momenta. For
this assertion one only has to make the physically plausible
assumptions that the momenta are almost on mass-shell
and that their intrinsic transverse components [divided by
the respective momentum fractions (15)] are smaller than a
typical hadronic scale of the order of 1 GeV. We thus make
the following replacements:

k1 !
�
kþ1 ;

x21�
2
?

8kþ1
;�x1

�?
2

�
with kþ1 ¼ x1p

þ;

k01 !
�
k0þ1 ;

m2
c þ x021 �

2
?=4

2k0þ1
; x01

�?
2

�
with k0þ1 ¼ x01p0þ;

k2 !
�
x22�

2
?

8k�2
; k�2 ; x2

�?
2

�
with k�2 ¼ x2q

�;

k02 !
�
m2

c þ x022 �2
?=4

2k0�2
; k0�2 ;�x02

�?
2

�
with k0�2 ¼ x02q

0�:

(16)

As a consequence of these replacements it is then possible
to explicitly perform the integrations over �k�1 , �kþ2 , �k?1 and
�k?2. Furthermore, the relative distance between the
(anti-)S½ud�-diquark and the (anti-)c-quark field operators
in the hadronic matrix elements is forced to be lightlike,
i.e., they have to lie on the light cone, and thus the time
ordering of the field operators can be dropped. After these
simplifications one arrives at the following expression for
the p �p ! �D0D0 amplitude:

DOUBLE HANDBAG DESCRIPTION OF PROTON- . . . PHYSICAL REVIEW D 87, 014017 (2013)

014017-3



M�� ¼ X
að0Þ
i
;�ð0Þ

i

Z
d �kþ1 �ð �kþ1 Þ

Z dz�1
2�

ei
�kþ
1
z�
1

Z
d �k�2 �ð �k�2 Þ

�
Z dzþ2

2�
ei

�k�
2
zþ
2 h �D0:p0j�c

a0
1
�0
1
ð��z1=2Þ

��S½ud�
a1 ðþ�z1=2Þjp:p;�i ~H

að0Þi �0
i
ð �k1; �k2Þ

� hD0:q0j�S½ud�y
a2 ðþ�z2=2Þ ��c

a0
2
�0
2
ð��z2=2Þj �p:q; �i:

(17)

From now on we will omit the color and spinor labels
whenever this does not lead to ambiguities and replace the
field-operator arguments �z1 and �z2 by their nonvanishing
components z�1 and zþ2 , respectively. Furthermore, if one
uses �kþ1 ¼ �x1 �p

þ and �k�2 ¼ �x2 �q
� to rewrite the �kþ1 and �k�2

integrations in the amplitude (17) as integrations over the
longitudinal momentum fractions �x1 and �x2, respectively,
one arrives at

M�� ¼
Z

d �x1 �p
þ Z dz�1

2�
ei �x1 �p

þz�
1

Z
d �x2 �q

�

�
Z dzþ2

2�
ei �x2 �q

�zþ
2 h �D0:p0j�cð�z�1 =2Þ

��S½ud�ðþz�1 =2Þjp:p;�i ~Hð �x1 �pþ; �x2 �q�Þ
� hD0:q0j�S½ud�yðþzþ2 =2Þ ��cð�zþ2 =2Þj �p:q; �i:

(18)

As inRef. [1] forp ! �þ
c ( �p ! ���

c ), thep ! �D0 ( �p!D0)
transitionmatrix element is expected to exhibit a pronounced
peak with respect to the momentum fraction. The position of
the peak is approximately at

x0 ¼ mc

M
¼ 0:68: (19)

From Eq. (9) one then infers that the relevant average
momentum fractions �x1 and �x2 have to be larger than the
skewness �. This means that the convolution integrals in
Eq. (18) have to be performed only from � to 1 and not
from 0 to 1.

In the following section we will analyze the soft had-
ronic matrix elements in some more detail.

IV. HADRONICTRANSITIONMATRIX ELEMENTS

Compared to Eq. (10) the Fourier transforms of the
hadronic matrix elements for the p ! �D0 and �p ! D0

transitions are rendered to Fourier integrals solely over z�1
and zþ2 , respectively. Hence, we have to study the integral

�pþ Z dz�1
2�

ei �x1 �p
þz�

1 h �D0:p0j�cð�z�1 =2Þ
��S½ud�ðþz�1 =2Þjp:p;�i; (20)

over the p ! �D0 transition matrix element and the integral

�q�
Z dzþ2

2�
ei �x2 �q

�zþ2 hD0:q0j�S½ud�yðþzþ2 =2Þ
� ��cð�zþ2 =2Þj �p:q; �i; (21)

over the �p ! D0 transition matrix element instead of
Eqs. (11) and (12), respectively.
We will first concentrate on the p ! �D0 transition (20)

and investigate the product of field operators �cð�z�1 =2Þ
�S½ud�ðþz�1 =2Þ. For this purpose we consider the c-quark
field operator�c in the hadron frame of the outgoing �D0, cf.
e.g., Refs. [10,11], where the �D0 has no transverse momen-
tum component. It can be reached from our symmetric CMS
by a transverse boost [12,13] with the boost parameters

bþ ¼ ð1� �Þ �pþ and b? ¼ �?
2

: (22)

In this hadron-out frame we write the field operator in terms
of its ‘‘good’’ and ‘‘bad’’ light-cone components,

�c ¼ 1

2
ð���þ þ �þ��Þ�c � �cþ þ�c�; (23)

by means of the good and bad projection operators Pþ ¼
1
2�

��þ and P� ¼ 1
2�

þ��, respectively. After doing that

we eliminate the �� appearing in Pþ and P� by using the
�c-quark energy projectorX

�0
1

vðk01; �0
1Þ �vðk01; �0

1Þ ¼ k01 � ��mc: (24)

In the hadron-out frame it explicitly takes on the formX
�0
1

vðk̂01; �0
1Þ �vðk̂01; �0

1Þ ¼ k0þ1 �� þ m2
c

2k0þ1
�þ �mc; (25)

since there the �c-quark momentum is

k̂ 0
1 ¼

�
k0þ1 ;

m2
c

2k0þ1
; 0?

�
: (26)

With those replacements the c-quark field operator becomes

�c ¼ 1

2k0þ1

X
�0
1

fvðk̂01; �0
1Þð �vðk̂01; �0

1Þ�þ�cÞ

þ �þ½vðk̂01; �0Þð �vðk̂01; �0
1Þ�cÞ þ 2mc�

c�g: (27)

As in the case of p �p ! �þ
c
���
c in Ref. [1], one can argue

that the contribution coming from ð �vðk̂01; �0
1Þ�þ�cÞ domi-

nates over the one in the square brackets, and thus the latter
one can be neglected. Since this dominant contribution can
be considered as a plus component of a four-vector, one can
immediately boost back to our symmetric CMS where it
then still holds that

�cð�z1=2Þ ¼ 1

2k0þ1

X
�0
1

vðk01; �0
1Þð �vðk01; �0

1Þ�þ�cð�z1=2ÞÞ:

(28)
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Furthermore, one can even show that in ð �vðk01; �0
1Þ

�þ�cð�z�1 =2ÞÞ on the right-hand side of Eq. (28), only
the good component of�cð�z�1 =2Þ is projected out, since
�vðk01; �0

1Þ�þ�cð�z�1 =2Þ ¼ �vðk01; �0
1Þ�þPþ�cð�z�1 =2Þ:

(29)

Finally,wenote that suchmanipulations are not necessary for

the scalar field operator�S½ud� of the S½ud� diquark.
Putting everything together gives for the p ! �D0 tran-

sition matrix element (20)

�pþZ dz�1
2�

ei �x1 �p
þz�

1 h �D0:p0j�cð�z�1 =2Þ
��S½ud�ðþz�1 =2Þjp:p;�i

¼ �pþ

2k0þ1

X
�0
1

Z dz�1
2�

ei �x1 �p
þz�

1 h �D0:p0jvðk01;�0
1Þð �vðk01;�0

1Þ�þ

��cþð�z�1 =2ÞÞ�S½ud�ðþz�1 =2Þjp:p;�i: (30)

Proceeding in an analogous way for the �p ! D0

transition matrix element, where the role of the þ and �
components are interchanged, we get for Eq. (21)

�q�
Z dzþ2

2�
ei �x2 �q

�zþ2 hD0:q0j�S½ud�yðþzþ2 =2Þ
� ��cð�zþ2 =2Þj �p:q; �i

¼ �q�

2k0�2

X
�0
2

Z dzþ2
2�

ei �x2 �q
�zþ

2 hD0:q0j�S½ud�yðþzþ2 =2Þ

� ð ��cþð�zþ2 =2Þ��uðk02; �0
2ÞÞ �uðk02; �0

2Þj �p:q; �i: (31)

Also here only the good components of the quark field are
projected out on the right-hand side.
Using now Eqs. (30) and (31) and attaching the spinors

vðk01; �0
1Þ and �uðk02; �0

2Þ to the hard subprocess amplitude ~H
by introducing

H�0
1
;�0

2
ð �x1; �x2Þ :¼ �uðk02; �0

2Þ ~Hð �x1 �pþ; �x2 �q�Þvðk01; �0
1Þ; (32)

we get for the p �p ! �D0D0 amplitude (18)

M�� ¼ 1

4ð �pþÞ2
X
�0
1;�

0
2

Z
d �x1

Z
d �x2H�0

1
;�0

2
ð �x1; �x2Þ 1

�x1 � �

1

�x2 � �
�vðk01; �0

1Þ

� �þ �pþ Z dz�1
2�

ei �x1 �p
þz�

1 h �D0:p0j�cþð�z�1 =2Þ�S½ud�ðþz�1 =2Þjp:p;�i

� �q�
Z dzþ2

2�
ei �x2 �q

�zþ2 hD0:q0j�S½ud�yðþzþ2 =2Þ ��cþð�zþ2 =2Þj �p:q; �i��uðk02; �0
2Þ: (33)

Introducing the abbreviations

H �cS
�0
1
�
:¼ �vðk01; �0

1Þ�þ �pþ Z dz�1
2�

ei �x1 �p
þz�

1 h �D0:p0j
��cþð�z�1 =2Þ�S½ud�ðþz�1 =2Þjp:p;�i (34)

and

H c �S
�0
2
�
:¼ �q�

Z dzþ2
2�

ei �x2 �q
�zþ2 hD0:q0j�S½ud�yðþzþ2 =2Þ

� ��cþð�zþ2 =2Þj �p:q;�i��uðk02;�0
2Þ; (35)

for the pertinent projections of the hadronic transition
matrix elements, we can write the hadronic scattering
amplitude in a more compact form:

M�� ¼ 1

4ð �pþÞ2
X
�0
1
;�0

2

Z
d �x1

Z
d �x2H�0

1
;�0

2
ð �x1; �x2Þ

� 1

�x1 � �

1

�x2 � �
H �cS

�0
1
�
H c �S

�0
2
�
: (36)

V. OVERLAP REPRESENTATION OF H �cS
�0
1
�

In the following section we will derive a representation
for the hadronic p ! �D0 and �p ! D0 transition matrix
elements as an overlap of hadronic light-cone wave func-
tions (LCWFs) for the valence Fock components of p and

�D0 [6]. Since we only need them for �x > �, i.e., in the
Dokshitzer-Gribov-Lipatov-Altarelli-Parisi region, the had-
ronic transition matrix elements admit such a representation.
For doing that wewill make use of the Fock expansion of the
hadron states and the Fourier decomposition of the partonic
field operators in light-cone quantum field theory.
At a given light-cone time, say zþ ¼ 0, the good indepen-

dent dynamical field components�S½ud� and�cþð�z�1 =2Þ of
the S½ud� diquark and the c quark, respectively, have the
Fourier decomposition

�S½ud�ðþz�1 =2Þ ¼
Z dkþ1

kþ1

Z d2k1?
16�3

�ðkþ1 Þ

� ½aðS½ud�:kþ1 ;k1?Þe�{kþ
1
z�
1
=2

þ byðS½ud�:kþ1 ;k1?Þeþ{kþ
1
z�
1
=2� (37)

and

�cþð�z�1 =2Þ ¼
Z dk0þ1

k0þ1

Z d2k01?
16�3

�ðk0þ1 Þ

�X
�0
1

½cðc:k0þ1 ;k0
1?; �

0
1Þuþðk01; �0

1Þeþ{k0þ
1
z�
1
=2

þ dyðc:k0þ1 ;k0
1?; �

0
1Þvþðk01; �0

1Þe�{k0þ
1
z�
1
=2�:
(38)
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The spinors uþ and vþ are the good components of the (anti)
quark spinors u and v, i.e., uþ ¼ Pþu and vþ ¼ Pþv. The
operators a and by are the annihilator of anS½ud� diquark and
the creator of an S½ud� diquark, respectively. The operator c
annihilates a c quark, and the operator dy creates a �c quark.
Their action on the vacuum gives the single-parton states

ayðS½ud�: kþ1 ;k1?Þj0i ¼ jS½ud�: kþ1 ;k1?i; (39)

byðS½ud�: kþ1 ;k1?Þj0i ¼ jS½ud�: kþ1 ;k1?i; (40)

cyðc: k0þ1 ;k0
1?; �

0
1Þj0i ¼ jc: k0þ1 ;k0

1?; �
0
1i; (41)

dyðc: k0þ1 ;k0
1?; �

0
1Þj0i ¼ j �c: k0þ1 ;k0

1?; �
0
1i; (42)

which are normalized as follows:

h� � � : k0þ;k0
?; �

0j � � � : kþ;k?; �i
¼ 16�3kþ	ðk0þ � kþÞ	ð2Þðk0

? � k?Þ	�0;�: (43)

In the case of S½ud� states no �ð0Þ and no 	�0;� appear. This

normalization is in accordance with the (anti)commutation
relations

½aðS½ud�: k0þ;k0
?Þ; ayðS½ud�: kþ;k?Þ�

¼ ½bðS½ud�: k0þ;k0
?Þ; byðS½ud�: kþ;k?Þ�

¼ 16�3kþ	ðk0þ � kþÞ	ð2Þðk0
? � k?Þ (44)

and

fcðc: k0þ;k0
?; �

0Þ; cyðc: kþ;k?; �Þg
¼ fdðc: k0þ;k0

?; �
0Þ; dyðc: kþ;k?; �Þg

¼ 16�3kþ	ðk0þ � kþÞ	ð2Þðk0
? � k?Þ	�0;�: (45)

In the Fock state decomposition hadrons on the light front
are replaced by a superposition of parton states. Taking only
into account the valence Fock state, the proton and the �D0

state in our quark-diquark picture are represented as

jp:p;�i¼
Z
d~x

d2 ~k?
16�3

c pð~x;~k?Þ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~xð1�~xÞp

�jS½ud�: ~xpþ;~k?þ~xp?i
�ju: ð1�~xÞpþ;�~k?þð1�~xÞp?;�i (46)

and

j �D0:p0i ¼
Z

dx̂0
d2k̂0?
16�3

c Dðx̂0; k̂0
?Þ

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x̂0ð1� x̂0Þp

� 1ffiffiffi
2

p X
�0
ð2�0Þj �c: x̂0p0þ; k̂0

? þ x̂0p0
?; �

0i

� ju:ð1� x̂0Þp0þ;�k̂0
? þ ð1� x̂0Þp0

?;��0i;
(47)

respectively, with normalization

h� � � : p0þ;p0
?ð; �0Þj � � � : pþ;p?ð; �Þi

¼ 16�3pþ	ðp0þ � pþÞ	ð2Þðp0
? � p?Þð	�0;�Þ: (48)

Also, here, in the case of the pseudoscalar D0 and �D0

states, no �ð0Þ and no 	�0;� appear. c p and c D are the

LCWFs of the proton and the �D0, respectively, which will
be specified in Sec. VII. The LCWFs do not depend on the
total momentum of the hadron, but only on the momentum
coordinates of the partons relative to the hadron momen-
tum. Those relative momenta are most easily identified
in the hadron frame of the parent hadron. Here we have
assumed that the partons inside the proton and the �D0 have
zero orbital angular momentum. The arguments of the
LCWFs are related to the average momenta and momen-
tum fractions by

~x1 ¼ �x1 þ �

1þ �
; ~k1? ¼ �k1? � 1� �x1

1þ �

�?
2

; (49)

~x2 ¼ �x2
1þ �

; ~k2? ¼ �k2? þ �x2
1þ �

�?
2

; (50)

x̂01 ¼
�x1 � �

1� �
; k̂01? ¼ �k1? þ 1� �x1

1� �

�?
2

; (51)

x̂02 ¼
�x2

1� �
; k̂02? ¼ �k2? � �x2

1� �

�?
2

: (52)

Using the expressions above we can write the hadronic
matrix elements appearing in Eq. (33) as

H �cS
�0
1
� ¼ � ffiffiffi

2
p

� �pþ Z d �xd2 �k?
16�3

ffiffiffiffiffiffiffiffiffiffiffiffi
�x� �

�xþ �

s

� c Dðx̂0ð �x; �Þ; k̂0
?ð �k?; �x; �ÞÞ

� c pð~xð �x; �Þ; ~k?ð �k?; �x; �ÞÞ	ð �x1 � �xÞ	��0
1
;�;

(53)

for the p ! �D0 transition and

H c �S
�0
2�

¼ � ffiffiffi
2

p
� �q�

Z d �yd2 �l?
16�3

ffiffiffiffiffiffiffiffiffiffiffiffi
�y� �

�yþ �

s

� c Dðŷ0ð �y; �Þ; l̂0?ð�l?; �y; �ÞÞ
� c pð~yð �y; �Þ;~l?ð�l?; �y; �ÞÞ	ð �x2 � �yÞ	��0

2
;�;

(54)

for the �p ! D0 transition. Here we have used that

�vðk01; �0
1Þ�þvðk01;��Þ ¼ 2k0þ1 and

�uðk02;��Þ��uðk02; �0
2Þ ¼ 2k0�2 : (55)
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Collecting all pieces we finally get

M��¼��

2

Z
d �x1

Z
d �x2H��;��ð �x1; �x2Þ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�x21��2
q 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�x22��2
q

�
Z d2 �k?
16�3

c Dðx̂0ð �x1;�Þ;k̂0
?ð �k?; �x1;�ÞÞ

�c pð~xð �x1;�Þ;~k?ð �k?; �x1;�ÞÞ

�
Z d2 �l?
16�3

c Dðŷ0ð �x2;�Þ; l̂0?ð�l?; �x2;�ÞÞ
�c pð~yð �x2;�Þ;~l?ð�l?; �x2;�ÞÞ: (56)

Furthermore, we can take advantage of the expected
shape of the p ! �D0 ( �p ! D0) transition matrix elements.
Due to their pronounced peak around x0 only kinematical
regions in the hard scattering amplitude close to the peak
position are enhanced by the hadronic transition matrix
elements. For the hard partonic subprocess we, therefore,
apply a ‘‘peaking approximation,’’ i.e., we replace the
momentum fractions appearing in the hard-scattering am-
plitude by x0. Then the hard scattering amplitude can be
pulled out of the convolution integral, and the p �p ! �D0D0

amplitude simplifies further to

M�� ¼ ��

2
H��;��ðx0; x0Þ

�Z 1

�
d �x

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�x2 � �2

p
�

Z d2 �k?
16�3

c Dðx̂0ð �x; �Þ; k̂0
?ð �k?; �x; �ÞÞ

� c pð~xð �x; �Þ; ~k?ð �k?; �x; �ÞÞ
�
2
; (57)

where the term in square bracket can be considered as a
sort of generalized form factor.

VI. HARD SCATTERING SUBPROCESS

Before we start to specify the LCWFs occurring in this
overlap representation of the p ! �D0 ( �p ! D0) transition,
we will first calculate scattering amplitudes of the hard

partonic S½ud�S½ud� ! �cc subprocess within the peaking
approximation.

The hard-scattering amplitudes for the hard partonic
subprocess, as shown in Fig. 3, is given by

H�0
1
;�0

2
¼ {

4

9

�
�{gs �uðk02; �0

2Þ��vðk01; �0
1ÞÞ

� �{g��

ðk1 þ k2Þ2
ðð�{gsFsÞðk1 � k2Þ�

�
: (58)

4=9 is the color factor which we have attached to the hard-
scattering amplitude. gs ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
4��s

p
is the ‘‘usual’’ strong

coupling constant, and Fs denotes the diquark form factor
at the gluon-diquark vertex. This diquark form factor takes
care of the composite nature of the S½ud� diquark and the
fact that for large s the diquark should dissolve into quarks.
We have taken the phenomenological form factor from

Ref. [14], namely,

FsðŝÞ¼
�������� Q2

0

Q2
0� ŝ

��������; Q2
0¼3:22GeV2; ŝ>Q2

0: (59)

It is just the analytic continuation of a spacelike form factor
to the timelike region. The original spacelike form factor
was introduced in Ref. [15] (where it has been obtained
from fits to the structure functions of deep inelastic lepton-
hadron scattering, to the electromagnetic proton form fac-
tor and elastic proton-proton data at large momentum
transfer). It should be remarked here that such a continu-
ation is not unique; the form factor can acquire unknown
phases when doing the continuation. But, fortunately, such
phases are irrelevant with respect to the physics, which is
the reason for taking the absolute value in Eq. (59).
With the help of the peaking approximation we can

express the subprocess amplitudes in terms of the kine-
matical variables of the full process. For the different
helicity combinations we explicitely have

Hþþ ¼ þ4��sðx20sÞFsðx20sÞ
4

9

2Mffiffiffi
s

p cos�;

Hþ� ¼ �4��sðx20sÞFsðx20sÞ
4

9
sin�;

H�þ ¼ �4��sðx20sÞFsðx20sÞ
4

9
sin�;

H�� ¼ �4��sðx20sÞFsðx20sÞ
4

9

2Mffiffiffi
s

p cos�:

(60)

VII. MODELING THE HADRONIC TRANSITION
MATRIX ELEMENTS

In order to make numerical predictions we have to
specify the LCWFs for the proton and the D0. We will
use wave functions of the form

c 	 e
�a2

P
i

k2
i?þm2

i
xi

; (61)

FIG. 3 (color online). The hard scattering process on the

partonic level S½ud�S½ud� ! c �c.
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which can be traced back to a harmonic oscillator ansatz
[16] that is transformed to the light cone [17]. In Ref. [18]
it was adapted to the case of baryons within a quark-
diquark picture. According to Refs. [1,19] we write the
wave functions of a proton in an S½ud�u Fock state as

c pðx;k?Þ ¼ Npxe
�a2p

k2?
xð1�xÞ; (62)

and the one of a pseudoscalar D0 meson in a u �c Fock
state as

c Dðx;k?Þ ¼ NDe
�a2DM

2ðx�x0Þ2
xð1�xÞ e�a2D

k2?
xð1�xÞ: (63)

Here x is the momentum fraction of the active constituent,
the S½ud� diquark or the �c quark, respectively. The mass
exponential in Eq. (63) generates the expected pronounced
peak at x � x0 and is a slightly modified version of the one
given in Ref. [18].

In each of the wave functions, Eqs. (62) and (63), we
have two free parameters: on the one hand the transverse
size parameter ap=D and, on the other hand, the normal-

ization constant Np=D. The parameters can be associated

with the mean intrinsic transverse momentum squared
hk2

?ip=D of the active constituent inside its parent hadron

and with the probability to find the hadron in the specific
Fock state (or with the decay constant fp=D of the corre-

sponding hadron). The probabilities and the intrinsic trans-
verse momenta for the valence Fock states as given in
Eqs. (46) and (47) can be calculated as

Pp=D ¼
Z

dx
Z d2k?

16�3
jc p=Dðx;k?Þj2 (64)

and

hk2
?ip=D ¼ 1

Pp=D

Z
dx

Z d2k?
16�3

k2
?jc p=Dðx;k?Þj2; (65)

respectively. Inserting the wave functions (62) and (63)
into Eqs. (64) and (65), we obtain

Pp ¼ N2
p

640�2a2p
; hk2

?ip ¼ 2

21a2p
(66)

and

PD ¼ N2
D

32�2a2D
I11ða2DÞ; hk2

?iD ¼ 1

2a2D

I22ða2DÞ
I11ða2DÞ

; (67)

where we have introduced the abbreviation

Inmða2DÞ :¼
Z 1

0
dxxnð1� xÞm exp

�
�2a2DM

2 ðx� x0Þ2
xð1� xÞ

�
:

(68)

For the proton we use the same parameters as in
Refs. [1,19]. We choose ap ¼ 1:1 GeV�1 for the oscillator

parameter and Pp ¼ 0:5 for the valence Fock state proba-

bility. Choosing Pp ¼ 0:5 for the proton may appear rather

large at first sight. As a bound state of two quarks a diquark
embodies also gluons and sea quarks and thus effectively
incorporates also higher Fock states. Therefore, a larger
probability than one would expect for a 3-quark valence
Fock state and a larger transverse size of the quark-diquark
state appear plausible. Choosing the parameter values as
stated above we get for the proton

ffiffiffiffiffiffiffiffiffiffiffiffiffi
hk2

?ip
q

¼ 280 MeV and Np ¼ 61:8 GeV�2: (69)

For the D meson we fix the two parameters such that we
get certain values for the valence Fock state probability PD

and the decay constant fD. The decay constant fD is
defined by the relation

h0j ��uð0Þ���5�
cð0ÞjD0:pi ¼ {fDp

�: (70)

Taking the plus component and inserting the fields as given
in Sec. V, we get (omitting phases)

2
ffiffiffi
6

p Z
dx

d2k?
16�3

c Dðx; k?Þ ¼ fD; (71)

such that

ND ¼ 16�2a2DfD

2
ffiffiffi
6

p
I11ða2D=2Þ

: (72)

As a value for the decay constant we take the experimental
value fD ¼ 206 MeV from Ref. [8]; for the valence Fock
state probability we choose PD ¼ 0:9. This amounts to
aD ¼ 0:864 GeV�1. As values for the normalization con-
stant and for the root mean square of the intrinsic trans-
verse momentum of the active quark, we then get

ffiffiffiffiffiffiffiffiffiffiffiffiffi
hk2

?iD
q

¼ 383 MeV and ND ¼ 55:2 GeV�2; (73)

respectively.
Let us now turn to the issue of the error assessment with

respect to the parameters. For the decay constant of the D0

meson we take fD ¼ 206� 8:9 MeV as stated in Ref. [8].
The valence Fock state probability of the D meson PD is
varied between 0.8 and 1. We do not take into account the
uncertainties of the parameters appearing in the proton
LCWF. They are small compared to the ones of the D
meson LCWF since they have been determined from
detailed studies of other processes. The influence of the
parameter uncertainties on the cross sections are indicated
by grey error bands in Figs. 5 and 6.
We now turn to the wave function overlap as derived in

Sec. V. When taking the model wave functions (62) and (63)
we explicitly get
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Z d2 �k?
16�3

c Dðx̂0ð �x;�Þ;k̂0
?ð �k?; �x;�ÞÞc pð~xð �x;�Þ;~k?ð �k?; �x;�ÞÞ

¼NpND

16�2

ð �xþ�Þð �x2��2Þð1� �xÞ
ð1þ�Þ

� 1

a2Dð1��Þ2ð �xþ�Þþa2pð1þ�Þ2ð �x��Þ

�exp

�
�a2DM

2 ð �x���x0ð1��ÞÞ2
ð �x��Þð1� �xÞ

�

�exp

�
��2

?
a2Da

2
pð1� �xÞ

a2Dð1��Þ2ð �xþ�Þþa2pð1þ�Þ2ð �x��Þ
�
:

(74)

In Fig. 4 we show the wave function overlap of Eq. (74)
versus the momentum fraction �x with the parameters
chosen as stated above. First, we observe that it is centered
at �x � x0 for the vanishing CMS scattering angle. Next, let
us compare the upper and the lower panel. We see that the
magnitude of the wave function overlap is strongly
decreasing with increasing CMS scattering angle �. The
wave function overlap is also more pronounced in magni-
tude and shape in forward direction. Furthermore,
when comparing the overlap for different values of

Mandelstam s, we observe that in the more important
forward scattering hemisphere the overlap is increasing
in magnitude with increasing CMS energy s, whereas at
large scattering angles this behavior is reversed.

VIII. CROSS SECTIONS

The differential cross section for p �p ! �D0D0 reads

d
p �p! �D0D0

d�
¼ 1

4�
s�M�m

d
p �p! �D0D0

dt
¼ 1

64�2

1

s

�M

�m


0;

(75)

where we have introduced


0 :¼ 1

4

X
��

jM��j2: (76)

In Fig. 5 the differential cross section d
p �p! �D0D0=dt is

plotted versus jt0j, again for Mandelstam s ¼ 15, 20 and
30 GeV2. The decrease of the cross section with increasing
jt0j can mainly be attributed to the wave function overlap
which gives rise to a generalized form factor [cf. Eq. (57)].

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.5

1.0

1.5

2.0

x

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.5

1.0

1.5

2.0

x

FIG. 4. The wave function overlap of Eq. (74) versus �x at
the CMS scattering angle � ¼ 0 (upper figure) and � ¼ �=2
(lower figure). We show it for Mandelstam s ¼ 30, 20 and
15 GeV2 (solid, dashed and dotted curves).

0.5 1.0 1.5 2.0 2.5 3.0 3.5
t' GeV 2
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0.20
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0.15

d dt nb GeV 2

0.5 1.0 1.5 2.0 2.5 3.0 3.5
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0.010
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0.050

d dt nb GeV 2

0.5 1.0 1.5 2.0 2.5 3.0 3.5
t' GeV 2

5 10 4

0.001

0.002

0.005

d dt nb GeV 2

FIG. 5. The differential cross section d
p �p! �D0D0=dt versus
jt0j. On the upper, middle, and lower panel we show it for
Mandelstam s ¼ 15, 20 and 30 GeV2, respectively.
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This form factor enters the differential cross section to the
fourth power. The forward direction is dominated by those
amplitudes in which the helicities of the proton and anti-
proton (and also of the c and �c quark) are equal. They go
with cos�. With increasing scattering angle they compete
with those in which proton and antiproton (and also c and �c)
have opposite helicities. The latter go with sin� and domi-
nate at 90
. If one looks at the energy dependence one
observes that Mþþ and M�� are suppressed by a factor
2M=

ffiffiffi
s

p
as compared toMþ� andM�þ [cf. Eq. (60)]. This

suppression is the reason that the cross section for p �p !
�D0D0 is smaller than the one for p �p ! �þ

c
���
c in Ref. [1].

In the p �p ! �þ
c
���
c case the factor M=

ffiffiffi
s

p
comes with

those amplitudes which vanish in forward direction.
When comparing the different panels of Fig. 5 one sees
that the effect of the increase of the differential cross
section with decreasing scattering angle becomes more
pronounced for higher CMS energies.

In Fig. 6 we show the integrated cross section 
 versus
Mandelstam s. It is of the order of 10�1 nb, which is one
order of magnitude lower than the integrated cross section

for p �p ! �þ
c
���
c in Ref. [1]. This finding is in accordance

with the diquark-model calculation of Ref. [19]. According

to Ref. [19] larger cross sections (of the order of the p �p !
�þ

c
���
c cross section) are to be expected for the p �p !

DþD� reaction. This, however, requires us to extend our
handbag approach by including vector diquarks and will be
the topic of future investigations. Our estimated cross
section is about two orders of magnitude smaller than the
predictions given in Refs. [20,21], where hadronic interac-
tion models have been used. Whereas the authors of
Ref. [20] determine their couplings of the initial proton
to the intermediate and final charmed hadrons by means of
QCD sum rules, the authors of Ref. [21] rather use SU(4)
flavor symmetry. Though their predictions for the inte-
grated p �p ! �D0D0 cross section are comparable, they
differ substantially in the p �p ! DþD� cross section
which, in Ref. [20], is even smaller than our p �p ! �D0D0

cross section. Such big discrepancies reveal the high neces-
sity of experimental data which allow us to decipher

between different dynamical models. Such experiments
could also help to pin down the charm-quark content of
the proton sea. A considerably higher cross section within
our approach could only be explained if the charm-quark
content of the proton sea was not negligible.

IX. SUMMARY

We have described the exclusive process p �p ! �D0D0 by
means of a double handbag mechanism. This means that
the process was assumed to factorize into a hard subprocess
on the constituent level, which can be treated by means of
perturbative QCD, and into soft hadronic matrix elements
describing the nonperturbative p ! �D0 and �p ! D0 tran-
sitions. The intrinsic hard scale, justifying this approach, is
given by the mass of the c quark.
In order to produce the �D0D0 pair viap �p annihilation au �u

and a d �d pair has to be annihilated on the constituent level,
and a c �c pair must be created.We have adopted the simplify-
ing assumption that the (dominant) valence Fock component
of the proton consists of a scalar S½ud� diquark and a u quark
such that the flavor-changing hard process on the constituent

level then becomes a simple S½ud�S½ud� ! c �c annihilation
via the exchange of a highly virtual gluon.When calculating
this annihilation, the composite nature of the S½ud� diquark
has been taken into account by a form factor at the diquark-
gluon vertex. Diquark mass and form-factor parameter have
been taken from the literature, where such a kind of diquark
model was already applied to other processes.
The soft part of the p ! �D0 transition is encoded in a

hadronicmatrix element consisting of anS½ud� diquark and a
c-quark field operator, sandwiched between the incoming
proton and the outgoing �D0 state. We have given a parame-
trization of this matrix element in terms of (four) p ! �D0

transition distribution amplitudes [22]. Tomodel thep ! �D0

transition matrix element we have employed an overlap
representation in terms of light-cone wave functions of
the proton and the �D0. Such a representation makes sense
for energies well above threshold and scattering angles in
the forward hemisphere, where the momentum fractions of
the active constituents have to be larger than the skewness.
For the light-conewave functions of the proton and the �D0we
have taken simple oscillator-type models from the literature.
The two parameters (normalization and oscillator parameter)
in each case have been fixed such that the wave functions
provide reasonable probabilities for the valence Fock state
and reasonable values for the mean intrinsic transverse mo-
mentum (in case of the proton) and the D0 decay constant.
This overlap representation provided us with a model for

the transition distribution amplitudes and allowed us to
predict differential and integrated cross sections for the
p �p ! �D0D0 process. For this simple wave function model
only the transition distribution amplitude associated with
the covariant �5uproton survived. The maximum size of

the differential and integrated cross sections was found to
be less than 1 nb, i.e., about 2 orders of magnitude smaller

16 18 20 22 24 26 28 30
0.0

0.1

0.2

0.3

0.4

s GeV 2

nb

FIG. 6. The integrated cross section 
p �p! �D0D0 versus
Mandelstam s.

GORITSCHNIG, PIRE, AND SCHWEIGER PHYSICAL REVIEW D 87, 014017 (2013)

014017-10



than corresponding cross sections calculated within had-
ronic interaction models. Experimental data are therefore
highly needed to figure out the favorable approach. Higher
cross sections can be expected for p �p ! D�Dþ within our
approach, but this would require us to extend the concept
of transition distribution amplitudes to vector diquarks.
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APPENDIX A: KINEMATICS

The four-momentum transfer � can be written as
[cf. Eqs. (1) and (2)]

� ¼
�
�2� �pþ;

M2ð1þ �Þ �m2ð1� �Þ þ ��2
?=2

2 �pþð1� �2Þ ;�?
�
:

(A1)

Note that �þ ¼ ��� since p0 � p ¼ q� q0.
In order to find expressions for the sine and the cosine of

the CMS scattering angle �, we write the absolute value
of the three-momentum and the momentum component
into the z direction of the incoming proton as

jpj ¼
ffiffiffi
s

p
2
�m; p3 ¼

ffiffiffi
s

p
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2

m ��2
?=s

q
; (A2)

and that of the outgoing �D0 as

jp0j ¼
ffiffiffi
s

p
2
�M; jp0

3j ¼
ffiffiffi
s

p
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2

M ��2
?=s

q
; (A3)

respectively.
Note that we have chosen the coordinate system in such

a way that the z component of the incoming proton
momentum is always positive. But that of the outgoing
�D0 can become negative at large scattering angles due to
the unequal-mass kinematics. This change of sign occurs
when �2

? reaches its maximal value

�2
?max ¼ s�2

M; (A4)

which follows directly from Eq. (A3). Then the CMS
scattering angle can be written as

�¼ arccos

�
p3

jpj
�
þarccos

�
p0
3

jp0j
�

¼ arcsin

�j�?j
2jpj

�
þarcsin

�j�?j
2jp0j

�
; for forward scattering

¼ arcsin

�j�?j
2jpj

�
�arcsin

�j�?j
2jp0j

�
þ�;

for backward scattering: (A5)

Using Eq. (A5) the sine and cosine of the CMS scattering
angle � turn out to be

sin�¼
ffiffiffiffiffiffiffiffi
�2

?
s

s
1

�m�M

0
@

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2

m��2
?
s

s
þ signðp0

3Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2

m��2
?
s

s 1
A

(A6)

and

cos� ¼ signðp0
3Þ

�m�M

0
@

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
�2

m ��2
?
s

��
�2

M ��2
?
s

�s

� 1

signðp0
3Þ

�2
?
s

1
A; (A7)

respectively, where signðp0
3Þ takes care of the kinematical

situation of forward or backward scattering.
Nowwe are able to express several kinematical variables

in a compact form. Starting from the definition (2) of the
average hadron momentum �p and using Eqs. (A2), (A3),
(A6), and (A7), its plus component can be written as

�pþ ¼ 1

2
ðpþ þ p0þÞ ¼ 1

2
ffiffiffi
2

p ððp0 þ p3Þ þ ðp0
0 þ p0

3ÞÞ

¼ 1

4

ffiffiffi
s

2

r �
2þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2

m ��2
?=s

q
þ signðp0

3Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2

M ��2
?=s

q �

¼ 1

4

ffiffiffi
s

2

r �
2þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2

m þ�2
M þ 2�m�M cos�

q �
: (A8)

Note that in our symmetric CMS �q� ¼ �pþ. For the
skewness parameter � we get

� ¼ pþ � p0þ

pþ þ p0þ

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2

m ��2
?=s

q
� signðp0

3Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2

M ��2
?=s

q
2þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2

m ��2
?=s

q
þ signðp0

3Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2

M ��2
?=s

q
¼ �2

m ��2
Mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�2
m þ�2

M þ 2�m�M cos�
q
� 1

2þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2

m þ�2
M þ 2�m�M cos�

q : (A9)

Note that, as a consequence of the unequal-mass kinemat-
ics, � cannot become zero, which is different from, e.g.,
Compton scattering where �would be equal to zero in such
a symmetric frame. For p0

3 � 0, however, � is fairly small

in our case and tends to zero for s ! 1.
Now let us further investigate the Mandelstam variables

and write them in a more compact form with the help of
Eqs. (A2), (A3), (A6), and (A7). Mandelstam t can be
written as

DOUBLE HANDBAG DESCRIPTION OF PROTON- . . . PHYSICAL REVIEW D 87, 014017 (2013)

014017-11



t ¼ � �2
?

1� �2
� 2�

1� �2
½ð1þ �ÞM2 � ð1� �Þm2�

¼ ��2
?
2

� s

4

�
�2

m þ�2
M � 2signðp0

3Þ

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2

m ��2
?=s

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2

M ��2
?=s

q �

¼ � s

4
½�2

m þ�2
M � 2�m�M cos��: (A10)

It cannot become zero for forward scattering but acquires
the value

t0 :¼ tð�2
? ¼ 0; p0

3 � 0Þ ¼ � s

4
ð�m ��MÞ2; (A11)

and for backward scattering

t1 :¼ tð�2
? ¼ 0; p0

3 � 0Þ ¼ � s

4
ð�m þ�MÞ2: (A12)

It is furthermore convenient to introduce a ‘‘reduced’’
Mandelstam variable t0 that vanishes for forward scattering,

t0 :¼ t� t0

¼ ��2
?
2

� s

2

�
�m�M � signðp0

3Þ

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2

m ��2
?=s

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2

M ��2
?=s

q �

¼ � s

2
�m�Mð1� cos�Þ: (A13)

Also the transverse component of � can easily be written as
a function of the sine and the cosine of the scattering angle �
using Eqs. (A6) and (A7),

�2
? ¼ s

�2
m�

2
Msin

2�

�2
m þ�2

M þ 2�m�M cos�
; (A14)

or solving Eq. (A13) for �2
? one finds

�2
? ¼ �t0

s�m�M þ t0

s=4ð�m þ�MÞ2 þ t0
: (A15)

If we define Mandelstam u for forward scattering in an
analogous way

u0 :¼ uð�2
? ¼ 0; p0

3 � 0Þ ¼ � s

4
ð�m þ�MÞ2; (A16)

and for backward scattering

u1 :¼ uð�2
? ¼ 0; p0

3 � 0Þ ¼ � s

4
ð�m ��MÞ2; (A17)

the sine and the cosine of half the CMS scattering angle �
can be written compactly as

sin2
�
�

2

�
¼ 1� cos�

2
¼ t0 � t

s�m�M

; (A18)

cos 2
�
�

2

�
¼ 1þ cos�

2
¼ u1 � u

s�m�M

; (A19)

respectively.

APPENDIX B: LIGHT CONE SPINORS

For our purposes we use the light cone spinors [23,24].
They read

uðp; "Þ ¼ 1

21=4
1ffiffiffiffiffiffiffi
pþp

pþ þm=
ffiffiffi
2

p

p?=
ffiffiffi
2

p

pþ �m=
ffiffiffi
2

p

p?=
ffiffiffi
2

p

0
BBBBB@

1
CCCCCA;

uðp; #Þ ¼ 1

21=4
1ffiffiffiffiffiffiffi
pþp

�p�
?=

ffiffiffi
2

p

pþ þm=
ffiffiffi
2

p

p�
?=

ffiffiffi
2

p

�pþ þm=
ffiffiffi
2

p

0
BBBBBB@

1
CCCCCCA; (B1)

vðp; "Þ ¼ �1

21=4
1ffiffiffiffiffiffiffi
pþp

�p�
?=

ffiffiffi
2

p

pþ �m=
ffiffiffi
2

p

p�
?=

ffiffiffi
2

p

�pþ �m=
ffiffiffi
2

p

0
BBBBBB@

1
CCCCCCA;

vðp; #Þ ¼ �1

21=4
1ffiffiffiffiffiffiffi
pþp

pþ �m=
ffiffiffi
2

p

p?=
ffiffiffi
2

p

pþ þm=
ffiffiffi
2

p

p?=
ffiffiffi
2

p

0
BBBBB@

1
CCCCCA (B2)

for p3 > 0 and

uðp; "Þ ¼ 1

21=4
signðp1Þffiffiffiffiffiffiffi

p�p

p�
?=

ffiffiffi
2

p

p� þm=
ffiffiffi
2

p

p�
?=

ffiffiffi
2

p

p� �m=
ffiffiffi
2

p

0
BBBBBB@

1
CCCCCCA;

uðp; #Þ ¼ 1

21=4
�signðp1Þffiffiffiffiffiffiffi

p�p

p� þm=
ffiffiffi
2

p

�p?=
ffiffiffi
2

p

�p� þm=
ffiffiffi
2

p

p?=
ffiffiffi
2

p

0
BBBBB@

1
CCCCCA; (B3)

vðp; "Þ ¼ 1

21=4
signðp1Þffiffiffiffiffiffiffi

p�p

p� �m=
ffiffiffi
2

p

�p?=
ffiffiffi
2

p

�p� �m=
ffiffiffi
2

p

p?=
ffiffiffi
2

p

0
BBBBB@

1
CCCCCA;

vðp; #Þ ¼ 1

21=4
�signðp1Þffiffiffiffiffiffiffi

p�p

p�
?=

ffiffiffi
2

p

p� �m=
ffiffiffi
2

p

p�
?=

ffiffiffi
2

p

p� þm=
ffiffiffi
2

p

0
BBBBBB@

1
CCCCCCA (B4)

for p3 < 0. They satisfy the charge-conjugation relation
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vðp; �Þ ¼ {�2u�ðp; �Þ; (B5)

and are normalized as

�u�0 ðpÞu�ðpÞ ¼ 2m	�0� and �v�0 ðpÞv�ðpÞ ¼ �2m	�0�:

(B6)

APPENDIX C: TDAS

Following Ref. [5] the p ! �D0 transition matrix element can be decomposed at leading twist into the following
covariant structures:

H �cS
� :¼ �pþ Z dz�1

2�
e{ �x1 �p

þz�
1 h �D0:p0j�cþð�z�1 =2Þ�S½ud�ðþz�1 =2Þjp:p;�i ¼ �5uðp;�ÞV1ð �x1; �; tÞ

þ 6�
Mþm

�5uðp;�ÞV2ð �x1; �; tÞ þ uðp;�Þ ~V1ð �x1; �; tÞ þ 6�
Mþm

uðp;�Þ ~V2ð �x1; �; tÞ; (C1)

where we have introduced the p ! �D0 TDAs V1, V2, ~V1 and ~V2. When evaluating the p �p ! �D0D0 amplitude the hadronic
transition matrix element (C1) appears within the spinor product

H �cS
�0
1
�
¼ �vðk01; �0

1Þ�þ ~H �cS
� ; (C2)

cf. Eq. (33). Expressed in terms of TDAs we thus have

H �cS
�0
1
�
¼ �vðk01; �0

1Þ�þ�5uðp;�ÞV1ð �x1; �; tÞ þ �vðk01; �0
1Þ�þ 6�

Mþm
�5uðp;�ÞV2ð �x1; �; tÞ

þ �vðk01; �0
1Þ�þuðp;�Þ ~V1ð �x1; �; tÞ þ �vðk01; �0

1Þ�þ 6�
Mþm

uðp;�Þ ~V2ð �x1; �; tÞ

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�x1 � �

1� �

s �
�vðp0; �0

1Þ�þ�5uðp;�ÞV1ð �x1; �; tÞ þ �vðp0; �0
1Þ�þ 6�

Mþm
�5uðp;�ÞV2ð �x1; �; tÞ

þ �vðp0; �0
1Þ�þuðp;�Þ ~V1ð �x1; �; tÞ þ �vðp0; �0

1Þ�þ 6�
Mþm

uðp;�Þ ~V2ð �x1; �; tÞ
�
; (C3)

after making the replacement k01 ¼ x01p
0 in the �v spinor.

Evaluating the various spinor products which appear in
Eq. (C3) by using the light-cone spinors of Appendix B
gives

H �cSþþ ¼ 4 �pþ

Mþm

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�x1 � �

1þ �

s
�?
2

ðV2ð �x1; �; tÞ þ ~V2ð �x1; �; tÞÞ;

(C4)

H �cS�� ¼ 4 �pþ

Mþm

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�x1 � �

1þ �

s
�?
2

ðV2ð �x1; �; tÞ � ~V2ð �x1; �; tÞÞ

(C5)

and

H �cSþ� ¼ 2 �pþ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�x1 � �

p ffiffiffiffiffiffiffiffiffiffiffiffi
1þ �

p �
V1ð �x1; �; tÞ � ~V1ð �x1; �; tÞ

þ 2�

1þ �

m

Mþm
ðV2ð �x1; �; tÞ þ ~V2ð �x1; �; tÞÞ

�
;

(C6)

H �cS�þ ¼ �2 �pþ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�x1 � �

p ffiffiffiffiffiffiffiffiffiffiffiffi
1þ �

p �
V1ð �x1; �; tÞ þ ~V1ð �x1; �; tÞ

þ 2�

1þ �

m

Mþm
ðV2ð �x1; �; tÞ � ~V2ð �x1; �; tÞÞ

�
:

(C7)

The TDAs V1, ~V1, V2 and ~V2 can now be expressed as linear
combinations of H �cSþþ, H �cS��, H �cSþ� and H �cS�þ. For our
overlap representation of the hadronic transition matrix
elements we have H �cSþþ ¼ H �cS�� ¼ 0 [cf. Eq. (55)]. This
means that V2 ¼ ~V2 ¼ 0 and

V1 ¼ 1

4 �pþ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�x1 � �

p ffiffiffiffiffiffiffiffiffiffiffiffi
1þ �

p ðH �cSþ� �H �cS�þ; Þ; (C8)

~V1 ¼ � 1

4 �pþ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�x1 � �

p ffiffiffiffiffiffiffiffiffiffiffiffi
1þ �

p ðH �cSþ� þH �cS�þÞ: (C9)

We further haveH �cSþ� ¼ �H �cS�þ [cf. Eq. (53)], so that we
finally get

V1 ¼ 1

2 �pþ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�x1 � �

p ffiffiffiffiffiffiffiffiffiffiffiffi
1þ �

p H �cSþ� and ~V1 ¼ 0: (C10)
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