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We study the beam spin asymmetry Asin�h

LU in semi-inclusive �0 electroproduction contributed by the

T-odd twist-3 distribution function g?ðx; k2TÞ. We calculate this transverse momentum dependent

distribution function for the u and d quarks inside the proton in a spectator model including the scalar

and the axial-vector diquark components. Using the model results, we estimate the asymmetry Asin�h

LU in

the ep ! e0�0X process in which the lepton beam is longitudinally polarized. The model prediction is

compared with the data measured by the CLAS and HERMES collaborations, and it is found that our

numerical results agree with the experimental data reasonably. Especially, our results can well describe the

CLAS data at the region where the Bjorken x and the pion transverse momentum is not large. We also

make a prediction on the asymmetry Asin�h

LU in �0 electroproduction at CLAS12 using the same model

calculation.
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I. INTRODUCTION

Understanding the origins of the single spin asymme-
tries (SSAs) appearing in high-energy semi-inclusive
processes is one of the important goals of QCD spin
physics [1–4]. Substantial SSAs have been measured
by the HERMES Collaboration [5–10], the COMPASS
Collaboration [11–13], and the Jefferson Lab (JLab)
[14–18] in semi-inclusive deep inelastic scattering
(SIDIS). It is found that the T-odd transverse momentum
dependent (TMD) parton distribution functions (DFs)
[19–24] or fragmentation functions (FFs) [25], under
the TMD factorization [26] framework, play central roles
in the observed SSAs. The T-odd TMDs describe the
correlations between the transverse motion of the parton
and its own spin or the spin of the initial-state hadron,
thereby encoding much richer information about the
partonic structure as well as the QCD dynamics inside
hadrons than what can be learned from the collinear DFs.

In the particular case of a longitudinally polarized beam
colliding on an unpolarized target, an asymmetry with
sin�h modulation, the so-called beam SSA, emerges.
The CLAS Collaboration [14,17,18] at JLab and the
HERMES Collaboration [8] have measured this asymme-
try in pion electroproduction in the magnitude of several
percents that cannot be explained by perturbative QCD
[27]. Different mechanisms have been proposed to gener-
ate such asymmetry, such as the Boer-Mulders effect [28]
and the Collins effect [29,30], involving the chiral-odd
distribution or fragmentation functions. In Refs. [31–33],
a new source contributing to the beam SSA has been
identified, either from the model calculations [31,32] or
from the updated decomposition of the unpolarized quark-
quark correlator [33], where the twist-3 TMD g?ðx; k2TÞ
plays a crucial role. As a T-odd chiral-even TMD, g? can

be regarded as an analog of the Sivers function [19] at the
twist-3 level, because both of them require quark trans-
verse motion as well as initial- or final-state interactions
[22–24] via soft-gluon exchanges to receive nonzero con-
tributions. Therefore, studying beam SSAs may provide a
unique opportunity to unravel the role of quark spin-orbit
correlation at twist 3.
In this work, we present an analysis on the beam SSA

Asin�h

LU in neutral pion production, based on the effect from

g?. We calculate the function g?ðx; k2TÞ for the u and d
quarks inside the proton, using the spectator model with
scalar and axial-vector diquarks. Different types of spectator
model have been widely used to calculate TMDs for the
nucleon [22,34–42] and the pion [43–46]. We will adopt a
specific model given in Ref. [41], in which the authors
consider the isospin of vector diquarks to distinguish the
isoscalar (ud-like) and isovector (uu-like) spectators.
Furthermore, in that model, the free parameters are fixed
by reproducing the parametrization of unpolarized and
longitudinally polarized parton distributions. The above-
mentioned feature of the model allows us to perform the
phenomenological analysis in a deep sense. Using the calcu-

lated g?u and g?d, we estimate the beam SSA Asin�h

LU in

neutral pion production at the kinematics of CLAS and
compare our results with the CLAS data [17] measured
recently with high precision. We also make a comparison
between our calculation and the �0 data measured by the
HERMES Collaboration [8] for further testing. Finally, we

present the prediction ofAsin�h

LU for�0 production atCLAS12.
The paper is organized as follows. In Sec. II, we present

the details on the calculation of g? in the spectator model
with an axial-vector diquark, and discuss the flavor, x and
kT dependencies of g?. In Sec. III, we analyze the beam

SSA Asin�h

LU in �0 production numerically at CLAS,

HERMES, and CLAS12 based on the calculated g? for
the u and d quarks. We address our conclusion in Sec. IV.*zhunlu@seu.edu.cn
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II. g? OF THE PROTON IN THE SPECTATOR
MODELWITH AN AXIAL-VECTOR DIQUARK

In this section, we present the detailed calculation on the
T-odd twist-3 TMD g?ðx; k2TÞ of the proton in a spectator
model with axial-vector diquark. The starting point of the
calculation is the gauge-invariant quark-quark correlator
for the unpolarized nucleon

�½þ�ðx; kTÞ ¼
Z d��d2�T

ð2�Þ3 eik��hPj �c jð0ÞL½0�;1��
�L½0T; �T�L½1�; ���c ið�ÞjPi; (1)

where [þ ] denotes that the gauge link appearing in � is
future-pointing, corresponding to the SIDIS process. As an
interaction-independent twist-3 distribution, g? naturally
appears in the decomposition of the quark-quark correlator
at the subleading order of 1=Pþ expansion, after including
the light-cone vector n� that defines the direction along
which the path-order exponential runs [33,47]

�½þ�ðx; kTÞjOð M

PþÞ ¼
Z

dk��½þ�ðP; k;n�Þ

¼ M

2Pþ

�
g?�5

�
��
T ��kT�

M
þ � � �

�
; (2)

here, � � � stands for the other twist-3 TMDs that are not
taken into account in this paper. The distribution g?, there-
fore, can be deduced from �½þ�ðx; kTÞ by taking the trace
with proper Dirac matrices

� �
��
T kT�
Pþ g?ðx; k2TÞ ¼

1

2
Tr½�½þ����5�: (3)

Since g? is a T-odd DF, we need to consider the effect
of the gauge link to generate a nonzero result, in analogy
to the Sivers function and the Boer-Mulders function.
However, calculations on g? based on the scalar diquark
model (with pointlike proton-quark-diquark coupling) as
well as the quark-target model [48] show that g? and the
other twist-3 T-odd TMDs suffer light-cone divergence.
This feature is in contrast to the case of leading-twist T-odd
TMDs and has been recognized as a theoretical challenge
in deriving a TMD factorization proof in SIDIS at twist 3
[48,49]. In Refs. [48,50], the authors pointed out that the
light-cone divergence can be avoided by means of a phe-
nomenological approach in which form factors are applied
for the proton-quark-diquark coupling. In Ref. [51], all
sixteen twist-3 T-odd TMDs were calculated in the scalar
diquark model by adopting the dipolar form factor for the
proton-quark-diquark coupling. In this paper, we extend the
calculations in Refs. [48,51] using the spectator model with
an axial-vector diquark to obtain g? for both the u and d
quarks. Themodel we apply in the calculation is the version
developed in Ref. [41], which was originally proposed in
Ref. [34]. The same model has been adopted to calculate
various twist-3 quark-gluon-quark correlators in Ref. [52].
The common feature of spectator models is that the proton
with massM is supposed to be constituted by a quark with
massm and a diquark with massMX, and the diquark X can
be either a scalar one (denoted by s) or an axial-vector one
(denoted by v).
We perform the calculation in the Feynman gauge and

expand the gauge link to the first order (one-gluon exchange)
to obtain the quark-quark correlators contributed by the
scalar diquark and the axial-vector diquark components

�sijðx; kTÞ � �ieq
1

ð2�Þ4
Z d4q

ð2�Þ4
Z

dk�
1

qþ þ i�

�
�UðP; SÞ�sðk2Þ ð6kþmÞ

k2 �m2 þ i�

�
j

�
�

1

ðP� kÞ2 �M2
s þ i�

�þ
s

q2 þ i"

1

ðP� kþ qÞ2 �M2
s þ i�

�

�
� ð6k� 6qþmÞ
ðk� qÞ2 �m2 þ i�

�sððk� qÞ2ÞUðP; SÞ
�
i

��������kþ¼xPþ
þH:c:; (4)

�vijðx; kTÞ � �ieq
1

ð2�Þ4
Z d4q

ð2�Þ4
Z

dk�
1

qþ þ i�

�
�UðP; SÞ��

vðk2Þ ð6kþmÞ
k2 �m2 þ i�

�
j

�
�

d��ðP� kÞ
ðP� kÞ2 �M2

v þ i�

�þ;�	
v

q2 þ i"

d	�ðP� kþ qÞ
ðP� kþ qÞ2 �M2

v þ i�

�

�
� ð6k� 6qþmÞ
ðk� qÞ2 �m2 þ i�

��
v ððk� qÞ2ÞUðP; SÞ

�
i

��������kþ¼xPþ
þH:c:; (5)

where eq is the charge of the quark, �s=v denotes the
nucleon-quark-diquark vertex with the form [34]

�sðk2Þ ¼ gsðk2Þ; �

v ðk2Þ ¼ gvðk2Þffiffiffi

2
p �
�5; (6)

and �


s or �


;�	
v is the vertex between the gluon and the

scalar diquark or the axial-vector diquark

�


s ¼ iesð2P� 2kþ qÞ
; (7)
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�
;�	
v ¼ �iev½ð2P� 2kþ qÞ
g�	 � ðP� kþ qÞ�g
	

� ðP� kÞ	g
��; (8)

with es=v denoting the charge of the scalar/axial-vector
diquark. In Eq. (5), we use d
� to denote the summation
over the polarizations of the axial-vector diquark for which
we choose the following form [53]:

d
�ðP� kÞ ¼ �g
� þ
ðP� kÞ
n�� þ ðP� kÞ�n�


ðP� kÞ � n�
� M2

v

½ðP� kÞ � n��2
n�
n��: (9)

The advantage of the above choice has been argued in
Ref. [41]. To obtain finite results for g?, we also choose
the dipolar form factor for gXðk2Þ

gXðk2Þ ¼ NX

k2 �m2

jk2 ��2
Xj2

¼ NX

ðk2 �m2Þð1� xÞ2
ðk2T þ L2

XÞ2
; (10)

for X ¼ s, v, where �X is the cutoff parameter, NX is the
coupling constant (which also serves as the normalization
constant), and L2

X has the form

L2
X ¼ ð1� xÞ�2

X þ xM2
X � xð1� xÞM2: (11)

Performing the integrations in Eqs. (4) and (5)
over k�, qþ and q�, the quark-quark correlators for
the unpolarized nucleon in the spectator model are
simplified as

�sðx;kTÞ��ieqesN
2
s

ð1�xÞ3
32�3Pþ

1

ðL2
s þk2TÞ2

Z d2qT
ð2�Þ2

½ð6k�6qþmÞð6PþMÞð6kþmÞ�
q2TðL2

s þðkT �qTÞ2Þ2
�������� qþ¼0

kþ¼xPþ
; (12)

�vðx; kTÞ � �ieqN
2
v

ð1� xÞ2
128�3ðPþÞ2

1

ðL2
v þ k2TÞ2

Z d2qT
ð2�Þ2 d��ðP� kÞð�i�þ;�	Þd�	ðP� kþ qÞ

� ½ð6k� 6qþmÞ��ð6P�MÞ��ð6kþmÞ�
q2TðL2

v þ ðkT � qTÞ2Þ2
�������� qþ¼0

kþ¼xPþ
: (13)

Using Eq. (3) and performing the integration over qT , we arrive at the expressions for the distribution g? from the scalar
and the axial-vector diquark components1

g?sðx; k2TÞ ¼ �N2
s ð1� xÞ2
ð32�3Þ

eseq
4�

�ð1� xÞ�2
s þ ð1þ xÞM2

s � ð1� xÞM2

L2
sðL2

s þ k2TÞ3
�
; (14)

g?vðx; k2TÞ ¼
N2

vð1� xÞ2
ð32�3Þ

eveq
4�

�ð1� xÞðxMþmÞ2 þ ð1� xÞ2M2 �M2
v þ xL2

v

ð1� xÞL2
vðL2

v þ k2TÞ3

� x

ð1� xÞk2TðL2
v þ k2TÞ2

ln

�
L2
v þ k2T
L2
v

��
: (15)

The function g? for the u and d quarks can be
constructed by g?s and g?v. Here, we follow the
approach in Ref. [41] in which the two isospin states
of the vector diquark are distinguished; that is, the
vector isoscalar diquark vðudÞ is denoted by a with
mass Ma and cutoff parameter �a, while the vector
isovector diquark vðuuÞ is denoted by a0 with different
mass Ma0 and cutoff parameter �a0 . Hence, by applying
the relation between quark flavors and diquark types,

we can obtain the distributions g?u and g?d by the
following form [41]:

g?u ¼ c2sg
?s þ c2ag

?a; (16)

g?d ¼ c02a g?a0 ; (17)

where cs, ca, and ca0 represent different couplings that
are the free parameters of the model. The same form
also holds for the other TMDs.
For the parameters MX, �X, and cX (X ¼ s, a, a0)

needed in the calculation, we also adopt the values
from Ref. [41], as shown in the first three columns of
Table I. The fourth column shows the values for the

1There is a typo in Ref. [51]: the factor ð1� xÞ�2
s þ ð1þ xÞ

M2
s � ð1� xÞð1� 2xÞM2 in the numerators of the right-hand

side of Eqs. (32) and (36) should be ð1� xÞ�2
s þ ð1þ xÞM2

s �ð1� xÞM2.
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corresponding normalization constants NX (X ¼ s,
a, a0), which are obtained from the normalization con-
dition for the unpolarized TMD. The quark mass is
chosen as m ¼ 0:3 GeV. To convert our calculation to
real QCD, we use the following replacement for the
combination of the charges of the quark q and the
spectator diquark X

eqeX
4�

! �CF�s (18)

and choose �s � 0:3 in our calculation. The minus sign
in the above equation comes from the fact that in QCD, a
hadron is color-neutral; thus, the color charges eq and eX
should have the opposite signs.

In the left panel of Fig. 1, we plot the functions xg?u

(solid line) and xg?d (dashed line) vs kT at x ¼ 0:3, while
in the right panel of the same figure, we display the x
dependence of xg?u and xg?d at kT ¼ 0:3 GeV. The plots
in Fig. 1 correspond to the results in the scale 
2

0 ¼
0:3 GeV2, which is the scale used in Ref. [41] to fit the
parametrization of f1ðxÞ [54]. As we can see from Fig. 1,
the dominance of u quark contribution is evident in the
adopted spectator model; that is, g?u is several times larger
than g?d by size. Our results show that g?u is positive for
all x and kT regions; while g?d is negative in the small x
region and turns to be positive in the region x > 0:15, i.e.,
there is a node in the x dependence of g?d. Also, the kT
dependencies of the u and d quark distributions are differ-
ent since g?d approaches zero faster than g?u when kT
increases.

III. NUMERICAL RESULTS FOR BEAM
SPIN ASYMMETRY

In this section, we will use our model resulting g? to

calculate the beam SSA Asin�h

LU in �0 electroproduction, as

precise measurements on Asin�h

LU of a neutral pion for differ-
ent x and PT bins have been performed by the CLAS
Collaboration [17] at JLab recently, in SIDIS by a
5.776 GeV longitudinally polarized electron beam off an
unpolarized hydrogen target. Earlier, the HERMES
Collaboration measured the beam SSAs for neutral and
charged pions using a 27.6 GeV beam. We compare the

results for Asin�h

LU with the neutral pion data from CLAS

and HERMES to test our model calculation. Then, we will

make new prediction on the asymmetry Asin�h

LU for �0

electroproduction at CLAS12 using the same model cal-
culation to study the prospects to access g? at CLAS
after the 12 GeV upgrade is realized.
The semi-inclusive leptoproduction process that we

study can be expressed as

eð‘Þ þ pðPÞ ! e0ð‘0Þ þ hðPhÞ þ XðPXÞ; (19)

where ‘ and ‘0 are the four-momentum of the incoming and
scattered lepton, and P and Ph are the four-momentum of
the target nucleon and the detected final-state hadron h,
respectively.
The variables to express the SIDIS cross section are

defined as

x ¼ Q2

2P � q ; y ¼ P � q
P � l ; z ¼ P � Ph

P � q ;

� ¼ 2Mx

Q
; Q2 ¼ �q2; s ¼ ðPþ ‘Þ2;

W2 ¼ ðPþ qÞ2;

(20)

where q ¼ ‘� ‘0 is the four-momentum of the virtual
photon and W is the invariant mass of the hadronic
final state.
The reference frame we adopt here is that the virtual

photon and the target proton are collinear and along the z
axis, with the photon moving toward the target in the
positive z direction, as shown in Fig. 2. We use kT to denote
the intrinsic transverse momentum of the quark inside the
proton for the DFs, with PT to denote the transverse mo-
mentum of the detected hadron. The transverse momentum
of the hadron h with respect to the direction of the frag-
menting quark is denoted by pT , which appears in the TMD
FFs. The azimuthal angle between the lepton and the
hadron planes is defined as �h, following the Trento con-
vention [56].
Up to subleading order of 1=Q, the differential cross

section of SIDIS for a longitudinally polarized beam (with
helicity �e) off an unpolarized hadron has the following
general expression [57]:

FIG. 1 (color online). Left panel: model results for xg?u (solid
line) and xg?d (dashed line) as functions of kT at x ¼ 0:3; right
panel: model results for xg?u (solid line) and xg?d (dashed line)
as functions of x at kT ¼ 0:3 GeV.

TABLE I. Values for the free parameters of the model taken
from Ref. [41], which are fixed by reproducing the parametri-
zation of unpolarized [54] and longitudinally polarized [55]
parton distributions.

Diquark MX ðGeVÞ �X ðGeVÞ cX NX

Scalar s (ud) 0.822 0.609 0.847 11.400

Axial-vector a (ud) 1.492 0.716 1.061 28.277

Axial-vector a0 (uu) 0.890 0.376 0.880 4.091
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d�

dxdydzhdP
2
Td�h

¼ 2��2

xyQ2

y2

2ð1� "Þ
�
1þ �2

2x

�n
FUU

þ �e

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2"ð1� "Þp

sin�hF
sin�h

LU

o
; (21)

where FUU is the helicity-averaged structure function,

while Fsin�h

LU is helicity-dependent structure function result-

ing from the antisymmetric part of the unpolarized had-
ronic tensor. The first and second subscripts of the above
structure functions indicate the polarizations of beam and

target, respectively. It is Fsin�h

LU that gives rise to the sin�h

beam SSA. The ratio of the longitudinal and transverse
photon flux is given by

" ¼ 1� y� �2y2=4

1� yþ y2=2þ �2y2=4
: (22)

In the parton model, the two structure functions in
Eq. (21) can be expressed as the convolution of TMD

DFs and FFs, based on the tree-level factorization adopted
in Ref. [57]. With the help of the notation

C½wfD� ¼ x
X
q

e2q
Z

d2kT
Z

d2pT

2ðzkT � PT þ pTÞ

� wðkT;pTÞfqðx; k2TÞDqðz;p2
TÞ; (23)

FUU and Fsin�h

LU can be written as [57]

FUU ¼ C½f1D1�; (24)

Fsin�h

LU ¼ 2M

Q
C
�
P̂T � kT

M

�
Mh

M
h?1

~E

z
þ xg?D1

�

� P̂T � pT

Mh

�
Mh

M
f1

~G?

z
þ xeH?

1

��
; (25)

where P̂T ¼ pT

PT
with PT ¼ jPTj,M andMh are the nucleon

and hadron masses, respectively. The functions ~G? and ~E
are the interaction-dependent twist-3 FFs that come from
the quark-gluon-quark correlator for FFs. The former one
is T-odd, while the later one is T-even. They can be
connected to the interaction-independent twist-3 FFs G?
[38] and E [58] by the following relations [57]:

~G?

z
¼ G?

z
� m

Mh

H?
1 ;

~E

z
¼ E

z
� m

Mh

D1: (26)

The beam-spin asymmetry Asin�
LU in single-pion produc-

tion off an unpolarized target thus is expressed as

Asin�
LU ðPTÞ ¼

R
dx

R
dy

R
dz 1

xyQ2
y2

2ð1�"Þ � ð1þ �2

2xÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2"ð1� "Þp

Fsin�
LUR

dx
R
dy

R
dz 1

xyQ2
y2

2ð1�"Þ � ð1þ �2

2xÞFUU

(27)

for the PT-dependent asymmetry. The x-dependent and the
z-dependent asymmetries can be defined in a similar way.

The structure function Fsin�h

LU receives various contribu-

tions from the convolution of the twist-2 and twist-3 TMD
DFs and FFs, as shown in Eq. (25). The h?1 E term, instead
of the h?1 ~E term in Eq. (25), has been calculated in
Ref. [28]. The contribution from the g?D1 term has been
studied in Refs. [31–33,59]. These two terms generate the
asymmetry through the effects of the T-odd distribution
functions, namely, the twist-2 Boer-Mulders function h?1
[21] and the twist-3 g?. Each distribution represents a
specific spin-orbit correlation of the initial quark inside
the nucleon. The beam SSA of the�þ meson has also been
analyzed [29,30] based on the Collins effect eH?

1 , where
H?

1 is the T-odd Collins FF [25], and e is the chiral-odd
twist-3 DF [58,60].

In the following, wewill calculate the beam SSA in semi-
inclusive pion electroproduction contributed by the g?D1

term. To do this, we first neglect the quark-gluon-quark
correlators (often referred to as the Wandzura-Wilczek
approximation [61]) for FFs, which is equivalent to setting
all the functions with a tilde to zero. It is worthwhile to
point out that a calculation from spectator model [50] as
well as a model-independent analysis [62] of the T-odd
collinear quark-gluon-quark correlators shows that the
gluonic (partonic) pole contributions for FFs vanish. The

FF ~G?ðx;p2
TÞ appears in the decomposition of the T-odd

part of the TMD quark-gluon-quark correlator [57,63],
for which the gluonic pole contribution should play an
essential role. Whether the vanishing gluonic pole matrix
elements for collinear FFs can be generalized to the case
of TMD FFs deserves further study [64]. Nevertheless, we

ignore the ~G? and ~E contributions based on the Wandzura-
Wilczek approximation. Therefore, there are only two
terms inside the square brackets in the right-hand side of
Eq. (25) remaining. Moreover, we consider merely the

FIG. 2. The kinematical configuration for the SIDIS process.
The initial and scattered leptonic momenta define the lepton
plane (x� z plane), while the detected hadron momentum
together with the z axis identify the hadron production plane.
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beam SSA of the �0 production, since the fascinating fact
that the favored and the unfavored Collins functions have
similar sizes but opposite signs [65,66] suggests that the
eH?

1 term leads the vanishing beam SSA in �0 electro-
production. Specifically, the isospin symmetry determines
that the �0 FF should be the average of �þ and �� FFs,

so that H?�0=q
1 ¼ ðH?fav

1 þH?unf
1 Þ=2 � 0. Thus, in the

following calculation, we can just take into account the
term g?D1 and obtain

Fsin�h

LU � 2Mx

Q

X
q¼u;d

e2q
Z

d2kT

�
P̂T � kT

M
½xg?qðx; k2TÞ

�Dq
1ðz; ðPT � zkTÞ2Þ�

�
: (28)

For the unpolarized TMDs fq1 ðx; k2TÞ, we adopt the results
from the same spectator model calculation [41] for consis-
tency. For the unpolarized TMD FFs Dq

1ðz;p2
TÞ, we assume

that their pT dependencies have a Gaussian form

Dq
1ðz;p2

TÞ ¼ Dq
1ðzÞ

1

�hp2
Ti
e�p2

T=hp2
T i; (29)

here, hp2
Ti is the Gaussian width for p2

T , which is chosen as
hp2

Ti ¼ 0:2 Gev2, following the fitted result in Ref. [67]. For
the integrated FFs Dq

1ðzÞ, we adopt the Kretzer parametri-
zation [68].

To perform the numerical calculation on the asymmetry

Asin�h

LU in �0 production at CLAS, we adopt the following

kinematical cuts [17]:

0:4< z < 0:7; Q2 > 1 GeV2; W2 > 4 GeV2;

PT > 0:05 GeV; Mxðe�0Þ> 1:5 GeV; (30)

where Mxðe�0Þ are the missing-mass values for the e�0

system. Finally, in our calculation, we consider two different
cases concerning the kinematical constraints on the intrinsic
transverse momentum of the initial quarks [69]. The first
case is that we do not impose any constraint for kT in the
calculation; the second case is that we consider the follow-
ing kinematical constraints that are derived in Ref. [69]:8<

:
k2T � ð2� xÞð1� xÞQ2; for 0< x< 1;

k2T � xð1�xÞ
ð1�2xÞ2 Q

2; for x < 0:5:
(31)

The above constraints fix the upper limit for the allowed kT
range; thus, they can modify certain azimuthal asymmetries
substantially, such as the the twist-3 Cahn effect analyzed in

Ref. [69]. In our calculation of Asin�h

LU , which is also a twist-3
observable, we find again that the kinematical constraints
(31) modify the sizes of the asymmetry in certain kinemati-
cal regions.

Figure 3 shows the results of the beam SSA Asin�h

LU for

�0 production as a function of x, compared with the
CLAS data (full circles) measured using a 5.776 GeV
electron beam [17]. The four panels correspond to the
asymmetry integrated over four different PT ranges.

From the comparison between the theoretical curves and
the data, one can see that our results qualitatively describe
the x dependence of the asymmetry. Especially, for the
ranges 0:05 GeV<PT < 0:2 GeV and 0:2 GeV<PT <
0:4 GeV, our model calculation predicts rather flat curves,
well agreeing with the data. We would like to point out that
the curve for the range 0:2 GeV< PT < 0:4 GeV is simi-
lar to the calculation on the g?D1 term (the solid line in
Fig. 4 of Ref. [18]) based on the models from Refs. [39,70].
For higher PT ranges, deviation between our calculation
and the data is found in the larger x region.
In Fig. 4, we display the same asymmetry from our calcu-

lation, but as a function of the�0 transverse momentum PT .
Here, the four panels in Fig. 4 correspond to the asymmetry
integrated over four different x ranges. Agreement between
the theoretical calculation and the data is found in the lower
PT region (PT < 0:5 GeV) for x < 0:4. More specifically,
our theoretical curves increase with increasing PT in the
whole PT region within the figure, while the experimental
data increase with increasing PT then approach a maximum
at aroundPT � 0:4 GeV, indicating that our prediction over-
estimates the experimental data in the regionPT > 0:5 GeV.
From the comparison between the theoretical calculation

and the CLAS data, we conclude that the g?D1 term can
account for the beam SSA in �0 production at CLAS in the
regions x andPT are not large (x < 0:4 and PT < 0:5 GeV).
However, our model overestimates the data in the higher PT

and x regions. This disagreement might be explained by the
absence of other contributions in Eq. (25) that we neglect in
the calculation (such as the h?1 ~E), or by the possibility that

the tree-level factorization is not suitable in this region.
Furthermore, we also compare our calculation of the

Asin�h

LU asymmetry for neutral pion production in SIDIS

FIG. 3 (color online). Beam SSA Asin�h

LU in �0 electroproduc-
tion contributed by g? as a function of x for different PT ranges.
The solid and the dashed lines correspond to the results without
and with the kinematical constraints (31) on kT , respectively.
Data are from Ref. [17], the error bars for the data including the
systematic and statistical uncertainties.
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with the data measured by the HERMES Collaboration [8].
The HERMES measurement uses a longitudinally polar-
ized 27.6 GeV positron beam off the hydrogen gas target.
In addition, the following kinematics are applied in the
calculation [8]

0:023< x< 0:4; 0< y < 0:85;

1 GeV2 <Q2 < 15 GeV2; W2 > 4 GeV2;

2 GeV< Ph < 15 GeV;

(32)

where Ph is the energy of the detected final-state �0 in the
target rest frame. In the left, central, and right panels of
Fig. 5, we show the asymmetry vs z, x, and PT and compare
it with the HERMES data [8]. It is found that the theoretical
curves agree with the experimental data within the statistical
uncertainty. The predicted z dependence of the asymmetry is
rather flat, which is consistent with the the data in the mid-z
region. The calculation without the constraints in Eq. (31)
describes the data in the smaller x region better than that
with the constraints.

Finally, we present the prediction of the asymmetryAsin�h

LU

at CLAS12, which can be measured with a 12 GeV polar-
ized electron beam. The kinematical cuts for CLAS12
applied in the calculation are [71]

0:08< x< 0:6; 0:2< y< 0:9;

0:3< z < 0:8; Q2 > 1 GeV2;

W2 > 4 GeV2; 0:05 GeV<PT < 0:8 GeV:

(33)

In the left, central, and right panels of Fig. 6, we plot the
z, x, and PT dependencies of the asymmetry, respectively.
Our calculation shows that the beam SSA at CLAS12 is
smaller than that at CLAS, but is still sizable. Our result
indicates that there is no obvious z dependence of the
asymmetry in �0 production; this is understandable since
in our approach, the same FFs Dq

1ðz;p2
TÞ appear in both the

numerator and the denominator of the expression for Asin�h

LU .

Therefore, the precision measurement of the z dependence

of Asin�h

LU in �0 electroproduction at CLAS12 can verify the
role of g? in beam SSA.

IV. CONCLUSION

In this work, we have performed the calculation of the
T-odd twist-3 TMD distribution g?ðx; k2TÞ for the u and d
quarks inside the proton in the spectator model with scalar
and axial-vector diquarks. The difference between the
isoscalar (ud-like) and isovector (uu-like) spectators for
the axial-vector diquark is considered in the calculation.

FIG. 4 (color online). Beam SSA Asin�h

LU in �0 electroproduc-
tion contributed by g? as a function of PT for different x ranges.
The solid and the dashed lines correspond to the results without
and with the kinematical constraints (31) on kT , respectively.
Data are from Ref. [17], the error bars for the data including the
systematic and statistical uncertainties.

FIG. 5 (color online). The beam SSA Asin�h

LU for �0 production
in SIDIS at HERMES vs z (left panel), x (central panel), and PT

(right panel). The solid and the dashed lines correspond to the
results without and with the kinematical constraints (31) on kT ,
respectively. The thin and thick lines in the central and right
panels correspond to the results for the ranges 0:2< z < 0:5 and
0:5< z < 0:8. Data are from Ref. [8], with open circles, full
circles, and open squares for 0:2< z < 0:5, 0:5< z < 0:8, and
0:8< z < 1. The error bars represent the statistical uncertainty.

FIG. 6 (color online). Beam SSA Asin�h

LU of �0 at CLAS12 as a
function of z (left panel), x (central panel), and PT (right panel).
The solid and the dashed lines correspond to the results without
and with the kinematical constraints (31) on kT , respectively.
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We make use of the single-gluon exchange between the
struck quark and the spectator to generate the T-odd struc-
ture. To obtain a finite result, we choose the dipolar form
factor for the nucleon-quark-diquark coupling.We find that
g?u and g?d have different x and kT dependencies. First,
g?u is positive for all x and kT regions, while g?d is
negative in the small x region and turns out to be positive
in the region x > 0:15. Second, g?d approaches to zero
faster than g?u with increasing kT .

Using the model results, we analyze the beam SSA

Asin�h

LU in semi-inclusive pion electroproduction. We apply

the Wandzura-Wilczek approximation for the FFs; that is,

we ignore the contributions from ~G? and ~E. Furthermore,
we consider the specific case of �0 production, in which
the eH?

1 term should give vanishing contribution because

the favored and the unfavored Collins functions have
similar sizes but opposite signs. Thus, we can perform

the phenomenological analysis on the asymmetry Asin�h

LU

in �0 production at CLAS and HERMES just based on the

g?D1 term safely. The comparison between our theoretical
calculation and the data indicates that the g?D1 term can
account for the beam SSA in �0 production measured by
the CLAS Collaboration in the region x < 0:4 and PT <
0:5 GeV, where our theoretical curves describe the data
fairly well. In addition, our calculated asymmetry at the
HERMES kinematic region is consistent with the
HERMES measurements after the error bars of the data
are considered. Our study suggests that the T-odd twist-3
distribution g? plays an important role in the beam SSA in
SIDIS, especially in the case of neutral pion production.
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