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We examine the large-order behavior of a recently proposed renormalization-group-improved expan-

sion of the Adler function in perturbative QCD, which sums in an analytically closed form the leading

logarithms accessible from renormalization-group invariance. The expansion is first written as an effective

series in powers of the one-loop coupling, and its leading singularities in the Borel plane are shown to be

identical to those of the standard ‘‘contour-improved’’ expansion. Applying the technique of conformal

mappings for the analytic continuation in the Borel plane, we define a class of improved expansions,

which implement both the renormalization-group invariance and the knowledge about the large-order

behavior of the series. Detailed numerical studies of specific models for the Adler function indicate that

the new expansions have remarkable convergence properties up to high orders. Using these expansions for

the determination of the strong coupling from the hadronic width of the � lepton we obtain, with a

conservative estimate of the uncertainty due to the nonperturbative corrections, �sðM2
�Þ ¼ 0:3189þ0:0173

�0:0151,

which translates to �sðM2
ZÞ ¼ 0:1184þ0:0021

�0:0018.

DOI: 10.1103/PhysRevD.87.014008 PACS numbers: 12.38.Cy, 11.10.Hi, 13.35.Dx

I. INTRODUCTION

The determination of the QCD coupling constant to
increasing precision is one of the most important goals of
the Standard Model of particle physics (for a review see
Ref. [1]). The nonstrange hadronic decays of the � lepton
are an important source of information on this quantity and
have been exploited now for a couple of decades. The
recent calculation of the Adler function to four loops in
massless QCD [2] renewed the interest in the extraction of
the strong coupling �s at the scale of the � mass from the
treatment of these processes [3–14]. In this context, several
modifications of the perturbative expansion of the relevant
observables have been proposed. The main ambiguities
affecting perturbation theory are related to the implemen-
tation of renormalization-group invariance and to the large-
order behavior of the series. The differences between
the specific ways of accounting for these properties are
the main source of theoretical error on the extraction
of �sðM2

�Þ.
In a recent work, Ref. [14], we applied to the analysis

of the hadronic � decay width a method of improving
the perturbative expansions in QCD by summing the
leading logarithms accessible from renormalization-group
invariance, proposed in Refs. [15,16] and developed in
Refs. [17,18]. The properties of the new expansion, which
has been referred to as ‘‘improved fixed-order perturbation
theory,’’ in the complex energy plane were investigated and
were compared with those of the ‘‘contour-improved per-
turbation theory’’ (CIPT), and the standard ‘‘fixed-order
perturbation theory’’ (FOPT). The new expansion has the

advantage of being written in an analytically closed form,
while CIPT, the alternative approach of implementing
renormalization-group (RG) invariance, requires the nu-
merical solution of the renormalization-group equation for
the strong coupling.
It is known that the perturbative expansions of QCD

correlators are divergent in many physically interesting
situations, with the coefficients growing as n! at large
orders n [19–22]. Alternatively, the divergent character
of the series is inferred from the fact that the expanded
correlators, like the Adler function, are singular at the
origin of the coupling constant plane [23]. These problems
are present also in perturbative QED [24], whose phenome-
nological success is explained by the fact that the fine
structure constant is numerically very small. By contrast,
for a relatively large coupling like �sðM2

�Þ in QCD the
consequences are nontrivial.
Special mathematical techniques for divergent series are

available, like Borel summation, which under certain con-
ditions recovers the expanded function from its increasing
expansion coefficients. For QCD the problem was studied
for many years, and it is known that the conditions of
Borel summability are not satisfied [19,23,25] (see also
the reviews Ref. [26]). In particular, the Borel transform
of the Adler function has singularities in the Borel plane,
known as ultraviolet (UV) and infrared (IR) renormalons,
the latter producing an ambiguity in the reconstruction of
the function. However, if one adopts a certain prescription
(e.g., the principal value prescription), it is possible to
exploit the available knowledge on the large-order behav-
ior of the coefficients for defining a new expansion, in
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which the divergent pattern is considerably tamed. Such an
approach was proposed in Refs. [27–29] and developed
recently in Refs. [6,8,11], using techniques of series accel-
eration based on conformal mappings and ‘‘singularity
softening’’ (these techniques were also applied by other
authors; for a discussion and references see Ref. [11]).
We recall that the method of conformal mapping was
introduced and applied in particle physics in Ref. [30] for
extending the convergence region of an expansion beyond
the circle of convergence and for increasing the conver-
gence rate at points lying inside the circle. As discussed in
Ref. [11], the method is not applicable to the (formal)
perturbative series in powers of �s because the expanded
correlators are singular at the point of expansion, �s ¼ 0,
but can be applied in the Borel plane. It leads to a modified
perturbative expansion in terms of a new set of functions,
which have the advantage of resembling the expanded
correlator (the Adler function), in particular by sharing
its known singularities in the coupling and the Borel
complex planes.

In Refs. [6,8,11] the method was applied to the two
standard versions of perturbation theory, CIPT and FOPT.
As argued in Ref. [11], the new expansions are particularly
suitable in the contour-improved version, since they make
simultaneously the RG summation and the Borel large-
order summation of the Adler function. Detailed numerical
studies [6,11] established the good convergence properties
of the latter expansions for several exact models which
simulate the known properties of the Adler function.

In this work, we consider the large-order properties
of the expansion discussed in Ref. [14], which we shall
henceforth refer to as ‘‘renormalization-group-summed’’
(RGS) expansion. We investigate the properties of this
scheme in the Borel plane and, using the techniques
discussed in Refs. [6,8,11], we define a new class of
expansions, which simultaneously implement the
renormalization-group and the large-order summation by
the analytic continuation in the Borel plane. We shall refer
to these as ‘‘Borel and renormalization-group-summed’’
(BRGS) expansions.

The plan of the paper is as follows: We briefly review in
Sec. II the perturbative expansion of the Adler function and
its connection to the hadronic decay width of � lepton.
In Sec. III we review the derivation of the RGS expansion
following Ref. [14] and show further that it can be
expressed as an expansion in powers of the one-loop
solution of the RG equation for the coupling, which is
needed for rendering this expansion suitable for conver-
gence acceleration. In Sec. IV we discuss the properties of
the expansion in the Borel plane and show that it has the
same dominant singularities as the CI expansion. In Sec. V
we define a set of new Borel and RG-improved expansions,
by using the technique of singularity softening and con-
formal mappings of the Borel plane [11]. In Sec. VI we
investigate the properties of the new expansions in the

complex energy plane and illustrate their convergence for
the physical observable relevant for the hadronic width of
the � lepton, using a class of models for the Adler function
considered in Refs. [5,6,11,31,32]. In Sec. VII we report
a new determination of �sðM2

�Þ based on the new BRGS
expansions and in Sec. VIII we summarize our results and
conclusions.

II. ADLER FUNCTION AND THE HADRONIC
�-DECAY WIDTH

The Adler function plays a crucial role in the determi-
nation of �sðM2

�Þ from hadronic � decays. The method is
discussed in the seminal paper [33] and is reviewed in
several recent articles [3,5,7,9].
The inclusive character of the total � hadronic width

makes possible an accurate calculation of the ratio

R� � �½�� ! �� hadrons�
�½�� ! ��e

� ��e� : (1)

Of interest is the Cabibbo allowed component R�;V=A

proceeding either through a vector or an axial vector
current, which can be expressed theoretically in the form

R�;V=A ¼Nc

2
SEWjVudj2

�
1þ�ð0Þ þ�0

EWþ X
D�2

�ðDÞ
ud

�
; (2)

where Nc ¼ 3 is the number of quark colours, SEW
and �0

EW are electroweak corrections, �ð0Þ is the domi-

nant perturbative QCD correction, and �ðDÞ
ud denote quark

mass and higher D-dimensional operator corrections
(condensate contributions) arising in the operator pro-
duct expansion (OPE). The decay width is suitable for
the precise extraction of the strong coupling, since the
(less-known) higher terms in the OPE bring a very small
contribution to (2). Therefore, a fairly accurate phenome-

nological determination of the QCD perturbative part �ð0Þ
is possible [3,5,9,10].

The theoretical calculation of �ð0Þ is based on unitarity,
which implies that the inclusive hadronic decay rate can
be written as a weighted integral along the timelike axis of
the spectral function of a polarization function. As shown
in Ref. [33], the analytic properties of the polarization
function and the Cauchy theorem allow one to write equiv-
alently this quantity as an integral along a contour in the
complex s plane (chosen for convenience to be the circle
jsj ¼ M2

�). After an integration by parts, the quantity of

interest �ð0Þ is expressed as the contour integral:

�ð0Þ ¼ 1

2�i

I
jsj¼M2

�

ds

s

�
1� s

M2
�

�
3
�
1þ s

M2
�

�
D̂pertðsÞ; (3)

where the reduced Adler function D̂ðsÞ � Dð1þ0ÞðsÞ � 1 is
obtained by subtracting the dominant term from the
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logarithmic derivative of the polarization function,

Dð1þ0ÞðsÞ � �sd�ð1þ0ÞðsÞ=ds, where the superscript

denotes the spin [33]. The perturbative expansion of D̂ðsÞ
reads [5]

D̂pertðsÞ¼
X1
n¼1

ðasð�2ÞÞnXn
k¼1

kcn;kðlnð�s=�2ÞÞk�1; (4)

where asð�2Þ � �sð�2Þ=� is the strong coupling at the
renormalization scale �. The leading coefficients cn;1 are

obtained from Feynman diagrams, the known coefficients

cn;1 calculated to four loops in the MS-renormalization

scheme being (see Ref. [2] and references therein)

c1;1 ¼ 1; c2;1 ¼ 1:640;

c3;1 ¼ 6:371; c4;1 ¼ 49:076:
(5)

Several estimates for the next coefficient c5;1 were made

recently [3,5,9,10].
The remaining coefficients cn;k for k > 1 are determined

from renormalization-group invariance: the function D̂pert,

calculated in a fixed renormalization scheme, is scale
independent and therefore satisfies the equation

�2 d

d�2
½D̂pertðsÞ� ¼ 0; (6)

which can be written equivalently as

�ðasÞ
@D̂pert

@as
� @D̂pert

@ lnð�s=�2Þ ¼ 0; (7)

where

�ðasÞ � �2 dasð�2Þ
d�2

¼ �ðasð�2ÞÞ2 X1
k¼0

�kðasð�2ÞÞk (8)

is the � function governing the scale dependence of the
coupling. From (7) one can express cn;k for k > 1 in terms

of cn;1 and the coefficients�j of the perturbation expansion

(8). The known �j coefficients, calculated to four loops in

theMS scheme, are (see Refs. [34,35] for the calculation of
�3 and earlier references)

�0 ¼ 9=4; �1 ¼ 4;

�2 ¼ 10:0599; �3 ¼ 47:228:
(9)

In the fixed-order perturbation theory calculation of �ð0Þ,
the choice �2 ¼ M2

� is adopted, when the expansion (4)
reads

D̂FOPTðsÞ ¼
X1
n¼1

ðasðM2
�ÞÞn

�
�
cn;1 þ

Xn
k¼2

kcn;kðlnð�s=M2
�ÞÞk�1

�
: (10)

As remarked in Ref. [36], due to the large imaginary part of
the logarithm lnð�s=M2

�Þ along the circle jsj ¼ M2
�, the

series (10) is badly behaved, especially near the timelike
axis. The CIPT [37,38] is defined by the choice �2 ¼ �s,
when (4) reduces to

D̂ CIPTðsÞ ¼
X1
n¼1

cn;1ðasð�sÞÞn; (11)

where the running coupling asð�sÞ is determined by solv-
ing the renormalization-group equation (8) numerically in
an iterative way along the circle, starting with the input
value asðM2

�Þ at s ¼ �M2
�. This expansion avoids the

appearance of large logarithms along the circle jsj ¼ M2
�.

The expansions (10) and (11) coincide formally as long
as all the terms in the series are retained. In fact, the
coefficients cn;1 are known to increase as n!, so the series

are divergent. We shall turn to this property in Sec. IV.
If the series are truncated at some order N, the expansions
(10) and (11) differ by terms of order aNþ1

s , this being the
main theoretical error in the the determination of �sðM2

�Þ
from the measured � hadronic width.

III. RENORMALIZATION-GROUP SUMMATION

As proposed in Refs. [17,18], the expansion (4) can be
written in the RGS form

D̂RGSðsÞ ¼
X1
n¼1

ðasð�2ÞÞnDnðyÞ; (12)

where the functions DnðyÞ, depending on a single variable

y � 1þ �0asð�2Þ lnð�s=�2Þ; (13)

are defined as

DnðyÞ �
X1
k¼n

ðk� nþ 1Þck;k�nþ1

�
y� 1

�0

�
k�n

: (14)

As seen from the definition, the function D1 sums the
leading logarithms in the series (4), the function D2 sums
the next-to-leading logarithms, and so on. The attractive
feature pointed out in Refs. [17,18] is that these functions
can be obtained in a closed analytical form. The derivation
is based on renormalization-group invariance: after
inserting the expansion (12) into the condition (6), a
straightforward calculation leads to the following system
of differential equations for DnðyÞ, for n � 1:

�0

dDnðyÞ
dy

þ Xn�1

‘¼0

�‘

�
ðy� 1Þ d

dy
þ n� ‘

�
Dn�‘ðyÞ ¼ 0;

(15)

with the initial conditions Dnð1Þ ¼ cn;1 which follow

from (14).
The solution of the system (15) can be found iteratively

in an analytical form. The expressions of DnðyÞ for n � 5,
written in terms of the coefficients ck;1 with k � n and �j
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with 0 � j � n� 1, are

D1ðyÞ ¼ c1;1
y

; (16)

D2ðuÞ ¼ 1

y2
ðc2;1 þ c1;1d2;1Þ; d2;1 ¼ ��1

�0

lny; (17)

D3ðyÞ ¼ 1

y3
ðc3;1 þ c2;1d3;2 þ c1;1d3;1Þ; (18)

d3;2 ¼ � 2�1

�0

lny;

d3;1 ¼ ��2
1

�2
0

ð1� yþ lny� ln2yÞ þ �2

�0

ð1� yÞ;
(19)

D4ðuÞ ¼ 1

y4
ðc4;1 þ c3;1d4;3 þ c2;1d4;2 þ c1;1d4;1Þ; (20)

d4;3 ¼ �3
�1

�0

lny;

d4;2 ¼ �2
�2

�0

ð�1þ yÞ þ �2
1

�2
0

ð�2� 2 lnyþ 3ln2yþ 2yÞ;

d4;1 ¼ � �3
1

2�3
0

ð�5ln2yþ 2ln3yþ 4 lnyð�1þ yÞ

þ ð�1þ yÞ2Þ � �1�2

�2
0

ð3 lnyþ y� 2y lny� y2Þ

� �3

2�0

ð�1þ y2Þ; (21)

D5ðyÞ ¼ 1

y5
ðc5;1 þ c4;1d5;4 þ c3;1d5;3 þ c2;1d5;2

þ c1;1d5;1Þ; (22)

d5;4 ¼ �4
�1

�0

lny; d5;3 ¼ �3

�
�2

1

�2
0

ð�2ln2yþ lny� yþ 1Þ þ �2

�0

ðy� 1Þ
�
;

d5;2 ¼ �
�
�3

1

�3
0

ð4ln3y� 7ln2yþ 6ðy� 1Þ lnyþ ðy� 1Þ2Þ þ 2
�2�1

�2
0

ð�y2 � 3y lnyþ yþ 4 lnyÞ þ �3

�0

ðy2 � 1Þ
�
;

d5;1 ¼ �4
1

6�4
0

ð6ln4y� 26ln3yþ 9ð2y� 1Þln2yþ 6ðy2 � 5yþ 4Þ lnyþ ðy� 1Þ2ð2yþ 7ÞÞ

� �2
1�2

�3
0

ð3ðy� 2Þln2yþ ð2y2 � 5yþ 3Þ lnyþ ðy� 1Þ2ðyþ 3ÞÞ þ �1�3

6�2
0

ð4y3 � 3y2 þ 6 lnyðy2 � 2Þ � 1Þ

þ �2
2

3�2
0

ðy� 1Þ2ðyþ 5Þ � �4

3�0

ðy3 � 1Þ: (23)

The expressions of DnðyÞ for 6 � n � 10, which depend
also on the coefficients cn;1 for 6 � n � 10 and �j for
5 � j � 9, are given in a somewhat different form1 in the
Appendix of Ref. [14]. In the numerical applications pre-
sented in Sec. VI, we shall use the expressions of DnðyÞ up
to n ¼ 18, which can be obtained easily by solving the
system (15) with a MATHEMATICA program.

Using Eqs. (16)–(23) and the expressions of higher
DnðyÞ derived analytically, we note that these functions
can be written as

DnðyÞ ¼ 1

yn

�
cn;1 þ

Xn�1

j¼1

cj;1dn;jðyÞ
�
; (24)

where the coefficients dn;j are functions of y, which

depend also on the coefficients �j of the � function. One

can check that dn;jðyÞ vanish identically for y ¼ 1 or if

�j ¼ 0 for j � 1.

By inserting (24) into (12), we note that the denomina-
tors yn can be combined in each term with the powers of
asð�2Þ, so that (12) can be written as

D̂RGSðsÞ ¼
X1
n¼1

ð~asð�sÞÞn
�
cn;1 þ

Xn�1

j¼1

cj;1dn;jðyÞ
�
; (25)

where

~a sð�sÞ ¼ asð�2Þ
1þ �0asð�2Þ lnð�s=�2Þ (26)

is the solution of the RG equation (8) to one loop at the
scale �s, written in terms of asð�2Þ � �sð�2Þ=�. The
terms cn;1 in the series (25) yield the all-order summation

of the one-loop coupling (26), while the remaining sums
yield the corrections accounting for the higher-order terms
in the expansion of the � function.

IV. BOREL TRANSFORM

In this section we discuss the properties of the expan-
sion (25) in the Borel plane. We start by recalling the

1For simplicity, in Ref. [14] we presented the expressions
obtained by inserting the known numerical values of �j for
j � 3 from (9) and setting �j ¼ 0 for j � 4.
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standard definition [5] of the Borel transform BðuÞ of the
expansion (11):

BðuÞ ¼ X1
n¼0

cnþ1;1

un

�n
0n!

: (27)

The original function D̂CIPTðsÞ is recovered from BðuÞ by a
Laplace-Borel integral. Actually, the function BðuÞ has
singularities on the positive axis of the u plane, so the
Laplace-Borel integral requires a regularization. Following
Refs. [5,6,11] we shall use the principal value (PV) pre-
scription. Note that as argued in Refs. [39,40], the PV
prescription preserves the reality of the correlators in the
s plane and is therefore more consistent than other
prescriptions with the analyticity properties imposed by
causality and unitarity. Thus, we write

D̂CIPTðsÞ ¼ 1

�0

PV
Z 1

0
exp

� �u

�0asð�sÞ
�
BðuÞdu: (28)

Similarly, we can define the Borel transform BFOðu; sÞ of
the FOPT expansion (10). The structure of the coefficients
of this expansion implies that we can write BFOðu; sÞ as

BFOðu; sÞ ¼ BðuÞ þ X1
n¼0

un

�n
0n!

Xnþ1

k¼2

kcnþ1;k

�
ln
�s

M2
�

�
k�1

:

(29)

The function D̂FOPTðsÞ is obtained from its Borel trans-
form by

D̂FOPTðsÞ¼ 1

�0

PV
Z 1

0
exp

� �u

�0asðM2
�Þ
�
BFOðu;sÞdu: (30)

We introduce now the Borel transform BRGSðu; yÞ of the
expansion (25), which can be written as

BRGSðu; yÞ ¼ BðuÞ þ X1
n¼0

un

�n
0n!

Xn
j¼1

cj;1dnþ1;jðyÞ: (31)

The function D̂RGSðsÞ is recovered by the similar Laplace-
Borel integral

D̂RGSðsÞ¼ 1

�0

PV
Z 1

0
exp

� �u

�0~asð�sÞ
�
BRGSðu;yÞdu; (32)

written in terms of the one-loop coupling (26).
As we already mentioned, the function BðuÞ defined in

(27) has singularities on the real axis in the u plane, namely
along the rays u � 2 and u � �1 [19,25]. Moreover, the
nature of the dominant singularities can be described
exactly: they are branch points, near which BðuÞ behaves,
respectively, as

BðuÞ � ð1þ uÞ��1 ; BðuÞ � ð1� u=2Þ��2 ; (33)

where the exponents �1 and �2, calculated using
renormalization-group invariance, have known positive
values [5,19,41]:

�1 ¼ 1:21; �2 ¼ 2:58: (34)

From (29) and (31) it follows that these singularities are
present also in the Borel transforms BFOðu; sÞ and
BRGSðu; yÞ. In principle, these functions might have also
other singularities, due to the additional infinite sums
appearing in (29) and (31), respectively. However, as we
shall argue below, the dominant singularities of these func-
tions, i.e., the singularities closest to the origin u ¼ 0, are
those at u ¼ �1 and u ¼ 2 contained in BðuÞ.
We first present some evidence which results from the

inspection of the next-to-leading terms in the expression
(31) of BRGSðu; yÞ. Thus, from the expressions (16)–(23)
we note that

dn;n�1ðyÞ ¼ �ðn� 1Þ�1

�0

lny: (35)

By inserting this expression in (31), we obtain by a
straightforward calculation the contribution to BRGSðu; yÞ
of the term with j ¼ n:

BRGSðu; yÞjj¼n ¼ ��1

�2
0

uBðuÞ lny: (36)

Similarly, we note that

dn;n�2ðyÞ¼�ðn�2Þ	ðyÞþðn�1Þðn�2Þ
2

�2
1

�2
0

ln2y; (37)

where

	ðyÞ ¼ �2
1

�2
0

lnyþ �2
1 � �0�2

�2
0

ð1� yÞ: (38)

Then we obtain by a straightforward calculation the con-
tribution of the term with j ¼ n� 1 in (31) as

BRGSðu; yÞjj¼n�1 ¼ �	ðyÞ
�2

0

Z u

0
u0Bðu0Þdu0

þ �2
1

2�4
0

ln2yu2BðuÞ; (39)

where the integral is defined along a contour from the
origin to the point u, which does not reach the singularities
of BðuÞ.
The next coefficients in the second term of (31) exhibit a

similar pattern: dn;n�l for 1< l < n� 1 contains polyno-

mials of the variables (1� y) and lny, of degree (l� 1) and
l, respectively, with coefficients depending on �j, n and l.

For instance, the term proportional to lnly in dn;n�l has

the expression

dn;n�l � ð�1Þl
l!

Yl
k¼1

ðn� kÞ�
l
1

�l
0

lnly; (40)

bringing a contribution to (31) of the form
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BRGSðu; yÞjj¼nþ1�l � ð�1Þl
l!

�l
1

�2l
0

yulBðuÞlnly: (41)

This reproduces (36) and the second term in (39) for l ¼ 1
and l ¼ 2, respectively.

The other terms appearing in dn;n�l may contribute also

with integrals of BðuÞmultiplied by powers of u, as in (39).
Thus, in general, the second term in the expression (31)
of BBRGðu; yÞ is expected to contain either BðuÞ, multiplied
by factors which vanish in the limit y ! 1, or integrals of
BðuÞ, in which the singularities have the same positions
as in (33) but are milder. Therefore, the dominant sin-
gularities of the Borel transform (31) coincide with the
dominant singularities of the Borel transform BðuÞ defined
in (27).

One may invoke also the general argument that Mueller
[19] used for concluding that the dominant singularities of
the Borel transform BFOðu; sÞ defined in (29) are the same
as those of BðuÞ. The crucial observation is that the posi-
tions of the dominant singularities of the Borel transform
are determined from the behavior of the correlators in the
limit of a small coupling.2 Since in this limit the running
coupling asð�sÞ entering (28), the fixed scale coupling
asðM2

�Þ entering (30), and the one-loop coupling ~asð�sÞ
entering (32) are close to each other, it follows that the
positions of the dominant singularities in the u plane of
the corresponding Borel transforms, BðuÞ, BFOðu; sÞ and
BRGSðu; yÞ, must be the same.

V. ANALYTIC CONTINUATION IN THE
BOREL PLANE AND NEW PERTURBATIVE

RGS EXPANSIONS

As discussed above, the RGS expansion (25) is diver-
gent, the coefficients cn;1 increasing as n! at large n. In fact,
as we shall show in the next section, the divergence is
quite bad for expanded functions supposed to resemble the
physical Adler function. A procedure to tame this divergent
behavior is therefore mandatory. In this section we shall
improve the large-order behavior of the RGS expansion by
applying a method based on analytic continuation in the
Borel plane, applied to the standard CIPT and FOPT in
Refs. [6,11].

The starting remark is that the Taylor expansion (27) of
BðuÞ is convergent only inside the disk juj< 1, limited by
the nearest singularity at u ¼ �1. The region of conver-
gence can be enlarged if the series in powers of u is
replaced by a series in powers of another variable. As
shown in Refs. [6,11,27], the ‘‘optimal’’ variable according
to the definition proposed in Ref. [30] is the function

w � ~wðuÞ that conformally maps the assumed holomorphy
domain of BðuÞ, i.e., the whole u-plane cut along u � 2
and u � �1, onto the unit disk jwj< 1 in the w complex
plane. The expansion of BðuÞ in powers of w is convergent
in the whole complex u plane except for the cuts.
Moreover, this optimal mapping provides the fastest
large-order convergence rate, compared to other variables
that conformally map onto the unit disk only parts of the u
plane [30]. The detailed proof of these statements is given
in Ref. [11].
An additional improvement, discussed in detail in

Ref. [11], is obtained by exploiting the known behavior at
the first singularities, presented in (33) and (34). The main
idea of the procedure, denoted as singularity softening [43],
is to multiply BðuÞ with a suitable factor SðuÞ, such that in
the product SðuÞBðuÞ the dominant singularities are com-
pensated or are replaced by milder singularities. Moreover,
after compensating the leading singularities, one can
expand the resulting function in powers of variables that
take into account only the higher, i.e., more distant,
renormalons.
As shown in the previous section, the Borel transform

BRGSðu; yÞ of the RGS expansion (25) has the same domi-
nant singularities as BðuÞ. Therefore we can apply the
techniques of improving the convergence mentioned
above. Following Ref. [11], we consider the functions

~w lmðuÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ u=l

p � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� u=m

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ u=l

p þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� u=m

p ; (42)

where l, m are positive integers satisfying l � 1 and
m � 2. The function ~wlmðuÞ maps the u-plane cut along
u � �l and u � m onto the disk jwlmj< 1 in the plane
wlm � ~wlmðuÞ. The optimal mapping defined above is
~wðuÞ � ~w12ðuÞ, for which the entire holomorphy domain
of the Borel transform is mapped onto the interior of the
unit circle in the plane w12.
We define further the class of compensating factors of

the simple form [11]

SlmðuÞ ¼
�
1� ~wlmðuÞ

~wlmð�1Þ
�
�ðlÞ
1

�
1� ~wlmðuÞ

~wlmð2Þ
�
�ðmÞ
2
; (43)

where the exponents, written in terms of the powers �l

defined in (33) and (34) and the Kronecker symbol �lm, as

�ðlÞ
1 ¼ �1ð1þ �l1Þ; �ðmÞ

2 ¼ �2ð1þ �m2Þ; (44)

are chosen such that SlmðuÞ cancel the dominant singular-
ities defined in (33). Following Ref. [11], we further
expand the product SlmðuÞBRGSðu; yÞ in powers of the
variable ~wlmðuÞ, as

SlmðuÞBRGSðu; yÞ ¼
X
n�0

cðlmÞ
n;RGSðyÞð ~wlmðuÞÞn: (45)

For the optimal mapping ~w12 this expansion converges in
the whole disk jw12j< 1, i.e., in the whole u-plane cut

2The connection between the behavior of the Borel-summed
correlators in the as plane and the position and nature of the
dominant singularities of the Borel transform in the u plane is
given explicitly in the case of a finite number of renormalons in
Ref. [42].
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along u � 2 and u � �1, and has the best asymptotic
convergence rate [11,30]. Moreover, since the first singu-
larities of the Borel transform are compensated by the
softening factor, a good convergence is expected also
at finite orders. For other mappings, with either l > 1 or
m> 2, the expansions would converge in the unit disks
jwlmj<1 if the singularities situated between �l�u��1
and 2 � u � m were completely removed by the com-
pensating factors. In practice, however, only the first
singularities at u ¼ �1 and u ¼ 2 are compensated by
the factors SlmðuÞ, and after the compensation they may
survive as ‘‘mild’’ branch points, where the function van-
ishes instead of becoming infinite. The presence of the
residual cuts sets a limit on the convergence domain of
the expansions (45), but for a mild singularity the effect is
expected to become important only at large orders [11].

While the optimal mapping is based on a mathematical
theorem [11,30], there is no such rigorous result for the
form of the softening factors. They are arbitrary to a large
extent and can be chosen empirically. With the choice (43),
the compensating factors used in different expansions are
parametrized in different way. By this we reduce the bias
related to the choice of these factors.

By combining the expansion (45) with the definition
(32), we are led to the class of BRGS expansions

D̂ BRGSðsÞ ¼
X
n�0

cðlmÞ
n;RGSðyÞW ðlmÞ

n;RGSðsÞ; (46)

where

W ðlmÞ
n;RGSðsÞ ¼

1

�0

PV
Z 1

0
exp

� �u

�0~asð�sÞ
� ð ~wlmðuÞÞn

SlmðuÞ du;

(47)

and the coefficients cðlmÞ
n;RGSðyÞ are defined by the

expansion (45).
For completeness we write below the similar ‘‘Borel and

contour-improved’’ (BCI) expansions [6,11]

D̂ BCIðsÞ ¼
X
n

cðlmÞ
n;CIW

ðlmÞ
n;CIðsÞ; (48)

where the expansion functions are expressed in terms of
the running coupling asðsÞ:

W ðlmÞ
n;CIðsÞ ¼

1

�0

PV
Z 1

0
e�u=ð�0asðsÞÞ ð ~wlmðuÞÞn

SlmðuÞ du; (49)

and the coefficients cðlmÞ
n;CI are defined by the expansion

SlmðuÞBðuÞ ¼
X
n�0

cðlmÞ
n;CIð ~wlmðuÞÞn: (50)

Finally, the ‘‘Borel improved fixed-order’’ (BFO) expan-
sions are written as [6,11]

D̂ BFOðsÞ ¼
X
n

cðlmÞ
n;FOðsÞW ðlmÞ

n;FO; (51)

where the expansion functions involve the fixed-scale
coupling asðM2

�Þ:

W ðlmÞ
n;FO ¼ 1

�0

PV
Z 1

0
e�u=ð�0asðM2

�ÞÞ ð ~wlmðuÞÞn
SlmðuÞ du; (52)

and the coefficients cðlmÞ
n;FOðsÞ are defined by

SlmðuÞBFOðu; sÞ ¼
X
n�0

cðlmÞ
n;FOðsÞð ~wlmðuÞÞn: (53)

The properties of the new expansions were discussed in
detail in Refs. [28,29] in the particular case of the optimal
mapping w12. Their definition is based on a prescription
for the infrared ambiguity of perturbation theory which
is consistent with analyticity in the energy plane. When
reexpanded in powers of as, the expansions reproduce the
coefficients cn;1 known from Feynman diagrams, up to

any order N. The remarkable feature is that the expansion

functions W ðlmÞ
n resemble the expanded function D̂ðsÞ,

being singular at as ¼ 0 and admitting divergent expan-
sions in powers of the coupling. Therefore, the divergent

pattern of the expansion of D̂ðsÞ in terms of these new
functions is expected to be tamed. The numerical studies
reported in the next section confirm this expectation.3 As in
Ref. [11], we shall use in these analyses the expansions
based on the optimal mappings w12 and the alternative
mappings w13, w11 and w23.

VI. MODELS FOR THE ADLER FUNCTIONS

In order to test numerically the convergence properties
of the BRGS expansions defined in the previous section,
we consider a class of physical models discussed recently
in the literature [5,6,11,31,32].
We first consider the model proposed in Ref. [5], where

the Adler function D̂BJðsÞ is defined as the PV-regulated
Laplace-Borel integral

D̂BJðsÞ ¼ 1

�0

PV
Z 1

0
exp

� �u

�0asð�sÞ
�
BBJðuÞdu; (54)

in terms of a Borel transform BBJðuÞ parametrized in
terms of a few UV and IR renormalons and a regular,
polynomial part:

BBJðuÞ
�

¼ BUV
1 ðuÞ þ BIR

2 ðuÞ þ BIR
3 ðuÞ þ dPO0 þ dPO1 u:

(55)

In the expressions of the renormalons

3A formal proof for the optimal mapping w12 was given in
Ref. [28], where it was shown that under some special conditions
the expansion (48) is convergent in a domain of the complex s
plane.
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BIR
p ðuÞ ¼ dIRp

ðp� uÞ�p

�
1þ ~b1ðp� uÞ þ � � �

�
;

BUV
p ðuÞ ¼ dUVp

ðpþ uÞ ��p

�
1þ �b1ðpþ uÞ þ � � �

�
;

(56)

most of the parameters were fixed by imposing
renormalization-group invariance at four loops. Finally,
the free parameters of the model, namely the residues
dUV1 , dIR2 and dIR3 of the first renormalons and the coeffi-

cients dPO0 , dPO1 of the polynomial in (55), were determined

by the requirement of reproducing the perturbative coef-
ficients cn;1 for n � 4 from (5) and the estimate c5;1 ¼ 283.
Their numerical values are [5]

dUV1 ¼ �1:56� 10�2; dIR2 ¼ 3:16;

dIR3 ¼ �13:5;
(57)

dPO0 ¼ 0:781; dPO1 ¼ 7:66� 10�3: (58)

Then all the higher-order coefficients cn;1 are fixed and

exhibit a factorial increase. The numerical values up to
n ¼ 18 are listed in Refs. [5,6].

The magnitude of the residue dIR2 of the first IR renor-
malon in the above model was questioned by some
authors [7,31]. In order to avoid any bias, we have also
investigated alternative models, in which a smaller resi-
due at u ¼ 2 was imposed (an extreme case of this type
of alternative models, in which the singularity at u ¼ 2
is completely removed, was investigated recently in
Ref. [32]). In one example, we have retained the same
expressions as in Ref. [5] for the first three singularities
and the same values of the residues at u ¼ �1 and u ¼ 3,
while choosing a smaller residue at u ¼ 2, dIR2 ¼ 1. In
order to reproduce the first five coefficients cn;1, the

model must contain then three additional free parameters,
which were introduced by a quadratic term in the poly-
nomial and two additional IR singularities, at u ¼ 4 and
u ¼ 5. For convenience, the nature of these additional
singularities, which is not known, was taken to be the
same as that of the u ¼ 3 singularity. Thus, we have
considered the alternative model:

BaltðuÞ
�

¼ BUV
1 ðuÞ þ BIR

2 ðuÞ þ BIR
3 ðuÞ þ dIR4

ð4� uÞ3:37

þ dIR5
ð5� uÞ3:37 þ dPO0 þ dPO1 uþ dPO2 u2; (59)

where, as discussed above, we have taken as input dUV, dIR2
and dIR3 from (57) and determined the remaining five

parameters by matching the coefficients cn;1 for n � 5,
which gives

dPO0 ¼ 3:2461; dPO1 ¼ 1:3680; dPO2 ¼ 0:2785;

dIR4 ¼ 560:614; dIR5 ¼ �1985:73: (60)

The physical plausibility of this type of models was
discussed in several recent works [5,9,31,32]. In parti-
cular, arguments in favor of the first model presented
above were brought in Refs. [5,32]. In the present work
we adopted these models as a mathematical framework
for testing the convergence properties of the various
expansions.
We illustrate first the properties of the new expansions

by the approximation they provide to the expanded func-
tion along the circle s ¼ M2

� expði
Þ. In Fig. 1, we show the
real part of the Adler function for the model [5] defined in
(55)–(58), calculated with the new BRGS expansions (46)
and (47), with N ¼ 5 terms in the perturbative series. As in
Ref. [11], we considered the expansion functions for the
optimal mapping w12 and the alternative mappings w13,
w11 and w23. For the comparison with previous studies
[5,6,11], we have used �sðM2

�Þ ¼ 0:3156 in this calcula-
tion. In Fig. 2, we show the same curves for the imaginary
part of the Adler function. In Figs. 3 and 4, we repeat our
calculations with N ¼ 18 terms.
As shown in Figs. 1–4, the BRGS expansions provide a

good description of the exact function along the whole
circle, including the points near the timelike axis, which
correspond to 
 ¼ 0, and near the spacelike axis, where

 ¼ �. The worse approximation provided by the map-
ping w23 for N ¼ 18 can be explained by the effect of the
residual mild cut between u ¼ �1 and u ¼ �2, which
limits the convergence radius of the expansion (45) in
powers of w23 to u < 1. For other mappings, the diver-
gence due to the residual cuts is manifest only for u > 2,
and this region is more suppressed by the exponent in
the Laplace-Borel integrals (47) defining the expansion
functions (for more explanations see Ref. [11]). In all
the cases, however, the conformal mappings improve the
convergence rate for small values of u, which bring
the most important contribution to the Laplace-Borel
integral.

0 0.5 1 1.5 2 2.5 3
θ (rad)

0.04

0.06

0.08

0.1

0.12

0.14

Re D(θ)
w12
w13
w1∞
w23

FIG. 1. Real part of the Adler function of the model [5] defined
in (55)–(58), calculated along the circle s ¼ M2

� expði
Þ for
�sðM2

�Þ ¼ 0:3156, using the BRGS perturbative expansions
(46) and (47) with N ¼ 5 terms. The exact function is repre-
sented by the solid line.
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Similar representations along the circle jsj ¼ M2
� using

the standard CI and FO expansions are given in Refs. [5,6].
For the standard RGS expansion the results reported in
Ref. [14] show that its predictions are quite close to those
of the standard CIPT. The standard expansions exhibit
bigger and bigger oscillations with increasing N, failing
to reproduce with accuracy the exact function along
the circle.

The BRGS expansions should be compared with the
Borel improved CI and FO expansions, defined in (48),
(49), (51), and (52), respectively, which were investigated
in Ref. [11] (the particular expansion based on the optimal
mapping w12 was treated also in Ref. [6]). As illustrated in
the figures given in Refs. [6,11], the Borel improved CI
expansions reproduce very well the exact function, much
like the new BRGS expansions, while the Borel improved
FO expansions provide a very good approximation near
the spacelike axis, where the powers of the logarithm
lnð�s=M2

�Þ present in the coefficients are small, but the
approximation becomes worse near the timelike axis,
where the logarithm acquires a large imaginary part.

In order to assess the physical relevance of the conver-
gence acceleration of the perturbative expansions, we con-
sidered the behavior of the new BRGS schemes in the

context of �-lepton hadronic width, which requires the

theoretical calculation of the quantity �ð0Þ defined in (3). In
Tables I, II, III, and IV we give the differences �ð0Þ � �ð0Þ

exact

order by order in perturbation theory for the models dis-
cussed above, using various perturbative expansions. The
tendency of this quantity to flatten out to 0 would indicate
that a particular scheme is efficient and reliable.
In Table I we show these differences for the model

proposed in Ref. [5] and reviewed in Eqs. (55)–(58), and
in Table II we present the results for the alternative model
specified in Eqs. (59) and (60). For a consistent comparison
with previous results reported in Refs. [5,6,11], we per-
formed the calculations with �sðM2

�Þ ¼ 0:34.
The first three columns of Tables I and II show that at

low truncation orders the standard FO expansion provides a
more precise approximation for the model presented in
Table I, while the standard CI expansion describes better
alternative models of the type shown in Table II, charac-
terized by a smaller residue of the first IR renormalon.
These features were discussed also in Refs. [5,32]. At
larger orders, the standard FO expansion exhibits in both
cases a milder divergence, explained [10] by the cancella-
tions between the contributions of the coefficients cn;1 and
the remaining terms in the series (10).
As concerns the RGS expansion, it provides at low

orders an approximation comparable to the standard CI
expansion for the first model and slightly better for the
second model. However, the description deteriorates
beyond N ¼ 10 where large oscillations in the results
appear, the RGS expansion exhibiting in a more dramatic
way than CIPTand FOPT the divergent pattern of the QCD
perturbation theory. An improvement of its large-order
behavior by the techniques discussed in this paper is there-
fore mandatory.
The last four columns of Table I show that for the first

model the new BRGS expansions provide a very good
approximation already at low orders, and the accuracy
increases with the truncation order N. According to the
recent work [32], this model is a solid candidate for
the physical Adler function. For the alternative model,
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FIG. 2. As in Fig. 1 for the imaginary part of the Adler
function.
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FIG. 3. As in Fig. 1 for N ¼ 18 terms in the expansions.
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FIG. 4. As in Fig. 2 for N ¼ 18 terms in the expansions.
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the results shown in Table II indicate a slightly worse
approximation at low orders. However, the good conver-
gence of the new expansions at large orders, in contrast
with the big divergencies of the standard expansions, is
visible also in this case.

As we mentioned, the standard RGS expansion is rather
similar to the standard CI expansion up to relatively large
orders, beyond which the RGS expansion starts to exhibit
much wilder oscillations. It is of interest to compare these

schemes also in the Borel improved versions given in
Eqs. (46)–(49), respectively. This comparison is presented
in Tables III and IV. The results show that, with small
variations, the approximation provided by the BCI and
BRGS expansions is similar up to large truncation orders
N, for both models considered. Thus, using the technique
of series acceleration by conformal mappings of the Borel
plane, the strong divergence of the standard RGS was
considerably tamed. We recall that an advantage of the

TABLE II. As in Table I for the modified model Balt specified in (59) and (60). Exact value �ð0Þ
exact ¼ 0:2102.

N CI FO RGS BRGS w12 BRGS w13 BRGS w11 BRGS w23

2 �0:0326 �0:0410 �0:0305 �0:0078 0.0030 �0:0148 0.0092

3 �0:0204 �0:0076 �0:0171 �0:0064 �0:0033 �0:0080 �0:0034
4 �0:0119 0.0098 �0:0078 0.0180 0.0127 0.0202 0.0137

5 �0:0080 0.0186 �0:0046 0.0199 0.0183 0.0211 0.0110

6 �0:0061 0.0216 �0:0026 0.0175 0.0175 0.0182 0.0197

7 �0:0061 0.0188 �0:0047 0.0193 0.0150 0.0153 0.0225

8 �0:0079 0.0111 �0:0052 0.0201 0.0132 0.0131 0.0258

9 �0:0065 0.0008 �0:0078 0.0106 0.0101 0.0109 0.0259

10 �0:0178 �0:0070 �0:0142 �0:0012 0.0047 0.0083 0.0273

11 0.0022 �0:0098 �0:0020 �0:0118 �0:0010 0.0058 0.0260

12 �0:0690 �0:0031 �0:0737 �0:0231 �0:0054 0.0037 0.0274

13 0.1019 0.0015 0.1397 �0:0310 �0:0081 0.0023 0.0264

14 �0:4207 0.0242 �0:6549 �0:0339 �0:0093 0.0014 0.0258

15 1.0234 �0:0168 1.9784 �0:0347 �0:0086 0.0008 0.0313

16 �3:3572 0.1398 �7:3731 �0:0316 �0:0062 0.0004 0.0139

17 9.7378 �0:4435 25.4225 �0:0239 �0:0028 0.0002 0.0507

18 �31:15 1.874 �93:316 �0:0156 0.0003 �2� 10�5 �0:0041

TABLE I. The difference �ð0Þ � �ð0Þ
exact for the model BBJ proposed in Ref. [5] and specified in (55)–(58), calculated for �sðM2

�Þ ¼
0:34 with the standard CI, FO and RGS expansions, and the new BRGS expansions (46) and (47) for various conformal mappings wlm,

truncated at order N. Exact value �ð0Þ
exact ¼ 0:2371.

N CI FO RGS BRGS w12 BRGS w13 BRGS w11 BRGS w23

2 �0:0595 �0:0679 �0:0574 �0:0347 �0:0239 �0:0417 �0:0177
3 �0:0473 �0:0345 �0:0440 �0:0333 �0:0301 �0:0349 �0:0303
4 �0:0388 �0:0171 �0:0347 �0:0089 �0:0142 �0:0067 �0:0132
5 �0:0349 �0:0083 �0:0315 �0:0070 �0:0086 �0:0058 �0:0070
6 �0:0325 �0:0043 �0:0284 �0:0073 �0:0071 �0:0064 �0:0072
7 �0:0325 �0:0029 �0:0298 �0:0059 �0:0057 �0:0056 �0:0044
8 �0:0354 �0:0018 �0:0309 �0:0041 �0:0035 �0:0041 �0:0011
9 �0:0367 �0:0004 �0:0363 �0:0023 �0:0019 �0:0028 �0:0010
10 �0:0529 0.0019 �0:0483 0.0014 �0:0012 �0:0020 0.0004

11 �0:0409 0.0031 �0:0458 0.0036 �0:0008 �0:0016 �0:0009
12 �0:1248 0.0065 �0:1335 0.0031 �0:0006 �0:0015 0.0005

13 0.0258 0.0037 0.0534 0.0026 �0:0004 �0:0015 �0:0005
14 �0:5286 0.0204 �0:7850 0.0018 �0:0003 �0:0015 �0:0011
15 0.8640 �0:0201 1.7734 0.0006 �0:0002 �0:0015 0.0044

16 �3:5991 0.1447 �7:7043 0.0001 �7� 10�6 �0:0015 �0:0131
17 9.3560 �0:4252 24.8586 �0:0004 4� 10�6 �0:0014 0.0238

18 �31:76 1.907 �94:26 �0:0013 �0:0001 �0:0013 �0:0310
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BRGS expansion is that it does not require the numerical
determination of the running coupling along the integration
circle jsj ¼ M2

�, involving only analytical expressions.

VII. DETERMINATION OF �sðM2
�Þ

In this section we shall use the new BRGS expansions
defined in the present paper for a new determination of

�sðM2
�Þ in the MS scheme. The determination of this

fundamental parameter is one of the important goals of

this work and significant care has to be exercised in adopt-
ing proper values of input along with the experimental and
theoretical uncertainties.
We use as input the recent phenomenological value of the

pure perturbative correction to the hadronic � width [10]

�ð0Þ
phen ¼ 0:2037	 0:0040exp 	 0:0037PC; (61)

where the first error is experimental and the second
reflects the uncertainty of the higher-order terms

TABLE III. The difference �ð0Þ � �ð0Þ
exact for the model BBJ proposed in Ref. [5] and specified in (55) and (59), calculated for

�sðM2
�Þ ¼ 0:34 with the improved BCI expansions (48) and (49) and the BRGS expansions (46) and (47), for various conformal

mappings wlm, truncated at order N. Exact value �ð0Þ
exact ¼ 0:2371.

N BCI w12 BRGS w12 BCI w13 BRGS w13 BCI w11 BRGS w11 BCI w23 BRGS w23

2 �0:0394 �0:0347 �0:0301 �0:0239 �0:0488 �0:0417 �0:0248 �0:0177

3 �0:0362 �0:0333 �0:0341 �0:0301 �0:0396 �0:0349 �0:0343 �0:0303

4 �0:0108 �0:0089 �0:0177 �0:0142 �0:0083 �0:0067 �0:0165 �0:0132

5 �0:0081 �0:0070 �0:0103 �0:0086 �0:0061 �0:0058 �0:0079 �0:0070

6 �0:0047 �0:0073 �0:0065 �0:0071 �0:005 �0:0064 �0:0052 �0:0072

7 �0:0032 �0:0059 �0:004 �0:0057 �0:0038 �0:0056 �0:0026 �0:0044

8 �0:0032 �0:0041 �0:0028 �0:0035 �0:003 �0:0041 �0:0024 �0:0011

9 �0:0030 �0:0023 �0:0023 �0:0019 �0:0025 �0:0028 �0:0024 �0:0010

10 �0:0020 0.0014 �0:0023 �0:0012 �0:0023 �0:0020 �0:0018 0.0004

11 �0:0012 0.0036 �0:0023 �0:0008 �0:0022 �0:0016 �0:0023 �0:0009

12 �0:0009 0.0031 �0:002 �0:0006 �0:0022 �0:0015 0.0003 0.0005

13 �0:0009 0.0026 �0:0016 �0:0004 �0:0022 �0:0015 �0:0023 �0:0005

14 �0:0007 0.0018 �0:001 �0:0003 �0:0022 �0:0015 0.0024 �0:0011

15 �0:0004 0.0006 �0:0005 �0:0002 �0:0021 �0:0015 �0:0015 0.0044

16 �0:0003 0.0001 �0:0002 �7� 10�6 �0:002 �0:0015 �0:0028 �0:0131

17 �0:0003 �0:0004 0.0001 4� 10�6 �0:0019 �0:0014 0.0162 0.0238

18 �0:0003 �0:0013 0.0002 �0:0001 �0:0017 �0:0013 �0:0445 �0:0310

TABLE IV. As in Table III for the modified model Balt specified in (59) and (60). Exact value �ð0Þ
exact ¼ 0:2102.

N BCI w12 BRGS w12 BCI w12 BRGS w13 BCI w11 BRGS w11 BCI w23 BRGS w23

2 �0:0125 �0:0078 �0:0032 0.0030 �0:0219 �0:0148 0.0021 0.0092

3 �0:0093 �0:0064 �0:0072 �0:0033 �0:0127 �0:0080 �0:0074 �0:0034
4 0.0161 0.0180 0.0092 0.0127 0.0186 0.0202 0.0104 0.0137

5 0.0188 0.0199 0.0166 0.0183 0.0208 0.0211 0.0190 0.0110

6 0.0161 0.0175 0.0169 0.0175 0.0182 0.0182 0.0158 0.0197

7 0.0099 0.0193 0.0118 0.0150 0.0128 0.0153 0.0072 0.0225

8 0.0100 0.0201 0.0062 0.0132 0.0080 0.0131 0.0034 0.0258

9 0.0073 0.0106 0.0041 0.0101 0.0052 0.0109 0.0036 0.0259

10 �0:0047 �0:0012 0.0042 0.0047 0.0044 0.0083 0.0013 0.0273

11 �0:0120 �0:0118 0.0034 �0:0010 0.0044 0.0058 �0:0034 0.0260

12 �0:0095 �0:0231 0.0009 �0:0054 0.0046 0.0037 �0:0021 0.0274

13 �0:0080 �0:0310 �0:0016 �0:0081 0.0047 0.0023 �0:0042 0.0264

14 �0:0101 �0:0339 �0:0028 �0:0093 0.0044 0.0014 0.0022 0.0258

15 �0:0093 �0:0347 �0:0023 �0:0086 0.0040 0.0008 �0:0015 0.0313

16 �0:0058 �0:0316 �0:0011 �0:0062 0.0034 0.0004 �0:0029 0.0139

17 �0:0043 �0:0239 0.0 �0:0028 0.0028 0.0002 0.0173 0.0507

18 �0:0044 �0:0156 0.0005 0.0003 0.0022 �2� 10�5 �0:0485 �0:0041
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(‘‘power corrections’’) in the OPE estimated by reasonable
theoretical assumptions. We emphasize that our calculation
is not based on the models discussed in the previous
section, but relies only on the known coefficients cn;1 given
in (5), and the conservative choice c5;1 ¼ 283	 283 for

the next coefficient [5,10].
Using this input, the values of �sðM2

�Þ obtained with
the new BRGS expansions defined in (46) and (47), with

the expansion functions W ð12Þ
n;RGS, W

ð13Þ
n;RGS, W

ð11Þ
n;RGS and

W ð23Þ
n;RGS, respectively, are

0:3189	 0:0034exp 	 0:0031 þ0:0162
PC �0:0121ðc51Þþ0:0014

�0:0013ð�4Þ;
0:3198	 0:0034exp 	 0:0031 þ0:0112

PC �0:0088ðc51Þþ0:0007
�0:0007ð�4Þ;

0:3180	 0:0034exp 	 0:0031 þ0:0134
PC �0:0103ðc51Þþ0:0010

�0:0009ð�4Þ;
0:3188	 0:0034exp 	 0:0031 þ0:0143

PC �0:0107ðc51Þþ0:0010
�0:0009ð�4Þ:

(62)

The first two errors are due to the uncertainties of the

phenomenological value of �ð0Þ given in (61). The third
one, produced by the range adopted for the coefficient c5;1,
brings the most important contribution to the total error.
The last uncertainty accounts for the higher terms in the
expansion of the � function, simulated as in Ref. [7] by an
additional coefficient �4 ¼ 	�2

3=�2 in this expansion. We

explored also the influence of the scale variation, choosing
it as �2 ¼ 	M2

� with 	 ¼ 1	 0:5, but the effects are very
small, so we show only the result corresponding to the
choice �2 ¼ M2

� in (26).
A very small sensitivity of �sðM2

�Þ to the variation of the
scale is specific also to the standard CIPT analyses [7,9],
the RGS expansion [14], and the Borel improved CI expan-
sions [6,11]. The uncertainty related to the coefficient c5;1
is bigger in the case of the Borel improved expansions than
in the standard CI and RGS. However, as discussed in
Refs. [6,11], having in view the divergent character of
the series, the truncation error in the latter versions is
certainly underestimated. The calculation of the five-loop
coefficient c5;1 is therefore of great interest, as it would

reduce considerably the total error of �sðM2
�Þ determined

from the Borel improved perturbation schemes.
By taking the average of the central values and of the

errors given in Eq. (62) we obtain the prediction

�sðM2
�Þ ¼ 0:3189	 0:0034exp 	 0:0031 þ0:0138

PC �0:0105ðc5;1Þ
	 0:0010�4

; (63)

which becomes, after adding the errors in quadrature,

�sðM2
�Þ ¼ 0:3189þ0:0145

�0:0115: (64)

We emphasize that the error quoted above was obtained
as the average of the errors of the individual determinations
(62). Much lower uncertainties would have been obtained
if standard statistical procedures for combining indepen-
dent determinations were applied. In practice, although the

values given in (62) may be considered independent theo-
retical determinations, we prefer the conservative errors
given in (63), which avoid any bias. We note however the
remarkable consistency of the theoretical determinations
given in (62), which is a strong argument in favor of our
predictions. It is remarkable also that the central value of
our prediction (64) practically coincides with the world
average �sðM2

�Þ ¼ 0:3186	 0:0056 [1].
By evolving (64) to the scale ofMZ, using the CRunDec

package [44], our prediction reads

�sðM2
ZÞ ¼ 0:1184þ0:0018

�0:0015; (65)

where the central value coincides with the 2012 world
average, �sðM2

ZÞ ¼ 0:1184	 0:0007 [1].
It is of interest to compare the result (64) obtained with

theBRGSexpansions defined in the presentworkwith other
recent determinations of�sðM2

�Þ. The values reported in the
recent works [3–14] are not all based on the same input.
Therefore, for a consistent comparison of different pertur-
bative schemes, we use in what follows the same input for

the phenomenological value of �ð0Þ
phen, given in (61), and the

five-loop coefficient c5;1 ¼ 283	 283. Then the standard

FO, CI and RGS expansions lead to the predictions

�sðM2
�Þ ¼ 0:3199þ0:0118

�0:0074 FO;

�sðM2
�Þ ¼ 0:3419þ0:0084

�0:0085 CI;

�sðM2
�Þ ¼ 0:3378þ0:0088

�0:0095 RGS;

(66)

where the FO result is quoted in Ref. [10] and the RGS one
in Ref. [14]. The FO and CI expansions improved by
conformal mappings of the Borel plane (denoted as BFO
and BCI, respectively) give [6,11]

�sðM2
�Þ ¼ 0:3109þ0:0114

�0:0049 BFO;

�sðM2
�Þ ¼ 0:3195þ0:0189

�0:0138 BCI:
(67)

One can see that the BRGS and BCI expansions, which
implement both Borel and RG summation, lead to similar
values for �sðM2

�Þ, which actually are also close to the
prediction of standard FOPT, where neither of the two
summations is performed. On the other hand, the standard
CI and RGS expansions, where only the summation related
to RG is implemented, lead to values larger by about 0.02,
while the BFO expansions, which improve only the large-
order behavior without summing the terms known from the
RG, lead to a value smaller by about 0.01 than the pre-
dictions of BRGS, BCI and FOPT.
In the recent work, Ref. [13], it has been pointed out, on

the basis of a detailed analysis of moments of the spectral
functions measured by OPAL experiment, that the uncer-
tainty of the nonperturbative contributions to the hadronic
� width may be larger than usually assumed. To account
for this possibility, we adopt a more conservative value

for the uncertainty of �ð0Þ
phen due to power corrections, viz.

replacing 	0:0037 in (61) by the estimate 	0:012 of this
uncertainty quoted in Ref. [13].

ABBAS et al. PHYSICAL REVIEW D 87, 014008 (2013)

014008-12



Using this input, the value 	0:0031 of the error on
�sðM2

�Þ produced by the power corrections, quoted in
(63), increases to þ0:0099

�0:0103 , leading to

�sðM2
�Þ ¼ 0:3189þ0:0173

�0:0151: (68)

We shall adopt this result, having the same central value
and a more conservative error than in (64), as our final
prediction.

By evolving (68) to the scale ofMZ our prediction reads

�sðM2
ZÞ ¼ 0:1184þ0:0021

�0:0018: (69)

VIII. DISCUSSION AND CONCLUSIONS

The nonstrange hadronic decays of the � lepton provide
one of the most important ways of extracting the strong
coupling �s. The perturbative schemes of the Adler func-
tion that are used in this extraction continue, however, to
be a significant source of uncertainty. There are two major
ambiguities that affect the QCD perturbation expansions:
one is related to the implementation of the renormalization-
group invariance, and the other regards the large-order
behavior of the series.

The first ambiguity is usually illustrated by the signifi-
cant difference between the predictions of the FO and CI
expansions of the Adler function. In a recent work,
Ref. [14], we used for the analysis of the � hadronic width
another renormalization-group-improved expansion, pro-
posed in Refs. [17,18], which sums in an analytically
closed form the logarithms accessible by RG invariance.

The second ambiguity is associated with the fact that the
perturbative series are divergent, due to a factorial growth
of the coefficients calculated from Feynman diagrams
[19–22]. In QCD this ambiguity is even more dramatic
than in QED due to the IR renormalons, singularities in the
Borel plane situated on the positive axis, which prevent
the unique reconstruction of the function by means of a
Laplace-Borel integral. However, if one adopts a suitable
prescription (principal value), it is possible to exploit the
available knowledge on the large-order behavior of the
coefficients for defining a new expansion, in which
the divergent pattern is tamed to a great extent. Such a
method was proposed some time ago in Refs. [27–29] and
was applied recently in Refs. [6,8,11] to both the FO and CI
expansions of the Adler function. It is based on series
acceleration by analytic continuation in the Borel plane,
achieved by conformal mappings and the ‘‘softening’’ of
the dominant singularities of the Borel transform.

In the present work, we used this method in order to
improve the large-order behavior of the RGS expansion
discussed in Ref. [14]. That it should be possible to have a
straightforward application of the technique is not obvious,
as the RGS expansion (12) involves a set of complicated
functions DnðyÞ determined iteratively by the differential
equations (15). However, after expressing the series in the
alternative form (25), i.e., as an expansion in powers of the

one-loop coupling (26), it was possible to show in Sec. IV
that the dominant singularities of this expansion in the
Borel plane coincide with those of the standard Borel
transform BðuÞ of the CI expansion. As a result, we are
able to apply the techniques discussed in Refs. [6,8,11],
defining the class of improved expansions (46) and (47),
denoted as BRGS expansions.
As discussed in earlier works [11,29], the expansions

based on conformal mappings of the Borel plane have a
number of remarkable properties. In particular, the diver-

gent pattern of the expansion of D̂ðsÞ in terms of these new
functions is expected to be tamed. The detailed numerical
studies of two representative models for the Adler function,
presented in Sec. VI, show that indeed the expansions
improved by both RG summation and analytic continuation
in the Borel plane, i.e., BCI and BRGS, provide a very good
approximation of the true functions in the complex energy
plane up to high orders. This is seen from Figs. 1–4 of
Sec. VI and the similar figures presented in Refs. [6,11].
As a consequence, as shown in Tables I, II, III, and IV,

the approximation of the integral �ð0Þ provided by these
expansions is very good and improves with increasing N.
In contrast, the standard expansions shown in the first three
columns of Tables I and II exhibit a divergent pattern.
As argued in Refs. [5,10] and is seen also from our

results, the FO expansion of the observable �ð0Þ exhibits
a better behavior at high orders, which results from suitable
cancellations between the increasing coefficients cn;1 and

the remaining terms in (10). This cancellation is spoiled
in the standard CI expansion (11), which sums only the
RG part, leaving the increase of cn;1 uncompensated.

The better large-order behavior of FOPT is one of the
arguments used in favor of this expansion compared to
CIPT [10]. As concerns the standard RGS expansion, some
cancellations are taking place at low orders, but above
N ¼ 10 this expansion exhibits a divergence pattern even
more dramatic than CIPT.
It should be noted however that the better behavior of

FOPT is restricted only to integrals like �ð0Þ or some
special moments of the spectral function: as shown in
previous studies of specific models [5,6,11], the pointwise
description of the true Adler function along the circle
jsj ¼ M2

� provided by the FO expansion is quite poor.
The good convergence obtained for some integrals along
the circle is due to fortuitous cancellations of large con-
tributions from different integration regions. On the other
hand, as we mentioned, the BCI and BRGS expansions
yield a good pointwise approximation of the true function
along the whole circle.
For the determination of �sðM2

�Þ presented in Sec. VII
we used as input the phenomenological value of the

QCD correction �ð0Þ to the � hadronic width evaluated in
Ref. [10]. Our analysis shows that the BRGS and BCI
expansions, improved by both RG and high-order Borel
summation, lead to similar results for �sðM2

�Þ, which are
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actually also very close to the standard FOPT prediction
obtained with the same input. It is remarkable that the
central value of the prediction (64) obtained with the new
BRGS expansions coincides with the world average quoted
in Ref. [1]. We also considered the possibility that the
uncertainty related to nonperturbative contributions might
be larger, as follows from the recent analysis [13]. The
error of our final prediction (68) is a conservative estimate
that takes into account this possibility.

In conclusion, we advocate the use of the BCI
and BRGS expansions of the QCD Adler functions,
which implement simultaneously the RG invariance and
the available knowledge about the large-order behavior of
perturbation theory. In particular, the BRGS expansions

proposed in the present work have the advantage that RG
summation is implemented through analytically closed
expressions. Therefore, these expansions are suitable for
more detailed analyses of � hadronic decays, based on the
moments of the hadronic spectral function.
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