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Universidad de Granada, E-18071 Granada, Spain
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We discuss the pion and nucleon form factors and generalized form factors within the large-Nc approach in

the spacelike region. We estimate their theoretical uncertainties through the use of the half-width rule,

amounting to taking the half width of the resonances as the deviation of their mass parameters. The approach

embodies the meson dominance of form factors and the high-energy constraints from perturbative QCD. We

compare the results with the available experimental data and lattice simulations. The meson-dominance form

factors are generally comparable to the available experimental data within the half-width-rule uncertainties.

Our errors are comparable to the experimental uncertainties, but are smaller than the lattice errors.
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I. INTRODUCTION

Electroweak form factors provide valuable information
on the internal structure of the existing composite had-
rons, particularly on their Lorentz-invariant transverse
densities [1] (for reviews of the nucleon form factors
see, e.g., Ref. [2] and references therein). On the funda-
mental level, the QCD counting rules provide the high-
momentum behavior of the form factors (FF) [3], which
in perturbative QCD (pQCD) acquire logarithmic correc-
tions [4]. In recent years much attention has also been
paid to the so-called generalized form factors, i.e.,
moments of the generalized parton distributions (GPDs)
(for reviews see, e.g., Refs. [5–7] and references therein),
which can be directly accessed on the Euclidean lattices
[8], even when no physical experiments can.

Electromagnetic form factors are by far the best under-
stood, both theoretically and experimentally. An early and
phenomenologically very successful approach to study these
quantities was initiated by the vector-meson-dominance
(VMD) model (for reviews see Refs. [9,10]). On a formal
level, VMD is implemented in two equivalent ways. At the
field-theoretic level one postulates the so-called current-field
identities which state the proportionality between fields of
stable mesons and the related conserved currents with iden-
tical quantum numbers. Alternately, within the framework
of dispersion relations, onemay saturate the matrix elements
of the currents with delta-like spectral functions. However,
vector mesons are unstable resonances with a finite decay
width, and thus corrections to the narrow resonance approxi-
mation are expected.

There arises a natural question of what numerical value
for the mass of the resonance one should use [11–13].
While the rigorous definition of a resonance mass mR

and width �R corresponds to a pole of an analytically
continued amplitude in the complex s-plane on the second
Riemann sheet, s ¼ m2

R � i�RmR, complex energies can-

not be measured experimentally. Of course, since a reso-
nance has a real mass distribution which generally depends
on the process where the resonance is produced, a variety
of possibilities arise to extract the maximum of an inte-
grated mean value, which becomes identical and indepen-
dent of the background in the narrow-resonance limit.
Thus, a conservative estimate is made if the mass of a
resonance is determined with an accuracy of about its half
width. Following Refs. [14–18] we suggest to use the half-
width rule: take the intrinsic uncertainty of a resonance
mass as the range mR � �R=2 to estimate the finite width
corrections. The average width-to-mass ratio listed by the
Particle Data Group (PDG) was found to be h�R=mRi ¼
0:12ð8Þ, for both mesons and baryons [16,17].
From a fundamental point of view, the success of the

VMD model remained a mystery until it was shown how
it arises within a well-defined approximation of QCD.
Indeed, in the large-Nc limit resonances become narrow
[19,20] and hadronic form factors turn out to be meromor-
phic functions under the assumption of confinement;
although in principle they contain an infinite set of reso-
nances, they can generally be written as a sum of pole
functions [21–25]. This allows us to build up an effective
theory at a purely hadronic level, with no explicit reference
to the underlying quark-gluon dynamics: all the specific
QCD information is contained in the chiral and short-
distance constraints. More generally, meson dominance
of any vertex function with appropriate quantum numbers
and the meromorphic property also extends to the case of
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generalized form factors. From a practical point of view,
for the lowest-rank generalized form factors the only dif-
ference from the standard form factors associated to con-
served currents is that while the momentum dependence
remains scale-independent, the normalization undergoes
the QCD evolution [26]. Thus, generalized form factors
in the spacelike region provide nothing but meson masses
estimated in the large-Nc limit.

It is quite remarkable that given the simplicity of the
leading-Nc contribution, where only tree diagrams are
needed, the 1=Nc corrections turn out to be extremely
complicated, and despite courageous efforts [27–31] they
have not been worked out completely. In the present paper
we provide a simple way of estimating the size of the 1=Nc

corrections by implementing a rather obvious idea that the
mass of a resonance is determined with an accuracy of
about its half width [14–18]. While this provides a large-Nc

meaning to the half-width rule, it also yields rather reward-
ing consequences: the predicted theoretical uncertainties
turn out to be comparable or larger than the corresponding
experimental results, but at the same time smaller than
current lattice estimates. In all considered cases we find
an overall agreement between the theory and experiment.

The requirement of quark-hadron duality at large Nc

involves, as a matter of principle, an infinite tower of
hadronic states [24,25,32–37]. This becomes clear for
two-point functions, where further asymptotic constraints
between the meson, the decay amplitudes, and the meson
spectra are derived.1 A careful scrutiny of the Particle Data
Table confirms, with the help of the half-width rule [17],
the radial and angular momentum Regge pattern in the
meson spectrum, proposed in Ref. [38]. This fact provides
a phenomenological basis for large-Nc Regge-model cal-
culations of form factors [14,39–41].

Unlike for the two-point functions, the short-distance
QCD constraints for the form factors may be saturated with
a finite number of states, provided that detailed pQCD
information (the occurrence of the logarithmic corrections)
is given up. One may take advantage of this fact by using a
sufficiently large but finite number of meson states, such
that the correct asymptotics is reproduced up to (slowly
varying) logarithms, which allows one to impose the
appropriate normalization conditions [13,23–25,42]. The
implementation of the pQCD logs from the mesonic side is
not at all trivial; a possible mechanism, involving infinitely
many states, is suggested in Ref. [41], where it was also
shown that the onset of pQCD in the pion form factor might
possibly occur at ‘‘cosmologically’’ large momenta. We
recall in this regard that almost model-independent upper
and lower bounds on the spacelike form factor are estab-
lished above Q2 � 7 GeV2 [43]. To be fair, it is not

completely clear whether at present the logarithmic
pQCD corrections are distinctly seen in the current experi-
mental data. We note that approaches with an infinite
number of meson resonances are considered along the
holographic framework [44,45].
Usually, nucleon form factors are conveniently parame-

terized as dipole functions, which describe the data quite
successfully in a given range of momenta. However, this
can only correspond exactly to a sum of two simple degen-
erate poles with opposite residues. Actually, we will show
that if the error bars on the monopole mass are taken into
account, one can make the dipole overlap with a product of
monopoles within the corresponding error bars provided
with the half-width rule.
To summarize, our construction is based on the follow-

ing assumptions:
(i) Hadronic form factors in the spacelike region are

dominated by mesonic states with the relevant quan-
tum numbers.

(ii) The high-energy behavior is given by pQCD, and
the number of mesons is taken to be minimal to
satisfy these conditions.

(iii) Errors in the meson-dominated form factors are
estimated by means of the half-width rule, i.e., by
treating resonance masses as random variables dis-
tributed with the dispersion given by the width.

The paper is organized as follows. In Sec. II we review
for completeness the basics of meson dominance in the
narrow-width limit for the case of the nucleon. In Sec. III
we digress on the role played by the finite-width correc-
tions, providing a large-Nc justification for the intuitively
obvious half-width rule for the masses. In Secs. IV and V
we carry out the analysis for several pion and nucleon form
factors, respectively. Finally, in Sec. VI we draw our main
conclusions.

II. MESON DOMINANCE OF FORM FACTORS

First, the implications of meson dominance on form
factors will be illustrated with the nucleon form factors
as an example. Quite generally, the nucleon form factors
are defined as the matrix element of a given current or
composite interpolating field, JðxÞ:
hNðp0; s0ÞjJð0ÞjNðp; sÞi ¼ �uðp0; s0Þ�Jðp0 � pÞuðp; sÞ; (1)

where uðp; sÞ and uðp0; s0Þ are Dirac spinors corresponding
to the initial and final four-momentum and spin states,
respectively. The quantity �Jðp0 � pÞ involves the Dirac
matrices. Lorentz indices are suppressed for clarity of
notation. Meson dominance of the form factor corresponds
to parametrizing the current with a superposition of meson
fields with the same quantum numbers as the current,

JðxÞ ¼ X
n

fn�nðxÞ; (2)

which means that the meson may decay into the vacuum
through the current,

1In fact, the only possibility to avoid the dimension-two
operators at large Q2, not present in the conventional operator
product expansion, is by assuming an infinite set of states
[35,36].
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h0jJð0Þj�ni ¼ fn: (3)

This also implies that the two-point correlator can be
written as

�JJðtÞ ¼
X
n

f2n
m2

n � t
; (4)

where mn is the mass of the meson state �n. On the other
hand, the meson-nucleon-nucleon coupling gn is defined via

hNðp0; s0Þjð@2 þM2
nÞ�nð0ÞjNðp; sÞi ¼ �uðp0; s0Þgnuðp; sÞ

(5)

(gn in general involves a Dirac structure). Then

hNðp0; s0ÞjJð0ÞjNðp; sÞi ¼ X
n

fnhNðp0; s0Þj�nð0ÞjNðp; sÞi

¼ �uðp0ÞFðtÞuðpÞ; (6)

where the form factor is

FðtÞ ¼ X
n

fngn
m2

n � t
: (7)

It satisfies, on very general field-theoretic grounds and up to
suitable subtractions, a dispersion relation:

FðtÞ ¼ c:t:þ 1

�

Z 1

t0

ImFðt0Þ
t0 � t� i�

dt0; (8)

where ‘‘c.t.’’ stands for counterterms and t0 is the threshold.
In the narrow-resonance approximation one has the spectral
density

ImFðtÞ ¼ �
X
n

cnm
2
n�ðt�m2

nÞ; (9)

yielding, up to subtractions, the sum of monopoles,

FðtÞ ¼ X
n

cn
m2

n

m2
n � t

; (10)

corresponding to Eq. (7) with cnm
2
n ¼ fngn, which is

constant, i.e., independent of t.
The asymptotic behavior of the form factors determines

the number of necessary subtractions. Thus, for a form
factor falling off as �t�N we have the set of conditionsX

n

cnm
k
n ¼ 0 k ¼ 0; . . .N � 1; (11)

and thus the minimum number of meson states needed to
satisfy these constrains is N, whence

FðtÞ ¼ Fð0ÞYN
n¼1

m2
n

m2
n � t

: (12)

This simple ansatz already predicts the couplings in Eq. (7)
‘‘for free.’’ One can, of course, add more resonances by
multiplying Eq. (12) with the factor

1� dkt=m
2
k

1� t=m2
k

; (13)

where the unknown coefficient dk may be determined if
some couplings cn are known from the experiment.

Quite generally, on the basis of the large-Q2 expansion,
one has [4] ð�tÞiþ1FiðtÞ � logð�t=�Þ��, with the anoma-
lous dimension �� 2 and weakly depending on the number
of flavors. Fits of the form factors hardly see any impact of
these pQCD logs at the currently available momenta [46].
The corresponding radii are given by the expansion

FðtÞ
Fð0Þ ¼ 1þ t

6
hr2i þ � � � (14)

We recall that the radii are quite sensitive to chiral
(1=Nc-suppressed) corrections and, actually, in some chan-
nels they diverge for m� ! 0.
Both two- and three-point correlators, Eqs. (4) and (10)

respectively, require in principle an infinite number of
mesons. Note, however, that the sign of the residues fngn
appearing in the form factors is arbitrary, while the sign
appearing in the two-point correlator is positive. This
possibly provides a quite different mechanism for cancel-
lations, and hence for the form of how the short-distance
constraints are fulfilled. In short, the two-point functions
need infinitely many mesonic states to comply to pQCD,
whereas the three-point functions, such as the form factors,
can be saturated with a finite number of meson states.
It is useful to notice that we may also deduce the

component of the NN potential due to the exchange of
the meson states �n:

hNðp0
1; s

0
1ÞNðp0

2; s
0
2ÞjVjNðp1; s1ÞNðp2; s2Þi

¼ X
n

�uðp0
1; s

0
1Þgnuðp1; s1Þ �uðp0

2; s
0
2Þgnuðp2; s2Þ 1

m2
n � t

:

(15)

Via crossing, the �NN scattering amplitude can be obtained
as well.

III. FINITE-WIDTH CORRECTIONS

A question of fundamental and practical importance is
what mass value should one use for the meson states in
the VMD expression for the form factors [11,17]. Naively,
one might take the ‘‘experimental’’ value.2 However, the
extended VMD formula for the form factor, Eq. (10),
corresponds to the large-Nc limit. As such, it is subject to
the 1=Nc corrections which generate a corresponding mass
shift. The form of these corrections can in principle be
evaluated by computing meson loops within the resonance
chiral perturbation theory [27–31,47]. The general struc-
ture of the correction for the form factor corresponds to
the replacements

gnfn
m2

n � t
! GnðtÞfn

m2
n � t��ðtÞ ; (16)

2This value also depends on the experimental process and may
differ within the half-width rule.
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where �ðtÞ is the self-energy. However, the question
remains what the size of these corrections is numerically.
Strictly speaking, such a question can only be answered
by a lattice calculation at different values of Nc (see, e.g.,
Ref. [48] and references therein). Unfortunately, as we
argue below, within a purely hadronic resonance theory
we can only make an educated guess, since there are
undetermined counterterms encoding the effects of the
high-energy states that are not explicitly considered. For
instance, for the case of the �-meson we may take into
account the decay into 2�, which is a real process, but also
the virtual �KK excitation, etc. Our lack of an explicit
knowledge on all excitations makes it difficult, if not
impossible, to predict the mass shift reliably.

A. Mass shift and the width

To elaborate on the mass-shift effect in greater detail, let
us consider the two-point function yielding the mesonic
resonance propagator,

DðsÞ ¼ 1

s�m2
0 � �ðsÞ : (17)

The mass parameter m0 is the tree level resonance mass,
which is OðN0

cÞ, whereas the self-energy, coming from
meson loops, is suppressed: �ðsÞ ¼ OðN�1

c Þ.
Let us consider, for instance, the self-energy correction

of the scalar or vector mesons due to pion loops.
Analyticity implies that the self-energy satisfies the dis-
persion relation3

�ðsÞ ¼ c:t:þ 1

�

Z 1

4m2
�

ds0
Im�ðs0 þ i0þÞ

s0 � s
; (18)

where ‘‘c.t.’’ means suitable subtractions. The pole position,
s ¼ sR ¼ m2

R � imR�R, is given by

sR �m2
0 ��ðsRÞ ¼ 0: (19)

This is a complicated self-consistent equation, but within the
1=Nc expansion it can be solved perturbatively, yielding

sR ¼ m2
0 þ 2m0�mR � i�Rm0 þOðN�2

c Þ; (20)

where

�mR ¼ 1

2m0

Re�ðm2
0Þ; (21)

�R ¼ � 1

m0

Im�ðm2
0Þ: (22)

Note that the imaginary part is proportional to the corre-
sponding decay width,
In general, there appears a threshold momentum depen-

dence for the decay amplitude which is proportional to the
phase space. The form reflects the spin of the resonance,
such as

�ðsÞ ¼ �R

�
�ðsÞ
�ðm2

RÞ
�
2Jþ1

; (23)

with �ðsÞ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4m2

�=s
p � p=

ffiffiffi
s

p
, where p is the center-

of-mass momentum when m2
0 ! s0. Obviously, the num-

ber of subtractions in Eq. (18) depends on the assumed
off-shellness. For the previous choice of �ðsÞ, which
becomes a constant at large s, we need at least one
subtraction, which we may choose to be, e.g., at s ¼ 0,
and thus in terms of the principal value integral we
have

�mR ¼ 1

2m0

�
Re�ð0Þ þ 1

�
0 ¼

Z 1

4m2
�

ds0
m2

0

s0
Im�ðs0Þ
s0 �m2

0

�
:

(24)

Therefore �mR depends on an arbitrary constant
Re�ð0Þ ¼ OðN�1

c Þ, which cannot be determined from
the dispersion integral or the lowest-order parameters
and hence naively becomes independent of the width.
Other momentum-dependent widths, not vanishing at
high s, may introduce additional subtractions. The present
discussion illustrates our statement that one cannot ge-
nerically compute the mass shift in a model-independent
way.4

This lack of predictive power within the purely hadronic
theory is not surprising. However, from a microscopic
point of view the meson self-energy can be understood as
the coupling of the q �q bound state to the meson continuum,
and physical resonances turn into Feschbach resonances.
The relevant scale corresponds to the string-breaking dis-
tance, defining a physical momentum scale which may be
described as a transition form factor from �qq states to
mesonic channels. This implies that the mass shift due to
closed channels is necessarily negative as it corresponds
to second-order perturbation theory below the closed chan-
nels, but also that the mass shift due to the open channel
scales exactly as the decay width. In the Appendix we
analyze some specific models where we can see that within
uncertainties a natural rough estimate of the mass shift is
given by the half-width rule.

B. Finite-width effects in the spacelike region

Finite-width corrections for the pion charge form factor
were pioneered by Gounaris and Sakurai [50]. They have
implemented the eþe� ! �þ�� final-state interactions in

3We disregard spin complications; see, e.g., Ref. [49] for
details. 4Unless further information is available.
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the time-like region, where they are crucial. In this section
we analyze the influence of widths on the spacelike region.
To this end, we useWatson’s theorem on final states, which
can be written as5

FVðsþ i0þÞ
FVðs� i0þÞ ¼

T11ðs� i0þÞ
T11ðsþ i0þÞ � e2i�11ðsÞ;

4m2
� � s � 4m2

K;

(25)

where FVðsÞ is the form factor, T11ðs� i0þÞ is the ��
partial-wave scattering amplitude in the vector-isovector
channel ðJ; IÞ ¼ ð1; 1Þ, and �11ðsÞ is the corresponding
phase shift. A well-known solution to this discontinuity
equation is given in terms of the Omnes function,

�ðsÞ ¼ exp

�
s

�

Z 1

4m2

�Jðs0Þ
s0ðs� s0Þ

�
; (26)

which fulfills �ð0Þ ¼ 1. A solution to Eq. (25) is given by
just taking FVðsÞ ¼ PðsÞ�ðsÞ, with PðsÞ being an arbitrary
polynomial. Choosing PðsÞ ¼ 1 we have

FVðsÞ ¼ �ðsÞ: (27)

In the case of a zero-width resonance the phase shift is
�11ðsÞ ¼ �=2�ðs�m2

�Þ, and one gets the monopole form

factor,

FVðsÞ ¼ m2
V

m2
V � s

; (28)

featuring VMD in its simplest version.
We use a simple Breit-Wigner (BW) parametrization for

the vector-isovector ��-phase shift, obtained as

e2i�11ðsÞ ¼ DVðsþ i0þÞ
DVðs� i0þÞ ; (29)

where

½DVðsÞ��1 ¼ s�m2
� þ im���

�ðs� 4m2
�Þm2

�

ðm2
� � 4m2

�Þs
�3

2
: (30)

The p-wave character of the � ! 2� decay can be recog-
nized in the phase-space factor. The Omnes form factor is
depicted in Fig. 1. As we can see, the finite-width correc-
tion lies within the band corresponding to the half-width
rule imposed on top of the monopole form factor, consid-
ering here m� ¼ 0:77 GeV and �� ¼ 0:15 GeV.

C. The half-width rule

As we can see, the subleading 1=Nc corrections in the
spacelike region essentially correspond to keeping the
meson dominance form and to changing the parameters.
By making simple calculations we have seen that a con-
servative bound on the mass shift is given by the half-width
rule. From a spectral point of view this is quite natural
when we appeal to the Källén-Lehmann representation of
the resonance two-point function,

DðsÞ ¼
Z 1

0
d�2 �ð�2Þ

�2 � s� i0þ
: (31)

We may then use the probabilistic interpretation of the line
shape

Pð�Þ ¼ Z�ð�Þ: (32)

If we take a Breit-Wigner shape for DðsÞ (neglecting the
threshold effects), we have

0.0 0.5 1.0 1.5 2.0
0

50

100

150

s GeV

11
de

gr
ee

s

0 1 2 3 4
0.0

0.2

0.4

0.6

0.8

1.0

Q2 GeV2

F
Q

2

FIG. 1 (color online). The ðI; JÞ ¼ ð1; 1Þ�� scattering phase shift as a function of the center-of-mass energy (in GeV). We use the
BW representation discussed in the text. The data are from the analysis of Ref. [86] (left panel). The pion charge form factor in the
spacelike region as a function of the momentum Q2 (in GeV2) for the Omnes representation (solid red) is compared with the simple
monopole form (dashed blue). The band corresponds to taking a monopole with the half-width rule (right panel).

5Another way of writing the relation, which generalizes trivi-
ally to coupled channels, is through the use of the Bethe-Salpeter
equation FT�1 ¼ �V [51], which yields DiscFVðsþ i0þÞ�1 ¼
DiscT11ðsþ i0þÞ�1. Then

DiscFiðsþ i0þÞ�1 ¼ Disc
X
j

Tijðsþ i0þÞ�1:

Above the �KK production threshold Watson’s theorem requires
considering also the kaon form factor and the corresponding
extension to coupled channels, i.e., the mixing with �� ! �KK
transitions.
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PBWð�Þ ¼ 1

�

2��2

ð�2 �M2Þ2 þ �2�2
; (33)

which is normalized to unity,
R
d�Pð�Þ ¼ 1.

The random implementation for a given distribution is
obtained in a standard way by inverting the relation
expressing the coordinate independence of probabilities,

Pð�Þd� ¼ dz; (34)

with z 2 U½0; 1� being a uniformly distributed variable.6

The result for a BW shape in the case of the �-meson for
N ¼ 104 samples is shown in Fig. 2. The idea amounts to
treating the resonance mass as a random variable and to
propagating its effect in all observables. Of course, differ-
ent shapes produce somewhat different confidence levels.
For definiteness, we will take Gaussians which have
shorter tails and are symmetric around the resonance value.

In Fig. 2 we plot the monopole form factor

FVðQ2Þ ¼ m2
�

m2
� þQ2

(35)

according to the BW distribution of the mass.

IV. PION FORM FACTORS

A. Electromagnetic form factor

The charge form factor of the pion is given by

h�þðp0ÞjJem� ð0Þj�þðpÞi ¼ ðp0� þ p�ÞFVðq2Þ; (36)

with q ¼ p0 � p and the electromagnetic current Jem� ðxÞ ¼P
q¼u;d;s;...eq �qðxÞ��qðxÞ, where eq denotes the quark

charges in units of the elementary charge. The charge
normalization requires

FVð0Þ ¼ 1: (37)

Actually, in the spacelike region, where t ¼ �Q2, FðtÞ is
real and at large Q2 values the pQCD methods can be
applied, yielding asymptotically [52–57]

FVð�Q2Þ¼16�f2��ðQ2Þ
Q2

�
1þ6:58

�ðQ2Þ
�

þ���
�
;

Q2�m2;

(38)

with f� ¼ 92:3 MeV denoting the pion weak decay con-
stant, and m standing for the lowest vector-meson mass. If
we ignore the slowly varying logarithm, we get FVðtÞ ¼
Oðt�1Þ, and in the large-Nc limit one has

FVðtÞ ¼
X

V¼�;�0;...
cV

m2
V

m2
V � t

; (39)

where
P

VcV ¼ 1 and cV ¼ gV��FV=mV .
The simplest formula fulfilling this constraint and Eq. (37)

is the VMD solution

FVðtÞ ¼
m2

�

m2
� � t

; (40)

whence g���f� ¼ m�. The �� � coupling is given by

�ð� ! eþe�Þ ¼ 4��2

3

F2
�

m�

; (41)

whereas the � ! �� decay is

�ð� ! ��Þ ¼ g2���m�

48�
: (42)

Using the PDG numbers one gets for m� ¼ 0:77 GeV the

values f� ¼ 0:156 GeV and g��� ¼ 6.

One of the important features of the pion form factor is
that the radius has large chiral corrections; thus, we may
improve the phenomenology by adding one extra meson, �0.
Then
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2

FIG. 2 (color online). Sampling of the �-meson mass according to the BW spectral distribution. We sample N ¼ 104 values and bin
them with �m ¼ 20 MeV (left panel). The monopole form factor F��ðQ2Þ ¼ m2

�=ðm2
� þQ2Þ sampled with the previous distribution

is compared to the experimental data [87–97] (right panel).

6For a Lorentz distribution, Pð�Þ ¼ Z�=ðð�2 �M2
RÞ2 þ

�2
RM

2
RÞ, the relation is given by �2 ¼ M2

R þMR�R tanð�z=2Þ,
with z 2 U½0; 1�. This distribution must be cut and normalized
when negative �2 values are generated.
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FVðtÞ ¼ ð1� cÞ m2
�

m2
� � t

þ c
m2

�0

m2
�0 � t

; (43)

such that

1

6
hr2i ¼ ð1� cÞ 1

m2
�

þ c
1

m2
�0
: (44)

Thus by imposing the physical value of hr2i we get the
value of c for any m� and m�0 . Taking again the PDG

values for those quantities [m� ¼ 0:77549ð34Þ GeV,
m0

�¼1:465ð25ÞGeV, hr2i ¼ ð0:672ð8Þ fmÞ2] we obtain c¼
�0:227ð39Þ. This result is shown in Fig. 3.

One could also carry out the analysis the other way
around, starting from Eqs. (40) and (43) with all of the
constants treated as free parameters to be determined by a
fit to the experimental data. It was shown in Refs. [11,37]
that by this method one can retain a precise value for hr2i,
even though the masses do not have their precise physical
values. In the large-Nc limit, when the functions become
meromorphic, this fitting procedure is mathematically safe
thanks to the convergence theorems from the Padé theory
[37]. In this framework, Fig. 3 of Ref. [11] shows the half-
width rule as a good estimation of the systematic error
done on the determination of the poles when fitting the
spacelike data.

B. Axial form factor

The axial form factor of the pion is intimately related to
the pion radiative decay �� ! l��	 (with l standing for e
or�) and its hadronic contribution. The decay proceeds via
ordinary inner bremsstrahlung from the weak decay �� !
l�	 accompanied by the photon radiated from the external
charged particles, and the structure-dependent interaction
(SD) between the photon and the virtual hadronic states,
with contributions of both vector and axial-vector form
factors.
For the transition �þ ! �	ee

þ [58], the structure-
dependent amplitude is given by

MSD ¼ ieGF cos�c �u	��ð1� �5Þve�
	
	M

�	=
ffiffiffi
2

p
m�; (45)

where �� is the polarization vector of the photon,GF is the
weak interaction coupling constant, and �c is the Cabibbo
angle. The hadronic contribution is enclosed in the ampli-
tude M�	 and reads

M�	 ¼ FVðtÞ��	�
p�q
 � iFAðtÞ½q	ðq� þ p�Þ
� g�	q � ðqþ pÞ�; (46)

with FV;AðtÞ denoting the vector and axial-vector form

factors, respectively. By assuming axial-meson domi-
nance, we have

0 2 4 6 8 10 12
0.0

0.2

0.4

0.6

0.8

1.0

Q2 GeV2

GeV2 GeV2

F
Q

2

0 5 10 15 20 25 30 35
0.00

0.05

0.10

0.15

0.20

0.25

0.30

Q2 GeV2

F
Q

2
G

eV
1

0 2 4 6 8 10 12
0.0

0.2

0.4

0.6

0.8

Q2

Q
2 F

Q
2

G
eV

2

0 10 20 30 40
0.00

0.05

0.10

0.15

0.20

0.25

0.30

Q2

Q
2 F

Q
2

G
eV

FIG. 3 (color online). Top row: The pion charge form factor with the half-width-rule compared with the experimental data [87–97]
(left) and the pion-photon transition form factor compared with the experimental data [61–64] (right). Bottom row: The pion charge
form factor multiplied by Q2 (left) and the pion-photon transition form factor multiplied by Q2 (right); the horizontal dashed line
represents the asymptotic value 2f�.
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FAðtÞ ¼ FAð0Þ M2
A

M2
A � t

; (47)

with FAð0Þ ¼ 0:0119ð1Þ [59]. The result obtained with the
half-width rule is presented in Fig. 4.

C. Transition form factor

The pion-photon transition form factor �0 ! ��	 has
been subjected to vigorous discussion in recent years.
Firstly, its value at the origin is fixed by the chiral anomaly,

Fð0Þ ¼ 1

4�2f�
; (48)

while its asymptotic behavior is given by

FðQ2Þ ! 6f�
NcQ

2
þ � � � (49)

A simple model fulfilling both conditions is

FðQ2Þ ¼ 1

4�2f�

m2
�

m2
� þQ2

; (50)

provided one has the relation

m2
� ¼ 24�2f2�

Nc

; (51)

which givesm� ¼ 823 MeV for f� ¼ 92:6 MeV or m� ¼
770 MeV for f� ¼ 86:6 MeV in the chiral limit. The
result is shown in Fig. 3.

If we include two resonances [60], � and �0, we get, after
imposing the anomaly and large-Q2 behavior,

FðQ2Þ ¼ 1

4�2f�

m2
�m

2
�0 þ 24f2��

2Q2=Nc

ðm2
� þQ2Þðm2

�0 þQ2Þ : (52)

The result is shown in Fig. 5, usingm� ¼ 0:775 GeV,m0
� ¼

1:465 GeV, �� ¼ 0:150 GeV, and �0
� ¼ 0:400 GeV.

One could even go beyond this approximation by includ-
ing a third resonance (the �00). This introduces a new
parameter that can be fixed by the derivative of the form
factor at the origin, the parameter a� [13]:

FðQ2Þ¼ 1

4�2f�

m2
�m

2
�0m2

�00 þbQ2þ24f2��
2Q4=Nc

ðm2
�þQ2Þðm2

�0 þQ2Þðm2
�00 þQ2Þ ; (53)

where the parameter b can be obtained through a matching
procedure to the low-energy expansion of FðQ2Þ,
i.e., b ¼ m2

�m
2
�0m2

�00 ða�m2
�
þ 1

m2
�
þ 1

m2

�0
þ 1

m2

�00
Þ. Given m� ¼

0:135 GeV, m�, m0
�, m00

� ¼ 1:720ð20Þ GeV, and a� ¼
0:032ð4Þ, we obtain b ¼ 5:82ð18Þ.
Figure 3 of Ref. [13] shows how the half-width rule

provides a good estimate of the systematic error on the
determination of poles of rational approximants, such as
Eqs. (52) and (54), when fitting to the spacelike data [61–64].

D. Gravitational form factor

The gravitational quark form factors of the pion [65],	1

and 	2, are defined through the matrix element of the
quark part of the energy-momentum tensor in the one-
pion state:

h�bðp0Þj	�	ð0Þj�aðpÞi ¼ 1

2
�ab½ðg�	q2 � q�q	Þ	1ðq2Þ

þ 4P�P		2ðq2Þ�; (54)

where P ¼ 1
2 ðp0 þ pÞ, q ¼ p0 � p, and a, b are the isospin

indices. The gravitational form factors satisfy the low-energy
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FIG. 5 (color online). Band: the pion-photon transition form
factor of Eq. (52). Points: various experimental data [61–64].
The horizontal line represents the theoretic asymptotic value
of 2f�.
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FIG. 4 (color online). Axial form factor in the spacelike region t < 0.
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theorem, 	1ð0Þ �	2ð0Þ ¼ Oðm2
�Þ [65]. The trace part is

dominated by scalar states, while the traceless component
is dominated by spin-2 tensor mesons.

Following the standard notation for the moments of the
pion GPDs [26], we introduce

A20ðtÞ ¼ 1

2
	1ðtÞ; A22ðtÞ ¼ � 1

2
	2ðtÞ; (55)

where the symbols 	iðtÞ denote the quark parts of the
gravitational form factors of Eq. (54). We also consider
the moment

A10ðtÞ ¼ FVðtÞ; (56)

with FVðtÞ denoting the electromagnetic form factor
described in Sec. IVA.

The results of monopole representations with the half-
width rule are shown in Fig. 6, where we consider

A10ðtÞ ¼
m2

�

m2
� � t

; A20ðtÞ ¼ A20ð0Þ
m2

f2

m2
f2
� t

; (57)

with mf2 ¼ 1:320 GeV, �f2 ¼ 0:185 GeV, and A20ð0Þ ¼
0:261. We also show in Fig. 6 the low-energy theorem that
relates A20ðtÞ with the other moment, A22ðtÞ. The relation
A22ð0Þ ¼ � 1

4A20ð0Þ is compared to the lattice data of

Refs. [66,67].

V. NUCLEON FORM FACTORS

A. Electromagnetic form factors

In the nonstrange sector the electromagnetic current is
given by

J
�
emðxÞ ¼ 1

2
J
�
B ðxÞ þ J

�3
V ðxÞ; (58)
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FIG. 6 (color online). Electromagnetic form factor A10ðtÞ, the corresponding ð�tÞA10ðtÞ, and the quark part of the gravitational form
factor A20ðtÞ and ð�tÞA20ðtÞ, compared to the lattice data from Ref. [66] (top and middle row, respectively). The spin-0 gravitational
form factor of the pion, A22ðtÞ, from the lattice calculation of Refs. [66,67] is extrapolated to the physical pion mass. Red squares
correspond to A22ðtÞ and blue circles to �A20ðtÞ=4 (bottom row).
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where J
�
B ðxÞ is the baryon current and J

�3
V ðxÞ is the third

component of the isospin current:

J�B ðxÞ ¼ �qðxÞ��qðxÞ; J�a
V ðxÞ ¼ �qðxÞ�� �a

2
qðxÞ: (59)

The matrix elements of these currents are

hNðp0ÞjJ�B ð0ÞjNðpÞi ¼ �uðp0Þ
�
��FI¼0

1 ðq2Þ

þ i��	q	
2MN

FI¼0
2 ðq2Þ

�
uðpÞ;

hNðp0ÞjJ�a
V ð0ÞjNðpÞi ¼ �uðp0Þ �

a

2

�
��FI¼1

1 ðq2Þ

þ i��	q	
2MN

FI¼1
2 ðq2Þ

�
uðpÞ; (60)

where q ¼ p0 � p, and F1 and F2 are the Dirac and Pauli
form factors, respectively. The relation to the proton and
neutron form factors is

Fp
i ¼ ðFI¼0

i þ FI¼1
i Þ; Fn

i ¼ ðFI¼0
i � FI¼1

i Þ; (61)

where

Fp
1 ð0Þ ¼ 1; Fn

1ð0Þ ¼ 0; (62)

Fp
2 ð0Þ ¼ p; Fn

2 ð0Þ ¼ n: (63)

The quantitiesp ¼ 1:793 andn ¼ �1:913 are the anoma-

lous proton and neutron magnetic moments, respectively.
The electric and magnetic Sachs form factors are defined as

Gp
Eðq2Þ ¼ Fp

1 ðq2Þ þ
q2

4M2
N

Fp
2 ðq2Þ;

Gn
Eðq2Þ ¼ Fn

1ðq2Þ þ
q2

4M2
N

Fn
2 ðq2Þ;

Gp
Mðq2Þ ¼ Fp

1 ðq2Þ þ Fp
2 ðq2Þ;

Gn
Mðq2Þ ¼ Fn

1ðq2Þ þ Fn
2 ðq2Þ:

(64)

The normalization conditions become

Gp
Eð0Þ ¼ 1; Gn

Eð0Þ ¼ 0; (65)

Gp
Mð0Þ ¼ �p; Gn

Mð0Þ ¼ �n; (66)

where �p ¼ 2:79�N and �n ¼ �1:91�N, with �N ¼
e=ð2MNÞ denoting the nuclear magneton.

The asymptotic behavior for t ! �1 is given by [3]

tiþ1FiðtÞ ! ½logð�t=�2Þ���; ði ¼ 1; 2Þ; (67)

where the anomalous dimension �� 2 is weakly depen-
dent on the number of flavors. As mentioned before, such a
slowly changing log behavior cannot be reproduced with a
finite number of resonances, and thus we assume it to be
constant. At the leading order in the large-Nc expansion the
form factors read

FI¼0
1 ðtÞ ¼ X

V

g!NNf!�

m2
! � t

; FI¼0
2 ðtÞ ¼ P

V

f!NNf!�

m2
!�t

;

FI¼1
1 ðtÞ ¼ X

V

g�NNf��

m2
� � t

; FI¼1
2 ðtÞ ¼ X

V

f�NNf��

m2
� � t

:

(68)

We define the strong isoscalar and isovector vertices

hNðp0Þj!�jNðpÞi ¼ �uðp0Þ
�
g!NN�

�

þ f!NN

i��	q	
2MN

�
uðpÞ;

hNðp0Þj��
a jNðpÞi ¼ �uðp0Þ �a

2

�
g�NN�

�

þ f�NN

i��	q	
2MN

�
uðpÞ: (69)

According to Eq. (67), the minimum number of resonances
is two and three for the Dirac and Pauli form factors,
respectively. We use the normalization conditions at the
origin, the asymptotic conditions, and fix the vector and
tensor couplings to the lowest-lying resonance, g!NN ,
f!NN , g�NN , f�NN in the isoscalar and isovector channels.

Our illustrative goal here is to predict the form factors
without attempting a detailed fit to the data.
For the case of mesons the 1=Nc counting provides

strict bookkeeping, with the leading diagrams taking the
form of trees. For the baryon sector this is not the case.
The reason is that in some channels the meson-baryon
coupling scales as

ffiffiffiffiffiffi
Nc

p
(for instance, the pion-nucleon

coupling). This leads to enhancement, such that the cou-
pling of the current via a meson loop acquires the sameNc

scaling as the tree-level coupling (see Refs. [68,69] and
references therein). In view of this, the meson-dominance
approach is heuristic, assuming more than the 1=Nc ex-
pansion. We will show, however, that this approach, and
in particular the half-width rule, work quite well for the
nucleon form factors.
After imposing all the conditions on the form factors in

Eq. (68), we get

FI¼0
1 ðtÞ ¼ 1

2

1� c0t=m
2
!00

ð1� t=m2
!Þð1� t=m2

!0 Þð1� t=m2
!00 Þ ;

FI¼1
1 ðtÞ ¼ 1

2

1� c1t=m
2
�00

ð1� t=m2
�Þð1� t=m2

�0 Þð1� t=m2
�00 Þ ;

FI¼0
2 ðtÞ ¼ 1

2

1

ð1� t=m2
!Þð1� t=m2

!0 Þð1� t=m2
!00 Þ ;

FI¼1
2 ðtÞ ¼ 1

2

1

ð1� t=m2
�Þð1� t=m2

�0 Þð1� t=m2
�00 Þ ;

(70)

where the constants c0 and c1 are determined from the
values of g!NN and g�NN , respectively, as
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g!NNf!�

m2
!

¼ 1

2

1� c0m
2
!=m

2
!00

ð1�m2
!=m

2
!0 Þð1�m2

!=m
2
!00 Þ ;

g�NNf��

m2
�

¼ 1

2

1� c0m
2
�=m

2
�00

ð1�m2
�=m

2
�0 Þð1�m2

�=m
2
�00 Þ :

(71)

Thus, with the electromagnetic decay widths for the vector
mesons,F�¼0:149GeV, we find [Eq. (41)]�ð�!eþe�Þ¼
4��2F2

�=m�=3, which is numerically equal to 6.4 keV.

Detailed fits implementing VMD [70] require large
Okubo-Zweig-Iizuka violations as well as a huge departure
from the flavor SU(3) symmetry (see also Ref. [71]). In

particular, the value of g!NN � gSUð3Þ!NN [46,72]. However,
the simple Kelly parametrization [73] provides a success-
ful fit in the spacelike region as a rational function with the
correct large-momentum behavior.

The result of varying the masses according to the half-
width rule is presented in Fig. 7. We consider the SU(3)
case where g!NN=g�NN ¼ f!NN=f�NN ¼ 3, as well as a

30% violation for the ratio (the orange and blue bands in
Fig. 7, respectively). We recall that in the meson-exchange
models [74] or in dispersive analyses of the nucleon form
factors [46,72] even much larger symmetry breaking is
needed to comply with the phenomenology.

B. Axial and pseudoscalar form factors

The axial matrix element of the nucleon is defined by
(for a recent review see, e.g., Ref. [75] and references
therein)

hNðp0ÞjJ�a
A ð0ÞjNðpÞi ¼ �uðp0Þ �

a

2
�5

�
��GAðq2Þ

þ q�

2MN

GPðq2Þ
�
uðpÞ; (72)

where GAðq2Þ and GPðq2Þ are the axial and the induced
pseudoscalar form factors, respectively. The QCD axial
current is

J�a
A ðxÞ ¼ �qðxÞ�� �a

2
qðxÞ; (73)

while the current-field identity relating it to the axial-
meson field A�	 and the pseudoscalar field P is

J�a
A ðxÞ ¼ X

fA@	A
a�	ðxÞ þX

fP@
�PaðxÞ: (74)

Therefore, we have

GAðtÞ ¼ gA þ
X
A

fAgANNt

M2
A � t

;

GPðtÞ ¼ �X
A

4M2
NfAgANN

M2
A � t

þX
P

4MNFPgPNN

M2
P � t

:

(75)

We use here the extended partially conserved axial-vector
current form [76], which for the on-shell mesons reads

@�J
�a
A ðxÞ ¼ X

fPM
2
PP

aðxÞ; (76)

yielding the following relation among the form factors:

2MNGAðtÞ þ t

2MN

GPðtÞ ¼
X
P

2M2
PFP

M2
P � t

gPNN: (77)
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FIG. 7 (color online). The electromagnetic nucleon form factors compared to the data for the proton [98] and neutron [99] (and
references therein). Orange (lighter) band: g!NN ¼ 9. Blue (darker) band: g!NN ¼ 12.
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The pseudoscalar-nucleon coupling is defined by

hp0jð@2 þM2
PÞPa

nðxÞjpi ¼ gPNN �uðp0Þi�5�
auðpÞ: (78)

From here we get the (extended) Goldberger-Treiman
relation

MNgA ¼ X
P

FPgPNN ¼ f�g�NN þ f�0g�0NN þ � � � (79)

The high-energy behavior of the weak form factors in
QCD was discussed many years ago [77,78]. At high Q2,
one has for the isovector [79] and isoscalar [80] the
asymptotic behavior

Q4GAð�Q2Þ ! const: (80)

We also have the sum rules

gA ¼ X
A

fAgANN; 0 ¼ X
A

fAgANNM
2
A: (81)

It is noteworthy that most determinations of the axial
form factor proceed via a dipole fit,

GAðtÞ ¼ gA
ð1� t=�2

AÞ2
; (82)

suggesting a 1=t2 falloff at large t. The values of the pa-
rameter are�A ¼ 1:026ð21Þ GeV or�A ¼ 1:069ð16Þ GeV,
depending on the process [75]. In the literature �A is
denoted and called the axial mass (see, e.g., Ref. [75]).
This is not our axial meson mass, since Eq. (82), although
phenomenologically successful, cannot be justified from a
field-theoretic point of view and is in contradiction with the
large-Nc-motivated parametrization.

The minimum meson-dominance ansatz compatible
with low- and high-energy constraints reads

GAðtÞ ¼ gA
m2

a1m
2
a0
1

ðm2
a1 � tÞðm2

a0
1
� tÞ ;

GPðtÞ ¼ GAðtÞ GPð0Þ
m2

p � t
:

(83)

By applying the half-width rule to this parametrization, i.e.,
using ma1 ¼ 1:230 GeV, ma0

1
¼ 1:647, �a1 ¼ 0:425 GeV,

and �a0
1
¼ 0:254 GeV, we get the results depicted in Fig. 8.

As we can see, the results are in reasonable agreement with
the data. Actually, the two axial mesons are incorporated as
a product of monopoles, but since they have an overlapping
spectrum, the net effect is essentially a dipole form factor
with an average mass which is somewhat larger than the
usual dipole cutoff.

C. Gravitational form factors

The discussion of the nucleon gravitational form factors
follows closely the pion case with suitable changes. For the
nucleon case, the quark contributions to these form factors
have been determined by the QCDSF Collaboration [81]
and the LHPC Collaboration [82].
The decomposition, corresponding to the energy-

momentum tensor matrix elements taken between nucleon
states, reads

hp0j	q
�	jpi ¼ �uðp0Þ

�
Aq
20ðtÞ

��P	 þ �	P�

2

þ Bq
20ðtÞ

iðP��	� þ P	���Þ��

4MN

þ Cq
20ðtÞ

���	 � g�	�
2

MN

�
uðpÞ; (84)

where ��	 ¼ i
2 ½��; �	� (the Bjorken-Drell notation), the

scalar functions are moments of the GPDs, the momentum
transfer is denoted as� ¼ p0 � p, and the average nucleon
momentum is P ¼ ðp0 þ pÞ=2. Taking the trace and apply-
ing the Gordon identity, 2MN �uðp0Þ��uðpÞ ¼ �uðp0Þ 

ði����� þ 2P�ÞuðpÞ, as well as the Dirac equation,

ð6p�MNÞuðpÞ ¼ 0 and �uðp0Þð6p0 �MNÞ ¼ 0, we obtain
the following expression for the spin-0 gravitational form
factor of the nucleon:

	q
NðtÞ ¼ MN

�
Aq
20ðtÞ þ

t

4M2
M

Bq
20ðtÞ �

3t

M2
N

Cq
20ðtÞ

�
; (85)

whereas the spin-2 (normalized) component becomes
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FIG. 8 (color online). The isovector-axial nucleon form factors using two axial masses (left panel). The isovector-pseudoscalar
nucleon form factor using two axial masses and the lightest pion considered in Ref. [100] (right panel).
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Fq
TðtÞ ¼

Aq
20ðtÞ

Aq
20ð0Þ

: (86)

The trace is dominated by 0þþ scalar states. For the
monopole representation of the gravitational form factor,

G�ðtÞ ¼
m2

f0

m2
f0
� t

; (87)

depicted in Fig. 9, we use the updated values of the sigma
meson properties from the latest edition of the PDG tables
[59], i.e., m� ¼ 475 MeV and �� ¼ 550 MeV.

The traceless part of the energy-momentum tensor cor-
responds to a spin-2 isoscalar gravitational form factor
which naturally couples to the f2 meson within a tensor-
dominance approximation. For the nucleon this FF has
been determined by two lattice groups in Refs. [81,82].
Actually, in Ref. [81] a dipole fit describes the data suc-
cessfully, namely

FTðtÞ ¼ 1

ð1� t=�2
TÞ2

; (88)

with �T ¼ 1:1ð2Þ GeV, if a linear extrapolation in m� to
the physical point is assumed. Assuming an asymptotic
falloff for the form factor, such that FTðtÞ ¼ Oðt�2Þ, we
just take a sum of two monopoles that reduces to

FTðtÞ ¼
m2

f2

m2
f2
� t

m2
f02

m2
f02
� t

: (89)

The PDG tables quote mf2 ¼ 1:320 GeV and �f2 ¼
0:185 GeV, and for the first excited state gives mf02 ¼
1:525 GeV and �f0

2
¼ 0:073 GeV.7

As we can see from Fig. 10, similarly to the case of the
axial nucleon FF, the dipole FF with an uncertainty essen-
tially corresponds to two monopoles after the half-width
rule has been implemented.

VI. CONCLUSIONS

In the present work we have taken advantage of the well-
known fact that in the large-Nc limit of QCD the general-
ized hadronic form factors, probing bilinear �qq operators
with given JPC quantum numbers, feature generalized
meson dominance of �qq states with the same quantum
numbers. They assume the monopole form

hAðp0ÞjJð0ÞjhBðpÞi �X
n

cABn m2
n

m2
n � t

; (90)

where mn are the meson masses and cABn are suitable
couplings. Thus generalized form factors at some finite
momentum transfer essentially measure the masses of the
lowest-lying mesons.
The goal of this paper was to present a comprehensive

analysis of the pion and nucleon form factors, providing a
theoretical uncertainty following from the half-width rule.
We have incorporated the following:
(i) The correct asymptotic power-like behavior of form

factors (short-distance constraints).
(ii) Low-momentum normalization constraints.
(iii) The minimum number of mesons with the relevant

quantum numbers in each channel.
(iv) Theoretical error estimates based on the half-width

rule.
Given the approximate nature of the underlying large-Nc

expansion, we should not expect perfect agreement with
data. Rather, the addressed question is how we can estimate
the accuracy of the large-Nc expansion for hadronic form
factors, which are basic experimental quantities. In the
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FIG. 9 (color online). Spin-0 gravitational form factor of the
nucleon, G�ðtÞ, obtained from the lattice simulations of Ref. [82]
at the pion masses m� ¼ 352:3 MeV (blue circles) and m� ¼
356:6 MeV (red squares).
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FIG. 10 (color online). Spin-2 isoscalar gravitational form
factor of the nucleon, FTðtÞ, obtained from the lattice simulations
of Ref. [82] at the pion masses m� ¼ 352:3 MeV and m� ¼
356:6 MeV (blue circles and red squares, respectively), together
with the results of Ref. [82] linearly extrapolated to the physical
pion mass (black triangles).

7This is somewhat different from the results of Ref. [83], with
a width about four times larger for the f2ð1565Þ meson. In any
case, for the spin-2 form factor the difference becomes rather
irrelevant in the region below 1 GeV.
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present paper we provide arguments in favor of the simple
rule, where a rough estimate is given by varying the
resonance mass within its width range. As we have seen,
this provides a surprisingly close answer to the data, which
fall within the bands produced with the half-width rule.
While this presumably is a conservative assumption, it still
provides a cheap estimate based on an independent source
of information.

Extension to other baryons and mesons is straightfor-
ward, as well as to the transition matrix elements. One
useful application of the meson-dominance scheme is the
a priori determination of generalized form factors, just
based on the PDG tables, for which abundant data have
begun being produced on the lattice. Our calculations show
that improving on the uncertainty predictions based of the
half-width rule may require highly refined lattice studies
beyond the present accuracy.
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APPENDIX: CUTOFF DEPENDENCE
OF THE MASS SHIFT

In this appendix we analyze the mass shift of the lowest-
lying scalar and vector resonances due to the most relevant
decays, S ! �� and V ! ��. With a chiral derivative
coupling, one obtains [75]

�SðsÞ ¼ 3mSs

16�f4�
�S

�
cd þ ðcm � cdÞ 2m

2
�

m2
S

�
2
;

�VðsÞ ¼ G2
VmVs

48�f4�
�3
V;

(A1)

where �R ¼ �ðm2
RÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4m2

�=m
2
R

q
. Note the additional

s factors appearing in the widths. By using the dispersion
relation for the self-energy, Eq. (18), we can see that the
real part of the integral is quartically divergent and thus
three subtractions are needed. This is equivalent to fixing
the mass and the width. On the contrary, the imaginary part
is finite and provides the width at the physical value. This
argument shows that we need more input information, and
until then have we no predictive power. Within a large-Nc

environment [84] we use BW and not pole reference sub-
traction values for both mesons in this study.

In order to get an estimate, we assume some form of the
hadronic form factor for the vertex ���. Out of ignorance,
we consider different cutoff functions,

G���ðq2Þ ¼
�
q2 þ�2

sþ�2

�
n
; (A2)

which preserve the imaginary part, G���ðm2
�Þ, and hence

the width. Here n ¼ 1 corresponds to a monopole, n ¼ 2
corresponds to a dipole, and the limit n ! 1 corresponds
to a sharp cutoff. We naturally expect � to be in the range
above m� and around m�0 , which corresponds to ignoring

all states above these energies. With these conditions, and
assuming a small correction, we get a mass shift

�m� ¼ 1

�

Z 1

4m2
�

ds
G���ðsÞ����ðsÞ

sðs�m2
�Þ

: (A3)

The results are depicted in Fig. 11 as a function of the
cutoff scale. As expected, the overall order of magnitude is
quite compatible with the half-width rule.
In a theory with a finite number of resonances there is, of

course, an implicit high-energy cutoff corresponding to the
next (not included) meson. Assuming a vanishing contri-
bution of the higher-energy states, one may make a rough
estimate of the mass shift. For instance, for the �-meson
one has [85] a shift of about half the width. Of course, this
may be partly a numerical coincidence, but it illustrates the
point that parametrically the mass shift and the width scale
in a similar way.
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FIG. 11 (color online). Mass shifts �m (in GeV) of the
�-meson (top panel) and the �-meson (bottom panel), due to
pion loops, plotted as functions of the cutoff � (in GeV) for
several cutoff functions: monopole (dashed brown), dipole (solid
red), and sharp cutoff (dot-dashed blue).
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Schädlich, Z. Phys. C 3, 101 (1979).

[93] S. R. Amendolia et al. (NA7), Nucl. Phys. B277, 168
(1986).

[94] J. Volmer et al. (Jefferson Lab F(pi) Collaboration), Phys.
Rev. Lett. 86, 1713 (2001).

[95] V. Tadevosyan et al. (Jefferson Lab F(pi) Collaboration),
Phys. Rev. C 75, 055205 (2007).

[96] T. Horn et al. (Jefferson Lab F(pi)-2 Collaboration), Phys.
Rev. Lett. 97, 192001 (2006).

[97] T. Horn et al., Phys. Rev. C 78, 058201 (2008).
[98] J. Arrington, W. Melnitchouk, and J. Tjon, Phys. Rev. C

76, 035205 (2007).
[99] C. Perdrisat, V. Punjabi, and M. Vanderhaeghen, Prog.

Part. Nucl. Phys. 59, 694 (2007).
[100] C. Alexandrou et al. (ETM Collaboration), Phys. Rev. D

83, 045010 (2011).

MASJUAN, ARRIOLA, AND BRONIOWSKI PHYSICAL REVIEW D 87, 014005 (2013)

014005-16

http://dx.doi.org/10.1103/PhysRevLett.101.122001
http://dx.doi.org/10.1103/PhysRevLett.101.122001
http://dx.doi.org/10.1103/PhysRevLett.79.597
http://dx.doi.org/10.1103/PhysRevLett.91.012001
http://dx.doi.org/10.1103/PhysRevLett.91.012001
http://dx.doi.org/10.1088/0954-3899/29/2/316
http://dx.doi.org/10.1088/0954-3899/29/2/316
http://dx.doi.org/10.1103/PhysRevC.82.038201
http://dx.doi.org/10.1016/0375-9474(95)00339-8
http://dx.doi.org/10.1016/0375-9474(95)00339-8
http://dx.doi.org/10.1103/PhysRevC.70.068202
http://dx.doi.org/10.1016/S0370-1573(87)80002-9
http://dx.doi.org/10.1016/S0370-1573(87)80002-9
http://dx.doi.org/10.1088/0954-3899/28/1/201
http://dx.doi.org/10.1088/0954-3899/28/1/201
http://dx.doi.org/10.1103/PhysRevD.15.1350
http://dx.doi.org/10.1007/BF01474131
http://dx.doi.org/10.1103/PhysRevD.23.1152
http://dx.doi.org/10.1103/PhysRevD.23.1152
http://dx.doi.org/10.1103/PhysRevD.34.1478
http://dx.doi.org/10.1103/PhysRevD.36.2169
http://dx.doi.org/10.1103/PhysRevLett.92.042002
http://dx.doi.org/10.1103/PhysRevLett.92.042002
http://dx.doi.org/10.1103/PhysRevD.85.014001
http://dx.doi.org/10.1103/PhysRevD.84.096002
http://dx.doi.org/10.1103/PhysRevD.84.096002
http://dx.doi.org/10.1103/PhysRevD.49.3512
http://dx.doi.org/10.1103/PhysRevD.49.3512
http://dx.doi.org/10.1103/PhysRevD.83.074004
http://dx.doi.org/10.1103/PhysRevD.8.92
http://dx.doi.org/10.1103/PhysRevD.9.1229
http://dx.doi.org/10.1103/PhysRevD.13.25
http://dx.doi.org/10.1103/PhysRevD.17.1693
http://dx.doi.org/10.1103/PhysRevLett.39.1176
http://dx.doi.org/10.1007/BF01443698
http://dx.doi.org/10.1016/0550-3213(86)90437-2
http://dx.doi.org/10.1016/0550-3213(86)90437-2
http://dx.doi.org/10.1103/PhysRevLett.86.1713
http://dx.doi.org/10.1103/PhysRevLett.86.1713
http://dx.doi.org/10.1103/PhysRevC.75.055205
http://dx.doi.org/10.1103/PhysRevLett.97.192001
http://dx.doi.org/10.1103/PhysRevLett.97.192001
http://dx.doi.org/10.1103/PhysRevC.78.058201
http://dx.doi.org/10.1103/PhysRevC.76.035205
http://dx.doi.org/10.1103/PhysRevC.76.035205
http://dx.doi.org/10.1016/j.ppnp.2007.05.001
http://dx.doi.org/10.1016/j.ppnp.2007.05.001
http://dx.doi.org/10.1103/PhysRevD.83.045010
http://dx.doi.org/10.1103/PhysRevD.83.045010

