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We present results for W-boson production at large transverse momentum at LHC and Tevatron

energies. We calculate complete next-to-leading-order QCD corrections and higher-order soft-gluon

corrections to the differential cross section. The soft-gluon contributions are resummed at next-to-next-

to-leading-logarithm accuracy via the two-loop soft anomalous dimensions. Both next-to-leading-order

and approximate next-to-next-to-leading-order pT distributions are presented. Our numerical results are in

good agreement with recent data from the LHC.
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I. INTRODUCTION

The production of W bosons with large transverse
momentum, pT , has been observed and analyzed at the
Tevatron over the past two decades, and significantly
higher event rates have been observed as expected at the
LHC over the past couple of years. This Standard Model
process is a background to Higgs production and new
physics, and thus it is important to have accurate theoreti-
cal predictions to exploit fully the large number of events at
the LHC. The pT distribution falls rapidly with increasing
pT , spanning several orders of magnitude over accessible
regions at hadron colliders. High-pT W production has a
clean experimental signature when the W decays to lep-
tons, and solid predictions are needed to reduce uncertain-
ties in precision measurements of the W mass and decay
width. The charged leptons in complementary processes
involving Z bosons can be measured with somewhat higher
resolution than the neutrino, but the observed event rate for
W bosons at the LHC is as much as a factor of 10 larger
than that for Z bosons. Precise calculations for W produc-
tion at large pT are also needed to identify signals of
possible new physics, such as new gauge bosons, which
may enhance the pT distribution at large pT .

At leading order (LO) in the strong coupling �s, a W
boson can be produced with large pT by recoiling against a
single parton which decays into a jet of hadrons. The LO
partonic processes for W production at large pT are qg !
Wq and q �q ! Wg.

The next-to-leading-order (NLO) corrections arise from
one-loop parton processes with a virtual gluon, and real
radiative processes with two partons in the final state. The
NLOcorrections to the cross section forW production at large
pT were calculated in Refs. [1,2] where complete analytic
expressions were provided. Numerical NLO results for pro-
duction at the Tevatron were also presented in Refs. [1,2]. The
predictions are consistent with the data from the CDF [3] and
D0 [4] collaborations. The NLO corrections enhance the
differential distributions inpT of theW boson, and they reduce
the factorization and renormalization scale dependence.

Beyond NLO, it is possible to calculate contributions
from the emission of soft gluons. These corrections can
be formally resummed, and they were first calculated
to next-to-leading-logarithm (NLL) accuracy in Ref. [5].
Approximate next-to-next-to-leading-order (NNLO) cor-
rections derived from the resummation were used in
Ref. [6] and were shown to provide enhancements and a
further reduction of the scale dependence. Numerical
results were presented for the Tevatron in Ref. [6] and
for the LHC at 14 TeV energy in Ref. [7]. In this paper
we extend the resummation to next-to-next-to-leading-
logarithm (NNLL) accuracy (see also Ref. [8]). A related
study using soft-collinear effective theory (SCET) has
recently appeared in Ref. [9].
In the next section we briefly review the NLO calcula-

tion and present numerical results for the pT distribution of
the W at the LHC and the Tevatron. Section III discusses
NNLL resummation for the soft-gluon corrections. In
Sec. IV we derive approximate NNLO expressions from
the NNLL resummation, and we present approximate
NNLO pT distributions for the W boson at the LHC and
the Tevatron. We conclude in Sec. V.

II. NLO RESULTS

We start with the leading-order contributions to W pro-
duction at large pT with a single hard parton in the final
state. The two contributing subprocesses are

qðpaÞ þ gðpbÞ ! WðQÞ þ qðpcÞ
and

qðpaÞ þ �qðpbÞ ! WðQÞ þ gðpcÞ:
We define the kinematic variables s ¼ ðpa þ pbÞ2,
t ¼ ðpa �QÞ2, u ¼ ðpb �QÞ2, and s4¼sþtþu�Q2.
At the partonic threshold, where there is no available
energy for additional radiation, s4 ! 0. The partonic cross
sections are singular in this limit, but the divergences are
integrable when averaged over the parton distributions in
the colliding hadrons.
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The LO diagrams are shown in Figs. 1 and 2. The LO
differential cross section for the qg ! Wq process is

EQ

d�B
qg!Wq

d3Q
¼ FB

qg!Wq�ðs4Þ; (2.1)

where

FB
qg!Wq ¼ ��sð�2

RÞCF

sðN2
c � 1Þ Aqg

X
f

jLffa j2;

Aqg ¼ �
�
s

t
þ t

s
þ 2uQ2

st

�
;

(2.2)

with �R the renormalization scale, L the left-handed cou-
plings of the W boson to the quark line, and f the quark
flavor. Also CF ¼ ðN2

c � 1Þ=ð2NcÞ, with Nc ¼ 3 the num-
ber of colors.

For the process q �q ! Wg the LO result is

EQ

d�B
q �q!Wg

d3Q
¼ FB

q �q!Wg�ðs4Þ; (2.3)

where

FB
q �q!Wg ¼

��sð�2
RÞCF

sNc

Aq �qjLfbfa j2;

Aq �q ¼ u

t
þ t

u
þ 2Q2s

tu
:

(2.4)

The complete NLO corrections were derived in
Refs. [1,2]. The virtual corrections involve ultraviolet diver-
gences which renormalize �s and make it depend on the
renormalization energy scale which we set to be�pT . Both
the real and the virtual corrections display soft and collinear
divergences which arise from the masslessness of the glu-
ons and the zero-mass approximation for the quarks. The
soft divergences cancel between real and virtual processes,
while the collinear singularities are factorized in a process-
independent manner and absorbed into factorization-scale-
dependent parton distribution functions.

The complete NLO corrections to the LO differential
cross section can be written as a sum of two terms,

EQ

d�̂ð1Þ
fafb!WðQÞþX

d3Q
¼ �2

sð�2
RÞ½�ðs4ÞBðs; t; u; �RÞ

þ Cðs; t; u; s4; �FÞ� (2.5)

with�F the factorization scale. The coefficient functions B
andC depend on the parton flavors.Bðs; t; u; �RÞ is the sum
of virtual corrections and of singular terms ��ðs4Þ in the
real radiative corrections. Cðs; t; u; s4; �FÞ is from real
emission processes away from s4 ¼ 0. The NLO correc-
tions are crucial in reducing theoretical uncertainties and
thus in making more meaningful comparisons with experi-
mental data for W production at the Tevatron [3,4] and the
LHC [10] at large transverse momentum.
All numerical results presented in this paper are for the

sum ofWþ andW� differential cross sections. Initial-state
parton densities are taken from MSTW2008 [11]. We use
the NLO central sets with the QCD coupling evolved at
NLO in this section. In Sec. IV, where we include the
NNLL corrections, we employ the NNLO central sets
with the QCD coupling evolved at NNLO. The W is on
shell and final-state partons are integrated over the full
phase space.
We begin with results for W production at the LHC at

center-of-mass energy
ffiffiffi
S

p ¼ 7 TeV and with pT in the
range 20–500 GeV. At lower values of pT the fixed-order
NLO estimates become unreliable due to Sudakov loga-
rithms, and the comparison with experiment needs to
include nonperturbative pT smearing. We set the factoriza-
tion and renormalization scales equal to each other and
denote this common scale by�. In the left plot of Fig. 3 we
plot ratios for theW-boson pT distribution at the LHC with
various choices of scale to the central result with scale
� ¼ pT . We display the scale variation of the NLO result
with scale choices pT=2 and 2pT . We also show results for

the choice of scale � ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
T þm2

W

q
but note that the

numbers for this choice of scale are very similar to those
for � ¼ pT . We see that the scale variation is of the order
of�10%. The results for these ratios are almost identical at
8 TeV energy and very similar at 14 TeV.
In the right plot of Fig. 3 we show results for W pro-

duction at the Tevatron at 1.96 TeV energy. Again, we
display the scale variation of the NLO result with scale

choices pT=2 and 2pT and also
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
T þm2

W

q
. We note that

the published CDF and D0 analyses [3,4] involve older run
I data. The results presented here are also applicable to the
higher luminosity and energy data from run II.
We will say more about the scale variation in Sec. IV

when we include the NNLO soft-gluon corrections.
Another source of uncertainty in the differential distribu-
tions comes from the parton distribution functions (PDF).

FIG. 1. LO diagrams for the process qg ! Wq.

FIG. 2. LO diagrams for the process q �q ! Wg.
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We will return to the topic of PDF uncertainties when we
present the approximate NNLO results in Sec. IVC.

III. NNLL RESUMMATION

Near partonic threshold the corrections from soft-
gluon emissions are dominant. These corrections can be
resummed to all orders using renormalization group argu-
ments. The resummed cross section is derived in Mellin
moment space, with N the moment variable conjugate to
s4, and is given formally by

�̂resðNÞ ¼ exp

�X
i

EiðNiÞ
�
exp½E0

jðN0Þ�

� exp

�X
i

2
Z ffiffi

s
p

�F

d�

�
�i=ið ~Ni; �sð�ÞÞ

�

�Hð�sð
ffiffiffi
s

p ÞÞS
�
�s

� ffiffiffi
s

p
~N0

��

� exp

�Z ffiffi
s

p
= ~N0

ffiffi
s

p
d�

�
2Re�Sð�sð�ÞÞ

�
; (3.1)

where the first exponential resums the collinear and soft-
gluon radiation from the initial-state partons; the second
exponential resums the corresponding terms from the final
state; the third exponential controls the factorization scale
dependence of the cross section via the parton-density
anomalous dimension; H is the hard-scattering function;
and S is the soft-gluon function describing noncollinear
soft-gluon emission whose evolution is controlled by the
soft anomalous dimension �S. The first three exponentials
in Eq. (3.1) are independent of the color structure of the
hard scattering and thus universal [12,13], while the func-
tions H, S, and �S are process-specific [5,14]. More details
of the resummation formalism have been given before
(see e.g., Refs. [5,14,15]) and will not be repeated here.

We expand the process-specific soft anomalous dimen-
sions �S in the strong coupling as

�S ¼ �s

�
�ð1Þ
S þ �2

s

�2
�ð2Þ
S þ � � � : (3.2)

The one-loop results �ð1Þ
S are obtained from the ultraviolet

poles in dimensional regularization of one-loop eikonal dia-
grams involving the colored particles in the partonic pro-
cesses, Figs. 4 and 5, and were first derived in Ref. [5]. We

determine the two-loop results �ð2Þ
S from the ultraviolet poles

of two-loop dimensionally regularized integrals for eikonal
diagrams shown in Fig. 6 and related graphs involving other
combinations of the eikonal lines (see also Ref. [8]).
For qg ! Wq the one-loop soft anomalous dimension is

�ð1Þ
S;qg!Wq ¼ CF ln

��u

s

�
þ CA

2
ln

�
t

u

�
(3.3)

and the two-loop soft anomalous dimension is

�ð2Þ
S;qg!Wq ¼

K

2
�ð1Þ
S;qg!Wq; (3.4)

where K ¼ CAð67=18� �2Þ � 5nf=9 [16] with CA ¼ 3

and nf the number of light quark flavors.

FIG. 5. One-loop eikonal diagrams for q �q ! Wg.
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FIG. 3 (color online). Ratios of the W-boson NLO pT distribution with various choices of scale to the central result with scale
� ¼ pT at the LHC at 7 TeV (left) and at the Tevatron (right).

FIG. 4. One-loop eikonal diagrams for qg ! Wq.
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For q �q ! Wg the corresponding results are

�ð1Þ
S;q �q!Wg ¼

CA

2
ln

�
tu

s2

�
(3.5)

and

�ð2Þ
S;q �q!Wg ¼ K

2
�ð1Þ
S;q �q!Wg: (3.6)

We note that the proportionality of the two-loop soft
anomalous dimension to the one-loop result is anticipated
on general grounds from the work in Ref. [17] (see also
Refs. [18–20]).

IV. NNLO APPROXIMATE RESULTS

By expanding the resummed cross section, Eq. (3.1), in
the strong coupling we derive approximate fixed-order
results. In this section we present the analytical expressions
for the NNLO expansion and use them to present approxi-
mate NNLO results for theW-boson transverse momentum
distribution at the LHC and the Tevatron.

A. qg ! Wq

We can write the NLO soft and virtual corrections for
qg ! Wq as

EQ

d�̂ð1Þ
qg!Wq

d3Q
¼ FB

qg!Wq

�sð�2
RÞ

�

�
cqg3

�
lnðs4=p2

TÞ
s4

�
þ

þ cqg2

�
1

s4

�
þ
þ cqg1 �ðs4Þ

�
: (4.1)

The NLO coefficients cqg3 and cqg2 of the soft-gluon terms in

Eq. (4.1) can be derived from the expansion of the resummed
cross section and are given by cqg3 ¼ CF þ 2CA and

cqg2 ¼ �ðCF þ CAÞ ln
�
�2

F

p2
T

�
� 3

4
CF � CA ln

�
tu

sp2
T

�
: (4.2)

For later use in the NNLO results we also define the
scale-independent part of cqg2 as Tqg

2 ¼ �ð3=4ÞCF�
CA lnðtu=sp2

TÞ.
The coefficient of the �ðs4Þ terms in Eq. (4.1) is given by

cqg1 ¼ 1

2Aqg ½Bqg
1 þ Bqg

2 nf þ Cqg
1 þ Cqg

2 nf�

þ cqg3
2

ln2
�
p2
T

Q2

�
þ cqg2 ln

�
p2
T

Q2

�
; (4.3)

with Bqg
1 , Bqg

2 ,Cqg
1 , andCqg

2 as given in the Appendix of the

first paper in Ref. [2] but without the renormalization
counterterms and using fA � lnðA=Q2Þ ¼ 0 [note that
the terms not multiplying Aqg in Eq. (A4) for Bqg

1 of
Ref. [2] should have a sign opposite from the one shown
in that paper].
The NNLO expansion of the resummed cross section

involves logarithms lnkðs4=p2
TÞ with k ¼ 0, 1, 2, 3. The

terms with k ¼ 1, 2, 3 were already provided in
Refs. [5,6] from NLL resummation. Terms for k ¼ 0
were also given in Eq. (3.8) of Ref. [6] but they were
incomplete. Now that we have expressions for NNLL
resummation we can provide the complete result for the
k ¼ 0 terms.
The NNLO soft-gluon corrections for qg ! Wq can be

written as

EQ

d�̂ð2Þ
qg!Wq

d3Q
¼ FB

qg!Wq

�2
sð�2

RÞ
�2

�̂0ð2Þ
qg!Wq (4.4)

with

FIG. 6. Two-loop eikonal diagrams for qg ! Wq and q �q ! Wg involving the two incoming partons. There are two additional sets
of 12 diagrams each with the same topologies that involve one incoming and one outgoing parton.
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�̂0ð2Þ
qg!Wq ¼

1

2
ðcqg3 Þ2

�
ln3ðs4=p2

TÞ
s4

�
þ
þ

�
3

2
cqg3 cqg2 � �0

4
cqg3 þ CF

�0

8

��
ln2ðs4=p2

TÞ
s4

�
þ

þ
�
cqg3 cqg1 þ ðcqg2 Þ2 � �2ðcqg3 Þ2 � �0

2
Tqg
2 þ �0

4
cqg3 ln

�
�2

R

p2
T

�
þ ðCF þ 2CAÞK2 � 3

16
�0CF

��
lnðs4=p2

TÞ
s4

�
þ

þ
�
cqg2 cqg1 � �2c

qg
3 cqg2 þ �3ðcqg3 Þ2 þ �0

4
cqg2 ln

�
�2

R

s

�
� �0

2
CFln

2

��u

p2
T

�
� �0

2
CAln

2

��t

p2
T

�
� CFK ln

��u

p2
T

�

� CAK ln

��t

p2
T

�
þ ðCF þ CAÞ

�
�0

8
ln2

�
�2

F

s

�
� K

2
ln

�
�2

F

s

��
�

�
CF

K

2
� 3�0CF

16

�
ln

�
p2
T

s

�
þ 3�0

8
CFln

2

�
p2
T

s

�

þ 2Dð2Þ
q þDð2Þ

g þ Bð2Þ
q þ 2�ð2Þ

Sqg!Wq

��
1

s4

�
þ

(4.5)

with �0 ¼ ð11CA � 2nfÞ=3 and where we have used the
two-loop constants (cf. Refs. [21,22])

Dð2Þ
q ¼ CFCA

�
� 101

54
þ 11

6
�2 þ 7

4
�3

�

þ CFnf

�
7

27
� �2

3

�
; (4.6)

Dð2Þ
g ¼ ðCA=CFÞDð2Þ

q , and

Bð2Þ
q ¼C2

F

�
� 3

32
þ3

4
�2�3

2
�3

�

þCFCA

�
�1539

864
�11

12
�2þ3

4
�3

�

þnfCF

�
135

432
þ�2

6

�
: (4.7)

Note that the difference from Eq. (3.8) of Ref. [6]
is in the ½1=s4�þ terms. The higher powers of the
logarithms are the same. Also note that one can
determine the scale-dependent �ðs4Þ terms at NNLO.
These terms are also given in Ref. [6] and will not be
repeated here.

B. q �q ! Wg

For the process q �q ! Wg we can write the NLO soft
and virtual corrections as

EQ

d�̂ð1Þ
q �q!Wg

d3Q
¼ FB

q �q!Wg

�sð�2
RÞ

�

�
cq �q3

�
lnðs4=p2

TÞ
s4

�
þ

þ cq �q2

�
1

s4

�
þ
þ cq �q1 �ðs4Þ

�
: (4.8)

Here the NLO coefficients cq �q3 and cq �q2 of the soft-gluon

terms are cq �q3 ¼ 4CF � CA and

cq �q2 ¼ �2CF ln

�
�2

F

p2
T

�
� ð2CF � CAÞ ln

�
tu

sp2
T

�
� �0

4
:

(4.9)

For later use in the NNLO results we also define the

scale-independent part of cq �q2 as Tq �q
2 ¼ �ð2CF � CAÞ�

lnðtu=sp2
TÞ � �0=4.

The coefficient of the �ðs4Þ terms in Eq. (4.8) is
given by

cq �q1 ¼ 1

2Aq �q ½Bq �q
1 þ Cq �q

1 þ ðBq �q
2 þDð0Þ

aaÞnf�

þ cq �q3
2

ln2
�
p2
T

Q2

�
þ cq �q2 ln

�
p2
T

Q2

�
; (4.10)

with Bq �q
1 , Bq �q

2 , Cq �q
1 , and Dð0Þ

aa as given in the Appendix

of Ref. [2] but without the renormalization counter-
terms and using fA ¼ 0.
Again, the NNLO expansion involves logarithms

lnkðs4=p2
TÞ with k ¼ 0, 1, 2, 3. The terms with k ¼ 1, 2,

3 were already provided in Refs. [5,6] from NLL resum-
mation, but the terms given for k ¼ 0 in Eq. (3.19) in
Ref. [6] were incomplete. With NNLL resummation we
can now provide the complete result.
The NNLO soft-gluon corrections for q �q ! Wg can be

written as

EQ

d�̂ð2Þ
q �q!Wg

d3Q
¼ FB

q �q!Wg

�2
sð�2

RÞ
�2

�̂0ð2Þ
q �q!Wg (4.11)

with

HIGHER-ORDER QCD CORRECTIONS FOR THE W- . . . PHYSICAL REVIEW D 87, 014001 (2013)

014001-5



�̂0ð2Þ
q �q!Wg ¼ 1

2
ðcq �q3 Þ2

�
ln3ðs4=p2

TÞ
s4

�
þ
þ

�
3

2
cq �q3 cq �q2 � �0

4
cq �q3 þ CA

�0

8

��
ln2ðs4=p2

TÞ
s4

�
þ
þ fcq �q3 cq �q1 þ ðcq �q2 Þ2 � �2ðcq �q3 Þ2

� �0

2
Tq �q
2 þ �0

4
cq �q3 ln

�
�2

R

p2
T

�
þ ð4CF � CAÞK2 � �2

0

16

��
lnðs4=p2

TÞ
s4

�
þ
þ

�
cq �q2 cq �q1 � �2c

q �q
3 cq �q2 þ �3ðcq �q3 Þ2

þ �0

4
cq �q2 ln

�
�2

R

s

�
� �0

2
CFln

2

��u

p2
T

�
� �0

2
CFln

2

��t

p2
T

�
þ CF

�
�K ln

�
tu

p4
T

�
þ �0

4
ln2

�
�2

F

s

�
� K ln

�
�2

F

s

��

�
�
CA

K

2
� �2

0

16

�
ln

�
p2
T

s

�
þ 3�0

8
CAln

2

�
p2
T

s

�
þ 2Dð2Þ

q þDð2Þ
g þ Bð2Þ

g þ 2�ð2Þ
Sq �q!Wg

��
1

s4

�
þ

(4.12)

where

Bð2Þ
g ¼C2

A

�
�1025

432
�3

4
�3

�
þ 79

108
CAnfþCF

nf
8
� 5

108
n2f:

(4.13)

The scale-dependent �ðs4Þ terms at NNLO were also
provided in Eq. (3.19) of Ref. [6] and we will not repeat
them here.

C. Numerical results

We begin with results for W production at the LHC at
7 TeV energy. In Fig. 7 we plot the W-boson pT distribu-
tion, d�=dpT . In the left plot, we compare the NLO and the
approximate NNLO results at the LHC at 7 TeV energy
with � ¼ pT . We also compare our results to recent data
from ATLAS [10]. It is evident that the effect of the NNLO
soft-gluon corrections grows with pT as one would expect,
since the kinematical region near partonic threshold
becomes more important at higher pT . The inset plot shows
that the ratio of the approximate NNLO to the full NLO
(i.e., the K factor) grows with pT , and the NNLO soft-
gluon corrections provide nearly a 60% enhancement at
pT ¼ 500 GeV. Since the ATLAS data use acceptance
cuts and are normalized by the total fiducial cross section,

we have to correct for these factors to extrapolate the
experimental results for direct comparison to our pT dis-
tribution. We use the procedure described in Ref. [23]. We
multiply the normalized ATLAS results by the total fidu-
cial cross section and divide by the acceptances. It is clear
from the comparison that the data are in very good agree-
ment with our NNLO approximate result, which provides a
better description than NLO alone. The ATLAS data only
go up to a pT of 300 GeV, and it will be interesting to see
data from the LHC at even higher pT .
In the right plot of Fig. 7 we show ratios of the approxi-

mate NNLO result with the variation of the result with
scale� ¼ pT=2 and 2pT relative to� ¼ pT . We also show

the ratio with � ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
T þm2

W

q
and note that the results for

this choice of scale are very similar to those for � ¼ pT .
Finally, we show the ratio of NLO to NNLO with� ¼ pT ,
which again shows that NNLO describes the data better
than NLO.
Also, comparing the left plot of Fig. 3 with the right plot

of Fig. 7, it is seen that the scale dependence at approxi-
mate NNLO is smaller than at NLO at intermediate values
of pT , but it grows larger (mostly due to the lower bound)
at very high pT values where the overall soft-gluon con-
tribution is also larger. Since in the perturbative expansion
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FIG. 7 (color online). W-boson approximate NNLO pT distribution at the LHC at 7 TeV compared with ATLAS data.
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we include logarithms of �F=pT and �R=pT in plus-
distribution terms shown in Eqs. (4.5) and (4.12) as well
as in �ðs4Þ terms shown in Ref. [6], we conclude that the
best scale choice for our approximate NNLO results is
� ¼ pT . We note that our calculation does not include
all scale terms, i.e., scale logarithms in terms from correc-
tions beyond the soft-gluon approximation. Since we do
not have the full NNLO corrections, only a complete
calculation can give the true NNLO scale uncertainty. We
also note that, although it is generally expected that as one
increases the order in perturbation theory the scale uncer-
tainty should decrease, this is not always the case due to
numerics. In particular, as we showed in Ref. [7] the NLO
scale uncertainty is not smaller than the LO scale uncer-
tainty due to accidental cancellations at LO. Nevertheless,
we repeat that our upper scale uncertainty at approximate
NNLO is smaller than the NLO one, and it is only the lower
scale uncertainty that becomes bigger at very high pT ,
higher pT than for most current LHC data.

We note that results for 7 TeV LHC energy have also
been provided in Ref. [9] at NNLL in the SCET formalism.
It is not possible to do an analytical comparison with
Ref. [9] because no analytical results are provided there.
It is also important to note that NNLL means different
things in different approaches and also if one uses different
variables within the same approach. This has been clearly
explained in the context of top quark production in the
review paper of Ref. [24] and applies here as well.
Therefore, our NNLL Mellin-space resummation is not
equivalent to the NNLL SCET resummation of Ref. [9].
Related studies for top quark cross sections show that
different formalisms can give very different numerical
results [24].

Furthermore, it is difficult to make a meaningful nu-
merical comparison because most of the figures in Ref. [9]
plot results versus parameters that are only defined within
the SCET formalism. Nongraphical results are provided in

Table 1 of Ref. [9], which provides absolute integrated
cross section estimates for pT > 200 GeV. The LO and
NLO fixed-order results are of course in agreement with
ours, but exponentiated logarithmic corrections will obvi-
ously diverge in this bin, thus making the comparison not
very meaningful. At a purely numerical level, however, we
note that our approximate NNLO integrated cross section
at 7 TeV LHC energy above a pT of 200 GeV is
68:1þ3:1

�8:3 pb, which is about 20% larger than that provided

in Table 1 of Ref. [9], i.e., 55:9þ2:0
�1:4 pb.

Finally, it is important to note that here we use a NNLO
expansion of the resummed expression to obtain numerical
results, in order to avoid prescriptions needed to invert
from moment space to momentum space. Even within a
given formalism such as SCETor Mellin moments, there is
a numerical difference between using NNLO expansions
and attempting a full resummation (again see Ref. [24] and
references therein for more details). However, this differ-
ence is typically smaller than the differences between
different formalisms or prescriptions, so this is usually a
point of relatively minor significance. For example, both
the values and uncertainties in Ref. [9] are very similar for
the resummed and NNLO approximate results.
We continue with the presentation of our numerical

results for the W-boson pT distribution at the LHC. In
Fig. 8 we show results for the LHC at 8 TeV energy.
Although the overall pT distribution is enhanced at
8 TeV relative to 7 TeV, the result for the ratio of approxi-
mate NNLO over NLO shown in the inset plot is very
similar (almost identical) to that at 7 TeV. Also, the scale
dependence at 8 TeV is almost the same as at 7 TeV, as can
be seen by comparing the right plots of Figs. 7 and 8.
In Fig. 9 we show the corresponding results for the

LHC at 14 TeV energy. Again, the increase due to the
NNLO soft-gluon corrections is more prominent at very
high pT , reaching 90% enhancement at pT ¼ 1000 GeV.
The scale variation at the LHC at 14 TeV energy is shown
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FIG. 8 (color online). W-boson approximate NNLO pT distribution at the LHC at 8 TeV.
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on the right plot. At the very highest pT the scale uncer-
tainty is significant.

Finally, we present results for the Tevatron. The left plot
of Fig. 10 shows the NLO and NNLO approximate pT

distributions at the Tevatron at � ¼ pT , with the inset plot
displaying the K factor. The right plot of Fig. 10 shows the
results for scale variation at the Tevatron, where there is a
reduction of scale dependence at NNLO relative to that at
NLO in the pT range shown, as can be seen by comparing
the right plots of Figs. 3 and 10.

In addition to the scale variation shown in the previous
figures, one can also attempt an independent variation of
the factorization and renormalization scales; however, this
does not affect the range of the overall uncertainty signifi-
cantly, if at all.

As already mentioned in Sec. II, in addition to scale
dependence another important source of uncertainty comes
from the PDF. Here we use the PDF sets and procedure

provided by MSTW2008 [11] to calculate the PDF uncer-
tainties for W production. In the left plot of Fig. 11 we
compare the PDF uncertainty with the scale uncertainty at
NNLO and also at NLO at the Tevatron. The scale ratios
are for � ¼ pT=2 and 2pT and are the same as already
shown in the plots of the previous Tevatron figures, but
displaying them together and with the PDF ratios makes
the comparison of all the uncertainties easier. We note that
for the Tevatron the PDF uncertainties are smaller than the
NLO scale variation, but they are larger than the scale
variation at approximate NNLO for most pT values. As
mentioned earlier, the NNLO scale variation is consistently
smaller than that at NLO.
In the right plot of Fig. 11 we compare the PDF uncer-

tainty with the scale uncertainty at NNLO and also at NLO at
the LHC at 8 TeVenergy (the results at 7 TeVare practically
the same). Here the situation is somewhat different from the
Tevatron in that the upper range of the PDF uncertainty is
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FIG. 9 (color online). W-boson approximate NNLO pT distribution at the LHC at 14 TeV.
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larger than both NLO and NNLO scale variation, but the
lower range is smaller than both for mostpT values. Also, the
scale variation at approximate NNLO is smaller than that at
NLO for moderatepT values but becomes larger, particularly
at the lower end, at very high pT .

The growing NNLO contribution relative to NLO with
increasing pT at both Tevatron and LHC energies does not
appear to be an artifact of perturbation theory. The
extended pT range made accessible by the LHC brings
into play a high multiplicity of hard jets in various inclu-
sive cross sections, and this is expected to affect the con-
vergence of perturbative predictions. The recent ATLAS
data [10] and their agreement with our theoretical results
confirm this expectation. An analysis of the Z distribution
is underway and will be reported elsewhere.

V. CONCLUSIONS

The transverse momentum distribution of the W boson
receives large QCD corrections. Complete NLO calcula-
tions have been used in this paper to provide numerical
results at LHC and Tevatron energies. In addition, NNLL

resummation of soft-gluon corrections has been derived
using two-loop soft anomalous dimensions. Approximate
NNLO analytical expressions have been derived from the
resummed cross section and employed to produce numeri-
cal results. The NNLO soft-gluon corrections reduce the
NLO scale dependence at low and intermediate pT where
the bulk of the data is located. In the very high pT region at
LHC energies the soft logarithms seem to become sensitive
to scale. It is possible that including hard NNLO correc-
tions will improve this situation. The experimental bins at
large pT are larger because the number of expected events
and the pT resolution both decrease dramatically. Recent
ATLAS data [10] are in good agreement with our numeri-
cal results. The higher-order results presented in this paper
strengthen theoretical predictions forW production at had-
ron colliders and may prove significant for new physics
searches in the tail of the pT spectrum.
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