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Since the smallest leptonic mixing angle �13 has been measured to be relatively large, it is quite

promising to constrain or determine the leptonic Dirac CP-violating phase � in future neutrino oscillation

experiments. Given some typical values of � ¼ �=2, �, and 3�=2 at the low energy scale, as well as

current experimental results of the other neutrino parameters, we perform a systematic study of radiative

corrections to � by using the one-loop renormalization group equations in the minimal supersymmetric

standard model and the universal extra-dimensional model. It turns out that � is rather stable against

radiative corrections in both models, except for the minimal supersymmetric standard model with a very

large value of tan�. Both cases of Majorana and Dirac neutrinos are discussed. In addition, we use the

preliminary indication of � ¼ ð1:08þ0:28
�0:31Þ� or � ¼ ð1:67þ0:37

�0:77Þ� from the latest global-fit analyses of data

from neutrino oscillation experiments to illustrate how it will be modified by radiative corrections.

DOI: 10.1103/PhysRevD.87.013012 PACS numbers: 14.60.Pq, 11.10.Hi, 11.30.Er

I. INTRODUCTION

In the last two decades, our knowledge on neutrinos
has been greatly improved by a number of elegant
neutrino oscillation experiments [1]. Now, we are con-
vinced that neutrinos are massive, and they can trans-
form from one flavor to another when propagating in

vacuum or in matter. The lepton flavor mixing phenome-
non can be described by a 3� 3 unitary matrix V,
namely the leptonic mixing matrix, which is convention-
ally parametrized through three mixing angles �12, �13
and �23, as well as three CP-violating phases �, � and
�, viz.,

V ¼ U � P �
c12c13 s12c13 s13e

�i�

�s12c23 � c12s23s13e
i� c12c23 � s12s23s13e

i� s23c13

s12s23 � c12c23s13e
i� �c12s23 � s12c23s13e

i� c23c13

0
BB@

1
CCA � P; (1)

where sij � sin�ij and cij � cos�ij for ij ¼ 12, 13, 23.
Note that P ¼ diagðei�; ei�; 1Þ is a diagonal matrix with �
and � being two Majorana-type CP-violating phases if
neutrinos are Majorana particles, while P ¼ 1 if neutrinos
are Dirac particles. Current experimental data indicate that
the three leptonic mixing angles are �12 � 34�, �13 � 9�
and �23 � 40�. Two independent neutrino mass-squared
differences are found to be �m2

21 � m2
2 �m2

1 �
7:5� 10�5 eV2 and j�m2

31j�jm2
3�m2

1j�2:5�10�3 eV2.
The latest global-fit results of neutrino parameters are shown
in Table I. However, we are still unclearwhether the neutrino
mass ordering is normal (i.e., �m2

31 > 0) or inverted (i.e.,
�m2

31 < 0), and the leptonic Dirac CP-violating phase �
remains experimentally unconstrained.

The recent results from Daya Bay [5] and RENO [6]
reactor neutrino experiments have established that
�13 � 9�, which is rather large. Hence, it is quite promis-
ing to determine the leptonic Dirac CP-violating phase �

by comparing the oscillation probabilities of neutrinos and
antineutrinos in future long-baseline neutrino oscillation
experiments [7]. In addition, the km3-scale neutrino tele-
scopes (e.g., IceCube and KM3NeT) could provide us with
useful and complementary information about leptonic CP
violation by precisely measuring the flavor composition of
ultrahigh-energy astrophysical neutrinos [8]. If the Deep
Core of the IceCube detector is made denser to lower the
energy threshold down to a few GeV, such as the proposal
PINGU [9], a large amount of atmospheric neutrino events
can be collected and used to determine the neutrino mass
hierarchy and perhaps the leptonic CP-violating phase
[10]. On the other hand, a lot of neutrino mass models
based on discrete flavor symmetries or phenomenological
assumptions have recently been proposed to describe the
observed leptonic mixing pattern, in particular a relatively
large �13. Interestingly, the leptonic CP-violating phase �
has been predicted in some models to be rather large
(e.g., � > �=3) or even maximal (i.e., � ¼ �=2) [11,12].
In other models, leptonic CP violation is shown to be
absent, namely � ¼ 0 or � [13]. It is worthwhile to
mention that the latest global-fit analyses of neutrino
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oscillation experiments yield � ¼ ð1:08þ0:28
�0:31Þ� [2] and

� ¼ ð1:67þ0:37
�0:77Þ� [3], although the 1� errors are still quite

large.1 Therefore, we have already obtained some prelimi-
nary information on the leptonic CP-violating phase �
from the global-fit analyses.

In this work, we are concerned with how the theoretical
predictions or the observed value of � will be modified by
the radiative corrections when running from a low-energy
scale to a superhigh-energy scale. This question doesmake
sense if we believe that there exists at some superhigh-
energy scale a unified theory for flavor mixing and CP
violation in both quark and lepton sectors. Once the lep-
tonic CP-violating phase � is measured in future neutrino
oscillation experiments, the renormalization group (RG)
evolution of � will tell us how large or small it will be at a
given superhigh-energy scale. As a matter of fact, the
running of leptonic mixing parameters has been exten-
sively discussed in the literature [14,15], and more recently
in Ref. [16], where the authors concentrate on the newly
measured �13. Different from the previous works, we
focus on � and perform a systematic study of its run-
ning behavior in the minimal supersymmetric standard
model (MSSM) and in the universal extra-dimensional
model (UEDM). The motivation for such a study is two-
fold: (1) The leptonic CP-violating phase � is the last
fundamental parameter (except for the neutrino mass hier-
archy) to be measured in the future neutrino oscillation
experiments, and now both the theoretical models and
the global-fit analysis can provide us with preferred values
of � at the low-energy scale. (2) The models with super-
symmetry or extra spatial dimensions are the most natural
extensions of the standard model (SM), which can solve

the gauge hierarchy problem and offer good candidates for
the dark matter.
In lack of a complete theory for neutrino mass genera-

tion, we implement the dimension-five Weinberg operator
to account for tiny Majorana neutrino masses [17]. The RG
running of � in the case of Dirac neutrinos will be consid-
ered as well for comparison and completeness.
The remaining part of the present paper is organized as

follows. In Sec. II, we set up the basic framework for the
RG running of leptonic mixing parameters in the case of
Majorana neutrinos. The renormalization group equation
(RGE) of � is derived analytically, and solved numerically.
Section III is devoted to the RG running of � in the case of
Dirac neutrinos in the MSSM. We summarize our conclu-
sions in Sec. IV. The complete set of RGEs in the SM,
MSSM, and UEDM for Majorana neutrinos are collected
in Appendix A, while those in the SM andMSSM for Dirac
neutrinos in Appendix B.

II. RUNNING OF CP-VIOLATING PHASE:
MAJORANA NEUTRINOS

First of all, we derive the RGE for the leptonic
CP-violating phase �, assuming that neutrinos are
Majorana particles. Without loss of generality, we intro-
duce the dimension-five Weinberg operator responsible for
neutrino masses [17]:

�L� ¼ 1

2
ð‘HÞ � � � ðHT‘CÞ þ H:c:; (2)

where ‘ and H stand for the lepton and Higgs doublet
fields, respectively, and � is a symmetric and complex
matrix of the inverse mass dimension. After electroweak
symmetry breaking, the mass matrix of three light
Majorana neutrinos is given by M� ¼ �v2 with v �
174 GeV being the vacuum expectation value of the SM
Higgs field, or by M� ¼ �ðv sin�Þ2 with tan� being the
ratio of the vacuum expectation values of two Higgs

TABLE I. The best-fit values and 1� ranges of the neutrino parameters from the latest global-
fit analyses of neutrino oscillation experiments, where the normal neutrino mass hierarchy is
assumed.

Parameter Ref. [2] Ref. [3] Ref. [4]

sin2�12
0.307 0.300 0.320

0.291–0.325 0.287–0.313 0.303–0.336

sin2�13
0.0241 0.0230 0.0246

0.0216–0.0266 0.0207–0.0253 0.0218–0.0275

sin2�23
0.386 0.410 0.427

0.365–0.410 0.385–0.447 0.400–0.461

�m2
21=10

�5 eV2 7.54 7.50 7.62

7.32–7.80 7.32–7.69 7.43–7.81

�m2
31=10

�3 eV2 2.51 2.47 2.55

2.41–2.57 2.40–2.54 2.46–2.61

�=�
1.08 1.67 0.8

0.77–1.36 0.90–2.03 0–2.0

1The best-fit value is found to be � ¼ 0:8� for the normal
mass hierarchy and � ¼ �0:03� for the inverted mass hierarchy
by another global-fit group [4]. However, there is no constraint
on � within the 1� range.
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doublets in the MSSM. Note that we are working within an
effective theory, and consider the running of neutrino
mixing parameters below the cutoff scale � where new
physics takes effects.

At one-loop level, the evolution of � is governed
by [14,15]

16�2 d�

dt
¼ 	� þ C�½ðYlY

y
l Þ�þ �ðYlY

y
l ÞT�; (3)

where t � lnð
=�EWÞwith
 being an arbitrary renormal-
ization scale between the electroweak scale �EW �
100 GeV and a cutoff scale where new physics comes
into play, and Yl is the Yukawa coupling matrix of the
charged leptons. The coefficients 	� and C� are flavor
universal, and have been explicitly given in Appendix A
for the SM, the MSSM, and the UEDM. It is worth stress-
ing that Eq. (3) takes on the same form in all the models
under consideration. However, the coefficients in the RGEs
may differ. We will distinguish them by adding the corre-
sponding superscripts to these coefficients, as shown in
Appendix A.

A. Analytical results

Since the RGEs of neutrino mass matrix M� ¼ �v2 in
the SM and UEDM, orM� ¼ �ðv sin�Þ2 in the MSSM, are
given by the same formula in Eq. (3), the evolution of
neutrino mass eigenvalues and leptonic mixing parameters
can be figured out in the same way. In flavor basis, where
the Yukawa coupling matrix of the charged leptons is
diagonal, namely Yl ¼ Dl � diagðye; y
; y�Þ, � can be

diagonalized by the leptonic mixing matrix V, namely

Vy�V� ¼ �̂ � diagð�1; �2; �3Þ. Generally speaking, an
arbitrary 3� 3 unitary matrix V0 can be factorized
as V 0 ¼ QUP, where Q ¼ diagðei�e;; ei�
; ei��Þ and
P ¼ diagðei�; ei�; 1Þ are pure phase matrices, while the
unitary matrix U consists of three mixing angles �12, �13,
�23 and the Dirac CP-violating phase � [cf. Eq. (1)].
Although the phases �	 (for 	 ¼ e, 
, �) are unphysical
and can be removed by rephasing the charged-lepton fields,
we will keep them in the derivation of the RGEs for
neutrino masses and leptonic mixing parameters.
Since y2e 	 y2
 	 y2�, we take into account the domi-

nant contribution from the tau-lepton Yukawa coupling to
the RGE of �. Following Ref. [18], one obtains

16�2 d�i

dt
¼ �ið	� þ 2C�y

2
�jU�ij2Þ; (4)

where 	� and C� should bear the corresponding super-
scripts when Eq. (4) is applied to a specific model. Given
mi ¼ �iv

2 (for i ¼ 1, 2, 3), we observe that Eq. (4)
determines the evolution of absolute neutrino masses.
Moreover, it is straightforward to find that U	i, �, �, and
�	 (for 	 ¼ e, 
, � and i ¼ 1, 2, 3) have to fulfill the
following equations:

Im½ðUy _UÞ11� þ
X
	

jU	1j2 _�	 þ _� ¼ 0;

Im½ðUy _UÞ22� þ
X
	

jU	2j2 _�	 þ _� ¼ 0;

Im½ðUy _UÞ33� þ
X
	

jU	3j2 _�	 ¼ 0;

(5)

and

Re½ðUy _UÞ12� �
X
	

I	
12

_�	 ¼ �C�y
2
�

32�2

n
̂12½s2ð���ÞI�

12 þ c2ð���ÞR�
12� þ ~12R�

12

o
;

Im½ðUy _UÞ12� þ
X
	

R	
12

_�	 ¼ �C�y
2
�

32�2

n
̂12½s2ð���ÞR�

12 � c2ð���ÞI�
12� þ ~12I�

12

o
;

Re½ðUy _UÞ13� �
X
	

I	
13

_�	 ¼ �C�y
2
�

32�2

n
̂13½s2�I�

13 þ c2�R�
13� þ ~13R�

13

o
;

Im½ðUy _UÞ13� þ
X
	

R	
13

_�	 ¼ �C�y
2
�

32�2

n
̂12½s2�R�

13 � c2�I�
13� þ ~13I�

13

o
;

Re½ðUy _UÞ23� �
X
	

I	
23

_�	 ¼ �C�y
2
�

32�2

n
̂23½s2�I�

23 þ c2�R�
23� þ ~23R�

23

o
;

Im½ðUy _UÞ23� þ
X
	

R	
23

_�	 ¼ �C�y
2
�

32�2

n
̂23½s2�R�

23 � c2�I�
23� þ ~23I�

23

o
;

(6)

where ̂ ij � 4�i�j=ð�2
i � �2

j Þ and ~ij � 2ð�2
i þ �2

j Þ=ð�2
i � �2

j Þ have been defined, and the overdot refers to the derivative
with respect to the running parameter t. In addition, R	

ij � ReðU�
	iU	jÞ and I	

ij � ImðU�
	iU	jÞ. Given the standard

parametrization of U in Eq. (1), the matrix elements of Uy _U are shown in Table II, while the coefficients R	
ij and

I	
ij are given in Table III. Note that Eqs. (5) and (6) form an array of differential equations linear in

f _�12; _�13; _�23; _�; _�; _�; _�e; _�
; _��g, which can be explicitly solved. As a result, the RGE of � can be approximately written as

RADIATIVE CORRECTIONS TO THE LEPTONIC DIRAC . . . PHYSICAL REVIEW D 87, 013012 (2013)

013012-3



_� � C�y
2
�

32�2

�
s12c12s23c23

s13
½s�ð~32 � ~31Þ þ ðsð�þ2�Þ̂32 � sð�þ2�Þ̂31Þ� � ̂21s

2
23s2ð���Þ

� ðc223 � s223Þðs2�s212̂31 þ s2�c
2
12̂32Þ þ c223ðs2ð�þ�Þc212̂31 þ s2ð�þ�Þs212̂32Þ

� s23c23s13
s12c12

½~21s� � ̂21ðsð�þ2��2�Þc212 þ sð��2�þ2�Þs212Þ� þ s213c
2
23s2ð���Þ̂21

�
: (7)

Since the last two terms in the third line of Eq. (7) are
proportional to s13 and s213, we have neglected the terms
further suppressed by Oð�m2

21=j�m2
31jÞ. If neutrino

masses are nearly degenerate m2
i 
 j�m2

31j 
 �m2
21,

which will always be assumed in the following, we have
̂ ij � ~ij � 4m2

i =ðm2
i �m2

j Þ and ̂21 
 ĵ32j, ĵ31j 
 1,
and thus, the RG evolution of � could be significant. To
next-to-leading order, Eq. (7) approximates to

_���C�y
2
�

8�2

m2
1

�m2
21

�
s223s2ð���Þ þ 2s23c23

s12c12s13

�
�
s213cð�þ���Þ þ�m2

21

�m2
31

s212c
2
12cð�þ�þ�Þsð���Þ

��
; (8)

where we have taken m1 as the absolute neutrino mass and
ignored the difference between �m2

31 and �m2
32. Some

comments are in order:
(i) In general, the evolution of � is dominated by the

leading-order term�̂21s
2
23s2ð���Þ on the right-hand

side of Eq. (7). At higher order, if the terms sup-

pressed by ĵ31j=̂21 ¼ �m2
21=j�m2

31j � 1=30 are

taken into account, then those by s213 � 1=40 should

also be kept for consistency, since they are of the
same order of magnitude, as we have done in Eq. (8).
The relative error in Eq. (7) is at the level of

s13ĵ31j=̂21 � 0:5%, given the best-fit values of
�13 and neutrino mass-squared differences.

(ii) It is evident from Eq. (7) that the evolution of � is
entangled with that of three mixing angles and two
Majorana CP-violating phases. In particular, it
depends crucially on the Majorana phases � and
�. It has been found that the Dirac CP-violating
phase � can be radiatively generated from � and �,
even if the initial value of � is vanishing [19]. On the
other hand, the RG evolution of � becomes negli-
gible when � � �, while the mixing angle �12 is
quite sensitive to the RG effect in this case.

(iii) The RGEs of � in the SM, the MSSM, and the
UEDM are given by the same formula in Eq. (7),
but with different values of the coefficient C�. We
have CSM

� ¼ �3=2 in the SM, while CMSSM
� ¼ 1 in

the MSSM and CUEDM
� ¼ �3ð1þ sÞ=2 in the

UEDM, respectively. Therefore, given the same

TABLE III. The coefficients R	
ij and I	

ij for 	 ¼ e, 
, � and ij ¼ 12, 13, 23 in the standard parametrization of leptonic mixing
matrix.

R	
ij 12 13 23

e s12c12c
2
13 c12s13c13 s12s13c13


 s12c12ðs223s213 � c223Þ � ðc212 � s212Þs23c23s13c� �ðs12c23 þ c12s23s13c�Þs23c13 þðc12c23 � s12s23s13c�Þs23c13
� s12c12ðc223s213 � s223Þ þ ðc212 � s212Þs23c23s13c� þðs12s23 � c12c23s13c�Þc23c13 �ðc12s23 þ s12c23s13c�Þc23c13

I	
ij 12 13 23

e 0 0 0


 þs23c23s13s� c12s
2
23s13c13s� s12s

2
23s13c13s�

� �s23c23s13s� c12c
2
23s13c13s� s12c

2
23s13c13s�

TABLE II. Explicit expressions of Re½ðUy _UÞij� and Im½ðUy _UÞij� for i � j in the standard
parametrization of leptonic mixing matrix.

ij Re½ðUy _UÞij� Im½ðUy _UÞij�
11 0 þ2s12c12s13s� _�23 þ c212s

2
13

_�
22 0 �2s12c12s13s� _�23 þ s212s

2
13

_�
33 0 �s213

_�
12 _�12 þ s13s� _�23 �ðc212 � s212Þs13s� _�23 þ s12c12s

2
13

_�
13 �s12c13 _�23 þ c12c� _�13 � c12s13c13s� _� �c12s� _�13 � c12s13c13c� _�
23 þc12c13 _�23 þ s12c� _�13 � s12s13c13s� _� �s12s� _�13 � s12s13c13c� _�
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Majorana CP-violating phases and leptonic mixing
angles, the evolution of � in the MSSM will be in
the direction opposite to that in the SM and the
UEDM.

Finally, we observe from Eq. (5) that the identity
_�e þ _�
 þ _�� þ _�þ _� ¼ 0 holds in the standard pa-

rametrization ofU. The proof is as follows. Given a general
nonsingular matrix X, whose elements are functions of the
running parameter t, one can prove that d½detðXÞ�=dt ¼
detðXÞ � tr½X�1ðdX=dtÞ�. If we take X to be a unitary matrix
U with detðUÞ ¼ 1 and U�1 ¼ Uy, then trðUy _UÞ ¼ 0 can
be obtained. This observation together with Eq. (5) leads to

the identity _�e þ _�
 þ _�� þ _�þ _� ¼ 0. However, this

identity depends on the specific parametrization of U.
For instance, if detðUÞ ¼ e�i� with � being the Dirac

CP-violating phase, then we have _� ¼ _�e þ _�
 þ _�� þ
_�þ _�, as shown in Ref. [18].

B. Numerical results

We proceed in this subsection with the numerical solu-
tion to the RGE of the leptonic DiracCP-violating phase �.
Since the evolution of � in the SM is negligible even in the
case of a nearly-degenerate neutrino mass spectrum, we
consider only the MSSM and the UEDM. Note that no
approximations to the RGE of � will be made in our

numerical calculations. Our numerical results are shown
in Fig. 1, and the main points are summarized as follows.
In the MSSM, we have taken two typical values of

tan� ¼ 10 and tan� ¼ 30 for illustration. In both cases,
the absolute neutrino massm1 ¼ 0:1 eV is assumed, which
is consistent with the cosmological bound m1 þm2 þ
m3 < 1:3 eV (95% C.L.) from the WMAP Collaboration
[20]. For the initial values of � at the electroweak scale, we
have chosen � ¼ �=2, �, and 3�=2 as typical examples.
Since the tau-lepton Yukawa coupling is given by y2� ¼
m2

�ð1þ tan2�Þ=v2 in the MSSM, the evolution of � should
be significantly enhanced for a large value of tan�, as
shown in the upper plots of Fig. 1. For tan� ¼ 30, the
RG running of � is quite significant. In particular, even if
� ¼ � is found at the low-energy scale, namely, there is no
CP-violating effect in neutrino oscillation experiments, the
maximal CP-violating phase � ¼ �=2 or 3�=2 can be
achieved at the cutoff scale� ¼ 1014 GeV. In other words,
one can change from the scenario with a zero CP-violating
phase to that with a maximal CP-violating phase, or vice
versa. For tan� ¼ 10, the radiative correction to � is at
most 10% even at � ¼ 1014 GeV.
In the UEDM, we have input two different values of the

absolute neutrino mass m1 ¼ 0:1 eV and m1 ¼ 0:5 eV.
As shown in the lower plots of Fig. 1, � is rather stable
against radiative corrections for m1 ¼ 0:1 eV. Even for

2 4 6 8 10 12 14
0.0

0.5

1.0

1.5

2.0

log10 GeV

tan 10, m1 0.1 eV

2 4 6 8 10 12 14
0.0

0.5

1.0

1.5

2.0

log10 GeV

tan 30, m1 0.1 eV

2.0 2.5 3.0 3.5 4.0 4.5
0.0

0.5

1.0

1.5

2.0

log10 GeV

5D UEDM m1 0.1 eV

2.0 2.5 3.0 3.5 4.0 4.5
0.0

0.5

1.0

1.5

2.0

log10 GeV

5D UEDM m1 0.5 eV

FIG. 1 (color online). Evolution of � for Majorana neutrinos in the MSSM (upper plots) and in the UEDM (lower plots). The initial
values � ¼ �=2, � ¼ �, and � ¼ 3�=2 are assumed, while the Majorana CP-violating phases � and � are marginalized. The values
of �12, �13, �23 and �m2

21, �m
2
31 in the 1� ranges from the global-fit analysis (for �m2

31 > 0) have been used as input [3].
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m1 ¼ 0:5 eV, which is marginally in tension with the
cosmological bound, the relative change of � at the cutoff
scale � ¼ 3� 104 GeV is not larger than 10%. The cutoff
scale � ¼ 3� 104 GeV in the UEDM has been chosen to
avoid the Landau pole, where the Higgs mass is MH ¼
125 GeV and R�1 ¼ 10 TeV with R being the radius of
the compactified extra dimension. Since the valid energy
range in the UEDM is much smaller than that in the
MSSM, the RG running does not develop as much.
However, it should be noted that the RG running in
UEDM is actually in the form of a power law, and thus
can be more significant than in the SM and in the MSSM.

It should also be noted that the Majorana CP-violating
phases � and � have been marginalized over the range
½0; �Þ in our numerical results. If the specific values of �
and � are chosen, the variation of � will be even
smaller. Therefore, we conclude that the leptonic Dirac
CP-violating phase � is stable against radiative corrections
in all the models under consideration, except for the
MSSM with a large value of tan�. In comparison, the
Dirac CP-violating phase in the quark sector is stable
even in the MSSM with a large value of tan�, since the
quark mass spectrum is strongly hierarchical.

Now, we turn to the RG running behavior of � by taking
the global-fit results � ¼ ð1:08þ0:28

�0:31Þ� [2] and � ¼
ð1:67þ0:37

�0:77Þ� [3] as input. Since the present uncertainty is

large, we will choose the 1� range for illustration. In the
upper plots of Fig. 2, the allowed regions of � at the
superhigh-energy scale have been given in the MSSM. In
the case of tan� ¼ 30, one can observe that � is almost
arbitrary within ½0; 2�Þ due to the large uncertainty of the
input, so any predictions for � from a high-energy flavor
model could be made consistent with the low-energy
observations by the RG running. This is true for the
global-fit results from both groups [2,3]. In reality, any
observable effects of CP violation should be related to the
Jarlskog invariant J � s12c12s23c23s13c

2
13s�. Therefore,

we also show the RG running of J in the MSSM for
tan� ¼ 10, 30, 50, in the lower plots of Fig. 2. It can be
observed that J at a superhigh-energy scale could be quite
different from that at the low-energy scale, in particular for
tan� ¼ 30 and tan� ¼ 50.

III. RUNNING OF CP-VIOLATING PHASE:
DIRAC NEUTRINOS

The possibility for neutrinos to be Dirac particles has
never been experimentally excluded. Moreover, it has been
shown that the leptogenesis mechanism responsible for the
matter-antimatter asymmetry in our Universe also works
well in a different way for Dirac neutrinos [21]. Hence, we
assume neutrinos to be Dirac particles, and give them
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FIG. 2 (color online). Allowed values of the leptonic CP-violating phase � (upper plots) and the Jarlskog invariant J (lower plots)
for Majorana neutrinos at 1� C.L. with tan� ¼ 10 (dark red or dark gray) and tan� ¼ 30 (light red or gray) in the MSSM. The result
of J in the MSSM with tan� ¼ 50 is also given in the lower plots (yellow or light gray). The global-fit data from Ref. [2] are adopted
for the left column, while that from Ref. [3] for the right column.
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masses through the coupling to the Higgs doublet

� �‘LY��RH þ H:c: with Y� being the neutrino Yukawa
coupling matrix. It is convenient to write the RGEs of
Dirac neutrino parameters as [22]

16�2 d!

dt
¼ 2	�!þ C�;l½ðYlY

y
l Þ!þ!ðYlY

y
l Þ�; (9)

where ! � Y�Y
y
� has been defined. The RGEs of � in the

SM and the MSSM take the same form in Eq. (8), but with
different coefficients 	� and C�;l, as given in Appendix B.

Since the beta function for Dirac neutrino Yukawa cou-
plings is currently not available in the UEDM, we consider
only the SM and the MSSM. Similarly, as in the Majorana
neutrino case, we find the RGE for the leptonic Dirac
CP-violating phase � in the case of Dirac neutrinos

_� � �C�;ly
2
�

16�2

s23c23s13s�
s12c12

�
�
�21 þ ðc212�32 � s212�31Þ þ s212c

2
12

s213
ð�32 � �31Þ

�
;

(10)

where �ij � ðm2
i þm2

j Þ=ðm2
i �m2

j Þ has been defined. The

relative error in the above equation is at the level of
s13ð�m2

21=j�m2
31jÞ2 � 10�4. It is worth mentioning that

the last term in Eq. (10) is comparable in magnitude to
the second term, since the suppression by a factor of
�m2

21=j�m2
31j is compensated by the enhancement from

1=s213. Some general comments are in order:

(i) The evolution of � is proportional to s� at all orders,
so � will be kept unchanged by the RG running if
s� ¼ 0, namely, � ¼ 0 or � ¼ �. In other words, if
leptonic CP violation is absent at low energies, it
will never be generated by RG running. This is quite
different from the Majorana case, where � can be
radiatively generated via the nonvanishing Majorana
CP-violating phases even if � ¼ 0 or � ¼ � has
been used as an initial condition.

(ii) Two qualitative differences between the SM and the
MSSM should be noted. First, the tau-Yukawa
coupling y2� ¼ m2

�ð1þ tan2�Þ=v2 in the MSSM is
significantly enhanced for a large value of tan�.
Hence, the RG effect is more remarkable than that
in the SM. Second, the coefficient C�;l takes oppo-

site signs in the SM and in theMSSM, indicating the
evolution of � in opposite directions in these two
models.

To illustrate the RG running behavior of � in the Dirac
neutrino case, we have shown in Fig. 3 two typical
examples in theMSSM. In both examples, the initial values
of � have been taken to be �=2 and 3�=2, and the absolute
neutrino mass is m1 ¼ 0:1 eV. The left plot is for
tan� ¼ 10, while the right for tan� ¼ 30. Note that the
beta function of � is proportional to �s� in Eq. (9), where
C�;l ¼ 1 in the MSSM. Therefore, � increases for

� ¼ 3�=2, while it decreases for � ¼ �=2, as the energy
scale evolves towards higher energies. This feature can be
clearly observed in Fig. 3. Furthermore, the variation of �
at any energy scale is quite small, compared to that in
the case of Majorana neutrinos, where the arbitrary
Majorana CP-violating phases play an important role in
the evolution of �. As we have already mentioned, � will
be kept unchanged if the initial values lead to s� ¼ 0, so
the trivial cases of � ¼ 0 and � ¼ � have not been
considered.
Now, we continue with the global-fit results of � in

Refs. [2,3] as initial values. The RG running of � in the
MSSM for tan� ¼ 10, 30 and tan� ¼ 50 have been shown
in the upper and middle plots of Fig. 4, respectively.
As before, the absolute neutrino mass m1 ¼ 0:1 eV is
assumed. In the former case, the RG running effects are
insignificant, which is in accordance with the results in
Fig. 3. In the latter case, however, it is interesting to note
that a wide range of values � 2 ½0:2�; 1:8�� cannot be
reached at the superhigh-energy scale � ¼ 1014 GeV, no
matter what initial value of � is chosen. The reason for this
behavior is that the mixing angle �13 is approaching zero
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FIG. 3 (color online). Evolution of � for Dirac neutrinos in the MSSM for tan� ¼ 10 (left plot) and tan� ¼ 30 (right plot). The
initial values � ¼ �=2 and � ¼ 3�=2 are assumed, and the values of �12, �13, �23 and �m

2
21, �m

2
31 in the 1� ranges from the global-fit

analysis (for �m2
31 > 0) have been used as input [3].
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around �0 ¼ 108 GeV. In the limit of an extremely small
value of �13, Eq. (8) can be written as

_� � � y2�
16�2

s12c12s23c23s�s
�1
13 ð�32 � �31Þ; (11)

where C�;l ¼ 1 has been chosen for the MSSM. Therefore,

the RG running of � will be rapidly accelerated around
�0 ¼ 108 GeV to the large-value region for s� < 0
(i.e., � > �), while to the small-value region for s� > 0
(i.e., � < �). This observation applies also to any initial
value of �. In fact, we have numerically checked the whole
parameter region of � 2 ½0; 2�Þ at low energies, and found

that only ½0; 0:2�� and ½1:8�; 2�Þ can be reached at high
energies. However, the exact allowed range of � at high-
energy scales really depends on the initial values of � and
three mixing angles. For � ¼ �, the RG running of � will
be absent, but �13 becomes negative above�0 ¼ 108 GeV,
so we have to redefine � ! � � to make �13 positive,
leading to � ¼ 0 or 2� at high-energy scales. In the lower
plots of Fig. 4, the evolution of the Jarlskog invariant J is
shown. Unlike the Dirac CP-violating phase � itself, the
physical observable J evolves smoothly over the whole
range of energy scales, as it should. For tan� ¼ 50, the
value of jJ j can initially be as large as 2%, it becomes
vanishingly small at � ¼ 1014 GeV. One reason for this is
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FIG. 4 (color online). Allowed values of the leptonic Dirac CP-violating phase � (upper and middle plots) and the Jarlskog invariant
J (lower plots) for Dirac neutrinos at 1� C.L. with tan� ¼ 10 (dark red or dark gray), tan� ¼ 30 (light red or gray) and tan� ¼ 50
(yellow or light gray) in the MSSM. The absolute neutrino mass m1 ¼ 0:1 eV has been assumed. The global-fit data from Ref. [2] are
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that � shrinks into a small region around 0 or 2� at the
high-energy scale, as indicated in the middle plots of Fig. 4.
Obviously, the evolution of the three mixing angles is also
relevant here.

IV. FURTHER DISCUSSIONS

In Secs. II and III, we have examined the RG running
behaviors of the leptonic Dirac CP-violating phase � in the
cases of Majorana neutrinos and Dirac neutrinos, respec-
tively. Now, we compare these two cases and summarize
the main differences:

(i) In the Majorana case, the two Majorana
CP-violating phases are playing a crucial role in
the RG running of �. One can start from a
CP-conserving scenario with � ¼ 0 or � at the
low-energy scale, and end up with a CP-violating
scenario even with � ¼ �=2 or 3�=2. In the Dirac
case, the evolution of � is proportional to s�, so the
CP conservation at the low-energy scale definitely
implies that CP violation is absent at a superhigh-
energy scale.

(ii) The mixing angle �13 could approach zero at some
high-energy scale�0 in both cases if a large value of
tan� is assumed in the MSSM. On the other hand,
there exist in the RGEs of � some terms inversely
proportional to s13. Therefore, the RG running
behavior of � will be dramatically changed around
�0. Given the global-fit values of � within the 1�
range, it turns out that � could be arbitrary at the
high-energy scale in the Majorana case due to the
marginalization over � and�. In the Dirac case, � is
found to be in two narrow ranges ½0; 0:2�� or
½1:8�; 2�Þ in the MSSM with tan� ¼ 50.

However, if a concrete mass model for Majorana neu-
trinos or Dirac neutrinos is assumed, the RG running of �
may depend on the model details. In particular, when new
particles or interactions come into play at some intermedi-
ate energy scale, the RGEs of the neutrino parameters are
completely changed [23]. Hence, we have assumed that
this is not the case in the previous discussions, at least
below the cutoff scale.

As we have mentioned before, many flavor symmetry
models, which are intended for describing the observed
leptonic mixing angles, predict the leptonic Dirac
CP-violating phase �. For instance, it has been shown in
Ref. [12] that � � 2�=3 (or 4�=3) and � � �=3 (or 5�=3)
for different breaking patterns of the A4 flavor symmetry in
the type-I seesaw model, where three heavy right-handed
neutrino singlets are introduced to realize the dimension-
five Weinberg operator. If the vacuum alignment problem
is further solved in the framework of supersymmetry,
significant radiative corrections to these theoretical predic-
tions of � could be possible. Thus, the leptonic Dirac
CP-violating phase to be measured in neutrino oscillation
experiments is related by the RG running to the theoretical

prediction at the seesaw scale. On the other hand, the
CP-violating and out-of-equilibrium decays of the heavy
right-handed neutrinos can generate the lepton number
asymmetry in the early universe, which will be converted
into the baryon number asymmetry via the SM sphaleron
processes. In this case, the leptonic CP violation in
neutrino oscillations can be associated with the matter-
antimatter asymmetry in our Universe.

V. SUMMARY

Thanks to the recent measurements of �13 in the
Daya Bay and RENO experiments, the discovery of CP
violation in neutrino oscillation experiments seems to be
promising if the leptonic CP violation really exists and the
leptonic Dirac CP-violating phase � happens to be far
away from 0 or �. On the other hand, we have already
had a preliminary result for the leptonic CP-violating
phase � from the global-fit analysis of all kinds of neutrino
oscillation experiments, namely � ¼ ð1:08þ0:28

�0:31Þ� [2] and

� ¼ ð1:67þ0:37
�0:77Þ� [3]. Therefore, we are well motivated to

study the RG running of � from the low-energy scale to a
superhigh-energy scale, where a unified model for fermion
masses, flavor mixing, and CP violation is expected.
In the case of Majorana neutrinos, we have introduced

the dimension-five Weinberg operator to account for neu-
trino masses. The RGE of � has been derived analytically
in great detail for the SM, the MSSM, and the UEDM, and
a self-consistent approximation to it has been given as well.
By a self-consistent approximation, we mean that the RGE
of � has been expanded in terms of s213 and �m2

21=j�m2
31j,

and all the terms of the same order of magnitude should be
preserved. It turns out that � is rather stable against radia-
tive corrections in all these models, except for the case of a
large tan� in the MSSM (e.g., tan� ¼ 30 together with a
nearly degenerate neutrino mass spectrum). In this case,
the Majorana CP-violating phases play an important role
in the evolution of � such that a maximal phase � ¼ �=2
or 3�=2 can be radiatively generated at a superhigh-energy
scale even if � ¼ � (i.e., no CP-violating effects in neu-
trino oscillation experiments) at the low-energy scale. The
evolution of � and the Jarlskog invariant J have been
illustrated by taking the 1� global-fit results of � as input.
In the case of Dirac neutrinos, we have derived the RGE

of � in the SM and MSSM, and the self-consistent
approximation to it has been made. Note that a nearly
degenerate neutrino mass spectrum and the absolute neu-
trino mass m1 ¼ 0:1 eV are assumed in our analysis. The
RG running effect of � can be neglected in the SM and in
the MSSM with a small tan� (e.g., tan� � 10). However,
� can be modified by more than 30% for tan� ¼ 30. The
evolution of � and the Jarlskog invariant J have been
examined by inputting the 1� global-fit results of �. In
the case of tan� ¼ 50, � in the range of ½0:2�; 1:8�� is
found to be unreachable at � ¼ 1014 GeV, since the mix-
ing angle �13 approaches zero at some intermediate scale
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(e.g.,�0 ¼ 108 GeV), which forces � to be in a large-value
region for � > � or a small-value region for � < �. At the
same time, the Jarlskog invariant J becomes vanishingly
small at a superhigh-energy scale.

As we already know some information and will soon
learn more about the leptonic Dirac CP-violating phase �,
it is thus meaningful to see how large it will be at a
superhigh-energy scale. At such an energy scale, the lep-
tonic Dirac CP-violating phase might be related to the
quark Dirac CP-violating phase in a unified flavor model,
or to the generation of matter-antimatter asymmetry in our
Universe via the leptogenesis mechanism. In any case, the
precise determination of � in the ongoing and upcoming
neutrino oscillation experiments or at a future neutrino
factory will shed light on the flavor dynamics at a high-
energy scale.
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APPENDIX A: RGES FOR
MAJORANA NEUTRINOS

1. The SM

In the SM extended with the dimension-five Weinberg
operator, the RGE for � has already been given in Eq. (3),
while those for the Yukawa coupling matrices Yf of
charged fermions (i.e., f ¼ l for charged leptons, f ¼ u
for up-type quarks and f ¼ d for down-type quarks) can be
written as

16�2 dYl

dt
¼ ½	SM

l þCSM
l;l ðYlY

y
l Þ�Yl;

16�2 dYu

dt
¼ ½	SM

u þCSM
u;u ðYuY

y
u ÞþCSM

u;d ðYdY
y
d Þ�Yu;

16�2 dYd

dt
¼ ½	SM

d þCSM
d;u ðYuY

y
u ÞþCSM

d;d ðYdY
y
d Þ�Yd:

(A1)

The relevant coefficients in Eqs. (3) and (A1) are CSM
� ¼

CSM
u;d ¼ CSM

d;u ¼ �3=2, CSM
l;l ¼ CSM

u;u ¼ CSM
d;d ¼ þ3=2, and

	SM
� ¼ �3g22 þ �þ 2TSM

M ;

	SM
l ¼ � 9

4
g21 �

9

4
g22 þ TSM

M ;

	SM
u ¼ � 17

20
g21 �

9

4
g22 � 8g23 þ TSM

M ;

	SM
d ¼ � 1

4
g21 �

9

4
g22 � 8g23 þ TSM

M

(A2)

with TSM
M � tr½3ðYuY

y
u Þ þ 3ðYdY

y
d Þ þ ðYlY

y
l Þ�. The RGEs

for the SUð3ÞC � SUð2ÞL �Uð1ÞY gauge couplings g3,
g2, and g1 are given by

16�2 dgi
dt

¼ bSMi g3i (A3)

with ðbSM1 ; bSM2 ; bSM3 Þ ¼ ð41=10;�19=6;�7Þ. The quartic

coupling � of the Higgs field appears in the RGE of �,
which affects the evolution of absolute neutrino masses. It
should satisfy the following RGE:

16�2d�

dt
¼6�2�3�

�
3

5
g21þ3g22

�
þ3

2

�
9

25
g21þ

6

5
g21g

2
2þ3g22

�

þ4�TSM
M �8tr½3ðYuY

y
u Þ2þ3ðYdY

y
d Þ2þðYlY

y
l Þ2�:
(A4)

It is worth mentioning that if the experimental uncertain-
ties of the top quark mass Mt and the strong coupling 	s

are taken into account, the SM vacuum could be stable up
to the Planck scale �Pl ¼ 1:2� 1019 GeV [24], even for a
Higgs massMH ¼ 125 GeV indicated by the recent results
of the ATLAS and CMS experiments.

2. The MSSM

In the MSSM, the RGEs in Eqs. (3) and (A1) are still
applicable, but the relevant flavor-universal coefficients
are as follows: CMSSM

� ¼ CMSSM
u;d ¼ CMSSM

d;u ¼ 1, CMSSM
l;l ¼

CMSSM
u;u ¼ CMSSM

d;d ¼ 3, and

	MSSM
� ¼ � 6

5
g21 � 6g22 þ 6 trðYuY

y
u Þ;

	MSSM
l ¼ � 9

5
g21 � 3g22 þ tr½3ðYdY

y
d Þ þ ðYlY

y
l Þ�;

	MSSM
u ¼ � 13

15
g21 � 3g22 �

16

3
g23 þ 36 trðYuY

y
u Þ;

	MSSM
d ¼ � 7

15
g21 � 3g22 �

16

3
g23 þ tr½3ðYdY

y
d Þ þ ðYlY

y
l Þ�:
(A5)

The RGEs for the gauge couplings are given in Eq. (A3),
but with ðbMSSM

1 ; bMSSM
2 ; bMSSM

3 Þ ¼ ð33=5; 1;�3Þ in the

beta functions. As we can see from the RGE of �,
the running neutrino parameters are determined by the
charged-lepton Yukawa coupling matrix Yl, especially
the tau-lepton Yukawa coupling y2� ¼ m2

�ð1þ tan2�Þ=v2,
which could significantly be enhanced for a large value of
tan�. Such a unique feature can make the RG running of
leptonic mixing parameters remarkable in the MSSM.

3. The UEDM

In the UEDM, all the SM fields are promoted to a higher-
dimensional spacetime, so every SM particle is accompa-
nied by a tower of Kaluza-Klein (KK) modes [25]. In the
simplest UEDM with only one extra spatial dimension,
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which is compactified on an S1=Z2 orbifold with radius R,
the KK parity defined as ð�1Þn for the nth KK mode is
conserved after compactification. The mass scale of the
first excited KK mode, i.e., 
0 � R�1, has been con-
strained to be larger than about 300 GeV.

If we extend the UEDM by an effective operator ð‘HÞ �
�̂ � ðHT‘CÞ=2 to accommodate Majorana neutrino masses,
just as in Eq. (1), then the effective Majorana neutrino mass
matrix after electroweak symmetry breaking is M� ¼ �v2

with � ¼ �̂=ð�RÞ. The RGE of � now receives contribu-
tions from the KK modes, which are excited at the energy
scale of interest. More explicitly, the RGEs for � and the
Yukawa coupling matrices of the charged fermions are also
given by Eqs. (3) and (A1), but with the following coef-
ficients [25]:

	UEDM
� ¼ 	SM

� þ s

�
� 1

4
g21 �

11

4
g22 þ �þ 4TSM

M

�
;

	UEDM
l ¼ 	SM

l þ s

�
� 33

8
g21 �

15

8
g22 þ 2TSM

M

�
;

	UEDM
u ¼ 	SM

u þ s

�
� 101

72
g21 �

15

8
g22 �

28

3
g23 þ 2TSM

M

�
;

	UEDM
d ¼ 	SM

d þ s

�
� 17

72
g21 �

15

8
g22 �

28

3
g23 þ 2TSM

M

�
;

(A6)

and CUEDM
x ¼ CSM

x ð1þ sÞ with ‘‘x’’ being any relevant
subscript. Note that s � b
=
0c counts the number of
excited KK modes for a given energy scale 
. In addition,
the coefficients in the beta functions of gauge couplings
turn out to be

bUEDM1 ¼ bSM1 þ 27

2
s; bUEDM2 ¼ bSM2 þ 7

6
s;

bUEDM3 ¼ bSM3 � 5

2
s:

(A7)

Finally, the RGE for the quartic Higgs coupling � is quite
relevant in the UEDM, as in the SM case. It has been found
to be [25]

16�2 d�

dt
¼ 6ð1þ sÞ�2 � 3ð1þ sÞ�

�
3

5
g21 þ 3g22

�

þ 3

2

�
1þ 4

3
s

��
9

25
g41 þ

6

5
g21g

2
2 þ 3g24

�

þ 4ð1þ 2sÞ�TSM
M � 8ð1þ 2sÞtr½3ðYuY

y
u Þ2

þ 3ðYdY
y
d Þ2 þ ðYlY

y
l Þ2�: (A8)

APPENDIX B: RGES FOR DIRAC NEUTRINOS

If the SM is extended with three right-handed neutrino
singlets, then neutrinos acquire Dirac masses in the same
way as the charged leptons and quarks do. At one-loop
level, the RGEs of the fermion Yukawa coupling matrices
read [22]

16�2dY�

dt
¼½	SM

� þCSM
�;�ðY�Y

y
� ÞþCSM

�;l ðYlY
y
l Þ�Y�;

16�2 dYl

dt
¼½	SM

l þCSM
l;� ðY�Y

y
� ÞþCSM

l;l ðYlY
y
l Þ�Yl;

16�2 dYu

dt
¼½	SM

u þCSM
u;u ðYuY

y
u ÞþCSM

u;d ðYdY
y
d Þ�Yu;

16�2 dYd

dt
¼½	SM

d þCSM
d;u ðYuY

y
u ÞþCSM

d;d ðYdY
y
d Þ�Yd;

(B1)

where CSM
f;g ¼ þ3=2 (for f ¼ g) and�3=2 (for f � g), and

	SM
� ¼ � 9

20
g21 �

9

4
g22 þ TSM

D ;

	SM
l ¼ � 9

4
g21 �

9

4
g22 þ TSM

D ;

	SM
u ¼ � 17

20
g21 �

9

4
g22 � 8g23 þ TSM

D ;

	SM
d ¼ � 1

4
g21 �

9

4
g22 � 8g23 þ TSM

D

(B2)

with TSM
D � tr½3ðYuY

y
u Þ þ 3ðYdY

y
d Þ þ ðY�Y

y
� Þ þ ðYlY

y
l Þ�.

The RGEs of fermion Yukawa coupling matrices are the
same as in Eq. (B1) for the MSSM, but with different
coefficients, namely CMSSM

f;g ¼ þ3 (for f ¼ g) and þ1

(for f � g), and

	MSSM
� ¼�3

5
g21�3g22þ tr½3ðYuY

y
u ÞþðY�Y

y
� Þ�;

	MSSM
l ¼�9

5
g21�3g22þ tr½3ðYlY

y
l ÞþðY�Y

y
� Þ�;

	MSSM
u ¼�13

15
g21�3g22�

16

3
g23þ tr½3ðYuY

y
u ÞþðY�Y

y
� Þ�;

	MSSM
d ¼� 7

15
g21�3g22�

16

3
g23þ tr½3ðYdY

y
d ÞþðYlY

y
l Þ�:
(B3)

The RGEs of three gauge couplings g1, g2, and g3 are
the same as those in the case of Majorana neutrinos
[see Eq. (A3)].
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