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We study chiral symmetry breaking for fundamental charged fermions coupled electromagnetically to

photons with the inclusion of a four-fermion contact self-interaction term, characterized by coupling

strengths � and �, respectively. We employ multiplicatively renormalizable models for the photon

dressing function and the electron-photon vertex that minimally ensures mass anomalous dimension

�m ¼ 1. Vacuum polarization screens the interaction strength. Consequently, the pattern of dynamical

mass generation for fermions is characterized by a critical number of massless fermion flavors Nf ¼ Nc
f

above which chiral symmetry is restored. This effect is in diametrical opposition to the existence

of criticality for the minimum interaction strengths, �c and �c, necessary to break chiral symmetry

dynamically. The presence of virtual fermions dictates the nature of phase transition. Miransky scaling

laws for the electromagnetic interaction strength � and the four-fermion coupling �, observed for

quenched QED, are replaced by a mean field power law behavior corresponding to a second-order phase

transition. These results are derived analytically by employing the bifurcation analysis and are later

confirmed numerically by solving the original nonlinearized gap equation. A three-dimensional critical

surface is drawn in the phase space of ð�; �;NfÞ to clearly depict the interplay of their relative strengths to
separate the two phases. We also compute the � functions (�� and ��) and observe that �c and �c are

their respective ultraviolet fixed points. The power law part of the momentum dependence, describing the

mass function, implies �m ¼ 1þ s, which reproduces the quenched limit trivially. We also comment on

the continuum limit and the triviality of QED.

DOI: 10.1103/PhysRevD.87.013011 PACS numbers: 12.20.�m, 11.15.Tk, 11.30.Rd

Since the works of Maskawa and Nakajima as well as
the Kiev group [1], it is well known that quenched quantum
electrodynamics (QED) exhibits vacuum rearrangement,
which triggers chiral symmetry breaking when the inter-
action strength � ¼ e2=ð4�Þ exceeds a critical value
�c � 1. �c was argued to be an ultraviolet stable fixed
point defining the continuum limit in supercritical QED.
Although these works were carried out for the bare vertex
in the Landau gauge, principle qualitative conclusions
were later shown to be robust even for the most general
and sophisticated Ansätze put forward henceforth for an
arbitrary value of the covariant gauge parameter; see, e.g.,
Refs. [2–5]. Bardeen et al. [6] demonstrated that the com-
posite operator �c c acquires large anomalous dimensions
at � ¼ �c. In fact, the mass anomalous dimension was
shown to be �m ¼ 1, leading to the fact that the four-
fermion interaction operator ð �c c Þ2 acquires the scaling
dimension of d ¼ 2ð3� �mÞ ¼ 4 instead of 6, and
becomes renormalizable. This is an example of when an
interaction that is irrelevant in a certain region of phase

space (perturbative) might become relevant in another
(nonperturbative). Consequently, the four-fermion contact
interaction becomes marginal whose absence cannot ren-
der QED a closed theory in the strong coupling domain.
Depending upon the nonperturbative details of the
fermion-boson interaction, it is plausible to have �m > 1,
implying d < 4, which would modify the status of the four-
point operators from marginal to relevant; see, e.g., the
review article [7], and references therein. The upshot of the
argument is that the robustness of any conclusion about
strong QED can be guaranteed only if it is supplemented
by these perturbatively irrelevant operators. Quenched
QED with the inclusion of these additional operators has
been studied in Ref. [8].
Unquenching QED involves inclusion of fermion loops.

It provides screening and transforms the vacuum character-
istics drastically, changing the Miransky scaling law for the

dynamically generated mass m��Exp½��=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�=�c � 1

p �
to a mean field square-root behavior, i.e., m��

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�� �c

p
,

[9]. See also Ref. [10] and references therein. Employing a
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multiplicatively renormalizable photon propagator pro-
posed by Kizilersu and Pennington [11], it has recently
been shown that a large value of Nf restores chiral sym-

metry above a critical value Nc
f, and the corresponding

scaling law itself is a square-root: m��
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Nc

f � Nf

q
, [12].

However, these results were demonstrated without incor-
porating four-fermion interactions. In this article, we
include this additional interaction and establish the robust-
ness of this result with the inclusion of all the driving
elements that influence chiral symmetry breaking, namely,
�: the QED interaction strength; �: the coupling constant
related to the four-fermion interactions; and Nf: the fer-

mion flavors whose effect is diametrically opposed to that
of � and �. We study the details of chiral symmetry
breaking in the vicinity of the phase change, mapping out
the phase space of all these relevant parameters and report
the results that survive as well as the ones that get modified
in different regimes of this phase transition.

In Sec. I, we introduce the framework of the Schwinger-
Dyson equations (SDEs), the notation as well as the
assumptions we employ for our analysis. Section II is
dedicated to the analytic treatment of the gap equation in
the neighborhood of the critical plane that separates chirally
symmetric and asymmetric solutions. Next, in Sec. III, we
present the results of our numerical analysis. Section IV
summarizes our findings and provides an outlook for
future work.

I. SDE FOR THE FERMION PROPAGATOR

The starting point for our analysis is the SDE for the
electron propagator

S�1ðpÞ ¼ S�1
0 ðpÞ þ ie2

Z d4k

ð2�Þ4 �
�SðkÞ��ðk; pÞ���ðqÞ

� iG0

Z d4k

ð2�Þ4 Tr½SðkÞ�; (1)

where q ¼ k� p, e is the electromagnetic coupling and
G0 is the four-fermion coupling. We define the dimension-
less four-fermion coupling � as �=�2 ¼ G0=ð4�2Þ.
S�1
0 ðpÞ ¼ 6p is the inverse bare propagator for massless

electrons. We parametrize the full propagator SðpÞ in terms
of the electron wave function renormalization Fðp2Þ and
the mass function Mðp2Þ as SðpÞ ¼ Fðp2Þ=ð6p�Mðp2ÞÞ.
���ðqÞ is the full photon propagator that can be conven-

iently written as

���ðqÞ ¼ �Gðq2Þ
q2

�
g�� �

q�q�

q2

�
� �

q�q�

q4
; (2)

where � is the covariant gauge parameter such that � ¼ 0
corresponds to the Landau gauge. Gðq2Þ is the photon
renormalization function or the dressing function. The
full electron-photon vertex is represented by ��ðk; pÞ.
The form of the full vertex is tightly constrained by various

key properties of the gauge theory [7], e.g., multiplicative
renormalizability of the fermion and the gauge boson
propagators [2,11,13], perturbation theory [14], the
requirements of gauge invariance/covariance [5,15–19],
and, of course, observed phenomenology [20]. The most
general decomposition of this vertex in terms of its longi-
tudinal and transverse components is

��ðk;pÞ¼X4
i¼1

�iðk;pÞL�
i ðk;pÞþ

X8
i¼1

	iðk;pÞT�
i ðk;pÞ; (3)

where L�
1 ¼ ��, L�

2 ¼ ðkþ pÞ�ð6kþ 6pÞ, L�
3 ¼ ðkþ pÞ�,

and L�
4 ¼ 
��ðkþ pÞ�, where 
�� ¼ ½��; ���=2. The

coefficients �i are determined through the Ward-
Takahashi identity

ðk� pÞ���ðk; pÞ ¼ S�1ðkÞ � S�1ðpÞ; (4)

relating the electron propagator with the electron-photon
vertex [21]. Starting from the limiting form of this identity,
namely, the Ward identity,

@S�1ðpÞ
@p�

¼ ��ðp; pÞ; (5)

employing the most general form of the fermion propaga-
tor and then generalizing to arbitrarily different momenta,
one obtains

�1ðk; pÞ ¼ 1

2

�
1

Fðk2Þ þ
1

Fðp2Þ
�
;

�2ðk; pÞ ¼ 1

2

1

k2 � p2

�
1

Fðk2Þ �
1

Fðp2Þ
�
;

�3ðk; pÞ ¼ � 1

k2 � p2

�
Mðk2Þ
Fðk2Þ �

Mðp2Þ
Fðp2Þ

�
;

(6)

and �4ðk; pÞ ¼ 0.
It has now been established that the choice of the trans-

verse vertex has observable consequences at the hadronic
level, despite the fact that the simple rainbow-ladder trun-
cation is sufficient to reproduce a large body of existing
experimental data on pseudoscalar and vector mesons such
as their masses, charge radii, decay constants, and scatter-
ing lengths, as well as their form factors and the valence
quark distribution functions [22–32]. For example, the
conundrum of mass difference between opposite parity
states can only be explained through corrections to the
rainbow ladder truncations [33]; also see the review [34].
In addition to the efforts steered through the continuum
studies, attempts have also been initiated in lattice field
theory to compute the transverse form factors of the
fermion-boson vertex in some simple kinematical regimes
[35,36]. Extending these efforts to the entire kinematical
space of momenta k2, p2, and q2 is numerically challeng-
ing and it may require some time before the results are
made available. However, despite the fact that the trans-
verse vertex can have a material effect on hadronic
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properties and is crucial in maintaining key properties of
a quantum field theory, the qualitative behavior of the
fermion mass function itself is not significantly sensitive
to its details. Therefore, for our purpose, we shall restrict
ourselves to the simplest construction (Eq. (8) of Ref. [12])
that, in the quenched limit, renders the ultraviolet behavior
of Mðp2Þ to be

Mðp2Þ � ðp2Þ�m=2�1; (7)

with anomalous mass dimensions �m ¼ 1. This large value
makes it mandatory to introduce four-point interactions to
ensure self-consistency. With this choice of the full vertex,
we obtain, in the massless limit,

Fðp2Þ ¼
�
p2

�2

�
�
; Gðq2Þ ¼

�
q2

�2

�
s
; (8)

where � ¼ ��=ð4�Þ and s ¼ �Nf=ð3�Þ. Near criticality,
where the generated masses are small, it is reasonable to
assume that the power law solutions for the propagators
capture, at least qualitatively, a correct description of chiral
symmetry breaking. We choose to study the resulting
equation for the mass function in the convenient Landau
gauge. Results for any other gauge can be derived by
applying the Landau-Khalatnikov-Fradkin transformations
[19,37,38] or using a vertex Ansatz that effectively incor-
porates gauge covariance properties in its construction; see
e.g., Refs. [2,4,5].

After taking the trace of Eq. (1), carrying out the angular
integral, and Wick rotating to Euclidean space, we obtain

Mðp2Þ ¼ gðp2Þ
Z p2

0
dk2

k2

p2

Mðk2Þ
k2 þM2ðk2Þ

þ
Z �2

p2
dk2

Mðk2Þ
k2 þM2ðk2Þgðk

2Þ

þ �

�2

Z �2

0
dk2

k2Mðk2Þ
k2 þM2ðk2Þ ; (9)

where gðp2Þ ¼ s0Gðp2Þ, s0 ¼ 3�=ð4�Þ, and� is the ultra-
violet cutoff that regularizes the integrals. Note that we have
employed the simplifying assumption Gðq2Þ ¼ Gðk2Þ for
k2 > p2 and Gðq2Þ ¼ Gðp2Þ for p2 > k2, which would
allow for the analytic treatment of the linearized equation
for the mass function as detailed in the following section.

II. ANALYTIC TREATMENT

Before we venture into the computation of the mass
function by numerically solving the above nonlinear inte-
gral equation, we find it insightful to make analytical
inroads. The differential version of the gap equation (9)
simplifies in the neighborhood of the critical coupling �c;
viz., the coupling whereat Mðp2Þ � 0 solution bifurcates
away from theMðp2Þ ¼ 0 solution, which alone is possible
in perturbation theory. The behavior of the solution near
the bifurcation point may be investigated by performing

functional differentiation of the gap equation with respect
to Mðp2Þ and evaluating the result at Mðp2Þ ¼ 0.
Practically, this amounts to analyzing a linearized form of
the original gap equation [i.e., the equation obtained by
eliminating all terms of quadratic or higher order inMðp2Þ],

Mðp2Þ ¼ gðp2Þ
p2

Z p2

0
dk2Mðk2Þ þ

Z �2

p2
dk2

Mðk2Þ
k2

gðk2Þ

þ �

�2

Z �2

0
dk2Mðk2Þ: (10)

Note that the nonlinearized version of this equation
receives negligible contribution from the region k2 ! 0,
while this is not true for Eq. (10). This shortcoming is
readily remedied by introducing an infrared cutoff m2

such that MðmÞ ¼ m. The resultant linearized gap equa-
tion, Eq. (10), can now be studied analytically in the
neighborhood of the critical plane on converting it into a
second-order linear differential equation

x2M00ðxÞ þ sxM0ðxÞ þ s0ð1� sÞMðxÞ
xs

¼ 0; (11)

with two boundary conditions. Here we have used the
convenient substitution x ¼ �2=p2. Following are the
infrared and ultraviolet boundary conditions

M0ð�2=m2Þ ¼ 0; (12a)

Mð1Þ ¼
�
1þ �

s0

�
M0ð1Þ
1� s

: (12b)

Note that the four-fermion coupling only affects the ultra-
violet boundary condition. The differential equation itself
and the infrared boundary condition do not have any direct
dependence on it. It is what we expect intuitively. A four-
fermion Nambu—Jona-Lasinio type term only generates a
constant mass term. Therefore, it effectively serves as a
cutof-dependent bare mass and can hence only influence
the dynamics through the ultraviolet boundary condition.
If we now apply the Lommel transformations, z ¼ Bx�

and WðxÞ ¼ x�aMðxÞ, the linearized equation can be con-
verted into the following Bessel differential equation:

z2W 00ðzÞ þ zW 0ðzÞ þ ðz2 � A2ÞWðzÞ ¼ 0; (13)

where � ¼ �s=2, a ¼ ð1� sÞ=2, A ¼ ð1� sÞ=s, and

B ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3�ð1� sÞ=ð�s2Þp

, where s < 1. The boundary con-
ditions in terms of the function WðzÞ are given by

aWðzÞ þ �zW0ðzÞjz¼Bðm=�Þs ¼ 0; (14a)

aðs0 � �ÞWðzÞ � �zðs0 þ �ÞW 0ðzÞjz¼B ¼ 0: (14b)

The general solution of the second-order differential
equation (13) is

WðzÞ ¼ c1JAðzÞ þ c2YAðzÞ; (15)

where JAðzÞ and YAðzÞ are the Bessel functions of the first
and the second kind, respectively. The power law part of
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momentum dependence of the mass function MðxÞ ¼
xaWðxÞ is neatly separated out into the factor xa, implying
�m ¼ 1þ s. Note that s ¼ 1 corresponds to a momentum-
independent photon propagator that implies �m ¼ 2.
Consequently, Eq. (7) implies that it corresponds to a
momentum-independent mass function, a result that is
readily and analytically confirmed from the resultant

simple integral equation. This is a well-known behavior
of a contact interaction model of the Nambu—Jona-
Lasinio type. Moreover, the quenched limit of �m ¼ 1 is
also reproduced trivially.
For the homogenous boundary conditions of Eqs. (14),

the nontrivial chirally asymmetric solution of the gap
equation exists if the following condition holds:

�
2aJAðzÞþ�zðJA�1ðzÞ�JAþ1ðzÞÞ
2aYAðzÞþ�zðYA�1ðzÞ�YAþ1ðzÞÞ

�
z¼Bðm=�Þs

¼ ð1þ�=s0Þ�BðJA�1ðBÞ�JAþ1ðBÞÞ�ð1� sÞð1��=s0ÞJAðBÞ
ð1þ�=s0Þ�BðYA�1ðBÞ�YAþ1ðBÞÞ�ð1� sÞð1��=s0ÞYAðBÞ : (16)

In the limit of � ! 1, we obtain the following result for the dynamically generated mass m:

m2

�2
� fð�;Nf; �Þ ¼

�
2

B

�2
s �ðAÞ�ðAþ 2Þ2a

��

� ð1þ �=s0Þ�BðJA�1ðBÞ � JAþ1ðBÞÞ � ð1� sÞð1� �=s0ÞJAðBÞ
ð1þ �=s0Þ�BðYA�1ðBÞ � YAþ1ðBÞÞ � ð1� sÞð1� �=s0ÞYAðBÞ

�
: (17)

Carrying out the Taylor expansion near the critical point,
we find the following scaling laws:

m

�
¼ A1ð�;NfÞ½�� �cð�;NfÞ�1=2; (18)

m

�
¼ A2ð�;NfÞ½�� �cð�;NfÞ�1=2; (19)

m

�
¼ A3ð�; �Þ½Nc

fð�; �Þ � Nf�1=2: (20)

The exact form of the functional dependence of Ai, �c, �c,
and Nc

f on the relevant pair of �, �, and Nf can be derived
from Eq. (17) but, not yielding novel insight into the prob-
lems at hand, we refrain from computing it. The momentum
dependence of the mass function (based upon the numerical
calculation discussed in the next section) and the scaling
laws for �, �, and Nf have been plotted in Figs. 1–5.

The critical values of the parameters �, Nf, and � define

a surface in the 3D phase space of these parameters. The
mass function is zero (nonzero) below (above) the critical
surface, which corresponds to restored (broken) chiral
symmetry. The analytic expression for the critical surface
can be obtained by setting m=� ¼ 0 in Eq. (17). The
resultant equation, which can be solved for �, is given by

�¼�s0
½�BðJA�1ðBÞ � JAþ1ðBÞÞ � ð1� sÞJAðBÞ�
½�BðJA�1ðBÞ � JAþ1ðBÞÞ þ ð1� sÞJAðBÞ� : (21)

In order to obtain a finite mass for the charged fermion in
the limit of � ! 1, one requires charge renormalization.
Therefore, in this limit, we impose �ð�Þ ¼ �c þ
m2=ðA2�2Þ. One can thus readily obtain the corresponding
� function,

�� ¼ �
@�

@�

���������;Nf

¼ �2ð�� �cÞ: (22)

Therefore, �c is the ultraviolet fixed point of ��, as has
been observed in Ref. [9]. Identical presence of the fixed
point for �� for �c is readily observed:

�� ¼ �
@�

@�

���������;Nf

¼ �2ð�� �cÞ: (23)

Note that we have restricted ourselves to the mean field
approach, i.e., we work within the approximations that
neglect quantum corrections corresponding to four-
fermion interactions beyond the tree level. Taking into
account these corrections is beyond the scope and the

and2.5 N f 2

1
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0.200719
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1

p2

M
p2

FIG. 1. The mass functions for different values of � at fixed
� ¼ 2:5 and Nf ¼ 2. Its increasing sensitivity to the variation in

lambda helps locate the critical strength �c. Dashed and solid
curves represent mass functions with [vacuum polarization of
Eq. (25)] and without feedback [vacuum polarization of Eq. (8)]
from the gap equation, respectively.
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thrust of this article. Having said that, going beyond our
approximation would require incorporating the SDE for
the full Green function corresponding to the four-fermion
degrees of freedom. One way of achieving this at the
level of the Bethe-Salpeter fermion-antifermion scattering
kernel is the skeleton expansion. Another way of

incorporating this is the Cornwall-Jackiw-Tamboulis ef-
fective potential written in terms of the composite degrees
of freedom for higher loops; see for example Ref. [39]. For
the four-fermion interaction part, the conclusions obtained
in Ref. [39] are the same as ours, i.e., there is an ultraviolet
fixed point whose quantitative form along the critical curve

m
0.2255

0.2007
1

0.6476

m
0.2909
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1

0.6909

m
0.2349

0.2007
1

0.5
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10 4
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1

m

2.5 and N f 2

FIG. 2. The scaling law for four-fermion coupling �. Dotted,
solid, and dashed lines represent numerical results, fit to the
numerical data with a power law, and analytically predicted
square-root scaling law, respectively, at � ¼ 2:5 and Nf ¼ 2.

The mean field behavior of the chiral phase transition is evident.
Dashed and solid curves represent mass functions with [vacuum
polarization of Eq. (25)] and without feedback [vacuum polar-
ization of Eq. (8)] from the gap equation, respectively.
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FIG. 3. The mass function Mðp2Þ for varying values of the
electromagnetic coupling � for fixed values of massless fermion
flavors Nf ¼ 2 and the four-fermion coupling � ¼ 0:6. The

objective is to hunt �c and determine the nature of the phase
transition. Dashed and solid curves represent mass functions
with [vacuum polarization of Eq. (25)] and without feedback
[vacuum polarization of Eq. (8)] from the gap equation,
respectively.

m
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0.9553
1

0.6339

m
0.3283

0.9553
1

0.6629

m
0.2785

0.9553
1

0.5

0.5 1.0 1.5 2.0 2.5 3.0 3.5
10 4

0.001

0.01

0.1

1

m

N f 2 and 0.6

FIG. 4. The scaling law for the coupling �, investigated
through the behavior of the mass function near criticality,
Fig. 3. Dotted, solid, and dashed lines represent numerical
results, fit of the numerical data to the power law, and analyti-
cally predicted square-root scaling law, respectively, at
Nf ¼ 2 and � ¼ 0:6. Dashed and solid curves represent mass

functions with [vacuum polarization of Eq. (25)] and without
feedback [vacuum polarization of Eq. (8)] from the gap equation,
respectively.

N f 1
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FIG. 5. The mass function Mðp2Þ for increasing number of
massless fermion flavors diminishes because the interaction gets
screened. Chiral symmetry is restored above a certain Nc

f, which

depends upon the values of � and �. Dashed and solid curves
represent mass functions with [vacuum polarization of Eq. (25)]
and without feedback [vacuum polarization of Eq. (8)] from the
gap equation, respectively.
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is the same as given by Eq. (23). As pointed out before, the
critical value �c has a functional dependence on �. The
work of Kondo et al. suggests that, at least when we restrict
ourselves to the immediate neighborhood of the critical
curve, �c captures all the dependence on �, even on
including four-fermion interactions.

The analytical results of this section can be confirmed
and made precise through a numerical study of the non-
linearized gap equation (9). This analysis is presented in
the next section.

III. NUMERICAL RESULTS

In order to compare and confirm the above analytical
results, based on the linearized approximation, we solve the
original nonlinear integral equation (9) numerically for
varying Nf, �, and �. Depicted in Fig. 1 is the fermion

mass functions for different values of � for � ¼ 2:5 and
Nf ¼ 2. The closer we get to the critical value �c, the more

drastically pronounced is the drop in the mass function,
indicating the approaching onslaught of the phase transi-
tion. The scaling law is explored in Fig. 2, where the
variation of m=� � Mðp2 ¼ 0Þ=� with � is plotted at
the fixed values of � and Nf. The fit of the complete

numerical data shows that the power of the scaling law is
slightly different from 0.5. This is expected as the mean
field scaling behavior (20) captures the correct physics only
in the immediate vicinity of the critical point where the
linearized version of the equation becomes exact. In the
same figure, we also superimpose the analytically derived
square-root scaling law that, as expected, sits exactly atop
the numerical findings in the immediate vicinity of the
critical point. In Figs. 3 and 4, we show the variation of
the mass section and the corresponding scaling law as a
function of � at fixed values ofNf ¼ 2 and � ¼ 0:6. These

results again confirm the validity of the square-root depen-
dence of the dynamically generated mass on the electro-
magnetic coupling. In Figs. 5 and 6, we plot the mass
function in the presence of increasing types of virtual
fermion—antifermion pairs and the resulting scaling law
as a function of Nf, respectively, for � ¼ 2:5 and � ¼ 0:3.

These results establish the robustness of the conclusions
presented in Ref. [12] on the inclusion of the four-point
contact interaction term.

Shown in Fig. 7 is the critical curve in the �� � plane at
Nf ¼ 2. The dynamical mass ceases to exist for the values

of � and � below the curve. The dots in this figure
represent the points obtained by numerically solving the
nonlinear integral equation of the mass function, and the
solid curve represents the analytical result that corresponds
to expression (21). This criticality should be considered as
an extension of its quenched QED counterpart obtained
in Ref. [40]. For the sake of completeness, in Figs. 8 and 9,
we present the critical curves in the �� Nf and �� Nf

planes for fixed values of � ¼ 2 and � ¼ 0:3, respectively.

These figures show that the analytical results agree with the
numerical findings with a very good accuracy. Figure 9 gives
a quantitative picture of how the growing number of fermion
flavors requires a stronger electromagnetic coupling to break
chiral symmetry. The relation is not linear. The screening
effect exhausts the strength of the interaction faster with
increasing Nf.

Finally, in Fig. 10, we present the full critical surface in
the phase space ofNf, �, and �. In the limit ofNf ! 0, the

Miransky scaling law is reproduced. The results presented
in this paper are qualitatively robust if, instead of the
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FIG. 6. The scaling law for Nf. Dotted, solid, and dashed lines
represent numerical results, fit of the numerical data to the power
law, and analytically predicted square-root scaling law, respec-
tively, at � ¼ 2:5 and � ¼ 0:3. Thus the nature of this transition
is independent of the inclusion of the four-fermion interaction
term. Dashed and solid curves represent mass functions with
[vacuum polarization of Eq. (25)] and without feedback [vacuum
polarization of Eq. (8)] from the gap equation, respectively.
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FIG. 7. Critical curve in �� � plane at Nf ¼ 2. Dotted and
solid curves represent the numerical results and analytical find-
ings, respectively. For a fixed Nf, a chiral symmetry breaking

phase is achieved when the combined strength of � and � lies
above the criticality curve, dictated by Eq. (21). The curve is
indistinguishable, independently of the photon propagator em-
ployed [i.e., Eq. (8) or Eq. (25)]. The same is true for Figs. 8–10.
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multiplicatively renormalizable photon propagator of
Eq. (8), we employ any of the following models:

(i) One-loop perturbative photon propagator, as
employed in Ref. [9]:

Gðq2Þ ¼ 1þ �Nf

3�
ln

�
q2

�2

�
: (24)

(ii) A photon propagator that receives feedback from
the gap equation, i.e.,

Gðq2Þ ¼ ½ðq2 þM2ð0ÞÞ=�2�s; (25)

which is also multiplicatively renormalizable. For
a comparison, we have also displayed numerical
results for this latter choice in all the relevant fig-
ures. As we had anticipated, near criticality, results
are practically indistinguishable from the ones
obtained using the model of Eq. (8).

Note that away from criticality, a complete self-
consistent coupled solution of the photon and the fermion
propagator will be required. However, finiteness of the
dynamically generated mass for � ! 1 forces nonpertur-
bative QED to be consistently defined only for those values

of � and � that lie on the critical surface. This is a simple
corollary of the argument laid out in Ref. [6]. Note that as
we employ a model for the vacuum polarization, the run-
ning coupling is not our prediction. Following Rakow [41],
if we define the renormalization at q2 ¼ 0 rather than on
the mass shell, we get

�Rð0Þ ¼ �F2
Rð0ÞGRð0Þ ¼ �GRð0Þ; (26)

because FRð0Þ ¼ 1 for us. Therefore, our model conforms
to �Rð0Þ ! 0 in accordance with the lattice computation
of unquenched QED [41]. As we have argued before, when
� ! 1, � ! �c. Thus �Rð0Þ ¼ �cGRð0Þ ! 0, which is
associated with the triviality of QED in Ref. [41]. We use
this same model for the vacuum polarization even in the
presence of the perturbatively irrelevant four-fermion in-
teraction terms. This means that on the phase boundary,
the renormalized coupling is zero even in the presence
of the four-fermion interactions. This is in accordance
with the argument presented in Ref. [10]. However, note
that for the practical solution of the gap equation, the
photon propagator or the running coupling below q2 ¼
�2 ¼ M2ð�2Þ has no bearing on the chiral symmetry break-
ing solution.
We now recall that the Bethe-Salpeter equation gives us

an approximate relation between the integral over the mass
function and the ‘‘decay constant of the pion (f)’’ given by
Eq. (4.42) of Ref. [10]

f2 ¼
Z �

dp2p2Mðp2Þ ½Mðp2Þ � p2M0ðp2Þ=2�
½p2 þM2ðp2Þ�2 : (27)

We numerically evaluate f for varying values of s and find
that f ! 1 in the limit when the ultraviolet regulator
� ! 1, a result that suggests that the continuum limit is
the one of noninteracting bosons, in agreement with earlier
findings [9,42].

IV. EPILOGUE

We have studied chiral symmetry breaking for funda-
mental fermions interacting electromagnetically with
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Chiral Symmetry Restoration
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FIG. 8. Critical curve in �� Nf plane at � ¼ 2. Dotted and
solid curves represent the numerical results and analytical find-
ings, respectively. It is clear that the bifurcation analysis pro-
vides an exact analysis of the nonlinear equation at criticality.
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FIG. 9. Critical curve in Nf � � plane at � ¼ 0:3. As in the
other curves, dots are numerical solutions whereas the solid line
is the outcome of the bifurcation analysis.
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FIG. 10 (color online). A three-dimensional view of the criti-
cality surface. It corresponds to Eq. (21) as well as the numerical
analysis of the nonlinearized Eq. (9). The region below the
surface represents a chirally symmetric phase.
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photons and self-interacting through perturbatively irrele-
vant four-fermion contact interaction that is required to
render QED a closed theory in its strongly coupled regime,
where this additional interaction becomes marginal and,
perhaps, even relevant. We have used multiplicatively
renormalizable models for the photon propagator (with
and without the feedback from the gap equation) that, we
argue, should capture the qualitative physics correctly in
the vicinity of the critical surface in the phase space of
ð�; �; NfÞ, marking the onslaught of chiral symmetry

breaking (restoration). The presence of virtual fermion-
antifermion pairs changes the nature of the phase transi-
tions along the � and � axes. The Miransky scaling law
softens down to a square-root mean field scaling behavior
as a function of all the three parameters �, �, and Nf, (20).

Study of the mass anomalous dimensions for QED with a
model vacuum polarization reveals how, quantitatively, the
momentum dependence of the photon propagator, i.e.,

ðp2Þs�1, filters into the momentum dependence of the

fermion mass function, namely, ðp2Þðs�1Þ=2, through the
gap equation. We believe that our analysis can and should
be extended to the study of QCD through its SDEs. The
situation is ripe for the application of this line of approach
and technology to QCD, where we are finally having the
first glimpses of the flavor dependence of the gluon propa-
gator in the infrared region [43]. This is for future study.
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