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Heptagonic symmetry for quarks and leptons
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mass matrices, including CP violation.
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I. INTRODUCTION

The structure of quark and lepton mass matrices has
been under theoretical study for many years. Whereas the
six quark masses and the three mixing angles and one CP
violating phase in the quark sector are now measured with
some precision, the lepton sector is still missing some
crucial information. Recently, the neutrino mixing angle
615 has been measured by the Daya Bay [1] and RENO [2]
collaborations. The fact that sin’26,5 is now centered at
around 0.1 means that the previously favored tribimaximal
mixing pattern (sin’6,; = 1/2, sin’6;, = 1/3, 6,3 = 0) is
invalid, although the A, symmetry [3-5] used to obtain it
[6] is still applicable with some simple modifications
[7-9]. On the other hand, in the simplest application
[3,5] of A4, all the quark mixing angles are zero. The
question is whether there exists another symmetry which
successfully yields both quark and lepton mass matrices,
with good fits of all masses, mixing angles, and phases.
The answer is yes, as elaborated below.

Using the non-Abelian discrete symmetry D, of the
heptagon, it has been shown [10] that the CP violating
phase of the quark mixing matrix may be predicted,
whereas D, also yields a pattern [11] for the neutrino
mass matrix consistent with what is observed. This pattern
is previously derived using the symmetry Qg [12], and
realizes a specific conjecture [13] that the neutrino mass
matrix has two texture zeros in the basis that charged-
lepton masses are diagonal.

In Sec. II the symmetry D5 is explained. In Sec. III the
assignments of quarks under D5 are given with the accom-
panying Higgs structure and the resulting mass matrices. In
Sec. IV numerical fits to the quark masses and mixing
angles are given, with a prediction of the CP violating
phase. In Sec. V the assignments of leptons under D, are
given with the accompanying Higgs structure and the
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II. HEPTAGONIC SYMMETRY D,

The group Dy is the symmetry group of the regular
heptagon with 14 elements, five equivalence classes, and
five irreducible representations. Its character table is shown
in Table 1.

Here n is the number of elements and # is the order
of each element. The numbers a; are given by a; =
2 cos(2km/7). The character of each representation is its
trace and must satisfy the following two orthogonality
conditions:

Zni/\/ai/\/zl' = n(sab’ ZniXaiXZj = naij’ (1)
C; Xa

where n = Y ;n; is the total number of elements. The
number of irreducible representations must be equal to
the number of equivalence classes.

The three irreducible two-dimensional representations
of D; may be chosen as follows. For 24, let
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where w = exp(27i/7), then 2,3 are simply obtained by
the cyclic permutation of C; 4 5.

resulting mass matrices. In Sec. VI the neutrino mass TABLE I _Character table of D.
matrix is analyzed to show that it allows for nonzero €3  (jags n h X X s Xa Xs
and a specific correlation between it and 6,3 as well as dcp.

: . A . C, 1 1 1 1 2 2 2
Given that 6, is close to the tribimaximal value, it prefers

. : ) c, 7 2 -1 1 0 0 0

an inverted hierarchy of neutrino masses although a qua- C ’ . ) | 4 4 4
sidegenerate pattern with either normal or inverted order- 3 ! 2 3
. C4 2 7 1 1 aj as ay
ing cannot be ruled out. In Sec. VII there are some 5 7 1 ) a a a
concluding remarks. > > 1 2
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For D, with n prime, there are 2n elements divided into
(n + 3)/2 equivalence classes: C; contains just the iden-
tity, C, has the n reflections, C; from k = 3 to (n + 3)/2
has two elements each of order n. There are two
one-dimensional representations and (n — 1)/2 two-
dimensional ones.

The group multiplication rules of D; are

U'x1=1  1x2=2, 3)

2;X2;=1+1+2;;, 2;X2;11=2;+2;15, 4

where 2, 5 means 2, ,. In particular, let (a,, a,), (b, by) ~
2,; then

albz + Clzbl ~ 1,
a1b2 - a2b1 -~ 1/, (5)
(a1by, azby) ~ 2.

In the decomposition of 2; X 2,, we have instead

(azby, ayby) ~ 24, (azby, ayby) ~ 25. (6)

III. QUARK SECTOR

We assign quarks as shown in Table II and Higgs dou-
blets as shown in Table 111, together with an extra Z4 X Z4
symmetry.

As aresult, the (u, ¢, f) mass matrix is diagonal, coming
from the Yukawa terms uu® @9 + cc$9 and 11¢¢?. As for
the (d, s, b) mass matrix, the allowed Yukawa terms are
(ds¢ + sd) 9, bb°dY, b(d° P + s¢¢Y), and (dp) +
sqgg)bc. The resulting mass matrix is thus of the form [10]

0 a &b
M,=a 0 b | (7)
éc ¢ d

where & = ($2)/(#9).

TABLE II. Quark assignments under D, X Zal X Z5.

Symmetry [(u, d), (c,s)] (,b) (dS s¢) b¢ (uSc¢)
D, 2, 1 2, 1 2, 1
V44 + + - - + +
z! + + + o+ -+

TABLE III.  Higgs doublet assignments under D; X Z4 X Z4.

Symmetry b, d, Dy Ds 6 D75
D, 1 1 2 2, 25
z4 + - - + +
z4 + + + + -
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IV. PREDICTION OF CP PHASE

As in Ref. [10], we can redefine the phases of M, so
that a, b, ¢, d are real, but £ is complex. Since M, is
diagonal, we have

(mg 0 0 \

ViMve=10 m, 0 |
\0 0 mb) (8)

(m?i 0 0 \

viMmMmivi= o m® o |

0 0 m)

where V; is the observed quark mixing matrix up to phase
conventions. The structure of M, M} allows us to obtain
the following first approximations:

bd + £ac
~vc? + & Ve =
my, c B ch (1 ¥ |§|2)C2 n d2y (9)
_ac+ &bd
T2

where a> < b? and |£|?> < 1 are assumed. We now rotate

j\/ldj\/l:g using

1 0 \
Vy; = 0 1 Ve (10)
Ve Vo 1
to obtain the 2 X 2 matrix
Moy MI = ( A, C), (11)
cC* B
where
A =a* + |E1P6? — |V,|*m2, (12)
B =a?+ b> — |V, |*m?, (13)
f : ; :
3.4"

J(1075)

190 19.5 20.0

17.0 17.5 18.0 18.5

ms/ my
FIG. 1. The CP violating parameter J versus m/m,. The solid

(dashed) lines indicate the one (two) standard-deviation bounds
of J.
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TABLE IV. D; parameter fits of quark masses and mixing.

a (GeV) b (GeV) c(GeV)  d(GeV) Re(&) Im(¢&) m,/my
my MeV)  m, (MeV)  m;, (GeV) Vs V.l Vs J
0.0125 0.138 1.32 —2.60 0.053 —0.084 17.00
3.89 66.2 2.92 0.22534 0.00355 0.0420 295X 1073
0.0124 0.139 1.34 —2.60 0.058 —0.084 17.25
3.91 67.4 2.93 022532 000358 00420  2.89 X 1075
0.0123 0.138 1.40 —2.60 0.064 —0.087 17.50
3.96 69.2 2.96 0.22519 0.00363 0.0409 2.76 X 1073
0.0122 0.138 1.39 —2.55 0.068 —0.084 17.75
3.94 69.9 291 0.22501 0.00359 0.0415 2.70 X 1075
C = &b* =V, Vimd, (14) IV,,] = 0.00351(+0.00015/ — 0.00014).  (23)

yielding

(B + A) + %\/(B — AR +4CP (5)

1

Note that Particle Data Group also lists the condition 17 <
m,/my < 22 and the value of the CP violating parameter is

J = 2.96(+0.20/ — 0.16) X 1075. (24)

We show in Table IV sample values of a, b, ¢, d, Re(§),
Im(&) with the corresponding values of my, m,, my, |V,

V. LEPTON SECTOR

, 1 1 4|C?
Vi B 1 _(B—A)2+4|C|2’ (16) [V.ol, IV, and J as well as m/my.
where the phase of V, is that of C, and
my = |2abcé — a*d|/mgm,, (17

Using |V,,,| = 0.22534, we find |C|?/(B — A)*> = 0.05971,
and m2 > m% implies A =0.05351B, hence m?=
1.05349B. Using these formulas, the six parameters a, b,
¢, d, Re(¢), Im(¢) may then be determined and the CP
violating parameter J is predicted.

For our numerical analysis, we start with the approxi-
mate solutions, then diagonalize .’Md.’]\/lj; directly. We scan

Using again D; X Z§ X ZY%, we assign leptons as shown
in Table V and Higgs triplets as shown in Table VI.

As aresult, the (e, u, 7) mass matrix is di_agonal, cgming
from the Yukawa terms ee¢d? and puudh? + 77¢P2. As
for the Majorana (v,, v w v,) mass matrix, the allowed
Yukawa terms are v, &), (v,v,+ v,v,)E), and
v (v, &3 + v,£9). The resulting mass matrix is thus of
the form [11]

for solutions consistent with data on the three masses and a c d
three mixing angles, within one standard deviation of each M,=1c 0 b, (25)
parameter. We then obtain J numerically from the resulting d b 0

Vexwm- This is then the prediction of our model. In Fig. 1 we
plot J versus m,/m,, which shows good agreement with
data. We use the 2008 updated values [14] of m, , eval-
uated at My,

which was first derived using Qg [12], and realizes one of
the conjectures of Ref. [13].

TABLE V. Lepton assignments under D; X Z4 X Z4.

my(My) = 2.93(+1.25/ — 1.21) MeV,  (18)
Symmetry (v, e)  [(vy, u) (v, 1] e [(p 7]
m(My) = 56 + 16 MeV, (19) D7 1 2 1 23
74 + + + +
zy + + + +
my,(My) = 2.92 % 0.09 GeV, (20)

and the 2012 Particle Data Group [15] values of the mixing

TABLE VI. Higgs triplet assignments under D; X Zg X Z4.

angles Symmetry & £25
|V,,| = 0.22534 = 0.00065, 2l b, 1 2,
z4 + +
zy + +
V.| = 0.0412(+0.0011/ — 0.0005), (22)
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VI. ANALYSIS OF NEUTRINO MASS MATRIX

Rotating M, to the tribimaximal basis using

141 v,
v | = U%B Yu
V3 vV,
V2/3  —=4J1/6  —4/1/6 v,
=|J1/3 J1/3  1/3 v, | (26)
0 —/1/2 1/2 Ve
it becomes
myp nmg My
UYTESI R — 27)
my nNis ms
where
1
m; = 5(26{ +b—2c—2d), (28)
1
m, = g(a +2b + 2¢ + 2d), (29)
! +d) 3D
m4 = —=(—C )
V3
Lcerag=" (32)
ms = —f=\—¢C = —
5 \/6 \/E
1 1
mg=—=Q2a—2b+c+d =—=(m +2m, + 3my).

32 2.2

(33)

If my = ms = mg = 0, tribimaximal mixing is recovered.
In particular, my # 0 or ms # 0 means that ;3 # 0. In
previous studies, the special cases my # 0, ms = mg = 0
[16,17] and ms # 0, my = mg = 0 [8,9,18] have been
explored. The requirement from D, that ms = my/ V2 is
a new condition which will predict a special correlation
between 63 and 6,3 as well as §.p.
Consider the unitary matrix U, such that

|m}|? 0 0
UutMy2I My Htu = om0 |
0 0 |m}|?
(34)
then U’, = UrgU, is the lepton mixing matrix up to
phases. Let U, be approximately given by
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Ue = €71 1 €23 |5 (35)
€ €3 1
|2

then for |m}|* = |m,|* we have

—(mem} + mymyg)
B

€y = (36)

lmy|? — |m,
In addition, since the effective neutrino mass m,, in
neutrinoless double beta decay is given by

m,, = lal = lm; + my + ms), (37)

whereas
1
m;y = g(2\/§m6 —my — 2m,), (38)
we have the relationship
2 2 _1 2 2 f
|ms3|* — m3, = §(|m2| = |m[?)[1 + 4v2Re(€y))].  (39)

Since |m,|* — |m;|*> =~ Am3, is very small, this model
predicts m,, = |m3| to a very good approximation. The
structure of Eq. (38) also shows that an inverted ordering of
neutrino masses is expected, although the quasidegenerate
limit is also possible for this texture as fully analyzed in
Ref. [19], in which case either inverted or normal ordering
may occur. In the following we focus on the inverted case,
ie., [msl <|my| <|myl.
For my # 0, v is rotated to v} according to

mymy + mym} mymy + mym}

€3 = —F €y = .
B ml? — Imy 22 msl? = Imy )
(40)
As a result,
2 1
Uy = \/;613 + \/%623
N —my(my + 2my)* + my2m; + m,) @1
V6(lm 1> = |m;?) ’
U =— L Le + Le
n3 \/E \/6 13 \/§ 23
1 (my — my)my
~ L @)
\/5 \/6(|ml|2 - |m3|2)
1 1 1 1 (my — my)m;
Ui2———€e3t—x=e3=—— .
T2 V6T BTV VolmlE = Imsl)

(43)

If all parameters are real, then for U23 = (.16, sin22023
would be 0.80, which is ruled out by present data, i.e.,
sin’26,; > 0.92. However, a fit may be obtained for com-
plex values.
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We go back to Eq. (25) and observe that a, ¢, d may
be chosen real, so only b is complex. This means that
my is real as well as 2m; —m,, and for mg =0,
my = —(m; + 2m,)/3. Writing m,, as m,e'®> with
m, = m; and sin¢, = 2sin¢,, we obtain

m

m
Ul = 178 [~ cos¢p, + cosdp, — 9ising,],  (44)
° J6Am3,

1
U=~ \/_ \/_A 2 ———[cosp; —cosp, —ising;],  (45)

mymy

1
\/_ \/_A mzz

where cos¢, = *4/1 — 4sin’¢p,. We then have
|U/3|2 |U/ 3|2
1+ les]* + lex]* U2
47

Ul = [cosdp; — cos¢p, — ising;],  (46)

sin2013 = tan2023

Since

w/Amgz\/S + 4cos(p, — @)

ms| = s 48

e T o
the above equations relate |m;| = m,, with 6,3 and 0,3. If
we fix 6,3, we then obtain |m;]| as a function of 6,;. We plot
in Fig. 2 our model predictions for |m, ;| and |m3| = m,,
versus sin?26,;. The other data points are taken to be their

experimental central values.
If we rotate ML23(ML23) by

1 0 €13
UIE = 0 1 €3 | (49)
€3 ey |

we obtain the 2 X 2 mass-squared matrix spanning Vll,z.
This differs from the 2 X 2 submatrix in the tribimaximal
basis by terms quadratic in m4 which are important in
obtaining the correct Am3,, and Eq. (36) becomes modi-
fied. However, we can adjust |m,| versus |m,| as well as m

0.10}
0.08}

0.06}

m(eV)

0.04}

0.02}F

092 093 094 095 096 097 098 0.99
$in(2 623)

FIG. 2 (color online).
versus sin’26,s.

Neutrino masses m;, and m; = m,,
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FIG. 3 (color online).
versus sin?26,s.

The CP violating parameter |sindcp|

to fit the data. These adjustments will have negligible
effects on |m;|.

We plot in Fig. 3 our model prediction for |sindp|
versus sin’26,5. To obtain sinﬁcp, we use

1 1
U,=—, v +—=é€5;,
. \/§ ,u2 \/§ \/z 3 (50)
= Im(U,,U},3U},,"U3s"),

from which we find (using U/, = |U,le", etc.)

2
\/;cosﬁz;; sind = |U;L2| sin(f,3 — 0,5 — 0,3).  (51)

VII. CONCLUDING REMARKS

We have studied a specific pattern for both quark and
lepton mass matrices. In both cases, one mass matrix is
diagonal (M, and 2M,), whereas the other has two zeros
(M, and M ). In the case of M, the assumption that it is
Majorana corresponds to one of the conjectures of
Ref. [13], whereas the Dirac mass matrix M, requires
further restrictions to make it predictive, as first proposed
in Ref. [10] using the non-Abelian discrete symmetry D-.
The conjectured form of M, was first derived [12] using
QOs, but it may also be obtained [11] using D5 or D;. Here
we consider D5 as the unifying symmetry for both quarks
and leptons.

The CP violating parameter J in the quark sector is
constrained in this model by my, mg, my, |V, [Vl
|V.,|. Within one standard deviation of all six measure-
ments, we obtain J in agreement with data. In the neutrino
sector, we obtain |m ,| as well as [m3| = m,, as functions
of sin?26,; and also predict sindcp as a function of
Sin22923.
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