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I. INTRODUCTION

The structure of quark and lepton mass matrices has
been under theoretical study for many years. Whereas the
six quark masses and the three mixing angles and one CP
violating phase in the quark sector are now measured with
some precision, the lepton sector is still missing some
crucial information. Recently, the neutrino mixing angle
�13 has been measured by the Daya Bay [1] and RENO [2]
collaborations. The fact that sin22�13 is now centered at
around 0.1 means that the previously favored tribimaximal
mixing pattern (sin2�23 ¼ 1=2, sin2�12 ¼ 1=3, �13 ¼ 0) is
invalid, although the A4 symmetry [3–5] used to obtain it
[6] is still applicable with some simple modifications
[7–9]. On the other hand, in the simplest application
[3,5] of A4, all the quark mixing angles are zero. The
question is whether there exists another symmetry which
successfully yields both quark and lepton mass matrices,
with good fits of all masses, mixing angles, and phases.
The answer is yes, as elaborated below.

Using the non-Abelian discrete symmetry D7 of the
heptagon, it has been shown [10] that the CP violating
phase of the quark mixing matrix may be predicted,
whereas D7 also yields a pattern [11] for the neutrino
mass matrix consistent with what is observed. This pattern
is previously derived using the symmetry Q8 [12], and
realizes a specific conjecture [13] that the neutrino mass
matrix has two texture zeros in the basis that charged-
lepton masses are diagonal.

In Sec. II the symmetry D7 is explained. In Sec. III the
assignments of quarks under D7 are given with the accom-
panying Higgs structure and the resulting mass matrices. In
Sec. IV numerical fits to the quark masses and mixing
angles are given, with a prediction of the CP violating
phase. In Sec. V the assignments of leptons under D7 are
given with the accompanying Higgs structure and the
resulting mass matrices. In Sec. VI the neutrino mass
matrix is analyzed to show that it allows for nonzero �13
and a specific correlation between it and �23 as well as �CP.
Given that �12 is close to the tribimaximal value, it prefers
an inverted hierarchy of neutrino masses although a qua-
sidegenerate pattern with either normal or inverted order-
ing cannot be ruled out. In Sec. VII there are some
concluding remarks.

II. HEPTAGONIC SYMMETRY D7

The group D7 is the symmetry group of the regular
heptagon with 14 elements, five equivalence classes, and
five irreducible representations. Its character table is shown
in Table I.
Here n is the number of elements and h is the order

of each element. The numbers ak are given by ak ¼
2 cosð2k�=7Þ. The character of each representation is its
trace and must satisfy the following two orthogonality
conditions:X

Ci

ni�ai�
�
bi ¼ n�ab;

X
�a

ni�ai�
�
aj ¼ n�ij; (1)

where n ¼ P
ini is the total number of elements. The

number of irreducible representations must be equal to
the number of equivalence classes.
The three irreducible two-dimensional representations

of D7 may be chosen as follows. For 21, let

C1:
1 0

0 1

 !
;

C2:
0 !k

!7�k 0

 !
; ðk ¼ 0; 1; 2; 3; 4; 5; 6Þ;

C3:
! 0

0 !6

 !
;

!6 0

0 !

 !
;

C4:
!2 0

0 !5

 !
;

!5 0

0 !2

 !
;

C5:
!4 0

0 !3

 !
;

!3 0

0 !4

 !
;

(2)

where ! ¼ expð2�i=7Þ, then 22;3 are simply obtained by

the cyclic permutation of C3;4;5.

TABLE I. Character table of D7.

Class n h �1 �2 �3 �4 �5

C1 1 1 1 1 2 2 2

C2 7 2 �1 1 0 0 0

C3 2 7 1 1 a1 a2 a3
C4 2 7 1 1 a2 a3 a1
C5 2 7 1 1 a3 a1 a2
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For Dn with n prime, there are 2n elements divided into
ðnþ 3Þ=2 equivalence classes: C1 contains just the iden-
tity, C2 has the n reflections, Ck from k ¼ 3 to ðnþ 3Þ=2
has two elements each of order n. There are two
one-dimensional representations and ðn� 1Þ=2 two-
dimensional ones.

The group multiplication rules of D7 are

10 � 10 ¼ 1; 10 � 2i ¼ 2i; (3)

2i�2i¼1þ10þ2iþ1; 2i�2iþ1¼2iþ2iþ2; (4)

where 24;5 means 21;2. In particular, let ða1; a2Þ, ðb1; b2Þ �
21; then

a1b2 þ a2b1 � 1;

a1b2 � a2b1 � 10;

ða1b1; a2b2Þ � 22:

(5)

In the decomposition of 21 � 22, we have instead

ða2b1; a1b2Þ � 21; ða2b2; a1b1Þ � 23: (6)

III. QUARK SECTOR

We assign quarks as shown in Table II and Higgs dou-
blets as shown in Table III, together with an extra Zd

2 � Zu
2

symmetry.
As a result, the ðu; c; tÞ mass matrix is diagonal, coming

from the Yukawa terms uuc�0
7 þ ccc�0

8 and ttc�0
1. As for

the ðd; s; bÞ mass matrix, the allowed Yukawa terms are
ðdsc þ sdcÞ ��0

2, bbc ��0
2, bðdc ��0

4 þ sc ��0
3Þ, and ðd ��0

4 þ
s ��0

3Þbc. The resulting mass matrix is thus of the form [10]

Md ¼
0 a �b

a 0 b

�c c d

0
BB@

1
CCA; (7)

where � ¼ h ��0
4i=h ��0

3i.

IV. PREDICTION OF CP PHASE

As in Ref. [10], we can redefine the phases of Md so
that a, b, c, d are real, but � is complex. Since Mu is
diagonal, we have

Vy
LMdVR ¼

md 0 0

0 ms 0

0 0 mb

0
BB@

1
CCA;

Vy
LMdM

y
dVL ¼

m2
d 0 0

0 m2
s 0

0 0 m2
b

0
BB@

1
CCA;

(8)

where VL is the observed quark mixing matrix up to phase

conventions. The structure of MdM
y
d allows us to obtain

the following first approximations:

mb ’
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 þ d2

p
; Vcb ’ bdþ ��ac

ð1þ j�j2Þc2 þ d2
;

Vub ’ acþ �bd

c2 þ d2
;

(9)

where a2 � b2 and j�j2 � 1 are assumed. We now rotate

MdM
y
d using

V3 ¼
1 0 Vub

0 1 Vcb

�V�
ub �V�

cb 1

0
BB@

1
CCA (10)

to obtain the 2� 2 matrix

M2M
y
2 ¼ A C

C� B

 !
; (11)

where

A ¼ a2 þ j�j2b2 � jVubj2m2
b; (12)

B ¼ a2 þ b2 � jVcbj2m2
b; (13)

TABLE II. Quark assignments under D7 � Zd
2 � Zu

2 .

Symmetry ½ðu; dÞ; ðc; sÞ� ðt; bÞ ðdc; scÞ bc ðuc; ccÞ tc

D7 21 1 21 1 22 1
Zd
2 þ þ � � þ þ

Zu
2 þ þ þ þ � þ

TABLE III. Higgs doublet assignments under D7 � Zd
2 � Zu

2 .

Symmetry �1 �2 �3;4 �5;6 �7;8

D7 1 1 21 22 23
Zd
2 þ � � þ þ

Zu
2 þ þ þ þ �

FIG. 1. The CP violating parameter J versus ms=md. The solid
(dashed) lines indicate the one (two) standard-deviation bounds
of J.
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C ¼ �b2 � VubV
�
cbm

2
b; (14)

yielding

m2
s ¼ 1

2
ðBþ AÞ þ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðB� AÞ2 þ 4jCj2

q
; (15)

jVusj2 ¼ 1

2
� 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4jCj2

ðB� AÞ2 þ 4jCj2
s

; (16)

where the phase of Vus is that of C, and

md ¼ j2abc�� a2dj=msmb: (17)

Using jVusj ¼ 0:22534, we find jCj2=ðB� AÞ2 ¼ 0:05971,
and m2

s � m2
d implies A ’ 0:05351B, hence m2

s ’
1:05349B. Using these formulas, the six parameters a, b,
c, d, Reð�Þ, Imð�Þ may then be determined and the CP
violating parameter J is predicted.

For our numerical analysis, we start with the approxi-

mate solutions, then diagonalizeMdM
y
d directly. We scan

for solutions consistent with data on the three masses and
three mixing angles, within one standard deviation of each
parameter. We then obtain J numerically from the resulting
VCKM. This is then the prediction of our model. In Fig. 1 we
plot J versus ms=md, which shows good agreement with
data. We use the 2008 updated values [14] of md;s;b eval-

uated at MW ,

mdðMWÞ ¼ 2:93ðþ1:25=� 1:21Þ MeV; (18)

msðMWÞ ¼ 56� 16 MeV; (19)

mbðMWÞ ¼ 2:92� 0:09 GeV; (20)

and the 2012 Particle Data Group [15] values of the mixing
angles

jVusj ¼ 0:22534� 0:00065; (21)

jVcbj ¼ 0:0412ðþ0:0011=� 0:0005Þ; (22)

jVubj ¼ 0:00351ðþ0:00015=� 0:00014Þ: (23)

Note that Particle Data Group also lists the condition 17<
ms=md < 22 and the value of the CP violating parameter is

J ¼ 2:96ðþ0:20=� 0:16Þ � 10�5: (24)

We show in Table IV sample values of a, b, c, d, Reð�Þ,
Imð�Þ with the corresponding values of md, ms, mb, jVusj,
jVubj, jVcbj, and J as well as ms=md.

V. LEPTON SECTOR

Using again D7 � Zd
2 � Zu

2 , we assign leptons as shown

in Table V and Higgs triplets as shown in Table VI.
As a result, the ðe;�; �Þmass matrix is diagonal, coming

from the Yukawa terms eec ��0
1 and ��c ��0

5 þ ��c ��0
6. As

for the Majorana ð	e; 	�; 	�Þ mass matrix, the allowed

Yukawa terms are 	e	e�
0
1, ð	�	� þ 	�	�Þ�0

1, and

	eð	��
0
3 þ 	��

0
2Þ. The resulting mass matrix is thus of

the form [11]

M	 ¼
a c d

c 0 b

d b 0

0
BB@

1
CCA; (25)

which was first derived using Q8 [12], and realizes one of
the conjectures of Ref. [13].

TABLE IV. D7 parameter fits of quark masses and mixing.

a (GeV) b (GeV) c (GeV) d (GeV) Reð�Þ Imð�Þ ms=md

md (MeV) ms (MeV) mb (GeV) jVusj jVubj jVcbj J

0.0125 0.138 1.32 �2:60 0.053 �0:084 17.00

3.89 66.2 2.92 0.22534 0.00355 0.0420 2:95� 10�5

0.0124 0.139 1.34 �2:60 0.058 �0:084 17.25

3.91 67.4 2.93 0.22532 0.00358 0.0420 2:89� 10�5

0.0123 0.138 1.40 �2:60 0.064 �0:087 17.50

3.96 69.2 2.96 0.22519 0.00363 0.0409 2:76� 10�5

0.0122 0.138 1.39 �2:55 0.068 �0:084 17.75

3.94 69.9 2.91 0.22501 0.00359 0.0415 2:70� 10�5

TABLE V. Lepton assignments under D7 � Zd
2 � Zu

2 .

Symmetry ð	e; eÞ ½ð	�;�Þ; ð	�; �Þ� ec ½ð�c; �cÞ�
D7 1 21 1 23
Zd
2 þ þ þ þ

Zu
2 þ þ þ þ

TABLE VI. Higgs triplet assignments under D7 � Zd
2 � Zu

2 .

Symmetry �1 �2;3

D7 1 21
Zd
2 þ þ

Zu
2 þ þ
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VI. ANALYSIS OF NEUTRINO MASS MATRIX

Rotating M	 to the tribimaximal basis using

	1

	2

	3

0
BB@

1
CCA ¼ Uy

TB

	e

	�

	�

0
BB@

1
CCA

¼

ffiffiffiffiffiffiffiffi
2=3

p � ffiffiffiffiffiffiffiffi
1=6

p � ffiffiffiffiffiffiffiffi
1=6

p
ffiffiffiffiffiffiffiffi
1=3

p ffiffiffiffiffiffiffiffi
1=3

p ffiffiffiffiffiffiffiffi
1=3

p
0 � ffiffiffiffiffiffiffiffi

1=2
p ffiffiffiffiffiffiffiffi

1=2
p

0
BBB@

1
CCCA

	e

	�

	�

0
BB@

1
CCA; (26)

it becomes

Mð1;2;3Þ
	 ¼

m1 m6 m4

m6 m2 m5

m4 m5 m3

0
BB@

1
CCA; (27)

where

m1 ¼ 1

3
ð2aþ b� 2c� 2dÞ; (28)

m2 ¼ 1

3
ðaþ 2bþ 2cþ 2dÞ; (29)

m3 ¼ �b; (30)

m4 ¼ 1ffiffiffi
3

p ð�cþ dÞ; (31)

m5 ¼ 1ffiffiffi
6

p ð�cþ dÞ ¼ m4ffiffiffi
2

p ; (32)

m6 ¼ 1

3
ffiffiffi
2

p ð2a� 2bþ cþ dÞ ¼ 1

2
ffiffiffi
2

p ðm1 þ 2m2 þ 3m3Þ:

(33)

If m4 ¼ m5 ¼ m6 ¼ 0, tribimaximal mixing is recovered.
In particular, m4 � 0 or m5 � 0 means that �13 � 0. In
previous studies, the special cases m4 � 0, m5 ¼ m6 ¼ 0
[16,17] and m5 � 0, m4 ¼ m6 ¼ 0 [8,9,18] have been

explored. The requirement from D7 that m5 ¼ m4=
ffiffiffi
2

p
is

a new condition which will predict a special correlation
between �13 and �23 as well as �CP.

Consider the unitary matrix U
 such that

Uy

M

ð1;2;3Þ
	 ðMð1;2;3Þ

	 ÞyU
 ¼
jm0

1j2 0 0

0 jm0
2j2 0

0 0 jm0
3j2

0
BB@

1
CCA;
(34)

then U0
�i ¼ UTBU
 is the lepton mixing matrix up to

phases. Let U
 be approximately given by

U
 ¼
1 
12 
13


21 1 
23


31 
32 1

0
BB@

1
CCA; (35)

then for jm0
1j2 ’ jm1j2 we have


21 ’ �ðm6m
�
1 þm2m

�
6Þ

jm2j2 � jm1j2
: (36)

In addition, since the effective neutrino mass mee in
neutrinoless double beta decay is given by

mee ¼ jaj ¼ jm1 þm2 þm3j; (37)

whereas

m3 ¼ 1

3
ð2 ffiffiffi

2
p

m6 �m1 � 2m2Þ; (38)

we have the relationship

jm3j2 �m2
ee ¼ 1

3
ðjm2j2 � jm1j2Þ½1þ 4

ffiffiffi
2

p
Reð
21Þ�: (39)

Since jm2j2 � jm1j2 ’ �m2
21 is very small, this model

predicts mee ¼ jm3j to a very good approximation. The
structure of Eq. (38) also shows that an inverted ordering of
neutrino masses is expected, although the quasidegenerate
limit is also possible for this texture as fully analyzed in
Ref. [19], in which case either inverted or normal ordering
may occur. In the following we focus on the inverted case,
i.e., jm3j< jm1j< jm2j.
For m4 � 0, 	3 is rotated to 	0

3 according to


13 ’ m1m
�
4 þm4m

�
3

jm3j2 � jm1j2
; 
23 ’ m2m

�
4 þm4m

�
3ffiffiffi

2
p ðjm3j2 � jm1j2Þ

:

(40)

As a result,

U0
e3 ’

ffiffiffi
2

3

s

13 þ

ffiffiffi
1

3

s

23

’ �m4ðm1 þ 2m2Þ� þm�
4ð2m1 þm2Þffiffiffi

6
p ðjm1j2 � jm3j2Þ

; (41)

U0
�3 ’ � 1ffiffiffi

2
p � 1ffiffiffi

6
p 
13 þ 1ffiffiffi

3
p 
23

’ � 1ffiffiffi
2

p � ðm1 �m2Þm�
4ffiffiffi

6
p ðjm1j2 � jm3j2Þ

; (42)

U0
�3 ’

1ffiffiffi
2

p � 1ffiffiffi
6

p 
13 þ 1ffiffiffi
3

p 
23 ’ 1ffiffiffi
2

p � ðm1 �m2Þm�
4ffiffiffi

6
p ðjm1j2 � jm3j2Þ

:

(43)

If all parameters are real, then for U0
e3 ¼ 0:16, sin22�23

would be 0.80, which is ruled out by present data, i.e.,
sin22�23 > 0:92. However, a fit may be obtained for com-
plex values.
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We go back to Eq. (25) and observe that a, c, d may
be chosen real, so only b is complex. This means that
m4 is real as well as 2m1 �m2, and for m6 ¼ 0,
m3 ¼ �ðm1 þ 2m2Þ=3. Writing m1;2 as m1;2e

i�1;2 with

m2 ’ m1 and sin�2 ¼ 2 sin�1, we obtain

U0
e3 ’

m1m4ffiffiffi
6

p
�m2

32

½� cos�1 þ cos�2 � 9i sin�1�; (44)

U0
�3’� 1ffiffiffi

2
p þ m1m4ffiffiffi

6
p

�m2
32

½cos�1�cos�2� isin�1�; (45)

U0
�3 ’

1ffiffiffi
2

p þ m1m4ffiffiffi
6

p
�m2

32

½cos�1 � cos�2 � i sin�1�; (46)

where cos�2 ¼ � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4sin2�1

p
. We then have

sin2�13 ¼ jU0
e3j2

1þ j
13j2 þ j
23j2
; tan2�23 ¼

jU0
�3j2

jU0
�3j2

:

(47)

Since

jm3j ’
ffiffiffiffiffiffiffiffiffiffiffiffi
�m2

32

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5þ 4 cosð�2 ��1Þ

p
2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� cosð�2 ��1Þ

p ; (48)

the above equations relate jm3j ¼ mee with �13 and �23. If
we fix �13, we then obtain jm3j as a function of �23. We plot
in Fig. 2 our model predictions for jm1;2j and jm3j ¼ mee

versus sin22�23. The other data points are taken to be their
experimental central values.

If we rotate M1;2;3
	 ðM1;2;3

	 Þy by

U0

 ¼

1 0 
13

0 1 
23

�
�13 �
�23 1

0
BB@

1
CCA; (49)

we obtain the 2� 2 mass-squared matrix spanning 	0
1;2.

This differs from the 2� 2 submatrix in the tribimaximal
basis by terms quadratic in m4 which are important in
obtaining the correct �m2

21, and Eq. (36) becomes modi-
fied. However, we can adjust jm2j versus jm1j as well asm6

to fit the data. These adjustments will have negligible
effects on jm3j.
We plot in Fig. 3 our model prediction for j sin�CPj

versus sin22�23. To obtain sin�CP, we use

U0
e2 ’

1ffiffiffi
3

p ; U0
�2 ’

1ffiffiffi
3

p þ 1ffiffiffi
2

p 
�23;

J ¼ ImðU0
e2U

0
�3U

0
�2

�U0
e3

�Þ;
(50)

from which we find (using U0
�2 ¼ jU0

�2jei��2 , etc.)ffiffiffi
2

3

s
cos�23 sin� ’ jU0

�2j sinð��3 � ��2 � �e3Þ: (51)

VII. CONCLUDING REMARKS

We have studied a specific pattern for both quark and
lepton mass matrices. In both cases, one mass matrix is
diagonal (Mu and Me), whereas the other has two zeros
(Md andM	). In the case ofM	, the assumption that it is
Majorana corresponds to one of the conjectures of
Ref. [13], whereas the Dirac mass matrix Md requires
further restrictions to make it predictive, as first proposed
in Ref. [10] using the non-Abelian discrete symmetry D7.
The conjectured form of M	 was first derived [12] using
Q8, but it may also be obtained [11] using D5 or D7. Here
we consider D7 as the unifying symmetry for both quarks
and leptons.
The CP violating parameter J in the quark sector is

constrained in this model by md, ms, mb, jVusj, jVubj,
jVcbj. Within one standard deviation of all six measure-
ments, we obtain J in agreement with data. In the neutrino
sector, we obtain jm1;2j as well as jm3j ¼ mee as functions

of sin22�23 and also predict sin�CP as a function of
sin22�23.
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