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We consider three-loop radiative-recoil corrections to hyperfine splitting in muonium generated by the

gauge invariant set of diagrams with virtual light-by-light scattering block. These corrections are

enhanced by the large logarithms of the electron-muon mass ratio. We present the results of an analytic

calculation of the single-logarithmic radiative-recoil corrections of order �2ðZ�Þðm=MÞEF to hyperfine

splitting in muonium generated by these diagrams.
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I. INTRODUCTION

Muonium is one of the best studied purely electrody-
namic bound states. The hyperfine splitting (HFS) in the
ground state of muonium is measured [1,2] with error bars
in the ballpark of 16–51 Hz. A new higher accuracy
measurement of muonium HFS is now planned at
J-PARC, Japan [3]. The results of QED calculations of
the HFS interval are usually organized in the form of a
perturbation theory expansion in �, Z�, me=m�. Some of

the terms in this expansion are enhanced by large loga-
rithms of the fine structure constant and/or electron-muon
mass ratio. The current theoretical uncertainty of the HFS
interval is estimated to be about 70–100 Hz; the respective
relative error does not exceed 2:3� 10�8 (see discussions
in Ref. [4–6]). Still unknown three-loop purely radiative
corrections, three-loop radiative-recoil corrections, and
nonlogarithmic recoil corrections (see detailed discussion
in Ref. [5,6]) are the main sources of the theoretical
uncertainty. Measurement of the HFS in muonium is cur-
rently the best way to determine the value of the electron-
muon mass ratio. The value of �2ðm�=meÞ is obtained

from comparison of the HFS theory and experiment
with the uncertainty that is dominated by the 2:3� 10�8

relative uncertainty of the HFS theory [6]. Improvement of
the HFS theory would allow further reduction of the un-
certainty of the electron-muon mass ratio. A detailed
analysis [4,5] shows that reduction of the theoretical error
of HFS theory in muonium to about 10 Hz is a realistic
goal. As a step in this direction we consider below three-
loop radiative-recoil contributions to HFS generated by
the light-by-light (LBL) scattering diagrams in Fig. 1
(and by three more diagrams with the crossed photon
lines). The radiative-recoil corrections due to the LBL

diagrams in Fig. 1 are additionally enhanced by the large
logarithm of the electron-muon mass ratio. The logarithm
squared contribution was calculated a long time ago [7].
Below we calculate the single-logarithmic radiative-recoil
contribution.
We will follow the general approach to the calculation

of three-loop radiative-recoil corrections to HFS developed
in Refs. [7–14] and start with the general expression for
the LBL scattering contribution in Fig. 1 (see, e.g.,
Refs. [4,5]),
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where k� is the four-momentum carried by the upper
photon lines, q� is the four-momentum carried by the
lower photon lines, m is the electron mass, M is the
muon mass, Z ¼ 1 is the muon charge in terms of
the electron charged used for classification of different
contributions, and S���� is the light-by-light scattering

tensor. The Fermi energy is defined as
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wheremr is the reduced mass. The angle brackets in Eq. (1)
denote the projection of the �-matrix structures on the HFS
interval (the difference between the states with the total
spin one and zero).
The contributions to HFS of the first two diagrams

coincide, and with account for three more diagrams with
crossed photon lines not shown explicitly in Fig. 1, we can
represent the LBL block as a sum of two contributions, the
first one corresponding to the first two (ladder) diagrams in

*Also at the Petersburg Nuclear Physics Institute, Gatchina, St.
Petersburg 188300, Russia.
eides@pa.uky.edu
eides@thd.pnpi.spb.ru

†shelyuto@vniim.ru

PHYSICAL REVIEW D 87, 013005 (2013)

1550-7998=2013=87(1)=013005(10) 013005-1 � 2013 American Physical Society

http://dx.doi.org/10.1103/PhysRevD.87.013005


Fig. 1 and the second one corresponding to the last
(crossed) diagram in Fig. 1,
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where

L���� ¼ Tr

�
��

1

6p� 6q�m
��

1

6p�m

���

1

6p�6k�m
��

1

6p�m

�
; (4)

C���� ¼ Tr

�
��

1

6p� 6q�m
��

1

6p� 6q� 6k�m

� ��

1

6p� 6k�m
��

1

6p�m

�
: (5)

The integral in Eq. (1) contains both nonrecoil and recoil
corrections to HFS that are partially already calculated
(see Refs. [4,5] for a collection of these results),

�E ¼ �2ðZ�Þ
�

EF½�0:472514ð1Þ� þ �2ðZ�Þ
�3

EF

m

M

�
�
9

4
ln2

M

m
þ C1 ln

M

m
þ C0

�
: (6)

The leading nonrecoil term in Eq. (6) is generated by the
nonrelativistic pole in the muon propagator

1

q2 þ 2Mq0 þ i0
! � i�

M
�ðq0Þ; (7)

and was calculated in Refs. [15,16]. This is a numerically
dominant contribution and it should be extracted analyti-
cally from the expression in Eq. (1) before calculation of
the radiative-recoil corrections.

The diagrams in Fig. 1 contain three loop integrations
and each of them could in principle generate a large
logarithm of the electron-muon mass ratio. The strongly
ordered region of integration momenta m � k � p �
q � M would produce a logarithm cubed contribution
but it turns into zero due to the tensor structure of the
LBL block and fermion factors in this region [8]; see
below. The large logarithm squared, calculated in
Ref. [7], arises from two integration regions, m �
k� p � q � M andm � k � p� q � M. Our current

goal is to calculate single-logarithmic contribution
in Eq. (6), and as a preliminary step we would like to
separate the large logarithm squared contribution. First
we recalculate the logarithm cubed and logarithm squared
corrections in an intuitively transparent way. We will
elucidate the origin of different contributions to the loga-
rithm squared term, which will help us to derive a conve-
nient expression for calculation of the single-logarithmic
contributions.

II. LEADING LOGARITHMIC CONTRIBUTION

We start calculation of the integral in Eq. (1) with the
loop integration in the LBL scattering block. This block is
a four-index tensor that is a function of four-momenta k
and q. Tensor indices are contracted with the conserved
antisymmetric electron and muon factors

h�� 6k��i ¼ �h�� 6k��i; k�h�� 6k��i ¼ k�h�� 6k��i ¼ 0;

h�� 6q��i ¼ �h�� 6q��i; q�h�� 6q��i ¼ q�h�� 6q��i ¼ 0:

(8)

As a result only the tensor structures that are odd in k and
in q and are antisymmetric with respect to transposition
of indices ð�;�Þ $ ð�;�Þ and ð�; �Þ $ ð�;�Þ give con-
tributions to HFS. All tensor structures containing k�, k�,

q�, and q� do not contribute to HFS. Thus, for our pur-

poses the LBL scattering tensor depends only on two
independent structures,

Mð1Þ
����ðk; qÞ ¼

k � q
2

ðg��g�� � g��g��Þ;

Mð2Þ
����ðk; qÞ ¼

1

4
ðg��k�q� � g��k�q�

þ g��k�q� � g��k�q�Þ: (9)

Because of symmetries of the electron and muon factors
in Eq. (8), all terms in the tensor structures on the right-
hand side in Eq. (9) give identical contributions to HFS,
and in the calculations below we will use more compact
expressions:

Mð1Þ
����ðk; qÞ ¼ ðk � qÞg��g��;

Mð2Þ
����ðk; qÞ ¼ g��k�q�:

(10)

The general expression for the LBL scattering tensor in
Eq. (3) can be obtained by representing the ladder and
crossed traces in Eqs. (4) and (5) in the form

L���� ¼
~L����

D2
1D2D3

; C���� ¼
~C����

D1D2D3D4

; (11)

where

D1 ¼ p2 �m2; D2 ¼ ðp� qÞ2 �m2;

D3 ¼ ðp� kÞ2 �m2; D4 ¼ ðp� q� kÞ2 �m2:
(12)

FIG. 1. Diagrams with a light-by-light scattering block.
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Combining denominators in the expression for the crossed
diagram with four different denominators in Eq. (12) with
the help of the Feynman parameters x, y, z, we obtain

ð1� xÞD4 þ xfð1� yÞD3 þ y½zD2 þ ð1� zÞD1�g
¼ ðp� KÞ2 ��ðx; y; z; �Þ; (13)

where

K¼kð1�xyÞþqð1�xþxyzÞ;
�ðx;y;z;�Þ¼m2�k2xyð1�xyÞ�q2xð1�yzÞð1�xþxyzÞ

�2ðk�qÞxy½1�x�zð1�xyÞ��: (14)

The additional parameter � is equal to 1 in Eq. (13) and is
introduced here for further convenience; we will explain
its role later. There is no denominator D4 in the expression
for the ladder diagram in Eq. (11) but the expressions in
Eqs. (13) and (14) at x ¼ 1 are still suitable for calculations
with the ladder diagram. To obtain an explicit expression
for the LBL scattering tensor in Eq. (3), it remains to
calculate the integral over the loop momentum and to
write the result in terms of the independent tensor struc-
tures in Eq. (10). The final expression for S���� is rather

cumbersome and will be presented below when we will use
it for calculation of the single-logarithmic contribution in
Eq. (6). We do not need that general expression for
discussion and calculation of the logarithm squared terms
below.

A. The region of strongly ordered momenta

Large logarithmic contributions to HFS arise from
logarithmic integrations in the region of strongly ordered
momenta m � k � q � M where the expression in
Eq. (1) simplifies to
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h�� 6q��iS����: (15)

The factor with the large mass M is of order 1 when
q � M and integrations over q and k are logarithmic
only if the LBL scattering tensor supplies a factor k=q.
There are many ways how such a factor arises in the
expression for S����. The leading contribution of this

type could arise from the logarithmic integration over the
loop momentum p in the region

m � k � p � q � M: (16)

The integrand in the expression for the crossed diagram in
Eq. (5) contains large q2 in the denominator in the region
of strongly ordered loop momenta that makes integration
over q nonlogarithmic. Only the ladder diagrams in Fig. 1
could generate a logarithm cubed contribution in this

region. Expanding over q the ladder contribution to the
LBL scattering tensor S���� in Eq. (3), we obtain
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Projection of the last trace on the structures in Eq. (9) is
zero after averaging over directions of vector p�. Hence,

the leading term in the expansion of the LBL tensor does
not contain ðk=qÞ lnðq=kÞ, and the logarithm cubed contri-
bution to HFS does not arise despite the logarithmic nature
of all integrations in the region of strongly ordered loop
momenta in Eq. (16).

B. Logarithm squared contribution

The logarithm squared contributions arise in two
integration regions

m � k� p � 	 � q � M;

m � k � 	 � p� q � M;
(18)

that are obtained from the region of strongly ordered loop
momenta in Eq. (16) when we lift the strong ordering
requirement and allow two of the three loop momenta to
be of the same order. For calculational purposes we intro-
duce an auxiliary parameter m � 	 � M that separates
the regions of large and small momenta and should cancel
in the final results. As we have seen, the LBL scattering
tensor does not generate leading logarithmic terms of the
type ðk=qÞ lnðq=kÞ, and hence logarithms ðk=qÞ lnð	=kÞ
and ðk=qÞ lnðq=	Þ do not arise in the large and small
integration momenta regions in Eq. (18).
To isolate the logarithm squared contributions, we

expand ladder and crossed contributions to the LBL
scattering tensor in Eq. (3) in the regions of small and
large momenta in Eq. (18) and look for contributions of
order k=q. The ladder contributions of this type arise
from expansions both in the small and large momentum
regions
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The low momenta integral in Eq. (19) is superficially
linearly divergent at the upper limit. This is an artificial
divergence introduced in the integral when we have thrown
away momentum p in comparison with q in one of the
denominators. We will deal with this divergence below
extracting contributions of order k=q from the integral in
Eq. (19). Notice also that in the large momenta region the
integral in Eq. (20) generates a contribution of the form
k=q after expansion of the integrand up to the second order
in k=p.

The contribution of the small integration momenta
region for the crossed diagram in Eq. (5) is suppressed as
	2=q2 due to large q2 in the denominator of the crossed
diagram in Eq. (5). The total leading logarithmic contribu-
tion to HFS connected with this diagram arises only from
the large momenta region, where the terms of order k=q
arise, like in Eq. (20), after expansion of the integrand up to
the second order in k=p
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Now we are ready to calculate the logarithm squared
contributions to HFS. We rationalize and combine denom-
inators in Eqs. (19)–(21) like in Eqs. (12)–(14), and extract
the contributions proportional to k=q from the respective
integrals. Let us illustrate necessary transformations con-
sidering as an example calculation of the small momenta
ladder contribution in Eq. (19). In this case we need only
one Feynman variable y in Eq. (13); other variables are
fixed, x ¼ 1, z ¼ 0. We obtain

L����½p�	� ’ 1

q2

Z
jpj�	

d4p

i�2

�
Z 1

0
dy

2y

½ðp� kð1� yÞÞ2þ k2yð1� yÞ�3
�Tr½�� 6q�� 6p��ð6p�6kÞ�� 6p�: (22)

Next follows a shift of the integration momentum
p ! pþ kð1� yÞ in this formally linearly ultraviolet
divergent integral. As usual a finite surface term arises
after such shift (see, e.g., Ref. [17]). Further transforma-
tions are pretty standard: we calculate the trace, make the
Wick rotation, preserve only the contributions proportional
to k=q, calculate the integrals, extract the terms propor-
tional to the tensor structures in Eq. (10), and obtain a finite
result

L����½p � 	� ¼ 4

q2
½ðk � qÞg��g�� � 2g��q�k��: (23)

Notice that the coefficient before the formally linearly
divergent contribution turned into zero automatically.
Calculation of the contributions in Eqs. (20) and (21) is
no more difficult, and we obtain

L����½p � 	� ¼ 4

q2
g��k�q�; (24)

C���� ¼ 8

q2
g��½ðk � qÞg�� � 3k�q��: (25)

Finally, the total contribution to the LBL scattering
tensor S���� of the type k=q arising in the region in

Eq. (18) is the sum of the contributions in Eqs. (23)–(25)

S���� ¼ 2L����½p � 	� þ 2L����½p � 	� þ C����

’ 16

q2
½ðk � qÞg��g�� � 2g��q�k��: (26)

Comparing the small momenta contribution to the LBL
tensor 2L����½p � 	� [see Eq. (23)] with the final expres-
sion above, we see that the small momenta contribution to
S���� is equal to the large momenta contribution. Next we

substitute the LBL tensor in Eq. (26) in the expression for
HFS in Eq. (15) and contract Lorentz indices

h�� 6k��ih�� 6q��ig��g�� ¼ � 8

3
½2ðk � qÞ þ k0q0�; (27)

h�� 6k��ih�� 6q��ig��k�q� ¼ 4

3
½k2q2 � ðk � qÞ2 þ k20q

2

þ k2q20 � 2ðk � qÞk0q0�:
(28)

Averaging over directions of k, we obtain the ladder and
crossed contributions to the LBL tensor

h�� 6k��ih�� 6q��iL����

¼ h��6k��ih�� 6q��i 4
q2

½ðk � qÞg��g�� � g��k�q��

¼ � 16

3
k2

2q2 þ q20
q2

; (29)

h�� 6k��ih�� 6q��iC����

¼ h��6k��ih�� 6q��i 8
q2

g��½ðk � qÞg�� � 3k�q��

¼ �4
16

3
k2

2q2 þ q20
q2

: (30)

Then the total LBL scattering tensor in this regime has
the form

h�� 6k��ih�� 6q��ið2L���� þ C����Þ ¼ �32k2
2q2 þ q20

q2
;

(31)

and the logarithm squared contribution to HFS can be
written as
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The logarithm squared contribution arises in the inte-
gration region m2 � k2 � q2 � M2, and we calculate
it using, after the Wick rotation, four-dimensional spheri-
cal coordinates and preserving only the logarithmic
contribution
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This logarithm squared contribution was obtained in
Ref. [7].

Another way [18] to calculate this contribution is to
notice that it is intimately connected with the two-loop
renormalization of the axial vector current first calculated
by Adler a long time ago [19]. Consider the leading recoil
correction to HFS generated by the graphs with two-photon
exchanges in Fig. 2. A respective contribution to HFS
is given by the expression in Eq. (1) without the LBL
scattering block. The antisymmetric electron-line and
muon-line spin factors in Eq. (8) can be written in the form

h������iðeÞ ! i�����h���5iðeÞ;
h���	��ið�Þ ! i��	�h��5ið�Þ:

(34)

Then the leading recoil contribution to HFS has the form

�E ¼ 3
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M
EFh��5ið�Þ

Z M

m

dq

q
h��5iðeÞ: (35)

We see that the leading recoil contribution to HFS is
determined by the matrix element of the electron axial
current calculated at the characteristic virtuality q. The
first radiative correction to this matrix element is of order
�2 lnðq2=m2Þ and arises at two loops [19] (see Fig. 3)

j5 ! j5

�
1� 3

4
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�

�
2
ln
q2

m2

�
: (36)

Substituting this renormalization factor in the expression
for the leading recoil correction in Eq. (35) we obtain the
leading recoil correction accompanied by the logarithm
squared contribution in Eq. (33)
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We see that the logarithm squared contribution is an
observable effect of the axial current renormalization.
Let us clarify the connection between the calculation of

this contribution based on the consideration of the LBL
scattering tensor and the approach with the axial current
renormalization. The diagrams in Fig. 3 are naively line-
arly divergent and the result in Eq. (36) implies a gauge
invariant regularization. On the other hand, contribution of
the diagrams in Fig. 1 to HFS is ultraviolet finite. Hence,
for the purpose of calculation of the logarithm squared
contribution, replacement of the two triangle diagrams in
Fig. 3 by the three box diagrams in Fig. 1 can be considered
as a gauge invariant regularization. Let us see how this
regularization works. Consider first the integration region
where k� p � 	 � q. In this region the lower fermion
line in the LBL scattering box in the first two diagrams in
Fig. 1 effectively shrinks to a point, and these diagrams
turn into the axial current diagrams in Fig. 3. We have
already calculated contribution to the LBL scattering ten-
sor 2L����½p � 	� generated in this region; see Eq. (23).

This contribution is exactly one half of the total contribu-
tion to the LBL scattering tensor in Eq. (26). The other half
[see Eqs. (24) and (25)] arises in the integration region k �
	 � p� q, where both lower loops in all diagrams in
Fig. 1 effectively shrink to a point. Therefore, contribution
to the axial current renormalization generated in this region
can be considered as a pure regularization effect, for
example contribution of a heavy regularizing fermion
that survives when the fermion mass goes to infinity.

III. SINGLE-LOGARITHMIC CONTRIBUTION

Calculation of the single-logarithmic contribution to
HFS requires more accurate treatment of the LBL scatter-
ing tensor in Eq. (3). Calculating traces in Eq. (11) we
obtain

~L����¼8D2
1g

��g��þ16D1g
��

�½p�q�þk�p�þk�q��p�p���8D1g
��g��

�½ðp �qÞþðp �kÞþðk �qÞ�þ32g��

�½ðk �qÞp�p��ðp �qÞk�p��ðp �kÞp�q��
þ16ðp �kÞðp �qÞg��g���32p�p�k�q�; (38)

andFIG. 2. Diagrams with two-photon exchanges.

FIG. 3. Two-loop axial current renormalization.
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~C���� ¼ 8D1g
��½�3k�q� þ k�p� þ p�q��

� 8D2g
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� 16ðk � qÞg��p�q� þ 16p � ðkþ qÞg��k�q�:

(39)

Then after the shift in Eq. (13) and calculation of the loop
integral, the LBL scattering tensor can be written in the
form

S���� ¼ 2L���� þ C����; (40)

where [see Eq. (11)]
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0
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Z d4p
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dx
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0
dzx2y

�
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�ðx; y; z; 1Þ þ 4m2 � 2k � qxy½1� x� zð1� xyÞ�
�2ðx; y; z; 1Þ g��k�q�

�
: (42)

The additional parameter � in Eq. (41) arises when we separate the ultraviolet divergence in the logarithmically divergent
integral

Z d4p

i�2

p2

½p2 ��ð1; y; z; 1Þ�3 ¼
Z d4p

i�2

p2

½p2 ��ð1; y; z; 0Þ�3 þ
Z d4p

i�2
p2

�
1

½p2 ��ð1; y; z; 1Þ�3 �
1

ðp2 ��ð1; y; z; 0ÞÞ3
�

¼
�
ln

�2

�ð1; y; z; 0Þ �
3

2

�
�

Z 1

0
d�

2ðk � qÞyð1� yÞz
�ð1; y; z; �Þ : (43)

As was explained above, the LBL scattering tensor is
contracted with the tensor structures odd in k and in q,
and the even ultraviolet divergent term in the square
brackets does not contribute to HFS and can be thrown
away.

It is easy to check that the terms on the right-hand side in
the first lines in Eqs. (41) and (42) reproduce the leading
ladder and crossed contributions to the LBL scattering
tensor in Eq. (26) and generate the logarithm squared
contribution to HFS in Eq. (33).

At the next step we calculate the integral over momen-
tum k of the upper photons in Eq. (1)

Tðq2; q0Þ ¼ 1

2

Z d4k

i�2k4

�
1

k2 þ 2mk0
þ 1

k2 � 2mk0

�

�h�� 6k��ih�� 6q��iS����

¼ h�� 6q��i
Z d4k

i�2k4
h�� 6k��i
k2 � 2mk0

S����; (44)

where we used the symmetry of the integrand under simul-
taneous substitution k ! �k and q ! �q to get rid of the
second term in the first brackets on the right-hand side in
the first line. In terms of Tðq2; q0Þ the contribution to HFS
in Eq. (1) has the form

�E¼�2ðZ�Þ
�3

m

M
EF

�
�3M2

128

�

�
Z d4q

i�2q4

�
1

q2þ2Mq0
þ 1

q2�2Mq0

�
Tðq2;q0Þ: (45)

We calculate Tðq2; q0Þ combining denominators with the
help of additional Feynman parameters u and t (the four-
vectorQ and the scalar � on the right-hand side depend on
the parameters x, y, z, �,u, and t)

ð1� uÞ½ð1� tÞk2 þ tðk2 � 2mk0Þ� þ u

�
�ðx; y; z; �Þ
�xyð1� xyÞ

�

¼ ðk�QÞ2 � �; (46)
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where

� ¼ g½�q2 þ 2bq0 þ a2�;

a2 ¼ 1

g

�
�2 þ m2u

xyð1� xyÞ
�
; b ¼ �d

g
;

d ¼ �u

�
z� 1� x

1� xy

�
; � ¼ mð1� uÞt;

g ¼ g0 � d2; g0 ¼ uð1� yzÞð1� xþ xyzÞ
yð1� xyÞ : (47)

The four-vector Q has the form

Q� ¼ dq� þ ��; (48)

where �� ¼ ð�; 0Þ and to calculate the integral over k we

shift the integration variable

k� ! k� þQ� ¼ k� þ dq� þ ��: (49)

Contractions of matrix structures in Eq. (44) are calculated
using relationships in Eqs. (27) and (28). Five different
tensor structures arise in calculations, and after the shift of
integration variable in Eq. (49) they reduce to

h�� 6k��ih�� 6q��ig��g�� ! � 8

3
ð2q2 þ q20Þ � 8q0�;

h�� 6k��ih�� 6q��iðk � qÞg��g�� ! � 8

3

�
1

4
k2 þ q2d2

�
ð2q2 þ q20Þ � 8q20�

2 � 8

3
ð5q2 þ q20Þdq0�;

h�� 6k��ih�� 6q��ig��k�q� ! 2

3
k2ð2q2 þ q20Þ þ

8

3
ðq2 � q20Þ�2;

h�� 6k��ih�� 6q��iðk � qÞ2g��g�� ! � 8

3

�
3

4
k2 þ q2d2

�
ð2q2 þ q20Þq2d� 8

3
ð8q2 þ q20Þ�2q20d

� 8

3

�
1

4
k2 þ q2d2

�
ð7q2 þ 2q20Þq0�� 8q30�

3;

h�� 6k��ih�� 6q��iðk � qÞg��k�q� !
�
2

3
k2ð2q2 þ q20Þ þ

8

3
�2ðq2 � q20Þ

�
ðq2dþ q0�Þ: (50)

Now we are ready to obtain explicit integral representations for the ladder TLðq2; q0Þ and crossed TCðq2; q0Þ
diagram contributions to the function Tðq2; q0Þ,

Tðq2; q0Þ ¼ 2TLðq2; q0Þ þ TCðq2; q0Þ: (51)

The ladder contribution can be written as a sum of nine integrals

TLðq2; q0Þ ¼ 128

3

Z 1

0
dy

Z 1

0
dz

Z 1

0
du

Z 1

0
dt
X
i

T L;iðy; z; u; t; q2; q0Þ; (52)

where (x ¼ 1 in all formulas below and � ¼ 1 in all expressions except T L;6)

T L;1 ¼ yzð1� tÞð1� uÞ2
��

1

�
� q2d2

�2

�
ð2q2 þ q20Þ �

ðq2 þ 2q20Þ�2
�2

� q0ð5q2 þ q20Þ�d
�2

�
; (53)

T L;2 ¼ 3

2
ð2q2 þ q20Þ

�
�ð1� 2yÞ þ 2yz

1� y

ð1� tÞð1� uÞ2
�

þ ð1� zÞ uð1� uÞ
�

� y2z2ð1� zÞq2
ð1� yÞ2

ð1� tÞuð1� uÞ2
�2

�
; (54)

T L;3 ¼
�ð1� 2yÞ þ 2yz

1� y

ð1� tÞð1� uÞ2
�2

� ð1� zÞ uð1� uÞ
�2

þ 2
y2z2ð1� zÞq2

ð1� yÞ2
ð1� tÞuð1� uÞ2

�3

�
ð2q2 þ q20Þq2d2; (55)

T L;4 ¼
�ð1� 2yÞ þ 2yz

1� y

ð1� tÞð1� uÞ2
�2

� ð1� zÞ uð1� uÞ
�2

þ 2
y2z2ð1� zÞq2

ð1� yÞ2
ð1� tÞuð1� uÞ2

�3

�

� ½ð2q2 þ q20Þ�2 þ q0ð5q2 þ q20Þ�d�; (56)

T L;5 ¼ m2

1� y

ð1� tÞð1� uÞ2
�2

½ð2q2 þ q20Þdþ 3q0��; (57)

LIGHT-BY-LIGHT SCATTERING SINGLE-LOGARITHMIC . . . PHYSICAL REVIEW D 87, 013005 (2013)

013005-7



T L;6 ¼ 4
Z 1

0
d��yz2ð1� tÞuð1� uÞ2

��
3

4

1

�2
�

� q2d2�

�3
�

�
ð2q2 þ q20Þq2d� �

�2q20d�

�3
�

ð8q2 þ q20Þ

þ
�
1

4

1

�2
�

� q2d2�
�3

�

�
ð7q2 þ 2q20Þq0��

3q30�
3

�3
�

�
; (58)

T L;7 ¼ � yzð1� zÞ
1� y

q2uð1� uÞ
�2

½ð2q2 þ q20Þdþ 3q0��; (59)

T L;8 ¼ 2
yzð1� zÞ
1� y

ð1� tÞuð1� uÞ2
��
� 3

4

1

�2
þ q2d2

�3

�
ð2q2 þ q20Þq2dþ �2q20d

�3
ð8q2 þ q20Þ

þ
�
� 1

4

1

�2
þ q2d2

�3

�
ð7q2 þ 2q20Þq0�þ

3q30�
3

�3

�
; (60)

T L;9 ¼ 4
yzð1� zÞ
1� y

ð1� tÞuð1� uÞ2
�
� 1

4

1

�2
ð2q2 þ q20Þq2dþ q2ðq2 � q20Þ

�2d

�3

� 1

4

1

�2
ð2q2 þ q20Þq0�þ q0ðq2 � q20Þ

�3

�3

�
: (61)

The crossed diagram contribution can be written as a sum of three integrals

TCðq2; q0Þ ¼ 128

3

Z 1

0
dx

Z 1

0
dy

Z 1

0
dz

Z 1

0
du

Z 1

0
dt
X
i

T C;iðx; y; z; u; t; q2; q0Þ; (62)

where (� ¼ 1 in all formulas below)

T C;1 ¼ 1

2

xð1� tÞð1� uÞ2
1� xy

�
ð2q2 þ q20Þ

�
2

�
� q2d2

�2

�
� 3

q2�2

�2
� q0ð5q2 þ q20Þ�d

�2

�
; (63)

T C;2 ¼ xð1� tÞð1� uÞ2
1� xy

um2

xyð1� xyÞ
�
2q2 þ q20

�2
� 4

ðq2 � q20Þ�2
�3

�
; (64)

T C;3 ¼ 1

2

xð1� tÞð1� uÞ2
1� xy

�
ð2q2 þ q20Þ

q2d2

�2
� 4ðq2 � q20Þ

q2�2d2

�3
þ ð2q2 þ q20Þ

q0�d

�2
� 4ðq2 � q20Þ

q0�
3d

�3

�
: (65)

All logarithmic contributions to HFS can be obtained from the large momentum expansion of Tðq2; q0Þ. The leading
term in this expansion we already obtained in Eq. (31)

T ¼ �32
Z d4k

i�2k4
q2 þ 2q20

q2
’ �32

Z �q2

m2

dk2

k2
q2 þ 2q20

q2
’ �32

q2 þ 2q20
q2

ln
�q2

m2
: (66)

We are going to calculate the next terms in the large q expansion of Tðq2; q0Þ

T ¼ �32
q2 þ 2q20

q2
ln
�q2

m2
þ �1

2q2 þ q20
q2

þ �2

q2 þ 2q20
q2

; (67)

where �1 and �2 are the numerical coefficients to be calculated. The numerators of the last two terms should contain any
two linear independent combinations of q2 and q20. We have chosen 2q2 þ q20 and q

2 þ 2q20 because the first one contains
the same combination of momenta that arises in the leading term of the expansion in Eq. (66), and the second structure does
not generate logarithm of the mass ratio after integration over q.

The integral representations in Eqs. (53)–(61), and in Eqs. (63)–(65) are rather cumbersome and we simplify them
before integration over the Feynman parameters. It turns out that in calculations of the asymptotic expansion in Eq. (67) we
can omit the term 2bq0 in the denominator �

MICHAEL I. EIDES AND VALERYA. SHELYUTO PHYSICAL REVIEW D 87, 013005 (2013)

013005-8



� ¼ gðq2 þ 2bq0 þ a2Þ ! gðq2 þ a2Þ 	 ~�: (68)

To justify this simplification it is sufficient to notice that
the term 2bq0 in the denominator � arises when we
combine the subleading term 2mk0 from the electron
propagator with the subleading term 2k � q from the de-
nominator� in Eq. (46). The denominator ~� depends only
on the Lorentz invariant momentum squared q2 that makes
the calculations easier. Even after this simplification the
integrals over the Feynman remain unwieldy, especially in
the case of the crossed diagrams when they contain an extra
Feynman parameter x. They become more manageable
if we notice that the remnant of the scalar product k � q
in the denominator� survives not only as the term 2bq0 in
Eq. (68) but also as the second term in the factor g [see
definitions in Eq. (47); below we show explicitly only
dependence of g, d, and ~� on one parameter �]

gð�Þ ¼ gð0Þ � d2

¼ uð1� yzÞð1� xþ xyzÞ
yð1� xyÞ � �2u2

�
z� 1� x

1� xy

�
2
:

(69)

The leading logarithmic term in Eq. (67) arises when we
simply omit this second term, gð�Þ ! gð0Þ. To calculate
the subleading terms in the asymptotic expansion in
Eq. (67) we represent all terms with the denominator
~�ð� ¼ 1Þ in Eq. (68) in the form

1
~�ð� ¼ 1Þ ¼

1
~�ð� ¼ 0Þ þ

�
1

~�ð� ¼ 1Þ �
1

~�ð� ¼ 0Þ
�

¼ 1
~�ð� ¼ 0Þ �

Z 1

0
d�

2�q2d2ð�Þ
~�ð�Þ : (70)

It is easier to calculate separately the integrals with the two
terms on the right-hand side than the integral with the
denominator ~� on the left-hand side. Unlike the expan-
sions in Eq. (24)–(26) the integrals with the denominator ~�
substituted by the terms on the right-hand side are well
suited for calculation of the subleading terms in the asymp-
totic expansions in the kinematics described in Eq. (18).
After tedious calculations we obtained analytic expres-
sions for the subleading terms in the asymptotic expansion
of the integrals in Eqs. (53)–(61) and (63)–(65). These
terms are collected in Tables I and II, and the asymptotic
expansions for the ladder and crossed diagrams have the
form

TL ¼� 16

3

2q2 þ q20
q2

�
ln
�q2

m2
� 8�2

9
þ 5

6

�

� 16

3

q2 þ 2q20
q2

; (71)

TC ¼� 64

3

2q2 þ q20
q2

�
ln
�q2

m2
� 2�ð3Þ þ 8

3

�

� 32

3

q2 þ 2q20
q2

: (72)

Then the total ultraviolet asymptotic expansion in Eq. (67)
acquires the form

T ¼� 32
2q2 þ q20

q2

�
ln
�q2

m2
� 4

3
�ð3Þ � 8�2

27
þ 37

18

�

� 64

3

q2 þ 2q20
q2

: (73)

Our next task is to calculate the single-logarithmic con-
tributions generated by the first two terms in the expansion
in Eq. (73). We substitute the asymptotic expansions in
Eqs. (71) and (72) in the expression for HFS in Eq. (45).
One can prove that the last terms with the numerator
q2 þ 2q20 do not generate logarithmic contributions and

all double- and single-logarithmic contributions are
generated by the terms proportional 2q2 þ q20. The leading
logarithmic term in Eq. (73) generates not only the loga-
rithm squared contribution in Eq. (33) but also additional
single-logarithmic terms. Analytic calculation of single-
logarithmic terms is performed with the help of auxiliary
integration formulas collected in Ref. [20]. We obtain
ladder and crossed diagram logarithmic contributions to
HFS in the form

TABLE II. Leading terms in the crossed diagram expansion.

T C;i � 3
64�1i � 3

64�2i

T C;1 ln�q2

m2 � �2

3 þ 7
2

1
2

T C;2 � 7
2 �ð3Þ þ �2

3 þ 1 0

T C;3
3
2 �ð3Þ � 11

6 0

T C ln�q2

m2 � 2�ð3Þ þ 8
3

1
2

TABLE I. Leading terms in the ladder diagram expansion.

T L;i � 3
16�1i � 3

16�2i

T L;1 ln�q2

m2 þ 8�ð3Þ � 8 1

T L;2a �6 ln�q2

m2 � 9 0

T L;2b 3 ln�q2

m2 � 24�ð3Þ � 4�2

3 þ 35 0

T L;2c 3 ln�q2

m2 � 24�ð3Þ þ 33 0

T L;3 96�ð3Þ � 116 0

T L;4
4�2

9 � 8
3 0

T L;5 0 0

T L;6 �16�ð3Þ þ 19 0

T L;7 �16�ð3Þ þ 20 0

T L;8 �40�ð3Þ þ 97
2 0

T L;9 16�ð3Þ � 19 0

T L ln�q2

m2 � 8�2

9 þ 5
6 1
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2�EL ’ 2
�2ðZ�Þ
�3

m

M
EF

�
3

8
ln2

M

m
þ

�
��2

3
þ 23

16

�
ln
M

m

�
;

(74)

�EC ’ �2ðZ�Þ
�3

m

M
EF

�
3

8
ln2

M

m
þ

�
�3�ð3Þ þ 17

2

�
ln
M

m

�
:

(75)

And finally the total logarithmic radiative-recoil contri-
bution to HFS generated by the gauge invariant set of of
three-loop diagrams with the LBL insertions has the form

�E ¼ �2ðZ�Þ
�3

m

M
EF

�
�
9

4
ln2

M

m
þ

�
�3�ð3Þ � 2�2

3
þ 91

8

�
ln
M

m

�
: (76)

IV. CONCLUSIONS

Other single-logarithmic radiative-recoil contributions
to HFS were calculated earlier [9–14].

�E ¼ �3

�3

m

M
EF½3�ð3Þ � 6�2 ln2þ �2 � 8� lnM

m
: (77)

Combining this contribution with the result obtained above
in Eq. (76) we obtain the total result for all known three-
loop radiative-recoil single-logarithmic corrections to HFS

�Etot ¼ �3

�3

m

M
EF

�
�6�2 ln2þ �2

3
þ 27

8

�
ln
M

m
: (78)

As was explained in the Introduction, the current goal of
the HFS theory in muonium is to reduce the theoretical
uncertainty below 10 Hz. The result above is a step in this
direction. Work on calculation of the remaining three-loop
single-logarithmic and nonlogarithmic contributions to
HFS is now is progress.
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