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The odd-parity nucleon spectrum is examined in the light quark-mass regime in 2þ 1 flavor lattice

QCD. Configurations generated by the PACS-CS Collaboration and made available through the

International Lattice Data Grid are used, with the lightest pion mass at 156 MeV. A novel method for

tracking the individual energy eigenstates as the quark mass changes is introduced. The success of this

approach reveals the flow of the states towards the physical masses. Using the correlation-matrix method,

the two lowest-energy states revealed are found to be in accord with the physical spectrum of nature.
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Lattice QCD is the only currently known ab initio or
first-principles approach to the fundamental quantum field
theory governing the properties of hadrons, quantum chro-
modynamics (QCD). While the ground-state hadron spec-
trum of QCD is well understood, a determination of the
excited state energy spectrum is in the process of being
revealed.

Hadron spectroscopy is dependent on the rich dynamics
of the strong interaction. For example, the experimentally
observed mass of the first positive-parity excitation of the
nucleon, known as the Roper resonance, N 1

2
þ (1440) P11,

is surprisingly low compared to the lowest-lying negative-
parity partner N 1

2
� (1535) S11. This phenomenon is not

observed in constituent or valence quark models where the
lowest-lying odd-parity state occurs naturally below the
first JP ¼ 1

2
þ excitation.

Drawing on experimental results, we note that the
Breit-Wigner width of the N�ð1535Þ state is �150 MeV,
approximately half the width of the Roper Nþð1440Þ [1].
Furthermore, the branching fraction �ð�NÞ=� for
N�ð1535Þ is 2=3 of the Roper. Together, these factors
indicate a suppression of 1=3 in the coupling of �N to
the N�ð1535Þ state relative to the Roper. Noting that the
light �N dressing makes the most important self-energy
contribution, it is anticipated that the self-energy dressings
of �N for the N�ð1535Þ will be reduced to approximately
10% of that for the Roper. A consequence of this is to
suppress the finite-volume effects of the lattice QCD simu-
lation which can otherwise lead to large energy shifts
associated with the avoidance of energy-level crossings
of the single and multiparticle scattering states. Similar
arguments for the N�ð1650Þ suggest �N self-energy con-
tributions are suppressed to the 25% level. Thus, it is
interesting to directly compare the results of our lattice
QCD simulations with experiment and gain insight on the
quark-mass dependence of these states.

The experimentally observed nearly degenerate S11
(1535) and (1650) states are in agreement with the simple
quark-model predictions based on SU(6) symmetry.
Therefore, looking at the low-lying N 1

2
� energy states

and their structure from the first-principles approach is
potentially very revealing. Some recent full QCD results
can be seen in Refs. [2–7]. Herein, it will be interesting to
explore the physics associated with the dynamical fermion
loops of full QCD, this time at very light quark masses.
The spectrum of the N 1

2
� states is dense. Thus it is

important to adopt a method that can isolate the individual
states that are otherwise close in energy. The variational
method [8,9] is the state-of-the-art approach for achieving
this in lattice hadron-spectroscopy calculations. Through a
generalized eigenvalue analysis of a matrix of correlation
functions, the process enables one to create highly
optimized interpolating fields designed to excite a single
energy eigenstate of the QCD Hamiltonian. The masses of
the energy states are then obtained through a standard
effective-mass analysis [10] providing a robust approach
for extracting the energy states at early Euclidean times.
In this paper, we utilize the established approach of

Refs. [6,7] to explore the low-lying N 1
2
� energy states in

full QCD. In doing so, a novel method has been developed
to track the energy eigenstates from heavy to light quark
masses. The method is particularly useful when the energy
states are nearly degenerate.
The two-point correlation-function matrix for ~p ¼ 0 can

be written as

G�
ij ðtÞ ¼

X

~x

Trspf��h�j�iðxÞ ��jð0Þj�ig

¼ X

�

��
i
���
j e

�m�t; (1)

where Dirac indices are implicit, ��
i and ���

j are the cou-

plings of interpolators �i and ��j at the sink and source,

respectively, � enumerates the energy eigenstates with
mass m�, and �� ¼ ð�0 � 1Þ=2 projects the parity of
the eigenstates. A linear superposition of interpolators
��� ¼ P

j ��ju
�
j creating state � provides the relationship

Gijðt0 þ4tÞu�j ¼ e�m�4tGijðt0Þu�j ; (2)

from which right and left eigenvalue equations are obtained:
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½ðGðt0ÞÞ�1Gðt0 þ4tÞ�iju�j ¼ c�u�i ; (3)

v�
i ½Gðt0 þ4tÞðGðt0ÞÞ�1�ij ¼ c�v�

j ; (4)

with c� ¼ e�m�4t. The vectors u�j and v�
i diagonalize the

correlation matrix at time t0 and t0 þ4t making the pro-

jected correlation matrix v�
i G

�
ij ðtÞu�j / ���. The parity and

eigenstate projected correlator

G�� � v�
i G

�
ij ðtÞu�j (5)

is then analyzed to obtain masses of energy states. We note
that the large Euclidean time behavior of the projected
correlation functions and associated effective-mass plateaus
demonstrate the presence of a single state.

An eigenvector analysis of a symmetric matrix having
orthogonal eigenvectors can be constructed by inserting

Gðt0Þ�1
2Gðt0Þ12 ¼ I in Eq. (3) and multiplying by Gðt0Þ12

from the left:

Gðt0Þ�1
2Gðt0 þ4tÞGðt0Þ�1

2Gðt0Þ12u� ¼ c�Gðt0Þ12u�; (6)

Gðt0Þ�1
2Gðt0 þ4tÞGðt0Þ�1

2w� ¼ c�w�; (7)

where w� ¼ Gðt0Þ12u� and ½Gðt0Þ�1
2Gðt0 þ4tÞGðt0Þ�1

2�
is a real symmetric matrix, with orthogonal eigenvectors
w�. The vector u� may be recovered from the w� via

u� ¼ Gðt0Þ�1
2w�.

The PACS-CS 2þ 1 flavor dynamical-fermion configu-
rations [11] made available through the International
Lattice Data Grid [12] are used herein. These configura-
tions use the nonperturbatively OðaÞ-improved Wilson
fermion action and the Iwasaki-gauge action [13]. The
lattice volume is 323 � 64, with � ¼ 1:90 providing a
lattice spacing of a ¼ 0:0907 fm and a physical volume
of � ð2:90 fmÞ3. Five values of the (degenerate) up and
down quark masses are considered, with hopping parame-
ter values of 	ud ¼ 0:13700, 0.13727, 0.13754, 0.13770
and 0.13781, corresponding to pion masses ofm� ¼ 0:702,
0.572, 0.413, 0.293, 0.156 GeV [11]; for the strange quark
	s ¼ 0:13640. Gauge-invariant Gaussian smearing [14] is
used at the fermion source and sink with a fixed smearing
fraction and four different smearing levels including 16, 35,
100, and 200 sweeps [6,7].

We consider 350 configurations for the four heavier
quarks and 198 configurations for the lightest quark. An
ensemble of 750 samples for the lightest quark mass is
created by using multiple fermion sources on each con-
figuration, spaced to sample approximately independent
regimes of each configuration. Oða2Þ errors are expected
to be small relative to the statistical errors [15,16].

The complete set of local interpolating fields with three
different spin-flavor combinations for the spin- 12 nucleon

are considered herein:

�1ðxÞ ¼ 
abcðuTaðxÞC�5d
bðxÞÞucðxÞ; (8)

�2ðxÞ ¼ 
abcðuTaðxÞCdbðxÞÞ�5u
cðxÞ; (9)

�4ðxÞ ¼ 
abcðuTaðxÞC�5�4d
bðxÞÞucðxÞ: (10)

Each interpolator has a unique Dirac structure giving rise
to different spin-flavor combinations. Moreover, as each
spinor has upper and lower components, with the lower
components containing an implicit derivative, different
combinations of zero-, one- and two-derivative interpola-
tors are provided. The interpolator �4 is the time compo-
nent of the local spin- 32 isospin-

1
2 interpolator which also

couples to spin- 12 states. It provides a different linear

combination of zero- and two-derivative terms comple-
mentary to �1.
In Fig. 1, projected masses of the N 1

2
� states are pre-

sented from a 4� 4 correlation matrix constructed from
the interpolator �1 and four different smearing levels. The
dependence of the results on the variational parameters t0
and 4t is illustrated. While the lowest energy state is
almost independent of t0 and 4t, the excited states show
some dependence at smaller t0 and4t values. As explained
in Ref. [6], the energy states at ðt0;4tÞ ¼ ð18; 2Þ provide
the best balance between the systematic and statistical
uncertainties and these parameters are therefore selected
for our numerical study.
In Fig. 2 we show results for the lowest energy state from

dynamical and quenched [17] QCD simulations. As antici-
pated, the quenched and dynamical results are in agree-
ment in the heavy quark-mass region. However, in the light
quark-mass regime the results are significantly different as
the effects of the light sea quarks become increasingly
important. Only the dynamical results approach the physi-
cal value and this provides strong evidence for the non-
trivial role of light sea-quark degrees of freedom to the
structure of nature’s hadron spectrum.

FIG. 1 (color online). N 1
2
� energy states from a 4� 4

correlation-matrix analysis of the �1 interpolator at the lightest
pion mass of m� ¼ 156 MeV. The variational parameters t0 and
4t are shown at the major and minor tick marks, respectively.
For example, the leftmost points have t0 ¼ 17 and 4t ¼ 1.
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To explore the nearby second energy state S11ð1650Þ, we
extend our analysis to include the interpolators �2 and �4

with a variety of smearing levels. The results of an 8� 8
correlation-matrix analysis of �1 and �2 interpolators with
four levels of smearing are presented in Fig. 3.

The trend of the lowest two energy states is in agreement
with the physical values. The results at the two heaviest
pion masses sit close to the scattering S-wave N þ �
threshold; however, in the light quark-mass region these
states move above the threshold. The consideration of five-
quark interpolators is highly desirable for future investiga-
tions [18]. A similar situation prevails for the second pair
of states in the spectrum, where the states sit close to the
P-wave EN þ E� þM� and E� þ E� þMN threshold
scattering states with back-to-back momenta of one lattice
unit, ~p ¼ ð2�=Lx; 0; 0Þ. The apparent flow of these states
in the light-quark region toward the physical S11ð2090Þ
state is also interesting.
In presenting the results of Fig. 3 and assigning symbols

to each of the energy levels observed at a particular quark
mass, it is necessary to track the evolution of the states
from one quark mass to the next. We have done this
through a consideration of the evolution of the eigenvectors
as the quark mass is changed.
Consider M interpolating fields making an M�M

parity-projected correlation matrix GðtÞ and its associated
symmetric generalized eigenvalue equation of Eq. (7).
Using the normalization

P
M
i jw�

i j2 ¼ 1, the quantity
~w�ðmqÞ � ~w�ðmqÞ ¼ ���. This feature enables the use of

the generalized measure

W ��ðmq;mq0 Þ ¼ ~w�ðmqÞ � ~w�ðmq0 Þ (11)

to identify the states most closely related as we move from
quark mass mq to an adjacent quark mass mq0 . The state

numbers � and � are assigned in order of increasing
projected eigenstate energy at the quark masses mq and

mq0 , respectively. Typical results for this generalized mea-

sure of eigenvector overlap are presented in Table I.
For each value of state index � there is only one value of

� where the magnitude of the entry is significantly larger
than all others and approaching unity. The most relevant
entries for consideration are the immediate neighbors of �
where a crossing of the eigenvectors moves the largest
entry off the diagonal.
This measure provides a clear identification of how

states in the spectrum at quark mass mq are associated

FIG. 3 (color online). N 1
2
� energy states from an 8� 8 corre-

lation matrix of �1 and �2 interpolators, for the pion mass range
of 156–702 MeV. The physical N 1

2
� spectrum [1] is shown at

the far left.

FIG. 2 (color online). Dynamical and quenched results for the
lowest N 1

2
� energy state using the �1 interpolator.

TABLE I. The scalar product ~w�ðmqÞ � ~w�ðmq0 Þ for 	 ¼ 0:13754 (m� ¼ 413 MeV) and
	0 ¼ 0:13770 (m� ¼ 293 MeV) for an 8� 8 correlation matrix of �1 and �2 with four different
levels of smearing. State numbers � and � correspond to row and column number, respectively.

0:91 0.40 0.02 0.02 0.01 �0:05 0.00 0.00

0.40 �0:91 0.00 0.01 �0:02 0.01 �0:01 0.00

�0:01 �0:01 0:96 �0:27 0.01 �0:01 0.00 0.02

�0:03 0.00 0.27 0:96 0.01 0.01 0.02 0.00

0.04 0.03 0.01 �0:01 �0:22 0:97 0.02 0.01

0.01 �0:01 �0:01 �0:01 0:98 0.22 0.04 0.00

0.00 0.00 �0:02 0.01 0.01 �0:01 �0:12 0:99
0.01 �0:01 0.00 �0:02 �0:04 �0:03 0:99 0.12
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with states at the next value of quark mass, mq0 . For

example, the results of Table I indicate the first four states
at mq0 appear with the same ordering in the spectrum as

observed at mq, the fifth state at mq0 is associated with the

sixth state at mq and vice versa and similarly for the

seventh and eighth states. We note that while the central
values of the energies have changed order, the error bars
are sufficiently large that one cannot conclude that an
avoided energy level crossing has taken place in moving
from quark mass mq to mq0 .

The components of the eigenvector u�, providing the
amplitude for each interpolating field at the source for
creating the state �, are provided in Fig. 4. A nontrivial
contribution from both the �1 and �2 interpolators for the

lowest two energy states is evident. The scalar-diquark
interpolator �1 dominates the lowest energy state. On the
other hand, both �1 and �2 interpolators have large con-
tributions to the second energy state where their strengths
appear with opposite signs. The eigenvector components
typically display a slow evolution as the quark mass is
changed.
The energy states for our complete analysis are pre-

sented in Fig. 5. The results are drawn from two 8� 8
correlation-matrix analyses for pairs of �1, �2 and �1, �4.
The matrices are formed with each interpolator having four
levels of smearing. Whereas the �1, �2 and �2, �4 analyses
reveal a similar spectrum, four new states are revealed in
the �1, �4 analysis providing the resolution of 12 low-lying
states in our analysis.
In the SU(6) quark model, the odd-parity (1535) and

(1650) states belong to the negative-parity, L ¼ 1, 70-plet
representation and have a small splitting associated with
their different spin configurations [17]. The lowest two
energy states revealed here are similarly close in mass, as
illustrated in Fig. 5, in accord with the SU(6) quark model.
These two lowest-lying N 1

2
� states are presented in

Fig. 6 in comparison with the S-wave scattering threshold.
These lattice results, providing the first examination of
the odd-parity nucleon spectrum at a pion mass as low as
156 MeV, display agreement with the physical values.
Table II reports the eigenstate energies of the first six states.

FIG. 6 (color online). The quark-mass dependence of the
lowest two lowest-lying N 1

2
� states are compared with the

S-wave scattering threshold.

FIG. 5 (color online). Masses of 12 low-lying N 1
2
� energy

states from two 8� 8 correlation matrices of �1, �2 and �1, �4.

FIG. 4 (color online). The components of the eigenvector u�

providing the amplitude for each interpolating field at the source
for creating the state �. The states are labeled by the eigenvector
(EVect) number with the ordering as provided in Fig. 3 at the
heaviest quark mass. For each EVect, the eigenvector compo-
nents are plotted from left to right in order of increasing quark
mass. In the legend, ðu1; u2Þ, ðu3; u4Þ, ðu5; u6Þ and ðu7; u8Þ
correspond to the smearing-sweep levels of 16, 35, 100 and
200, respectively. Odd numbers in the subscripts correspond to
the contribution from the �1 interpolator, whereas even numbers
correspond to �2.

TABLE II. Eigenstate energies (GeV) for the low-lying N 1
2
�

states.

m2
� St.1 St.2 St.3 St.4 St.5 St.6

0.388 1.97(4) 2.04(3) 2.62(5) 2.74(5) 2.77(6) 3.05(10)

0.265 1.83(4) 1.81(4) 2.31(9) 2.38(10) 2.50(11) 3.02(10)

0.152 1.73(5) 1.80(5) 2.22(11) 2.71(6) 2.67(7) 3.21(7)

0.078 1.66(5) 1.85(7) 2.56(8) 2.59(8) 2.43(21) 3.29(6)

0.028 1.52(4) 1.63(6) 2.33(7) 2.39(9) 2.39(9) 2.68(17)
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Although both these low-lying states are quite similar at
the two heaviest quark masses, their approach to the physi-
cal values in the light quark-mass region are different.
Significant chiral curvature is evident, in particular for
the second state. It will be interesting to explore the mass
dependence of these states using effective field theory
techniques and to repeat these studies on matched lattices
of different volume when they become available. Future
studies will endeavor to observe the multiparticle

scattering states and determine the resonance parameters
of these states from the first principles of QCD.
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Morningstar, D. Richards, and S. Wallace, Phys. Rev. D
82, 014507 (2010).

[4] G. P. Engel, C. B. Lang, M. Limmer, D. Mohler, and A.
Schafer (BGR [Bern-Graz-Regensburg] Collaboration),
Phys. Rev. D 82, 034505 (2010).

[5] R. G. Edwards, J. J. Dudek, D.G. Richards, and S. J.
Wallace, Phys. Rev. D 84, 074508 (2011).

[6] M. S. Mahbub, W. Kamleh, D. B. Leinweber, P. J. Moran,
and A.G. Williams (CSSM Lattice Collaboration), Phys.
Lett. B 707, 389 (2012).

[7] B. J. Menadue, W. Kamleh, D. B. Leinweber, and M. S.
Mahbub, Phys. Rev. Lett. 108, 112001 (2012).

[8] C. Michael, Nucl. Phys. B259, 58 (1985).
[9] M. Luscher and U. Wolff, Nucl. Phys. B339, 222 (1990).
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