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We consider a generalized Brans-Dicke model in which the scalar field has a potential function and is

also allowed to couple nonminimally with the matter sector. We assume a power-law form for the potential

and the coupling functions as the inputs of the model and show that acceleration of the Universe can be

realized for a constrained range of exponents of the potential function. We also argue that this accelerating

phase is consistent with a large and positive Brans-Dicke parameter. In our analysis, the potential plays a

more important role with respect to the coupling function in the dynamics of the Universe as the latter

does not contribute to any of the relations characterizing evolution of the scale factor of the Universe and

the scalar field. However, we will show that the coupling function is closely related to magnitude and

direction of the energy transfer between matter and the scale field. We use this fact and some

thermodynamic aspects of the model to put some constraints on the coupling function. In particular,

we argue that the second law of thermodynamics constrains direction of the overall energy transfer.
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I. INTRODUCTION

Cosmological observations on the expansion history of
the Universe can be interpreted as evidence either for
existence of some exotic matter components or for modi-
fication of the gravitational theory. In the first route of
interpretation one can take a mysterious cosmic fluid
with sufficiently large and negative pressure, dubbed dark
energy. In the second route, however, one attributes the
accelerating expansion to a modification of general rela-
tivity. Such modified gravity models can be obtained in
different ways. For instance, one can replace the Ricci
scalar in the Einstein-Hilbert action by some functions
fðRÞ (for a review see, e.g., Ref. [1] and references
therein), or by considering a scalar partner for the metric
tensor for describing geometry of spacetime, the so-called
scalar-tensor gravity. The prototype of the latter approach
is Brans-Dicke (BD) theory [2] whose original motivation
was the search for a theory containingMach’s principle. As
the simplest and best-studied generalization of general
relativity, it is natural to think about the BD scalar field
as a possible candidate for producing cosmic acceleration
without invoking auxiliary fields or exotic matter systems.
In fact, there have been many attempts to show that the BD
model can potentially explain the cosmic acceleration. It is
shown that this theory can actually produce a nondeceler-
ating expansion for low negative values of the BD parame-
ter! [3]. Unfortunately, this conflicts with the lower bound
imposed on this parameter by solar system experiments
[4]. Due to this difficulty, some authors propose modifica-
tions of the BD model such as introducing some potential
functions for the scalar field [5], or considering a field-
dependent BD parameter [6] without resolving the prob-
lem. In a general scalar-tensor theory there is a nonminimal

coupling between the scalar field and Ricci scalar while the
former minimally couples with the matter sector. In other
terms, there is no an explicit coupling between the scalar
field and matter systems in Jordan frame representation. In
BD theory, in its original form, the motivation for such a
minimal coupling was to keep the theory in accord with the
weak equivalence principle [2]. However, there has been
recently a tendency in the literature to go a step further and
consider a nonminimal coupling between the scalar field
and matter systems as well by introducing an arbitrary
function of the scalar field as a coupling function. In these
models, the scalar field is regarded as a chameleon field as
it can be heavy enough in the environment of the laboratory
tests so that the local gravity constraints are satisfied.
Meanwhile, it can be light enough in the low-density
cosmological environment to be considered as a candidate
for dark energy. Such a chameleon-matter coupling was
first introduced in the BD model to achieve accelerating
expansion of the Universe for sufficiently large BD pa-
rameter [7]. It is shown that even though the absolute value
of ! is enlarged due to such a nonminimal coupling, its
negative sign makes this theory remain inconsistent with
observations. Later works apply nonminimal coupling to
general scalar-tensor theories. For instance, Ref. [8] con-
siders stability analysis and possibility of phantom cross-
ing with an assumption that potential of the scalar field and
the coupling function have power-law forms, and bouncing
solutions and some cosmological tests are investigated in
Ref. [9]. In the present work, we will show that within a
class of solutions of the field equations ! can take positive
and large values. We also discuss some thermodynamic
aspects of the model and show that the overall energy
transfer should be into the matter system if the second
law of thermodynamics is to be fulfilled. We use this fact
and some recent observations to tightly constrain the expo-
nent of the coupling function.*y-bisabr@srttu.edu
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II. THE MODEL

We consider the action functional

S ¼ 1

2

Z
d4x

ffiffiffiffiffiffiffi�g
p �

�R�!

�
g��r��r��

� 2Vð�Þ þ 2fð�ÞLm

�
; (1)

where R is the Ricci scalar, � is the BD scalar field, and
Vð�Þ and fð�Þ are some analytic functions. Here the
matter Lagrangian density, denoted by Lm, is coupled
with � via the function fð�Þ. This allows a nonminimal
coupling between the matter system and �; thus the latter
appears as a chameleon field. Taking fð�Þ ¼ 1, we return
to the BD action with a potential function Vð�Þ.

Varying the action with respect to the metric g�� and �

yields the field equations, given by

�G�� ¼ T�
�� þ fð�ÞTm

��; (2)

ð2!þ 3Þh�þ 2ð2V � V 0�Þ ¼ Tmf� 2f0�Lm; (3)

where prime indicates differentiation with respect to �,
Tm ¼ g��Tm

��, and

T�
�� ¼ !

�

�
r��r��� 1

2
g��r��r��

�

þ ðr�r��� g��h�Þ � Vð�Þg��; (4)

Tm
�� ¼ �2ffiffiffiffiffiffiffi�g

p �ð ffiffiffiffiffiffiffi�g
p

LmÞ
�g�� : (5)

Due to the explicit coupling of the matter system with �,
the stress tensor Tm

�� is not divergence free. This can be

seen by applying the Bianchi identities r�G�� ¼ 0 to (2),

which leads to

r�Tm
�� ¼ ðLmg�� � Tm

��Þr� lnf: (6)

As it is clear from (6), details of the energy exchange
between matter and � depend on the explicit form of the
matter Lagrangian density Lm. Here we consider a perfect
fluid energy-momentum tensor as a matter system with
energy density �m and pressure pm.

There are different choices for the perfect fluid
Lagrangian density; all of them lead to the same energy-
momentum tensor and field equations in the context of
general relativity [10,11]. The two Lagrangian densities
that have been widely used in the literature are Lm ¼ pm

and Lm ¼ ��m [12–14]. For a perfect fluid that does not
couple explicitly to � [i.e., for fð�Þ ¼ 1], the two
Lagrangian densities Lm ¼ pm and Lm ¼ ��m are per-
fectly equivalent, as discussed in Refs. [13,14]. However,
in the model presented here the expression of Lm enters
explicitly the field equations and all results strongly
depend on the choice of Lm. In fact, it is shown that
there is a strong debate about equivalency of different

expressions attributed to the Lagrangian density of a
coupled perfect fluid [15].
Here we consider Lm ¼ pm. In this case, although

fluid elements follow geodesics of the background
metric and there is no additional force, the matter is still
nonconserved [16]:

_�m þ 3Hð�þ 1Þ�m ¼ �ð�þ 1Þ�m

_f

f
: (7)

This has the solution

�m ¼ �0a
�3ð�þ1Þf�ð�þ1Þ (8)

with �0 being an integration constant. This indicates that
evolution of matter density strongly depends on the cou-
pling function. When f ¼ 1, (8) reduces to the standard
evolution law for the matter energy density. However, as
we have already stated, the coupling function in this frame-
work does not affect a matter system with � ¼ �1
(a cosmological constant) as it is clear from (8).

III. A COSMOLOGICAL SETTING

Now we apply the above framework to a homogeneous
and isotropic Universe described by the Friedmann-
Robertson-Walker metric. In a spatially flat case, Eqs. (2)
and (3) become

3
_a2

a2
¼ f

�
�m þ 1

2
!

_�2

�2
� 3H
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; (9)
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(10)

ð2!þ 3Þð €�þ 3H _�Þ � 2ð2V ��V 0Þ
¼ ð1� 3�Þf�m þ 2��f0�m: (11)

To proceed further, we choose Vð�Þ ¼ V0�
l1 and fð�Þ ¼

f0�
l2 in which l1 and l2 are constant parameters and

V0 and f0 are positive quantities. We assume power-law
forms for evolution of the scale factor and the scalar field
aðtÞ ¼ a0t

n and �ðtÞ ¼ �0t
m. Inserting these ansatz

functions together with (8) into (9)–(11) gives the parame-
ters n and m in terms of l1 and l2. Since the left-hand
side of (9)–(11) falls as t�2, we arrive at the following
relationships:

mðl1 � 1Þ ¼ �2; (12)

mðl2 � 1Þ � ð3nþml2Þð�þ 1Þ ¼ �2: (13)

Combining (12) and (13) gives
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n ¼ 2ð�l2 þ l1Þ
3ð�þ 1Þðl1 � 1Þ : (14)

For � � 0, the conditions for the Universe to be expanding
(n > 0) and accelerating (n > 1) are the following:1

n > 0 ! l2 >�l1=� l1 > 1;

l2 <�l1=� l1 < 1;
(15)

n > 1 ! l2 >
3

2
ðl1 � 1Þ þ 1

2�
ðl1 � 3Þ l1 > 1;

l2 <
3

2
ðl1 � 1Þ þ 1

2�
ðl1 � 3Þ l1 < 1:

(16)

As an illustration, let us consider the potential Vð�Þ ¼
V0�

2 in a radiation-dominated Universe. In this case,
� ¼ 1=3 and expansion of the Universe imply l2 >�6.
On the other hand, the success of big bang nucleosynthesis
gives us strong evidence of the radiation-dominated decel-
erated phase which leads to l2 < 0. Thus a scalar field with
a quadratic potential which couples with radiation requires
that �6< l2 < 0. Note that the relation (12) indicates that
for l1 > 1 the scalar field is a decreasing function of time
(m< 0). This implies that the coupling function f / tml2

increases with time or the matter-chameleon coupling gets
stronger as the Universe expands.

This feature is changed in a matter-dominated Universe.
For � ¼ 0, the expression (14) reduces to

n ¼ 2l1
3ðl1 � 1Þ : (17)

This relation indicates that n > 1 cannot be realized if
l1 < 0. On the other hand, when l1 > 0 the accelerating
expansion of the Universe requires that 1< l1 < 3. The
parameter l2 does not enter the above condition and it
seems that the scalar field effectively decouples from the
matter system in a matter-dominated Universe. Exploring
the relations (12) and (13) reveals that l2 also disappears
from this relation when we set � ¼ 0.

As it is evident, the above conditions do not put any
constraint on the BD parameter !. To obtain such a con-
straint, one should consider the condition for which the
right-hand side of (10) becomes positive. For � ¼ 0, the
condition is

V0�
l1�1
0

�
2!þ 3ðl1 � 1Þ

2!þ 3

�
� �0a

�3
0 ð!þ 3Þ

�0ð2!þ 3Þ �m2!

� 6n

l1 � 1
> 0: (18)

At this point, attention is focused on the question of
whether it is possible to have accelerated expansion for a
large positive!. To answer the question, let us consider the
above expression for ! � 1,

V0�
l1�1
0 � �0a

�3
0

2�0

� 6n

l1 � 1
>m2!: (19)

If the left-hand side effectively takes a negative sign
then the inequality cannot be satisfied for a positive BD
parameter. To make an estimation, we first note that��1

0 �
G�M�2

p and �0a
�3
0 �M with G, Mp, and M being

respectively the gravitational constant, the Planck mass,
and the total mass content in the Universe. Second, it is an
observational fact that matter density of the Universe is of
the same order of the critical density �c ¼ 3H2M2

p=8�

withH being the Hubble parameter. This leads to a relation
between M and H such that M=M2

p � R, of which

R�H�1 is the Hubble radius [17]. Substituting these
results into (19) gives

M2ðl1�1Þ
p

�
V0 � Rl1

Ml1�1

�
� 6n

l1 � 1
>m2!: (20)

Using R� 1026 ðmeterÞ and M� 1096 ðmeterÞ�1,2 one
can see that the term containing V0 is a leading term on
the left-hand side of (20) unless l1 takes values near the
lower bound, namely, l1 � 1. In other words, when l1 is not

close to unity one can write !<M2ðl1�1Þ
p V0=m

2 which
indicates that the BD parameter can take positive large
values. Note that there is no need for fine-tuning of the
constant V0 since the upper bound given by the latter
relation is sufficiently large due to the appearance of Mp.

It can be easily checked that for l1 � 1, Rl1=Ml1�1 � R�
1026 ðmeterÞ and the left-hand side of (20) take a negative
sign. In this case, the inequality cannot be satisfied for
!> 0. It is interesting to note that the coupling function,
or the parameter l2, does not play any role in the above
argument and it is only the potential function that is
relevant. As we have already seen, this is also the case
(for � ¼ 0) when one enters the arguments concerning the
expansion of the Universe in the matter-dominated era.
Despite the irrelevant role of the coupling function in the
latter arguments, it affects the dynamics of the matter
energy density. The evolution law (8) can be rewritten as

�m / a�3ð�þ1Þþ"; (21)

where

" ¼ �m

n
l2ð�þ 1Þ: (22)

In fact, the parameter " measures the modification of the
matter expansion rate due to its interaction with the scalar
field. The relation (21) states that when " > 0, matter is
created and energy is constantly injecting into the matter so
that the latter will dilute more slowly compared to its

standard evolution �m / a�3ð�þ1Þ. Similarly, when " < 0
the reverse is true, namely, that matter is annihilated and
the direction of the energy transfer is outside of the matter

1We assume that the matter system satisfies the weak energy
condition �þ 1> 0. 2We use the unit system in which ℏ ¼ c ¼ 1.
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system so that the rate of the dilution is faster than
the standard one. We may use (13) to write (22) in the
form

n ¼ 2l2ð�þ 1Þ
3l2ð�þ 1Þ2 � "ð�l2 þ 1Þ : (23)

When m ¼ 0, � takes a constant configuration which is
given by �0 �G�1 and the model (1) reduces to Einstein
gravity with a cosmological term. This case corresponds to
" ¼ 0 and the solution (23) reduces to n ¼ 2=3ð�þ 1Þ, the
case in the standard cosmology. For � ¼ 0, the expression
(23) takes the form

n ¼ 2

3� "
l2

: (24)

One can use this relation to constrain the parameters "
and l2. We first note that from the modified matter expan-
sion rate (21) we should expect j"j � 1 since so far there
has been no report from observations about an anomalous
expansion rate. In other terms, if there exists any devia-
tion from the standard evolution of matter density it must
be very small. Taking " as an independent parameter, one
can compare the modified expansion rate with observa-
tions and perform data fitting to estimate j"j. In fact, it is
shown that cosmological observations are consistent with
j"j< 0:1 [18–20]. This result puts an upper bound on
absolute value of the parameter l2. The condition for
accelerating expansion inferred by (24) is "=l2 > 1 which
leads to jl2j< 0:1.

On the other hand, the expression (24) implies that the
parameters " and l2 should have the same sign in order that
n > 1. Thus direction of the energy transfer between the
matter system and the scalar field is characterized either by
" or l2. Following [19], we argue that " > 0 as required by
the second law of thermodynamics. To do this, we should
investigate some thermodynamic features of the matter-
chameleon coupling described by (1). A thermodynamic
description of a perfect fluid matter system requires the
knowledge of the particle flux N� ¼ nu� and the entropy
flux S� ¼ n	u� where n ¼ N=a3 and 	 ¼ S=N are,
respectively, the concentration and the specific entropy
(per particle) of the created or annihilated particles. Since
the energy density of matter is given by �m ¼ nM with M
being the mass of each particle, the appearance of the extra
term in the energy balance equation (7) means that this
extra change of �m can be attributed to a change of n orM.
Here we assume that the mass of each matter particle
remains constant and the extra term in the energy balance
equation only leads to a change of the number density n. In
this case, Eq. (7) can be written as (� ¼ 0)

_nþ 3Hn ¼ n�; (25)

where

� � �
_f

f
¼ "

_a

a
(26)

is the decay rate. We also assume that the overall energy
transfer is adiabatic processes in which matter particles
are continuously created or annihilated while the specific
entropy per particle remains constant during the whole
processes ( _	 ¼ 0) [21]. This means that

_S

S
¼ _N

N
¼ �: (27)

From n / a�3þ", we can see that the total number of
particles scales as N / a", and the second law of ther-
modynamics _S � 0 implies that " � 0. This conclusion
can also be drawn by (26) since � � 0 requires that
" � 0 in an expanding Universe. Hence, the chameleon
scalar field should suffer energy reduction and the mat-
ter system should gain energy during expansion of the
Universe if the second law of thermodynamics is to be
fulfilled.

IV. CONCLUSIONS

In this work we have studied some features of the
generalized BD model in which the scalar field is allowed
to couple nonminimally with the matter sector. The matter
expansion law and the geodesic equation have modified
due to this nonminimal coupling. The modification
depends on the choice of Lm, Lagrangian density of the
matter system. For instance, in our choice the matter
conservation equation is modified while there is no extra
force in the geodesic equation.
We have found power-law solutions for the scale factor

and the scalar field. In this class of solutions, when � ¼ 0
the accelerating expansion of the Universe can be realized
for 1< l1 < 3. Our analysis also indicates that this accel-
erating phase is consistent with a positive and large BD
parameter.
The fact that the parameter l2 does not contribute to the

condition for cosmic speedup in the case of � ¼ 0 may be
regarded as a signal for an irrelevant role of the function
fð�Þ in the matter-dominated era. However, it is evident
from (8) that fð�Þ is important in the evolution of matter
density. We have reformulated the matter expansion law as

�m / a�3ð�þ1Þþ" where the parameter " characterizes both
magnitude and direction of the energy transfer. We have
argued that such a reformulation has two important con-
sequences. First, since the magnitude of " can be fixed by
observation (as it is recently suggested that j"j< 0:1)
accelerating expansion which requires that l2 < " sets an
upper bound on the absolute value of l2. Second, the sign of
" is restricted by the second law of thermodynamics to
assume only positive values so that the direction of energy
transfer is into the matter system. This constrains the
exponent of the coupling function to take values within
the range 0< l2 < 0:1.
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