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We consider a braneworld model in the scalar-tensor gravity. In order to solve the gauge hierarchy

problem in this model, our world should be confined on the positive tension brane rather than on the

negative one. This is crucial to reproduce a correct Friedmann-like equation on the brane. Interestingly, it

is found that the spacing of mass spectrum in this scenario is very tiny, but the light gravitons cannot be

observed individually in colliders because of their sufficiently weak interaction with matter fields on the

visible brane.
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I. INTRODUCTION

Motivated by string/M theory, there has been increasing
interest in the braneworld scenario during recent years
(for an introduction, see, e.g., Refs. [1–3] and references
therein). In this scenario, our world is trapped in a four-
dimensional submanifold (called brane) embedded in a
fundamental multidimensional spacetime (called bulk).
This scenario provides a mechanism that could possibly
solve some disturbing problems of high-energy physics,
such as the gauge hierarchy problem (the problem of why
the electroweak scale MEW � 1 TeV is so different from
the Planck scale MPl � 1016 TeV) and the cosmological
constant problem [4–7]. A famous theory in the braneworld
scenario is the Randall-Sundrum (RS) model proposed in
1999 [6,7]. In the RS1 model [6], two 3-branes are located
at the boundaries of a compact extra dimension with the
topology S1=Z2. We live on the negative tension brane
(called visible brane) and the spin-2 gravitons localize on
the positive tension brane (called hidden brane). The gauge
hierarchy problem is solved by introducing an exponential
warp factor e�krc� to warp the extra dimension, and this
warped extra dimension generates an exponential hier-
archy e�krc� ’ 10�16 to warp down the Planck scale to
the electroweak scale on our visible brane. When the radius
of S1 approaches infinite, the RS1 model transforms into
the RS2 model [7].

Recently, some braneworld models in the scalar-tensor
theory have been intensively discussed. The scalar-tensor
gravity generalizes the Brans-Dicke theory [8] and could
be traced back to the low-energy effective theory of
string/M theory, where a dilaton filed is nonminimally
coupled to the gravity. In Ref. [9], an interesting linear
dilaton model arising from little string theory was pro-
posed. Setting TeV as the fundamental scale, there is a

Kaluza-Klein (KK) tower with a TeV mass gap followed
by a near continuum of narrow resonances separated from
each other by about 30 GeV. In Refs. [10–12], some thick
braneworld models were discussed. In general relativity,
the profile of the massless graviton is determined by the
warp factor only, while it is determined by both the
warp factor and the scalar field in the scalar-tensor theory
[11–13]. For a weak four-dimensional gravity originating
from a small overlap of the massless graviton and the
matter fields on the brane, by changing the profile of the
massless graviton, one may realize moving our world to
the positive tension brane in the scalar-tensor frame. The
motivations are as follows: (a) the universe confined on the
negative tension brane would lead to a ‘‘wrong-signed’’
Friedmann-like equation, which causes a severe cosmo-
logical problem in the RS1 model. However, this problem
can be avoided if our universe is confined on the positive
tension brane [14–16]. (b) There are positive energy
objects, such as D-branes and NS-branes, on which the
Standard Model matter fields can be localized [17].
Therefore, in this work we would like to investigate a

simple generation of the RS1 model in the scalar-tensor
gravity to move our world to the positive tension brane but
keep the advantage of the RS1 model for solving the
hierarchy problem.
Here, it is also interesting to note that a model involving

only positive tension branes was proposed in Ref. [17] by
introducing a large tension ‘‘Planck brane’’ located at the
origin of an infinite extra dimension and a small tension
probe-brane located at y0. With the distance y0 satisfying
e�ky0 ’ 10�16, the model can solve the hierarchy problem
and recover a consistent low-energy four-dimensional
gravity [17].

II. THE MODEL

We start with a five-dimensional action in which gravity
is nonminimally coupled to a dilaton field

S5 ¼ M3�
2

Z
d5x

ffiffiffiffiffiffi
jgj

q
ek�½R� ð3þ 4kÞð@�Þ2�; (1)
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where M� is the five-dimensional scale of gravity. Since
the scalar-tensor theory has a close relation with the
Weyl geometry [18], the action (1) can be originated

from a simple Weyl action SW5 ¼ M3�
2

R
MW

5
d5x

ffiffiffiffiffiffijgjp
ek�R,

where the scalar curvatureR is constructed by theWeylian
connection �P

MN¼f P
MNg�1

2ð�;M�
P
Nþ�;N�

P
M�gMN�

;PÞ,
with f P

MNg the Christoffel symbol. So the scalar could be

regarded as a geometric field that provides the ‘‘material’’
to build the brane configuration and does not couple to the
ordinary matter fields [19].

The metric ansatz is given by

ds25 ¼ a2ðzÞð���dx
�dx� þ dz2Þ; (2)

where the conformal coordinate z 2 ½�zb; zb� denotes an
S1=Z2 orbifold extra dimension. It relates to the usual
nonconformal metric [6] with a coordinate transformation
dy ¼ aðzÞdz. In order to be consistent with the four-
dimensional Poincaré invariance of the metric, we assume
that the scalar field depends on the extra dimension only.
Thus the field equations are read as

k�00 þ
�
k2þ2kþ3

2

�
�02þ2k

a0

a
�0 þ3

a00

a
¼0; (3)

�
�0 � 2

a0

a

��
ð4kþ 3Þ�0 þ 6

a0

a

�
¼ 0; (4)

ð4kþ 3Þ�00 þ
�
2k2 þ 3

2
k

�
�02 þ 3ð4kþ 3Þ a

0

a
�0

� 2k

�
2
a00

a
þ a02

a2

�
¼ 0; (5)

where the prime denotes the derivative with respect to the
coordinate z. From Eq. (4), we easily get

a0

a
¼ 1

2
�0; or

a0

a
¼ � 3þ 4k

6
�0: (6)

For k ¼ �3=2, these two equations are just equivalent.
While for k ¼ �3=4, the second equation just gives
a0 ¼ 0, namely, aðzÞ is a constant, so we are not interested
in this trivial case. After substituting the two equations in
(6) into Eqs. (3) and (5), we find three independent cases
for solving the theory.

Case 1.

�0 ¼ 2
a0

a
;

�
k ¼ � 3

2

�
: (7)

In this case, there is just one constraint on the warp factor
and the scalar,

�ðzÞ ¼ 2 lnaðzÞ: (8)

Thus the brane configuration cannot be uniquely fixed.

Because in this case fð�Þ ¼ e�3
2�, the action (1) is invari-

ant under the rescaling �gMN ¼ e�!gMN, �� ¼ ��!, with

! an arbitrary smooth function. The invariance can be
easily checked by using the relation between the scalar-
tensor action S5 and the Weyl action SW5 , and further,

making use of the rescaling invariance in Weyl geometry
[20]. So the breaking of the invariance, i.e., k � � 3

2 , such

as in case 2 and case 3, is necessary for generating the
brane configuration.
Case 2.

�0 ¼ 2
a0

a
;

�
k � � 3

2

�
; (9)

a00

a
¼ �ð2þ 2kÞ a

02

a2
: (10)

After redefining the integral parameters to satisfy the
Z2-symmetric condition and furthermore to make sure
that the null signal takes an infinite amount of time to
travel from zb to z ¼ 0 when zb ! 1, as suggested in
RS model [6,7], the solution is given by

aðzÞ ¼ ð1þ �jzjÞ 1
3þ2k; (11)

�ðzÞ ¼ 2

3þ 2k
lnð1þ �jzjÞ; (12)

where the parameters are set to �> 0, k <� 3
2 .

It is useful in practice to define an effective energy-
momentum tensor TMN , which is composed of all scalar
terms moved to the right-hand side of the Einstein
equations. Since the solution is nonsmooth at the two
boundaries, the delta functions in the Einstein tensor and
energy-momentum tensor compensate for each other. And
these delta functions in effective energy-momentum tensor
suggest a thin brane solution. The brane configuration
could be more easily seen from the effective energy
density � referring to static observers, which is defined
as � ¼ TMNU

MUN ¼ �T0
0 ,

� ¼ 6ð1þ kÞ�2

ð3þ 2kÞ2ð1þ �jzjÞ8þ4k
3þ2k

þ 4k�½�ðzÞ � �ðz� zbÞ�
ð3þ 2kÞð1þ �jzjÞ5þ2k

3þ2k

:

(13)

It clearly shows that there are two thin branes located at the
boundaries z ¼ 0 and z ¼ zb, respectively.
Case 3.

a0

a
¼�3þ4k

6
�0;

�
k��3

2
and k��3

4

�
; (14)

�00 ¼
�
3

2
þ k

�
�02: (15)

After redefining the integral parameters, we get the
solution

aðzÞ ¼ ð1þ �jzjÞ3þ4k
9þ6k; (16)
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�ðzÞ ¼ � 2

3þ 2k
lnð1þ �jzjÞ; (17)

where �> 0 and �3=2< k <�3=4. With this solution,
the effective energy density is expressed as

� ¼ 2ð3þ kÞð3þ 4kÞ�2

3ð3þ 2kÞ2ð1þ �jzjÞ24þ20k
9þ6k

� 4k�½�ðzÞ � �ðz� zbÞ�
ð3þ 2kÞð1þ �jzjÞ15þ14k

9þ6k

:

(18)

For TMN��kg55�00g���
�
M�

�
N��g���

�
M�

�
N½Vvis�ðzÞþ

Vhid�ðz�zbÞ�, where Vvis (Vhid) plays the role of the effec-
tive brane tension, we have � ¼ �T0

0 � Vvis�ðzÞ þ
Vhid�ðz� zbÞ. It means that the prefactors of delta func-
tions in the energy densities of the two cases are nothing
but the effective brane tensions. These tensions compen-
sate for the effects produced by the bulk component and
hence ensure the existence of four-dimensional flat branes.
As shown in Eqs. (13) and (18), there is a positive tension
brane at the origin and a negative one at the boundary zb.
So the brane configurations of both cases are similar to that
of the RS1 model. However, as we will see in the next
section, the localization of massless graviton of these two
cases will be quite different from that of the RS1 model, so
here we suppose that the Standard Model fields are con-
fined on the positive tension brane at z ¼ 0, and this is
crucial to overcome the severe cosmological problem of
the RS1 model.

III. PHYSICAL IMPLICATIONS

Here we consider the transverse-traceless tensor fluctu-
ations of the metric (2), which refer to spin-2 gravitons.
The perturbed metric is given by

ds2 ¼ a2ðzÞ½ð��� þ �h��ðx; zÞÞdx�dx� þ dz2�; (19)

where �h�� represent tensor fluctuations and satisfy the

transverse-traceless conditions ��� �h��¼�	�@	 �h��¼0.

With this perturbed metric, the�� component of the linear
perturbed Einstein equations simply gives

�h00�� þ 3
a0

a
�h0�� þ k�0 �h0�� þhð4Þ �h�� ¼ 0: (20)

Furthermore, we decompose �h�� as the form

�h��ðx; zÞ ¼ "��ðxÞA�3
2ðzÞ�ðzÞ; (21)

where the function AðzÞ is defined as AðzÞ ¼ aðzÞek�=3, and
with the solutions in case 2 and case 3, the expressions of
AðzÞ are found to be the same in both cases,

AðzÞ ¼ ð1þ �jzjÞ13: (22)

The four-dimensional mass m of a KK excitation is intro-
duced by the four-dimensional Klein-Gordon equation

hð4Þ"��ðxÞ ¼ m2"��ðxÞ. Then a Schrödinger-like equation
is obtained from Eq. (20) as

��00ðzÞ þ
�
3

2

A00

A
þ 3

4

A02

A2

�
�ðzÞ ¼ m2�ðzÞ: (23)

The eigenvalue m in this Schrödinger-like equation pa-
rametrizes the spectrum of the four-dimensional graviton
masses. Setting m ¼ 0 in Eq. (23), one can easily get the
normalized zero mode

�0ðzÞ ¼ A
3
2ðzÞ
N0

¼ ð1þ �jzjÞ1=2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2zb þ �z2b

q ; (24)

and it is determined by both the warp factor and the scalar
field. Here the zero mode is localized on the negative
tension brane at zb instead of on the positive tension one
at the origin, although the warp factor decreases towards zb
like the RS1 model. As a result of a compact extra dimen-
sion, the zero mode is normalizable, but it is not normal-
izable anymore when the size of the extra dimension
approaches infinity. Since a normalizable massless mode
ensures that an effective four-dimensional gravity recovers
on the brane at low-energy scale, compactifying the extra
dimension is crucial in our model.
With the Neumann boundary condition @z �h��ðx; zÞ ¼ 0,

which is chosen to be consistent with the Z2-symmetry, the
general solution of the Schrödinger-like equation between
the two boundaries is given by a linear combination of the
Bessel functions, i.e.,

�ðzÞ ¼ ð1þ �zÞ12
N

�
J0

�
m

�
zþ 1

�

��
þ 
Y0

�
m

�
zþ 1

�

���
;

(25)

where 
 ¼ �J1ðm=�Þ=Y1ðm=�Þ and N is a normalization
constant. The KK spectrum is determined by

J1ðmnðzb þ 1
�ÞÞ

J1ðmn=�Þ ¼ Y1ðmnðzb þ 1
�ÞÞ

Y1ðmn=�Þ : (26)

Further, working in the limit of mn=� � 1 and
1þ �zb � 1, i.e., here we consider the light modes in
the long-range case, 
 � ð�m2Þ=ð4�2Þ � 1, then the
massive modes are given by

�nðzÞ� ð1þ�zÞ12ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2zbþ�z2b

q J0ðmnðzþ1=�ÞÞ; ðn>0Þ: (27)

And in this limit, the spectrum is read as

mn ¼ xn
zb þ 1=�

; (28)

where xn satisfies J1ðxnÞ ¼ 0, and x1 ¼ 3:83, x2 ¼ 7:02,
x3 ¼ 10:17; . . . .
The interaction between gravitons and matter fields is

achieved by including the action of Standard Model matter
fields. When the matter fields are located on the visible
brane, the interaction in the four-dimensional effective
theory is described by [21]
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Lint ¼ �

2
~T��ðxÞh��ðx; 0Þ; (29)

where the parameter � ¼ 2=M3=2
� is chosen to give the five-

dimensional field hMN a correct dimension, namely,
hMN ! �hMN, and ~T��ðxÞ is the symmetric conserved
Minkowski space energy-momentum tensor. For z ¼ 0,
J0ðmn=�Þ � 1, Eqs. (24) and (27) show that �nðx; 0Þ �
�0ðx; 0Þ. It means that the profiles of lower KK states are
similar to the profile of the massless graviton. So with the
decomposition (21), one arrives at

hðnÞ��ðx; 0Þ ¼ "ðnÞ��ðxÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2zb þ �z2b

q ; ðn � 0Þ; (30)

and hence, the interaction Lagrangian (29) simply gives

LðnÞ
int ¼

� ~T��ðxÞ"ðnÞ��ðxÞ
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2zb þ �z2b

q ¼ ~� ~T��ðxÞ"ðnÞ��ðxÞ; (31)

where ~� ¼ 1=½M3�ð2zb þ �z2bÞ�1=2 is the effective coupling
constant. It shows that the couplings of both the massless
and massive gravitons to matter are of the same order. This
is quite different from that of the RS1model, where the two
couplings are of order 1=MPl and 1=TeV, respectively.

After calculating the contribution of the massless zero
mode sector in the action (1), the four-dimensional effec-
tive Planck scale M2

Pl is given by

M2
Pl ¼ M3�

Z zb

�zb

dzA3ðzÞ ¼ M3�ð2zb þ �z2bÞ: (32)

On the other hand, since the Standard Model fields are
confined on the brane at the origin, where the warp factor
að0Þ ¼ 1, the Higgs field action on the visible brane is just
the usual four-dimensional canonically normalized one,
and the Higgs vacuum expectation value v0 does not
involve the warped extra dimension [6]. Since the Higgs
vacuum expectation value sets all mass parameters, any
effective physical mass mobs on the visible brane is iden-
tical to its mass parameter m� in the fundamental theory.

Thus, if we set all the fundamental parametersM�, �, v0

to be about the TeV scale, one only requires �zb � 1016 to
provide a large twist of the two scales �M2

Pl � 1032M3�.
Then, the mass spectrum is mn � xn 	 10�4 eV. Thus in
contrast with that of the RS1 model where the spacing of
KK gravitons is of order of the TeV scale, the spacing is
quite small here.

It seems that these gravitons are tiny enough to be easily
produced in all colliders. Nevertheless, the effective cou-
pling constant of KK gravitons with matter on the visible

brane is ~� ¼ 1=MPl in this case. It means that the inter-
actions of the massless and massive gravitons with matter
fields on the visible brane are both largely suppressed
by the four-dimensional gravitational strength 1=MPl.
Therefore, these light KK gravitons can certainly not be

seen individually. Moreover, following the same spirit of
the large extra dimension model [4,5], the cross section
for real emission of these KK gravitons is roughly
�
 ðE=10�4 eVÞ=M2

Pl ¼ 10�16E=ðTeVÞ3, where E is the

relevant physical energy scale. Therefore, their collective
contribution is also small enough to ensure that the model
is not contrary to the experimental observations.

IV. DISCUSSION

In this work, we investigate a generation of the RS1
model in the scalar-tensor theory. In order to solve the
gauge hierarchy problem in this model, our world should
be confined on the positive tension brane rather than on
the negative one. This is crucial to reproduce a correct
Friedmann-like equation on the brane. The spacing of the
KK tower is found to be very tiny, about 10�4 eV.
Nevertheless, it will not cause any unaccepted signal in
the infrared observations for the largely suppressed inter-
action of these KK gravitons with matter.
For the parameter k ¼ �1, the action S5 is just the

standard bosonic part of the effective string action involving
only the metric and the dilaton. Thus the brane solution with
k ¼ �1 in case 3 could be embedded into a string theory.
A constant bulk energy density is obtained in (13) and

(18) for k ¼ �2 and k ¼ �6=5, respectively. After utiliz-
ing the coordinate transformation dy ¼ aðzÞdz to rewrite
the solutions in a nonconformal coordinate, it is found that
the warp factor is exponential, aðyÞ ¼ e��y, like the RS
model, and the scalar is linear for these values of k. Thus,
the bulk is an anti–de Sitter spacetime with the effective
cosmological constant � ¼ �6�2. However, for other
values, the warp factor is power law and the scalar is
logarithmic.

With a conformal transformation ~g ¼ e2k�=3g, the
action S5 can be written in the Einstein frame as S5 ¼
M3�
2

R
d5x

ffiffiffiffiffiffij~gjp ½ ~R� 1
3 ð3þ 2kÞ2ð@�Þ2�. Therefore, the scalar

does not involve the ghost instability problem. On the other
hand, since the bulk size is not dynamically fixed in our
model, the Goldberger-Wise mechanism [22] should also
be further introduced to stabilize the size of the extra
dimension, and the scalar field could play the role of the
stabilizing field [9,23].
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