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We demonstrate that relativistic conformal hydrodynamics in 2þ 1 dimensions displays a turbulent

behavior which cascades energy to longer wavelengths on both flat and spherical manifolds. Our

motivation for this study is to understand the implications for gravitational solutions through the AdS/

CFT correspondence. The observed behavior implies gravitational perturbations of the corresponding

black brane/black hole spacetimes (for sufficiently large scales/temperatures) will display a similar

cascade towards longer wavelengths.
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I. INTRODUCTION

The AdS/CFT correspondence [1,2] provides a
remarkable framework for studying certain strongly
coupled gauge theories in d dimensions by mapping to
weakly coupled gravitational systems in dþ 1 dimensions.
Of particular interest is the relation between gauge theory
plasmas and black hole geometries [3–5]. Here the corre-
spondence was used to show that perturbed black brane
geometries at the classical level have a dual description
in terms of fluid dynamics equations governing long-
wavelength perturbations about an equilibrium state. This
fluid/gravity correspondence builds on the highly success-
ful and ongoing program to calculate the near-equilibrium
transport coefficients for strongly coupled plasmas using
holographic techniques, e.g., Ref. [6,7].

This duality has been exploited in a large number
of works which exploit known gravitational behavior
to infer properties of diverse systems described by
strongly coupled field theories in the large N limit. On
the hydrodynamical front, work in Ref. [8] describes how
the onset of naked singularities can be tied to finite-time
blowups in hydrodynamics. Additionally, numerical simu-
lations are increasingly being exploited to understand iso-
tropization and thermalization of systems starting far from
equilibrium, e.g., Refs. [9–15].

In all these works, the approach has been to understand
the behavior of relevant systems in the gravitational side of
the duality and infer from it properties of the gauge theory
dynamics. In the present work, we follow the opposite
route, namely to study particular phenomena that might
arise in the field theory to understand possibly unexpected
phenomena on the gravitational side.

Our starting point is a simple and well-known observa-
tion about the behavior of turbulence of Newtonian fluids
in two spatial dimensions. Specifically in this case, turbu-
lent behavior induces an inverse energy cascade from short
to long wavelengths, e.g., Ref. [16]. This contrasts to the

standard direct energy cascade from long to short scales
characterizing turbulence in three and higher dimensions
[17]. The obvious question is therefore whether this effect
appears in the relativistic conformal fluids relevant for
the AdS/CFT correspondence, and if so, what is the dual
interpretation in the gravitational theory. A positive answer
would seem to distinguish anti–de Sitter (AdS) gravity in
four dimensions from higher dimensions in a unique way.
An affirmative answer is also particularly intriguing as the
two known instabilities in AdS spacetimes, superradiance
and the recently found ‘‘mildly turbulent’’ behavior in
Ref. [19], both induce energy cascades from low to high
frequencies for all d � 3.
To answer this question, which has also been raised

earlier [5], we examine the behavior of specific fluid flows
which are dual to perturbations of Schwarzschild and Kerr
black holes in AdS4. We study the problem for spherical
horizons in global coordinates, as well as planar horizons
described by Poincaré coordinates. Specifically, we study
the relativistic Euler equations with the particular equation
of state corresponding to a conformal fluid on a fixed
<� S2 manifold for the former case while <� T2 for
the latter. In each background, we examine perturbations
of the stationary configurations dual to the corresponding
stationary black holes. We then examine the onset of turbu-
lence and its cascade behavior in this setup, and compare it
with the expected behavior for the case of incompressible
nonrelativistic flows with ‘‘standard’’ equations of state. We
find that, as in the Newtonian case, turbulence leads to
perturbations cascading from shorter to longer wavelengths
for relativistic conformal hydrodynamics in 2þ 1 dimen-
sions. (Note that this result, together with the different
cascades already observed in the Newtonian case, indicates
a direct cascade should be expected in the 3þ 1 relativistic
case. Such behavior has recently been reported in Ref. [20].)
This work is organized as follows: in the remainder of

this section we briefly review some well-known aspects
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about turbulence in two and three spatial dimensions.
Section II discusses the initial configurations considered,
as well as details of our numerical implementation.
Section III presents results for the cases considered for
conformal hydrodynamics on the sphere (the results on the
torus, which are qualitatively similar, are included in an
Appendix). We discuss the consequences of the obtained
behavior in Sec. IV. (Visualizations of the fluid flows
studied here can be found in Ref. [21].)

A. Turbulence

Turbulence is a ubiquitous property of fluid flows
observed in nature [22]. Qualitatively, we might describe
turbulence as a flow regime characterized by chaotic or
stochastic behavior. Most of our theoretical understanding
of turbulence comes from the study of nonrelativistic
incompressible fluids. Certainly, while a full understanding
of turbulence is not yet available, some robust results
do exist. Namely, for the inviscid case in two spatial
dimensions, a global regularity theorem has been proved,
together with theorems about uniqueness and the existence
of solutions [23] implying no singularity of the velocity
field can develop in a finite time.

For the three-dimensional case it is not yet known
whether the same holds true and resolving this issue
constitutes a major open problem (see, e.g., Ref. [24]).
It is known however, that qualitatively two- and three-
dimensional turbulent fluid flows exhibit profound differ-
ences arising from the existence of a key conserved
quantity which has a radical effect in the fluid’s turbulent
behavior. This quantity, dubbed enstrophy—see discussion
around (18)— has been argued to imply a very different
cascade picture in two dimensions, as compared to the
three-dimensional one [25]. Small scales will support a
direct enstrophy cascade towards smaller wavelengths,
with all the enstrophy dissipation taking place on the short-
est scales. The energy flux towards small scales will then
be damped and the energy will be, instead, transferred to
larger scales in an inverse energy cascade. This behavior is
observed in nature, controlled experiments and numerical
simulations.

In a phenomenological theory of two-dimensional
turbulence [25,26], the existence of two inertial ranges
was pointed out: a direct k�3 enstrophy cascade at small
wavelengths, and an inverse energy cascade with spectrum

k�5=3, at larger scales, were predicted.
Numerical simulations have shown the emergence of

strong coherent vortex structures that dominate the flow
after some time [27]. These vortices emerge as anomalous
fluctuations at small scales, and have a lifetime much
longer than their characteristic eddy turnover time [28].
As the dynamics continues, two such vortices might collide
and usually merge if they rotate in the same direction,
forming a vortex of larger scale. In the process the energy
is nearly conserved, so it acts as the mechanism of an

inverse energy cascade. The statistical distribution of vor-
tices over scales leads to an energy spectrum k�3 which is

much steeper than the originally expected k�5=3, and vor-
tices were recognized as the fluctuations responsible of
intermittency and possible anomalous dimensions [29].
The emergence and dynamics of vortices still pose a

number of difficult questions, and the relevance of the
initial data and external forcing is not yet fully understood.
An exciting possibility, of course, would be that holo-
graphic studies might shed new light on this problem
from a fundamentally different point of view.

II. EQUATIONS, RATIONALE AND
NUMERICAL IMPLEMENTATION

Our goal is to study the dynamics dual to a perturbed
black hole in 3þ 1 dimensions from the global point of
view, so we consider the field theory in 2þ 1 dimensions
on the sphere (or a torus, see the Appendix). To do so, and
in order to deal with a well-posed problem, we restrict to
the zeroth order expansion of the theory, i.e., to the equa-
tions determined by the conservation of the stress-energy
tensor of a perfect fluid. One reason for this choice is that the
inclusion of viscous terms would yield an acausal system of
equations [30–33] (for a recent discussion in the holographic
context see, e.g., Ref. [34], see also Ref. [35]). Hence
properly incorporating these effects poses a serious compli-
cation for the corresponding simulations.
At first sight, working with perfect fluid equations would

seem to be a severe limitation for our study and the con-
clusions that can be drawn from this work. However, recall
that hydrodynamics treats the conservation of a stress-
energy tensor in a gradient expansion, e.g., Refs. [37,38].
For the conformal case, no intrinsic scales appear in defin-
ing the fluid and hence the temperature naturally controls
the equation of state and all of the nonvanishing transport
parameters. Hence the stress tensor for a conformal fluid,
in d spacetime dimensions, takes the following form:

T�� ¼ �Td

�
ðg�� þ du�u�Þ � d�

T
��� þOðT�2Þ

�
; (1)

where �ab describes the first-order viscous contribution
and �, � are dimensionless coefficients which characterize
the fluid. From this expression, we see that the viscous
terms can be arbitrarily suppressed by increasing the tem-
perature. To be more precise, if the characteristic scales L
controlling the flow are kept fixed, i.e., the size of the
sphere (or torus) in the present case, the gradient expansion
becomes an expansion in 1=LT and the higher order terms
are suppressed by setting LT � 1. Thus the perfect fluid
can be seen as an arbitrarily good approximation in this
regime. Further, as we discussed above, turbulence is
expected to generate a cascade from short to long scales
for fluids in two spatial dimensions. In fact, our simulations
will confirm this expectation and so the interesting dynam-
ics here indeed progresses mainly towards longer and
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longer scales. Hence the viscous and higher order terms
should not play a significant role in the observed behavior.

To further support the conclusion that the viscous con-
tributions are insignificant, we consider the addition of an
artificial viscosity (as defined in Refs. [39,40]) and com-
pare results for higher temperatures, where the viscous and
higher terms become less relevant (as described above),
and showing that the observed turbulent behavior remains
unchanged both qualitatively and quantitatively, e.g., see
Fig. 5. Notice that one could add terms up to second order
in the derivative expansion (third order in derivatives) as
suggested in Ref. [37] (which provides a modern extension
of the method suggested in Ref. [31]). This approach
effectively amounts to controlling and reducing gradients
in the solution through a dynamical equation governing
second order gradients of the flow. As we will see, the
natural evolution of the system to longer wavelengths
renders these approaches unnecessary.

In what follows we describe the system of equations
considered, discuss useful monitoring quantities—including
the conserved quantity associated to the enstrophy—as well
as provide a brief summary of stationary solutions inferred
from the dual gravitational picture.

A. Evolution equations

The system follows from the local conservation of the
stress-energy tensor of a perfect fluid,

T�� ¼ ð�þ pÞu�u� þ pg��; (2)

along with the condition of conformal invariance that
requires the stress tensor to be traceless, i.e., T

�
� ¼ 0.

This latter condition fixes the equation of state as

p ¼ �=2; (3)

for a conformal fluid in 2þ 1 dimensions—compare with
(1) for general dimensions.

The set of dynamical variables we have chosen to

evolve the system are f~�; uig, where ~� � logð�1=3Þ. The
remaining component of the three-velocity, u0, which

can be identified with the Lorentz factor � (u0 � � ¼
ð1� v2Þ�1=2), is obtained at each time step through the
normalization condition u�u

� ¼ �1. In equilibrium, the

temperature T of the system is related with the above
variables by � ¼ 2T3, or equivalently, T ¼ e~� [41].

The system of evolution equations obtained for our
dynamical variables then reads

@t ~� ¼ 1

��

�
zD~�þ z# � 1

2
Dz

�
; (4)

@tui ¼ 1

��

�
½�@i þ uiD�~�þ �Dui � zui# þ ui

2
Dz

�
:

(5)

The spatial derivatives along the flow are denoted byD �
ukDk, while # � Dku

k is the spatial divergence and Dk is

the covariant derivative associated with the spatial metric
hij. We also have defined z � �2 and � � 1þ �2.

B. Equilibrium configurations

Equilibrium configurations for the toroidal case are
simply constant temperature/constant velocity fluid flows
and we adopt conditions as described in the Appendix. The
equilibrium states for conformal fluids on the two-sphere
can be obtained straightforwardly by requiring no entropy
production within the first subleading (dissipative) order in
the fluid expansion at equilibrium. This imposes a restric-
tive condition for the shear viscosity (i.e., �ab ¼ 0). A
simple family of such configurations corresponds to rigidly
rotating fluids, which in our variables are given by

u� ¼ 0; u	 ¼ �!0; T ¼ �
; (6)

where � ¼ ð1�!2
0sin

2ð�ÞÞ�1=2 is the Lorentz factor. The

two (constant) parameters characterizing these solutions
are the !0, the angular rotation rate, and 
, the local
temperature measured by comoving observers. Note that
implicitly, we have set the radius of the S2 to one here, i.e.,
the proper length of the equator, � ¼ �=2, is simply 2�.
The thermodynamics and the local stress tensor of these

solutions have been found to be in precise agreement with
the thermodynamics and boundary stress tensor of spin-
ning black holes [42]. In this reference, the authors com-
pare conformal fluids on spheres of arbitrary dimensions
with large rotating black holes on AdS spaces. First, global
thermodynamical quantities are compared. Then, appeal-
ing to the duality, a comparison is made between the local
stress tensor of the fluid configuration and the boundary
stress tensor for the most general rotating black hole in
AdSdþ1, as given in Ref. [43]. The relevant black hole
solution for our case, the one corresponding to Kerr AdS4,
is labeled by two parameters a and rþ, related with the
angular momentum (per unit mass) and the horizon radius
of the black hole, respectively. Perfect agreement was
found between these two theories in the large rþ limit,
upon the following identifications [42]:

!0 $ a; (7)


 $ 3rþ
4�

: (8)

Thus, the static configuration with !0 ¼ 0 is the fluid dual
to the AdS4 Schwarzschild black hole, and the rotating
fluid configurations (!0 � 0) are dual to the AdS4 Kerr
geometry for ‘‘large’’ black holes (compared to the AdS
scale).

C. Conservation laws

Conserved quantities are invaluable tools to analyze the
behavior of any given system and, as discussed, their
existence can imply a particular behavior of the fluid
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flow. We here discuss these quantities which we monitor in
our efforts to understand the behavior of the system, in
particular the phenomenon of turbulence. In particular,
given a conserved current J� (i.e., r�J

� ¼ 0), the exis-

tence of a conserved charge immediately follows:

Z
S2
J0d� ¼ const: (9)

Hence in the following, we identify various conserved
currents and charges for the present system. Given a
killing vector field K� and the conserved stress tensor,

the current J� � T��K�, is automatically conserved.
Thus, from the killing vectors, �� @

@t and  � @
@	 , we

construct the first two conserved quantities that are identi-
fied with the total energy and angular momentum of the
fluid, respectively,

E � 1

2

Z
S2
�ð3�2 � 1Þd�; (10)

L	 � 3

2

Z
S2
��u	d�: (11)

From thermodynamical considerations, one knows that

the local entropy s � �2=3 is conserved along the flow
direction (in a perfect fluid). Thus, the current J� ¼ su�

is conserved and total entropy conservation follows:

S �
Z
S2
�2=3�d�: (12)

Another quantity of interest is the vorticity which arises
as a purely geometric property (i.e., independent of the
equations of motion). It is constructed by taking the exte-
rior derivative to the flow velocity, resulting in the vorticity
two-form !�� � @½�u��. In 2þ 1 dimensions, one can

define a naturally conserved current just by taking its
Hodge dual, i.e., we define W� ¼ ����!��. The total

‘‘circulation,’’ which remains constant throughout the evo-
lution, is then

C �
Z
S2
W0d� ¼

Z
S2
�0ij!ijd�: (13)

However, note that the conservation law is ‘‘topological’’
in this case and so this conserved charge actually vanishes
since C ¼ �R

S2 du ¼ 0.
Finally, we define the enstrophy, whose conservation

plays a crucial role on two-dimensional turbulence and
its inverse cascade scenario. This quantity, for incompress-
ible nonrelativistic fluids, is just the integral of the square
vorticity field. Carter [44] has generalized the concept for
relativistic fluids in three spatial dimensions, and we
extend it here for two-dimensional relativistic conformal
fluids.

Let us begin with r�T
�� ¼ 0 with the stress tensor

given in (2) for a conformal fluid in d spacetime dimen-
sions [i.e., p ¼ �=ðd� 1Þ�. For convenience we project

these conservation equations along and orthogonal to the
flow velocity,

u�@�� ¼ � d

d� 1
�ðr�u

�Þ � � d

d� 1
��; (14)

P��@�� ¼ �d�u�r�u
� � �d�a�; (15)

where � is the (full covariant) divergence, a�, the accel-
eration, and P�� � g�� þ u�u�, the projector perpendicu-
lar to u�. Next, consider the two-form,

��� ¼ r½��1=du��; (16)

which is built to satisfy the Carter-Lichnerowicz equation
of motion

���u
� ¼ 0; (17)

which is equivalent to (15). Note that the inclusion of �1=d

in (16) is crucial to produce this formulation of the equa-
tions of motion. Then, from the Cartan identity, it is
straightforward to show that

L�u� ¼ �u � d�þ dð�u ��Þ ¼ 0: (18)

Here the first term vanishes because � ¼ dð�1=duÞ is an
exact form, while the second term vanishes by the Carter-
Lichnerowicz equation (17). This means that the two-form
� does not change along the flow direction.
The latter observation motivates one to look for a new

conservation law, however, we will only be able to con-
struct the desired result by using an identity which only
holds for d ¼ 3, i.e., two spatial dimensions. In this case,

we write the following current: J� � ��2=3ð������Þu�.
To establish that this current is conserved, we make use of
the identity,

������ ¼ 1

2
�2P�

�; (19)

where �2 � ����
��. The latter holds for two spatial

dimensions since we can write, ��� ¼ ����l
�, for some

arbitrary vector l�. The condition ���u
� ¼ 0 then

requires that l� be proportional to u�, i.e., l� ¼ �u�.
One can then find the proportionality factor � in terms of
�2 to show (19) holds. With this relation, we have

r�J
� ¼ ��2

3

�
�2

�
�� 2

3�
u�@��

�
þ u�@��

2

�
;

¼ 2��2
3f��2 þ���u�r����g;

¼ 2��2
3f��2 � 2������ðr�u

�Þg ¼ 0:

Here we have used (14) in the second line and (18) in the
third line, while the final vanishing follows from (19).
Therefore, the enstrophy,
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Z �
Z
S2
��2=3�2u0d� ¼

Z
S2

�
!��!

�� þ 1

2
a�a

�

�
�d�;

(20)

is conserved, where the first term in the expression is just
the vorticity two-form squared (as expected from the non-
relativistic version), and the second one, which involves
the acceleration a� � u�r�u�, accounts for the fact that

the fluid worldlines are not necessarily geodesics. One
important point to emphasize from (20) is that the factors
of � cancel out in the end, so that the final expression for
the enstrophy is independent of the energy density.

D. Numerical approach and setup

Our goal is to study the dynamical behavior of
a perturbed, otherwise stationary, fluid configuration dual
to the Kerr/Schwarzchild black hole in global AdS4 or the
Poincaré patch. We next describe the different components
of our numerical implementation.

1. Initial data

Initial data for perturbations of the stationary fluid con-
figurations are directly added to the fluid velocity such that
eddies are induced. This is straightforwardly achieved by
considering perturbations which, in the comoving frame
of the fluid, describe space varying velocities that change
sign in a smooth manner along some particular direction
chosen. In the case of the torus, this is straightforward as
described in the Appendix. For the spherical case, we adopt
a perturbation in the fluid velocity as

u	 ! u	 ¼ �! � �ð!0 þ �!pð�;	ÞÞ; (21)

for some small value � and a function !p defined on the

sphere [generally chosen to be one of the spherical har-
monic basis functions Ym

‘ ð�;	Þ]. In this expression, � is

the local Lorentz factor defined for the full angular velocity
!, including the!p contribution. For future reference, it is

useful to indicate the initial vorticity density associated to
this flow,

W0ð�Þ ¼ 1ffiffiffi
h

p @�u	 ¼ 1

sinð�Þ@�½sin
2ð�Þ�ð!0þ�!pð�;	ÞÞ�;

¼ ð!0þ�!pÞ�3 cosð�Þð2�!2sin2ð�ÞÞ
þ��3 sinð�Þ@�!p:

From this expression, we see that the rigid rotation com-
ponent (6) of the flow introduces a Y0

1 component to the

vorticity at order!0 and higher ‘ contributions also appear
at higher orders in !0. Thus for sufficiently fast flows, the
background contribution renders analyzing turbulent
behavior through vorticity more delicate.

2. Grid scheme

We now discuss details of our grid implementation and
results. Since the qualitative behavior is the same in both
topologies considered—but the implementation is more
involved in the spherical case—from now on we concen-
trate on the spherical flows to simplify the presentation and
defer details of the toroidal case to the Appendix.
Since the topology of our computational domain is S2,

we employ multiple patches to cover it in a smooth way. A
convenient set of patches is defined by the cubed sphere
coordinates. There are six patches with coordinates pro-
jected from the sphere, and each of this patches constitute a
uniform grid—see Fig. 1). These grids are defined in a way
such that there is no overlap and only grid points at
boundaries are common to different grids (multiblock
approach). To ensure a correct transfer of information
among the different grids we follow the technique
described in Ref. [45], which relies on the addition of
suitable penalty terms to the evolution equations to pre-
serve the energy norm through the whole sphere. This
technique ‘‘penalizes’’ possible mismatches between val-
ues the characteristic fields take at interfaces and enforce
consistency through suitably introduced driving terms.
Here we follow the strategy introduced in Ref. [46] which
is an extension of the method introduced in Refs. [47,48].
Introducing coordinates ft; x; yg with ðx; yÞ to label

points in each Cartesian patch, the metric in each one reads

ds2 ¼ �dt2 þ 1

D2
fð1þ y2Þdx2 þ ð1þ x2Þdy2

� 2xydxdyg;
where D � 1þ x2 þ y2. The nonvanishing Christoffel’s
symbols are given by

�x
xx ¼ �2x

D
; �x

xy ¼ �y

D
;

�y
yy ¼ �2y

D
; �y

xy ¼ �x

D
:

FIG. 1 (color online). Cubed Sphere Coordinates. A total of six
Cartesian patches are employed to cover the sphere. Only patch
boundaries coincide at common points.
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3. Numerical scheme and stability

In order to construct stable finite difference schemes for
our initial value problem we use the method of lines [39].
This means that we first discretize the spatial derivatives
(constructing some suitable finite difference operators) and
obtain a system of ordinary differential equations for the
grid functions. To ensure the stability of the numerical
scheme we use the energy method described on Ref. [40].
We employ (fourth/second-order accurate at interior
boundary points) finite difference operators satisfying sum-
mation by parts (the discrete analogue of integration by
parts) and deal with interface boundaries with appropriate
penalty terms at the interfaces as described in Ref. [45].
For the time integration, we adopt a 4th order Runge-Kutta
algorithm.

All simulations were performed using 81� 81 grids for
each of the six patches, giving a total number of around
40.000 grid points to cover the entire sphere. We have
confirmed convergence through several tests; in particular
we adopted different initial data, and studied the numerical
solutions with increased resolution with each grid having
321� 321, 161� 161, 81� 81 points (labeled by 4,2,1,
respectively). With each obtained solution, denoted by

UðiÞðt; �;	Þ (for i ¼ 4, 2, 1), we calculated the conver-

gence rate p as QðtÞ � kUð4Þ�Uð2ÞkL2
kUð2Þ�Uð1ÞkL2

	 2p. For the cases

considered, the obtained rate was in very good agreement
with the expected 3rd order rate for the implementation
constructed.

III. RESULTS

We analyze the dynamics of small perturbations around
the stationary fluid configurations duals to Schwarzschild
and Kerr geometries on AdS4. We separately study these
two cases, starting with a qualitative description of the
system evolutions, for generic perturbations. We show in
Figs. 4 and 6 the sequence on the evolution of the vorticity
field for the two cases. Then, in order to gain some insight
into the turbulent behavior and to capture the possible cas-
cading phenomena, we perform a spherical harmonic decom-
position (up to ‘ ¼ 12) of the relevant fields and compute
their associated power spectrum as a function of time.

This signal processing analysis is derived simply from a
generalization of Parseval’s theorem, which states that the
total power of a function f defined on the unit sphere is
related to its spectral coefficients by

1

4�

Z
S2
jfð�;	Þj2d� ¼ X1

‘¼0

Cfð‘Þ;

Cfð‘Þ ¼
X‘

m¼�‘

jA‘mj2;

where A‘m are the coefficients of the expansion of f
in the spherical harmonics. In Figs. 4 and 8, we plot the

coefficients Cð‘Þ as a function of time, to analyze how the
different modes behave during the evolution.

A. Nonrotating case: Perturbations to Schwarzschild

One can basically classify the dynamical behavior
of the system into four different stages. In Fig. 2, we plot
the vorticity field of a representative example for each one
of them. A first stage corresponds to an initial transient
period when the initial configuration seemingly remains
unchanged for some time interval. (This interval depends
on the perturbation considered, being shorter for larger ‘’s
perturbations at a fixed value of �, but it does not depend
on the system’s temperature.) Closer inspection however
reveals that nontrivial dynamics begins to manifest and an
exponential growth of some modes sets in (see Fig. 4).
Notice that the initial growth rate of these modes is ap-
proximately the same though the higher ‘’s grow to larger
values earlier. Since truncation errors feed higher frequen-
cies this behavior is not surprising. As these modes become
large enough (roughly commensurate to the magnitude of
the initial perturbation), the original symmetry of the sys-
tem gets broken and a number of eddies arises and move
around. Such an instant might be regarded as the beginning
of turbulence [Fig. 2(b)]. As the dynamics continues, the
eddies gradually turn into individual vortices and exhibit a
seemingly chaotic motion, during a stage that we will refer
as fully developed turbulence [Fig. 2(c)]. With the vortices
propagating around the sphere, encounters of same-sign
vortices lead to increasingly larger vortex structures.
During this stage, governed by nonlinear effects, energy
transfers from the higher l modes to lower ones. The
process continues until four vortices, two of each sign,
are formed [Fig. 2(d)].

FIG. 2 (color online). Evolution of the vorticity field
for a perturbation !pð�;	Þ ¼ Y0

10ð�;	Þ and � ¼ 0:2 on

Schwarzschild (!0). (a) Initial config., (b) beginning of turbu-
lence, (c) fully developed turbulent stage, (d) final state.
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The end state is found to be qualitatively the same in all
the cases we have considered, regardless of the initial
perturbation introduced and of the system’s temperature.
We have explored generic perturbations in the velocity
initial data, as described on (21): from different single-
mode perturbations [i.e., !p � Ym

‘ ð�;	Þ for particular

‘ and m], to a random combination of all of them up to
‘ ¼ 12. We have further considered the inclusion of a
random forcing term in the evolution equations, by adding
a term f� to the right-hand side of the stress conservation
equation as r�T

�� ¼ f�. This force is given by a random

field, both in time and space (and thus, acting on very short
scales) and with nontrivial contributions along all direc-
tions. Even in this forced case, the dynamical character and
properties of the solution remain qualitatively unchanged.
This (in addition to convergence studies) indicates that our
grid structure is playing no significant role on the obtained
behavior and on the late-time configuration attained.

Main features of the long-term behavior of the solution
are illustrated in Fig. 3. In particular, note the mentioned
four dominant vortices of the resulting configuration. It can
be noted that the temperature and energy densities attain
local minimums at the vortices’ locations and that the
enstrophy is almost exclusively contained within them.

In Fig. 4 we have displayed a few representative modes
of the vorticity power spectrum for an initial perturbation
!pð�;	Þ ¼ Y0

10ð�;	Þ, � ¼ 0:2 and 
 ¼ 100. The coeffi-

cients Cð‘Þ of the spectrum are normalized with respect to
the total power and plotted (in logarithmic scale) as a
function of time. In the figure, the modes ‘ ¼ 9 and ‘ ¼
11 dominate the spectrum at t ¼ 0—as expected since the
vorticity involves a derivative of the three-velocity and the

initial data for the latter has a single ‘ ¼ 10mode. The rest
of the modes exhibit an exponential growth on the early
stages of the evolution, as previously described. As the
turbulent cascade begins, and after a short stage in which
the mode structure is rather complex, the original high-‘
modes decrease while the lower ones increase and gradu-
ally dominate the flow. Particularly the ‘ ¼ 2 mode in the
spectrum, which represents the quadrupole contribution, is
the dominant mode at late times.
Note that the vortices in Fig. 3, i.e., the ‘ ¼ 2 mode

above, are essentially quasistationary as we have neglected
here the viscous (and higher) contributions which would
certainly affect the very long-time behavior of the solution.
As we noted before, one might wonder whether the
observed turbulent phenomena, and the conclusions we
can draw from this study, might be significantly affected
when such dissipative terms are taken into account.
However, recall that in the discussion around (1), we
argued the perfect fluid equations will give a good descrip-
tion when LT � 1. We verified the accuracy of this state-
ment by comparing the system’s dynamics at a variety of
temperatures—recall that the radius of the sphere is fixed
to be one—while keeping the initial data for uk fixed.
Figure 5 illustrates the behavior of the L2 norm of u�,

i.e., ½RS2 ju�j2d��1=2. The latter is a useful proxy for the

solution’s turbulent behavior since in the absence of turbu-
lence, it would remain zero by symmetry considerations.
As is evident in this figure, the system’s behavior does not
change as the temperature increases. In particular, note the
growth rate and both onset and full development of turbu-
lence are essentially the same in all cases considered.

B. Rotating case: Perturbations to Kerr

The qualitative behavior of the system on the rotating
scenario is illustrated in Fig. 6, and it happens to be very
similar to that presented above for the Schwarzschild case.
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time
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FIG. 4 (color online). Relevant modes in the power spectrum
of the vorticity field for a !pð�;	Þ ¼ Y0

10ð�;	Þ and � ¼ 0:2

perturbation, in the nonrotating case (at temperature T � 100).

FIG. 3 (color online). Late-times configuration for distinct
relevant fields in the nonrotating case (!0 ¼ 0 and T � 100,
at t ¼ 1200). Notice that vortices correspond to minima in
the energy. This behavior is expected as a stable vortex struc-
ture requires a larger surrounding pressure that prevents its
dispersion.
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However, we emphasize that these rotating solutions are
not simply static solutions, i.e., !0 ¼ 0, in a rotating
frame. Recall that the rigid rotation introduces a back-
ground vorticity field, which one finds completely domi-
nates the long-term behavior. A key difference is evident
immediately after the vortices are formed: the background
rotation drags them into the main rotating stream and
gradually separates them according to the direction of their
rotation. If the background rotation flows left to right
as in Fig. 6(c), clockwise rotating vortices accumulate
in the southern (lower) hemisphere while the vortices with
counterclockwise rotation migrate towards the opposite
pole. Then, the system undergoes a merging process (of
corotating vortices) as in the nonrotating case, but now
just one vortex of each sign remains at late times, as in
Fig. 6(d). The initial northwards (southwards) propagation

of counterclockwise (clockwise) vortices can be also
explained in terms of the equal-sign mergers of vortices
by regarding each of the smaller vortices generated in the
flow as interacting with two much larger vortices induced
at the north and south pole by the rigid rotation component
of the flow. Note that the final two vortices are not neces-
sarily in precise alignment with the rotation axis, being
often the case that they remain orbiting around the poles.
Main features of the long-term behavior of the solutions

in the rotating scenario are illustrated in Fig. 7. In particu-
lar, note the mentioned two dominant vortices as they
oscillate around the poles, with the temperature and energy
attaining local minima at the vortices’ locations and being
concentrated near the equator where the fluid velocity is
larger. The enstrophy is again almost exclusively contained
within the vortices.
In Fig. 8 we display representative modes of the vorticity

spectra for two different parameters of the rotating solution
with 
 ¼ 100 and a perturbation set by !pð�;	Þ ¼
Y0
10ð�;	Þ and � ¼ 0:08. Here, the ‘ ¼ 1 mode represents

the background rotation contribution while the ‘ ¼ 9 and
‘ ¼ 11 modes are the ones associated with the perturba-
tion, as discussed previously. We should recall here that the
coefficients in the spectrum are normalized to unity, and
thus it becomes clear from the plots that the long term
dynamics is being completely dominated by the rotation.
For the case !0 ¼ 0:1, the configuration starts with a

perturbation comparable in magnitude with the back-
groundmotion. As the vortices form and turbulence begins,
the high ‘’s modes decrease, displaying a cascading phe-
nomena into lower ‘ modes. In particular, notice this
cascade progresses towards the ‘ ¼ 1mode that eventually
governs the state of the system. On top of this rotation
dominated flow, the two vortical structures mentioned
above persist and are represented in the spectrum by a

FIG. 7 (color online). The late-time configuration for distinct
relevant fields in the rotating case (!0 ¼ 0:1 and T � 100, at
t ¼ 3600).

FIG. 6 (color online). Evolution of the vorticity field for a
perturbation !pð�;	Þ ¼ Y0

10ð�;	Þ and � ¼ 0:08, on a rigid

rotation with !0 ¼ 0:1. (a) Initial config., (b) beginning of
turbulence, (c) fully developed turbulent stage, (d) final state.
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FIG. 5 (color online). Dependence with temperature: loga-
rithm of the L2 norm of u� for different temperatures, in the
nonrotating case.

CARRASCO et al. PHYSICAL REVIEW D 86, 126006 (2012)

126006-8



combination of higher modes, predominantly the ‘ ¼ 2
and ‘ ¼ 4 modes.

Interestingly, for faster initial background rotations (i.e.,
!0 * 0:5) while keeping the perturbation amplitude �
fixed, the flow is already dominated by the ‘ ¼ 1 mode
from the beginning and the turbulent stage takes longer to
appear and fully develop. It seems that a strong rotating
stream in the background hinders to a certain degree the
formation and merging of vortices.

IV. DISCUSSION AND FINALWORDS

In this work we have analyzed relativistic conformal
fluid flows on both S2 and T2 backgrounds and found first
that turbulence naturally arise in these flows and second
that it gives rise to an ‘‘inverse’’ cascade from shorter to
longer wavelengths. These results not only extend common
observations in Newtonian hydrodynamics but also have
tantalizing implications for the behavior of gravity in
four-dimensional AdS spacetimes. Indeed, the AdS/CFT

correspondence implies that for sufficiently high tempera-
tures/length scales, the conformal fluid flows studied here
have a dual description in terms of gravitational perturba-
tions on Schwarzschild or Kerr black holes in AdS4, either
with a spherical or planar horizon. The turbulent behavior
observed here implies, through the duality, that gravita-
tional perturbations in this limit should cascade to smaller
frequencies. This constitutes a prediction obtained within
holography which had not been previously anticipated on
firm grounds [49]. Indeed, previously identified instabil-
ities in AdS, superradiance (e.g., Ref. [51]) and weak
turbulence [19,52] imply a frequency shift towards higher
frequencies. Therefore the cascading phenomena observed
here implies an altogether new behavior on the gravita-
tional side. Furthermore, as described in Refs. [3,5,42], the
full metric of the corresponding spacetime can be obtained
and the implications of this cascading behavior analyzed
through suitable geometric quantities. We defer such tasks
to a forthcoming work. We close noting that this possible
cascade behavior, first raised in Ref. [5] and demonstrated
here (and presented in, e.g., Ref. [53]) has now been
observed in the Poincaré patch case [54].
Of course, another field theory ‘‘prediction’’ is that large

AdS black holes in five and higher dimensions will
also exhibit turbulence but this chaotic behavior will give
rise to a ‘‘standard’’ cascade to shorter wavelengths in
these cases. From a gravitational perspective, this appar-
ently generic behavior for ‘‘hot’’ horizons in AdS is com-
pletely unexpected and calls for a better understanding
within gravity itself.
A step towards understanding the distinction between

gravity in four and higher dimensions can be obtained by
recalling that enstrophy conservation is what drives the
hydrodynamics in 2þ 1 dimensions to exhibit the inverse
cascade. One can then exploit the duality to translate the
enstrophy into geometrical variables and to understand the
implications of its conservation on the gravitational side.
That is, the conservation of enstrophy in the fluid descrip-
tion implies a quasiconserved quantity exists in the bulk
gravity theory. Further, as we have seen here, the system
displays a rich dynamical vortex configuration that merges
towards a long lived state described by relatively few, long-
wavelength vortices. Isolated vortices in conformal fluids
in 2þ 1 dimensions have been studied in Ref. [55] and
their properties identified. Again using the fluid/gravity
correspondence, one could produce a gravitational descrip-
tion of these quasistationary vortices. That the understand-
ing of these or other geometrical quantities might help shed
new light in turbulence phenomena is definitively an excit-
ing prospect (see, e.g., Ref. [56]).
Certainly, the full gravitational description will naturally

incorporate dissipative contributions in the fluid flows.
While we argued and quantitatively demonstrated that
this dissipation will not modify the essential features of
the turbulent behavior at sufficiently high temperatures. In
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FIG. 8 (color online). Relevant modes in the power spectrum
of the vorticity field in the rotating case (at temperature T �
100), for two rotation parameters !0. The initial perturbation is
given by !pð�;	Þ ¼ Y0

10ð�;	Þ and � ¼ 0:08.
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Newtonian hydrodynamics, the onset of turbulence is dis-
cussed in terms of the Reynolds number (Re). The typical
benchmark for the onset of turbulent flows is that Re have
value of a few thousand. In relativistic hydrodynamics, the
latter may be estimated as [57]

Re� TL

�=s
¼ 4�TL; (22)

where L is a characteristic length scale in the flow. In the
last expression above, we have substituted the celebrated
holographic value �=s ¼ 1=4� [6,7,58]—we would have
�=s ¼ � for the general conformal fluid in (1). As this
expression illustrates, we can produce arbitrarily large
values of Re by increasing T (while keeping the system
size fixed). Hence to observe turbulent behavior, we are
again naturally pushed to the regime where the hydrody-
namic gradient expansion works well and our perfect fluid
model becomes a good approximation. Of course, the
viscous effects will definitely modify the very long-time
behavior observed here. For example, the conservation of
the enstrophy is only true to first order in the hydrodynamic
gradient expansion.

Of course, another interesting extension of the present
investigation would be studying further the details of the
turbulent cascade, in particular, the Kolmogorov scaling
exponents. Figure 13 illustrates some preliminary results,
which suggest that the ‘‘Newtonian’’ kinetic energy will
scale with the expected exponent of �5=3. However,
various caveats must be noted. First, a clean easy-to-
distinguish Kolmogorov-type reasoning applies to a situ-
ation where the turbulent flow is driven by an external force
at some high frequency (in the present case of 2þ 1
dimensions) and viscous dissipation also damps the
energy flow on much longer time scales. This scenario
must be contrasted with the freely decaying turbulence
(i.e., without any driving force) which Fig. 13 describes.
In freely decaying turbulence determining the inertial
range is more delicate but in such range (which shrinks
as time proceeds) the �5=3 slope can be distinguished.
Additionally, Kolmogorov’s scaling arguments are made in
a Newtonian context and can at best be regarded as approxi-
mate for the relativistic fluids studied here. Fortunately, the
appropriate exact scaling relations applicable for relativistic
hydrodynamic turbulence have been derived in Ref. [57].
The present simulations provide a framework for further
studying these relativistic relations. More generally, how-
ever, the most exciting possibility would again be if a holo-
graphic perspective could provide new insights into the
issues surrounding these turbulent cascades.
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APPENDIX

For comparison purposes, we also consider scenarios re-
lated to the dual case of an AdS4 black brane solution where
the nonradial directions are compactified on a torus of sizeD.
In Fefferman-Graham coordinates, labeled by ðt; x; yÞ, the
asymptotic metric is simply the flat one and the equations of
motion can be straightforwardly implemented.

1. Stationary solutions and initial data

Equilibrium configurations are given simply by constant
flows at a given (arbitrary) temperature T. For simplicity
we consider a torus with domain ½0; D�2. We then restrict to
initial configurations with a flow along x, i.e., ua ¼ �a

xu0,
and introduce generic perturbations �ua to this flow. For
concreteness, we describe here two particular cases where
the initial three-velocity is given by case (A) with a per-
turbation of compact support,

ua ¼ �a
xðu0 þ �u sinð2�y=3Þy2ðy� LÞ2Þ; (A1)

for 0 
 y 
 L and ua ¼ �a
xu0 otherwise, and case (B)

ua ¼ �a
xðu0 þ �u sinð16�y=DÞÞ: (A2)

We note however the qualitative features observed in all
cases considered remain the same.

2. Turbulence, cascading behavior and
temperature dependence

We performed a series of numerical experiments adopt-
ing u0 ¼ 0, 0.1 and 0.5 and �u ¼ 0:01; . . . ; 0:05 (i.e.,
perturbations from 2% to 50%) and considered tempera-
tures T 2 ½1; 103� with L ¼ 10 and typical grid sizes of
[401, 401] (though consistency of behavior was checked
with grids 1.5 and 2 times better resolved).
As in the case of the sphere, the dynamics display a turbu-

lent behavior leading to the development of large vortices. As
an illustrative example, Fig. 9 displays the vorticity of the
system at different times for case (A) with u0 ¼ 0:1, �u ¼
0:01 andT ¼ 1. Earlyon, thebehavior is seemingly stationary
but as turbulence develops the initial symmetry is com-
pletely broken and vortices arisewhich grow as theymerger
leading to a configuration described by long wavelengths.
As we have done in the S2 case we also study the

system’s behavior upon variation of temperature to ensure
terms neglected in our study do not significantly affect the
dynamics obtained. As in the previous case, a useful proxy
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to monitor the evolution is the (L2) norm of uy which, in
the absence of turbulent dynamics, would remain zero.
Figure 10 illustrates that the observed behavior is essen-
tially unchanged with temperature.

Last, we also considered varying the size of the torus by
increasing D by factors of 1.5 and 2 in case (A) and
observed the same cascading behavior.

To study how the energy cascades as time progresses, we
compute the Fourier transform of energy density T00 and
the vorticity density W0. Since our computational grid is
discretized by points fx1i ; x2j g (with i, j ¼ 1; . . . ; N), we

denote ~n ¼ fi; jg, and write T00ð ~xÞ ¼ T00ð ~nÞ and the vor-
ticity W0ð ~xÞ ¼ W0ð ~nÞ. The Fourier transform of these
quantities is given by

T̂00ð ~KÞ ¼ X
~n

e�2�i ~K:~nNT00ð ~nÞ; (A3)

Ŵ0ð ~KÞ ¼ X
~n

e�2�i ~K:~nNW0ð ~nÞ: (A4)

Here ~K ¼ fK1; K2g and K1, K2 2 ½0; N � 1�. Clearly,

T̂00ð ~KÞ and Ŵ0ð ~KÞ are also represented on a N � N grid.
It is convenient to reexpress the transformed quantities as

functions of K ¼ j ~Kj. From the functions T̂00ð ~KÞ and

Ŵ0ð ~KÞ, we define T00ðKÞ and W0ðKÞ as follows:
T00ðKÞ ¼ X

i

jT00ð ~KiÞj; (A5)

W0ðKÞ ¼ X
i

jW0ð ~KiÞj; (A6)

where the sums run over ~Ki’s satisfyingK 
 j ~Kij<K þ 1.
With this approach an effective wave-number grid of lengthffiffiffi
2

p
N is obtained. Figure 11 illustrates a clear cascade to

lower wave numbers as time proceeds. In the case of T00ðKÞ
the dominant mode is given byK ¼ 1while for the vorticity
both K ¼ 1 and K ¼ 2 are of similar magnitude. As in the
S2 case, this is expected as the vorticity field is obtained by

FIG. 9 (color online). Representative snapshots of the vortic-
ity. As time progresses the initial configuration is strongly
disturbed by the formation of vortices. As the dynamics con-
tinues, larger vortices are formed.
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FIG. 10 (color online). Logarithm of the L2 norm of uy for
different temperatures. Essentially the behavior observed is
unchanged with temperature.
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FIG. 11 (color online). Fourier modes for energy density (top
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a clear cascade to lower wave numbers is obtained.
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taking a single derivative which increases the mode content
by one.

It is interesting to monitor whether the observed behav-
ior is consistent with the ‘‘standard’’ Kolmogorov expec-
tation. To illustrate this, we compute the Fourier transform
of the Newtonian kinetic energy per unit mass E ¼ 1=2v2.
To make sense of this limit within our relativistic descrip-
tion, we chose u0 ¼ 0 and �u ¼ 0:03, whose solution is

such that jvj is bounded by ’ 0:04 for all times, thus the
fluid’s motion stays far from relativistic speeds. Figure 12
shows the vorticity behavior for this case and Fig. 13
illustrates the Fourier transformation of this kinetic energy
for representative times. As time proceeds the energy in
higher frequency modes diminishes while the opposite
behavior is observed for the lower ones. Additionally, at
intermediate frequencies, the energy exhibits a behavior
with frequency consistent with a slope of �5=3, the
expected Kolmogorov exponent.
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