
Compressible quantum phases from conformal field theories in 2þ 1 dimensions

Subir Sachdev

Department of Physics, Harvard University, Cambridge Massachusetts 02138, USA
(Received 17 September 2012; published 19 December 2012)

Conformal field theories (CFTs) with a globally conserved U(1) charge Q can be deformed into

compressible phases by modifying their Hamiltonian, H , by a chemical potential H ! H ��Q. We

study 2þ 1 dimensional CFTs upon which an explicit S duality mapping can be performed. We find that

this construction leads naturally to compressible phases which are superfluids, solids, or non-Fermi liquids

which are more appropriately called ‘‘Bose metals’’ in the present context. The Bose metal preserves all

symmetries and has Fermi surfaces of gauge-charged fermions, even in cases where the parent CFT can be

expressed solely by bosonic degrees of freedom. Monopole operators are identified as order parameters of

the solids, and the product of their magnetic charge andQ determines the area of the unit cell. We present

implications for holographic theories on asymptotically AdS4 spacetimes: S duality and monopole/dyon

fields play important roles in this connection.
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I. INTRODUCTION

A powerful method of analyzing correlated systems of
interest to condensed matter physics is the application of a
chemical potential to (i.e., doping) conformal field theories
in 2þ 1 dimensions (CFT3s) [1]. This opens up a route to
applying the advanced technology of the AdS/CFT corre-
spondence [2–4]. In the latter approach, the charge density
conjugate to the chemical potential is equated to an electric
flux emanating from the boundary of a spacetime which is
asymptotically AdS4. A central question in then the nature
of the stable ground state in the presence of a boundary
electric flux.

Gubser [5] pointed out that the ground state of a doped
CFT could be a superfluid. He described the condensation
of a bulk charged scalar in the presence of a AdS-Reissner-
Nördtrom black brane solution with a charged horizon [6].
It is important to note, however, that a conventional super-
fluid does not have low energy excitations associated with
such a horizon above its ground state. Such a superfluid
only appears when the infrared geometry is confining,
there is no horizon, and the boundary electric flux is fully
neutralized by the condensate [7,8].

A second class of compressible ground states of doped
CFTs, known variously as ‘‘non-Fermi liquids,’’ ‘‘strange
metals’’ or ‘‘Bose metals,’’were proposed in Ref. [9] using
arguments mainly from the CFT side. These states have
Fermi surfaces of fermions carrying both the global U(1)
charge of the doped CFT, and the charges of deconfined
gauge fields (in the condensed matter context, the latter
gauge fields are invariably ‘‘emergent’’). Because of
the gauge charges, the single-fermion Green’s function is
not a gauge-invariant observable, and so the Fermi surface
is partially ‘‘hidden’’ [10]. In the holographic context,
these gauge-charged Fermi surfaces are possibly linked
to electric flux that goes past the horizon in the zero
temperature limit [9,11–19]. Particular holographic duals

for these states [10,20–22], were supported by evidence
which matched the entropy density, numerous features of
the entanglement entropy, and an inequality on the critical
exponents [10,22].
Finally, from a condensed matter perspective, a natural

ground state of a doped CFT is a solid (or a ‘‘crystal’’ or a
‘‘striped state’’), in which the doped charges localize in a
regular periodic arrangement. Spatially modulated states
have been found in the context of the AdS/CFT correspon-
dence [23–28] but in situations with parity violating terms
or in the presence of magnetic fields. We will see here that
a version of such instabilities, after a S dual mapping of
CFTs in 2þ 1 dimensions [29,30], will yield solid phases
of parity preserving CFTs in a chemical potential. The
solid will choose its periodic density modulation so that
there are an integer number of doped charges per unit cell.
An important motivation for the present work was pro-

vided by the recent analysis by Faulkner and Iqbal [31].
They examined holographic duals of finite density quan-
tum systems in 1þ 1 dimensions, and showed that
monopole tunneling events in the bulk led to oscillatory
density-density correlations on the boundary. They identi-
fied these oscillatory correlations as the Friedel oscillations
of an underlying Fermi surface. Similar oscillations also
appeared in deconfined phases of gauge theories coupled
to fermionic matter at nonzero density [32]. However, it
should be noted that in one spatial dimension such oscil-
latory correlations are present also in superfluids and
solids, neither of which breaks any symmetry.
We are interested here in examining the role of mono-

poles on CFT3s in 2þ 1 dimensions, and in the corre-
sponding doped CFT3s. The monopole and dyon operators
of such CFT3s are closely linked to their properties under
S duality transformations [29,33–40]. We will therefore
present a reasonably complete description of two CFTs
with global U(1) symmetries upon which the S duality
transformation can be explicitly carried out. In the absence
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of supersymmetry, such explicit transformations are only
possible in theories with abelian gauge fields, abelian
global symmetries, and bosonic matter; our CFTs are two
of the simplest examples with such restrictions: the XY
model and the abelian CPN�1 model.

After describing these CFT3s, we will dope them into
compressible states by applying a chemical potential. In
both cases, we easily find that such CFT3s can exhibit
superfluid and solid phases. Naturally, the superfluid phases
break the global U(1) symmetry. We will show that the
monopole operators serve as order parameters for the solid
phases: condensation of monopoles implies broken trans-
lational symmetry; this is similar to phenomena in insulat-
ing phases [41–43]. Furthermore, the magnetic charge of
the monopole condensate will determine the size of the unit
cell so that there are an integer number of doped electric
charges per unit cell.

However, our primary interest is in phases of doped
CFTs which do not break any symmetries. Such phases
appeared in the previous analysis of CFTs with fermionic
degrees of freedom [9] as non-Fermi liquid states with
Fermi surfaces of gauge-charged fermions. We will show
here that essentially identical compressible phases also
appear upon doping CFT3s whose local Lagrangian con-
tains only bosonic degrees of freedom. These compressible
phases also contain gauge-charged Fermi surfaces of emer-
gent fermionic degrees of freedom. The advantage of our
present bosonic starting point is that it will shed new light
on the role of monopoles, dyons, and S duality on such
phases, and this information is surely crucial in setting up a
complete holographic theory. Given our bosonic formula-
tion, we will call these non-Fermi liquid states ‘‘Bose
metals.’’ This appellation is also apropos given the simi-
larity of our analysis to the Bose metal phases of lattice
spin and boson models [44–47].

It is useful to summarize the relationships between ideas
discussed here in the flowchart in Fig. 1. We have so far

discussed step A in Fig. 1. Armed with this understanding
of the S duality of CFT3s, and the possible phases of doped
CFT3s, we move onto holographic considerations. For the
case of CFT3s, as in step B of Fig. 1, we will discuss feat-
ures of the holographic theory on AdS4, building on ideas
of Witten [29] on the role of S duality. We propose a bulk
theory with fields corresponding to the electric, magnetic,
and dyon operators of the CFT3, and these couple to 3þ 1
dimensional U(1) Maxwell fields and their electromagnetic
duals. We will check our bulk theory by a comparison of
its predictions for 3-point correlators with those of bound-
ary CFT3s in Appendix B. Then we apply a chemical
potential, as in step C, by fixing the value of a Maxwell
vector potential at the boundary of AdS4. We will discuss
aspects of the resulting holographic theory, and note con-
nections to the phases obtained from a direct analysis of the
doped CFT3s.
We note that we will restrict our attention to models

which preserve time-reversal and parity symmetries. So
external magnetic fields coupling to the global U(1) charge
will not be allowed. Although after S duality transforma-
tions some of our holographic solutions will contain back-
ground ‘‘magnetic’’ fields, there is always a frame in which
background is purely electric, and parity and time-reversal
are preserved. We do not consider situations in which there
is both a chemical potential and a magnetic field, leading to
possible quantum Hall states.
We will begin by describing two model CFT3s with

global U(1) symmetries in Sec. II: the XY model and the
abelian CPN�1 model. We will describe some of their
properties, including identification of their primary opera-
tors with electric, magnetic, and dyonic charges: this will
be important for the holographic formulation. We will
apply a chemical potential to these CFT3s in Sec. III, as
in step A of Fig. 1. This will allow us to identify classes of
phases which are possible in such situations. Finally, in
Sec. IV, we will discuss feature of the holographic realiza-
tions of these CFT3s (step B) and their compressible
descendants (step C).
We will follow the convention of using indices �;� . . .

for the 3 spacetime components, a; b . . . for the 4 directions
of AdS4, and i; j . . . for the 2 spatial components. We use
the Euclidean time signature throughout.

II. CONFORMAL FIELD THEORIES

A.XY model

We begin with the simplest possible interacting CFT3
(in 2þ 1 dimensions) with a conserved U(1) charge: the
XY model, described by the Wilson-Fisher fixed point of
the �4 field theory

LXY ¼ j@��j2 þ sj�j2 þ uj�j4: (2.1)

This fixed point has one relevant operator, and we assume
that either s or u has been tuned to place the field theory at

FIG. 1 (color online). Connections between CFT3s and
holography.
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the conformally invariant point. The complex field � will
serve as our superfluid order parameter. We can also con-
sider it as an operator carrying unit ‘‘electric’’charge, and
we define its correlator as

GeðyÞ ¼ h��ðyÞ�ð0ÞiLXY
: (2.2)

This correlation function has a power-law decay for the
CFT3, and this defines the scaling dimension of the electric
operator. The CFT3 has a conserved charge Q associated
with the current

J� ¼ ið��@����@��
�Þ; (2.3)

where

Q ¼
Z

d2xJ� (2.4)

and Q ¼ 1 is the electric charge of quanta of �. This
current has the correlator (after subtracting a contact term)

hJ�ðkÞJ�ð�kÞiLXY
¼ � 1

g2
jkj

�
��� �

k�k�

k2

�
; (2.5)

where g is a universal number characteristic of the XY
CFT3, and k� is a 3-momentum.

We can also define a monopole operator for this CFT3 as
follows. First, couple � to a background gauge field ��

LXY½�� ¼ jð@� � i��Þ�j2 þ sj�j2 þ uj�j4; (2.6)

where we follow the convention of indicating source/back-
ground fields which are not integrated over as arguments of
the Lagrangian. We choose the magnetic field

�� ¼ ���	@��	 (2.7)

to be sourced by monopoles of magnetic charge ~Q ¼ �2

at x ¼ 0 and x ¼ y

@��� ¼ 2
�3ðxÞ � 2
�3ðx� yÞ: (2.8)

The monopole charge of 2
 is required by the Dirac
quantization condition. Note that the monopole so defined
has a subtle difference from those considered earlier
[33,37,38], which were monopoles in a dynamical gauge
flux. Here we have a background gauge flux, coupling to
the field theory by gauging a global symmetry. Such
monopole background fields were also discussed recently
by Kapustin and Willett [40]. The monopole correlation
function is

GmðyÞ ¼
R
D� expð�R

d3xLXY½��ÞR
D� expð�R

d3xLXYÞ
: (2.9)

This correlation function has a power-law decay for the
CFT3 [33], and this defines the scaling dimension of the
monopole operator. This monopole scaling dimension was
computed in Refs. [33,37] in the large N limit of a theory
with N copies of the � field; as we just noted, these

computations also include a fluctuating gauge field, but
this plays no role in the leading large N limit.
We can also consider multipoint correlators of the

operators defined above. A convenient probe of the struc-
ture of the theory is provided by 3-point correlators of the
current J� with the matter fields. Thus we have the corre-

lator with the electric operators

hJ�ðpÞ��ðk1Þ�ðk2ÞiLXY
; (2.10)

(the arguments of the fields are momenta), and also with
the monopole operators

R
D�J�ðwÞ expð�

R
d3xLXY½��ÞR

D� expð�R
d3xLXYÞ

; (2.11)

(the arguments of the fields are spacetime co-ordinates).
Both these correlators are computed in Appendix B, which
also provides a comparison with results from holography.
It is interesting to determine the conformal transforma-

tions of the monopole operator as defined above. For this,
we need to specify the background field �� more com-

pletely. Being a ‘‘magnetic’’ field, it is natural to have ��

transform as a vector of scaling dimension 2 (more prop-
erly, it is a 2-form field); it can then be checked that the
divergence condition in (2.8) is indeed conformally invari-
ant. We also need zero curl conditions: unlike (2.8), the
conformally invariant form of these conditions depends
upon the spacetime metric. With the conformally flat met-
ric ds2 ¼ ��2ðxÞdx�dx�, the zero curl conditions are

���	@�ð�ðxÞ��ðxÞÞ ¼ 0: (2.12)

The Eqs. (2.12) and (2.8) define �� in a conformally

invariant manner. In this way we obtain a definition of
the monopole operator which transforms like an ordinary
scalar under all conformal transformations. Note that our
definition is intrinsically nonlocal as it involves a determi-
nation of a nonzero ��ðxÞ at all spacetime points; the issue

of the nonlocality of the monopole operator will appear
again when we discuss holography in Sec. IV.

1. S duality

As reviewed in Appendix A, application of S duality to
the XY model yields the abelian Higgs model [48,49]

LS
XY ¼ jð@� � ia�Þc j2 þ sjc j2 þ ujc j4

þ 1

2e2
ð���	@�a	Þ2; (2.13)

which provides an alternative description of the same
CFT3. The conserved U(1) current in (2.3) can now be
written as

J� ¼ i

2

���	@�a	: (2.14)
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The factor of i is a consequence of working in the
Euclidean signature, and the exchange of electric and
magnetic degrees of freedom under S duality. A gauge-
invariant two-point correlator of the field c yields the same
Gm as in (2.9), as shown in Appendix A:

GmðyÞ ¼
�
c �ðyÞ exp

�
� i

2


Z
d3xa���

�
c ð0Þ

�
LS

XY

;

(2.15)

it is easy to verify that the above correlation function is
gauge invariant after using (2.8). From this correlator, we
can identify the gauge-invariant monopole operator as

cMa;
~Q ¼ 2
; (2.16)

where the operator Ma is defined from (2.15) as an inser-
tion which couples the gauge field a� to the magnetic flux

of a monopole via a Chern-Simons term; such an insertion
also appeared in the analysis of supersymmetric CFT3s by
Kapustin and Willett [40]. Explicitly we have the various
representations

MaðyÞMy
a ð0Þ¼ exp

�
i

2


Z
d3xa�ðxÞ���	@��	ðxÞ

�

¼ exp

�
i

2


Z
d3xa�ðxÞ��ðxÞ

�
;

MaðyÞ¼ exp

�
i

2


Z
d3x

a�ðxÞðx��y�Þ
2jx�yj3

�
: (2.17)

Note the nonlocal structure in the definition. In the Chern-
Simons formulation, the boundary term obtained after the
gauge transformation of the Chern-Simons term reduces
to contributions on the surfaces of small spheres surround-
ing x ¼ y and x ¼ 0, and this cancels the gauge trans-
formation of c ðyÞc �ð0Þ. See also similar constructions in
Refs. [50,51].

It is useful to interpret the operator (2.16) by the state-
operator correspondence of CFT3s [37]. For this, we radi-
ally quantize the CFT3 on surface of a sphere S2. Then we
see that c creates a single quantum carrying a unit a�
electric charge, delocalized over the spherical surface.
While Ma is a background charge density, with a term
i
Rðd�=ð4
ÞÞa� (where d� is the spherical solid angle);

the integral over a� merely projects the Hilbert space to
states with unit electric charge. Thus from the point of view
of the scalar QED theory in (2.13), cMa is a gauge
invariant ‘‘electric’’ operator, whereas it is a magnetic
operator from the perspective of the direct XY model;
our notation will always reflect the perspective of the direct
theory. In previous work [52,53], Wilson line operators
have been used to obtain gauge-invariant correlators
of matter fields like c , but these are path-dependent,
don’t have simple conformal transformation properties,
don’t define pointlike operators which can be used in the

state-operator correspondence, and don’t appear in our
duality analysis.
Finally, to close the circle of dualities, we have a repre-

sentation of the electric correlator in (2.2) in terms of a
monopole background for LS

XY [48], as described in
Appendix A:

GeðyÞ ¼
R
DcDa� expð�R

d3xLS
XY½��ÞR

DcDa� expð�R
d3xLS

XYÞ
; (2.18)

where

LS
XY½�� ¼ jð@� � ia� � i��Þc j2 þ sjc j2 þ ujc j4:

(2.19)

This is actually a traditional local ‘‘monopole’’ correlator
for the scalar QED in (2.13), which maps to the electric
correlator of (2.1). The associated scaling dimension was
computed using the above monopole insertion method in
Refs. [33,37] in the large N limit of a theory with N copies
of the c field; the fluctuating gauge field a� was included

in these computations, but this will modify the scaling
dimension only at order 1=N.
Similar S duality mappings also apply to the 3-point

correlators of the current J� and the matter fields, such as

those in (2.10) and (2.11), and are discussed in Appendix B.
Let us also note that we can define a U(1) current

associated with the c matter field

~J� ¼ 2
iðc �ð@� � ia�Þc � c ð@� þ ia�Þc �Þ: (2.20)

In the scaling limit, where e2 ! 1 in (2.13), the equation
of motion of a� imposes the constraint ~J� ¼ 0. Clearly,

this implies that the two-point correlator of ~J� must also

vanish. It is then easy to show diagrammatically that the
irreducible ~J� correlator (with respect to a a� propagator)

is nonzero, and equal to the inverse [30,54,55] of the
correlator of J� in (2.14)

h~J�ðkÞ~J�ð�kÞiLS
XY
jirr ¼ �g2jkj

�
��� �

k�k�

k2

�
: (2.21)

To summarize, the XY CFT3 has a global U(1) symme-
try, an electric operator �, and a magnetic operator cMa

[as we noted, this terminology reflects the perspective of
the XY model in (2.1), and not its S dual in (2.13)]. Gauge-
invariant correlators for these two operators can be written
in both the direct and S dual formulations of the field
theory. Such operators also obey nontrivial monodromy
properties [56], but we will not explore this aspect here.

B. Abelian CPN�1 model

The XY CFT3 will not be rich enough to display all the
possible phases of CFT3s in the presence of a chemical
potential. So we consider the ‘‘easy-plane’’ or abelian
CPN�1 model for which explicit S duality transformations
can be performed (without supersymmetry) [57,58]. This is
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also the simplest CFT3 which is both a gauge theory and
has global U(1) symmetries. It should be noted that the
existence of a conformally-invariant fixed point for this
specific field theory has not been conclusively demon-
strated for the simplest N ¼ 2 case [59]. However, it is
clear that such a CFT3 does exist in a large N limit [43,57],
and all of our analysis can be extended to general N [58].
However, in the interests of simplicity, we will restrict
ourselves to the simplest CP1 case, and work with the
assumption that this CFT3 does exist.

In the direct formulation, the degrees of freedom are two
complex scalars, z1 and z2, and a noncompact U(1) gauge
field b� with Lagrangian

LCP ¼ jð@� � ib�Þz1j2 þ jð@� � ib�Þz2j2

þ 1

2e2
ð���	@�b	Þ2 þLz;loc

Lz;loc ¼ sðjz1j2 þ jz2j2Þ þ uðjz1j2 þ jz2j2Þ2 þ vjz1j2jz2j2;
(2.22)

with u > 0 and �4u < v < 0. For these negative values
of v, the phase for s sufficiently negative has jhz1ij ¼
jhz2ij � 0. We assume that the one relevant perturbation
at the critical point has been tuned to obtain a CFT3.

This theory actually has two global U(1) symmetries,
and associated conserved currents. The first is the ordinary
global symmetry

Q1: z1 ! z1e
i�; z2 ! z2e

�i�: (2.23)

The conserved current is

J1� ¼ iðz�1ð@� � ib�Þz1 � z1ð@� þ ib�Þz�1Þ
� iðz�2ð@� � ib�Þz2 � z2ð@� þ ib�Þz�2Þ; (2.24)

and

Q1 ¼
Z

d2xJ1�: (2.25)

However, there is also a conserved ‘‘topological’’U(1)
current

J2� ¼ i



���	@�b	 (2.26)

and a corresponding topological charge

Q2 ¼
Z

d2xJ2�: (2.27)

Another significant symmetry of LCP is the Z2 symmetry
under which z1 $ z2. Note that J1� is odd under this

symmetry, while J2� is even. This prohibits a bilinear

coupling between these current operators.
As reviewed in Appendix C, we can perform the S dual

mapping on both U(1) symmetries. This yields a theory
with the same Lagrangian (unlike the situation for the XY
model), but now expressed in terms of complex scalars w1

and w2, and a U(1) gauge field a�, which will have differ-

ent physical interpretations. So the abelian CP1 model is
self-dual [57] and has the Lagrangian

LS
CP ¼ jð@� � ia�Þw1j2 þ jð@� � ia�Þw2j2

þ 1

2e2
ð���	@�a	Þ2 þLw;loc: (2.28)

The values of the nonuniversal couplings in Lw;loc have

been modified from before. The key feature of this dual
representation is that the roles of the global and topological
U(1) currents have been interchanged. Thus the currents in
(2.24) and (2.26) now have the representation

J2� ¼ iðw�
1ð@� � ia�Þw1 � w1ð@� þ ia�Þw�

1Þ
� iðw�

2ð@� � ia�Þw2 � w2ð@� þ ia�Þw�
2Þ; (2.29)

and

J1� ¼ i



���	@�a	: (2.30)

Let us now turn to an identification of the electric and
magnetic operators associated with these U(1) symmetries.
By analogy with the XY model, the simplest choices for
electric operators are gauge invariant combinations of the
matter fields which carry global charges

z�2z1; Q1 ¼ 2;Q2 ¼ 0

w�
2w1; Q1 ¼ 0;Q2 ¼ 2:

(2.31)

Similarly, following the analysis for the XY model, we can
write down gauge-invariant magnetic operators which are
electrically neutral but carry magnetic charges (see
Appendix C)

w1w2M2
a;

~Q1 ¼ 2
; ~Q2 ¼ 0

z1z2M2
b;

~Q1 ¼ 0; ~Q2 ¼ 2
:
(2.32)

However, examination of the operators in (2.31) and (2.32)
shows that all of these can be written as composites of
simpler dyonic operators that carry electrical charges of
one U(1) symmetry and magnetic charges of the other U(1)
symmetry, i.e., the operator product expansion of pairs of
dyonic operators will produce operators in (2.31) and

(2.32). We denote the magnetic charges by ~Q1 and ~Q2,
and then the primary dyonic operators are

z1Mb; Q1¼1; Q2¼0; ~Q1¼0; ~Q2¼


z2Mb; Q1¼�1; Q2¼0; ~Q1¼0; ~Q2¼


w1Ma; Q1¼0; Q2¼1; ~Q1¼
; ~Q2¼0

w2Ma; Q1¼0; Q2¼�1; ~Q1¼
; ~Q2¼0:

(2.33)

We emphasize that these operators are all gauge-invariant.
Expressions for the correlators of all four operators can be
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obtained in both the direct and S dual representations. As
an example, let us consider the two-point correlator of
z1Mb: from its definition we have as in (2.15)

Gz1ðyÞ ¼
�
z�1ðyÞ exp

�
� i

2


Z
d3xb���

�
z1ð0Þ

�
LCP

:

(2.34)

We perform the S duality mapping of this correlator in
Appendix C and find

Gz1ðyÞ¼
R
Dw1Dw2Da�expð�

R
d3xLS

CP½��ÞR
Dw1Dw2Da�expð�

R
d3xLS

CPÞ
; (2.35)

where a monopole background has been minimally
coupled to w1 via

LS
CP½�� ¼ jð@� � ia� � i��Þw1j2 þ jð@� � ia�Þw2j2

þ 1

2e2
ð���	@�a	Þ2 þLw;loc: (2.36)

Similar expressions can be obtained for the remaining
operators in (2.33).

III. DOPED CONFORMAL FIELD THEORIES

This section will describe step A of Fig. 1, applied to the
CFT3s described in Sec. II.

A. XY model

We apply a chemical potential, �, to the XY model
of (2.1)

LXY½�� ¼ ½ð@� þ�Þ���½ð@� ��Þ�� þ j@i�j2
þ sj�j2 þ uj�j4: (3.1)

In the S dual formulation of (3.1), this chemical potential
also couples to J�:

LS
XY½�� ¼ LS

XY � �

2

�ij@iaj: (3.2)

The following subsections describe the superfluid and
solid phases that can appear in such a CFT3 at a nonzero�.
A Bose metal phase is not possible in such a CFT3 without
a gauge field in the direct formulation, and the reason for
this will become clear in the next subsection.

1. Superfluid

Notice from (3.1) that � induces a negative mass term
��2j�j2. So the most likely consequence is that we obtain
a superfluid phase with a � condensate.

In the S dual formulation, we see that � induces a net
magnetic flux h�ij@iaji. Assuming there is no Higgs phase

with a c condensate, one consequence is that the spectrum
of c quanta has the form of gapped Landau levels. And so
the superfluid phase is characterized by

h�i � 0; hc i ¼ 0: (3.3)

The broken U(1) symmetry due to the � condensate
implies that there is a gapless Goldstone boson. In the S
dual formulation, this gapless mode is the a� photon.

2. Solid

If quantum fluctuations are sufficiently strong, it is
possible that for certain CFTs a solid phase is obtained.
For the XY model, note that � lowers the energy of the �
particle, while raising the energy of its antiparticle so we
can consider a low-energy theory of the particle alone. One
possible nonzero density ground state is a crystal of these
particles. Clearly such a phase preserves the global U(1)
symmetry, while breaking translational symmetry.
In the S dual formulation, the solid is obtained by

treating LS
XY½�� in the classical limit, and allowing for a

c condensate in a Higgs phase. Indeed, this Lagrangian is
precisely that for an Abrikosov flux lattice in the Landau-
Ginzburg theory [60]. So we obtain a spatially modulated
solution for hc i in the form of a triangular lattice.
Abrikosov’s argument also determines the size of the unit
cell of this lattice. To keep the argument general, let us
imagine that the field � has electric charge Q ¼ qe (the
present model has qe ¼ 1), and that the field c has mag-

netic charge ~Q ¼ qm (present model has qm ¼ 2
), and
the total area of the system is L2. The average flux density
h�ij@iaji equals qehQi=ð2
L2Þ via the S duality relation

(2.14), and so Abrikosov’s condition of a flux quantum per
unit cell implies [61]

qeqm
hQi
L2

A ¼ 2
; (3.4)

where A is the area of the unit cell. This corresponds to a
U(1) charge Q ¼ 1 per unit cell.
So we see that the solid phase is characterized by

h�i ¼ 0; hc i � 0: (3.5)

and, as claimed, the monopole operator c is the solid order
parameter.

B. Abelian CP1 model

We will apply a chemical potential, �, to theQ1 charge
only. Then

LCP½�� ¼ ½ð@� þ ib� þ�Þz�1�½ð@� � ib� ��Þz1�
þ ½ð@� þ ib� ��Þz�2�½ð@� � ib� þ�Þz2�
þ jð@i � ibiÞz1j2 þ jð@i � ibiÞz2j2

þ 1

2e2
ð���	@�b	Þ2 þLz;loc; (3.6)

and in the S dual theory

LS
CP½�� ¼ LS

CP ��



�ij@iaj: (3.7)
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The superfluid and solid phases of LCP½�� have a
structure similar to that of the XY model, and so our
discussion of these will be brief.

The superfluid phase has a condensate of z1 and z2, and
hence a gauge-invariant condensate of �1. The b� gauge

field is Higgsed. There is a gapless Goldstone mode asso-
ciated with the broken Q1 symmetry, and this is S dual to
the a� photon. And the w1 and w2 quanta are gapped.

As in the XY model, if quantum fluctuations are suffi-
ciently strong, it is possible that a solid phase is obtained.
For the abelian CP1 model, note that � lowers the energy
of the z1 particles and the z2 antiparticles, while raising the
energy of z1 anti-particles and the z2 particles; so we can
consider a low-energy theory of the z1 (z2) particles (anti-
particles) alone. These excitations carry opposite charges
under the b� gauge field. So one possible ground state with

a nonzero Q1 density is a crystalline arrangement of these
charges. Note that while the z1 and z2 excitations carry
opposite b� charges, they carry the same Q1 charge, and

this prevents them from annihilating each other. In the S
dual formulation, the solid appears as an Abrikosov flux
lattice, but in a theory with 2 ‘‘superconducting’’ order
parameters [62]; there is flux h�ij@iaji of 
 per unit cell,

and this corresponds to a charge of Q1 ¼ 2, one each for
the z1 particles and z2 antiparticles.

1. Bose metal

However, the most interesting feature is the possibility
of a compressible phase which is neither a solid nor a
superfluid, and which breaks no symmetries. As we noted
above, � prefers particles of z1 and antiparticles z2, and so
let us write LCP½�� in a nonrelativistic approximation by
integrating out the antiparticles of z1 and the particles of z2:

Lnr
CP ¼ z�1ð@� � ib� ��Þz1 þ z2ð@� þ ib� ��Þz�2

� 1

2m
z�1ð@i � ibiÞ2z1 � 1

2m
z2ð@i þ ibiÞ2z�2 þ � � �

þ 1

2e2
ð���	@�b	Þ2 þLz;loc; (3.8)

where the ellipses represent higher order terms in the
bosons kinetic energy, and we expect by scaling that the
boson effective mass m��. Now we can apply an exact
transformation which fermionizes the z1 and z2 quanta by
attaching 2
 gauge flux tube of another U(1) gauge field
c� [63,64]. We write this transformation as

f1 ¼ F cz1 f2 ¼ F cz
�
2; (3.9)

where F c is flux tube attachment operator [65]. Note the
formal analogy to the relativistic monopole flux operator
Mb which was attached to z1;2 in (2.33). In the present

nonrelativistic context, we attach a flux tube, and this
converts nonrelativistic bosons to nonrelativistic fermions.
The Lagrangian for the fermions is

Lnr
CP¼fy1 ð@��ib��ic���Þf1þfy2 ð@�þib�þic���Þf2

� 1

2m
fy1 ð@i�ibi�iciÞ2f1� 1

2m
fy2 ð@iþibiþiciÞ2f2

þ���þ i

4

���	c�@�c	þ 1

2e2
ð���	@�b	Þ2þLf;loc;

(3.10)

and (3.8) and (3.10) are exactly equivalent. Note the Chern-
Simons term in the c� gauge field.

A key feature of (3.10) is the equation of motion of c�:

fy1 f1 � fy2 f2 ¼
1

2

�ij@icj: (3.11)

This implies that in a state with hfy1 f1i ¼ hfy2 f2i, which
corresponds to the compressible phases we are interested
in, the net c� flux will be zero, and the f1 and f2 fermions

move in a net zero magnetic field. This is a key feature
which allows the Bose metal phase here. And it is this step
that fails when we apply the fermionization transformation
to the XY model.
To proceed, we follow [66]: we map b� ! b� � c�,

and then integrate out the Gaussian c� fluctuations. Then,

dropping higher derivative terms, we obtain a theory with-
out a Chern-Simons term

Lnr
CP ¼ fy1 ð@� � ib� ��Þf1 þ fy2 ð@� þ ib� ��Þf2

� 1

2m
fy1 ð@i � ibiÞ2f1 � 1

2m
fy2 ð@i þ ibiÞ2f2

þ � � � þLf;loc: (3.12)

This describes a compressible Bose metal [44]. Of course,
there is the possibility that there is a pairing instability with
a f1f2 condensate. This will lead to a superfluid state, but
this is not identical to the superfluid discussed earlier in
this section; the present superfluid has a gapless b� photon

mode, which was not present earlier. We assume that this
superfluid instability is somehow suppressed to a low
energy scale. In Ref. [44] this is accomplished by endow-
ing the f1 and f2 fermions with different Fermi surface
shapes, and some analog of this may be possible here.

IV. HOLOGRAPHY

We begin with a discussion of step B in Fig. 1.
First, let us consider the holographic representation of

the XY CFT3 on AdS4. We propose that the bulk theory
should have fields corresponding to the conserved current,
and to the electric and magnetic operators:

J� ! Aa; � ! �; cMa ! �: (4.1)

Also we note Witten’s observation [29] that S duality on
the boundary theory corresponds to electromagnetic dual-
ity in the bulk theory. This suggests that cMa couples to

the electromagnetic dual of Aa, which we denote ~Aa: so we
have the following minimal structure of the action
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SXY ¼
Z

d4x
ffiffiffi
g

p �
1

4g2
F2
ab þ jð@a � iAaÞ�j2 þm2

ej�j2

þ jð@a � i2
 ~AaÞ�j2 þm2
mj�j2

�
; (4.2)

where

Fab ¼ @aAb � @bAa; ~Fab ¼ @a ~Ab � @b ~Aa;

~Fab ¼ i

2
�abcdF

cd:
(4.3)

The factor of i is needed in the last expression as in (2.14);
it is also connected to S2 ¼ �1 [29], and will be important
in Appendix B. The mass me is determined by the scaling
dimension of the electric operator, the mass mm by the
scaling dimension of the magnetic operator, and g2 is the
universal number in (2.5). We have not written out
the gravitational sector of the action, along with other
possible neutral scalars. Indeed (4.2) should be considered
a minimal theory with bulk fields which correspond to the
simplest primary operators of the XY model, and so
describes models similar to the XY model. We are not
attempting to obtain the full holographic equivalent of
the XY CFT3.

Note that there is a nonlocal relationship between the

vector potentials Aa and ~Aa in (4.3). Here Aa is related to
the local observable J� in (4.1). So, clearly, the nonlocality

of ~Aa is linked to the nonlocality in the definition of the
monopole operator cMa which was noted in Sec. II A. An

important check of the coupling between ~Aa and the
monopole field � in (4.2) is provided by its predictions
for the 3-point correlator of Aa with�. We compute this in
Appendix B, and show that the holographic result has
the same form as the corresponding CFT3 correlator of
J� and cMa.

For the abelian CP1 model, the analogous proposal
has two copies of this structure, and the boundary !
bulk correspondence leads to dyonic operators

J1� ! Aa; z1Mb ! Z1; z2Mb ! Z2

J2� ! Ba; w1Ma ! W1; w2Ma ! W2;
(4.4)

with the minimal action

SCP ¼
Z

d4x
ffiffiffi
g

p �
1

4g2
F2
ab þ

1

4g2
G2

ab

þ jð@a � iAa � i
 ~BaÞZ1j2
þm2jZ1j2 þ jð@a þ iAa � i
 ~BaÞZ2j2 þm2jZ2j2
þ jð@a � iBa � i
 ~AaÞW1j2 þm2jW1j2

þ jð@a þ iBa � i
 ~AaÞW2j2 þm2jW2j2
�
; (4.5)

where as in (4.3)

Gab ¼ @aBb � @bBa; ~Gab ¼ @a ~Bb � @b ~Ba;

~Gab ¼ i

2
�abcdG

cd:
(4.6)

Note that to this order, there is no direct coupling between
the Q1 and Q2 sectors in SCP apart from their common
coupling to gravitation. The simplest terms are prohibited
by the Z2 symmetry under which z1 $ z2, which was
mentioned earlier. Dyonic operators also appeared
[67,68] in holographic studies of the quantum Hall effect,
but in that case they carried electric and magnetic charges
of the same gauge field; in our case, the dyons carry
electric charges under one gauge field, and magnetic
charges of a second gauge field.
We are now ready to turn to step C of Fig. 1.
The generalization to the nonzero � case is now imme-

diate. We simply apply the chemical potential as a bound-
ary condition to A� [6]. We can also add various dilaton
fields and potentials, as appropriate for the infrared metric
[10,20–22].
Let us now discuss the possible phases of SXY . A state

with superfluid order has a � condensate [5]. With the
monopole � in hand, here we can also obtain a phase
with crystalline order, in a manner similar to that for the
boundary theory in Sec. III A 2. Notice that with an applied
chemical potential, there is an electric field in hFabi, which
translates into a magnetic field in h ~Fabi. So the bulk theory
for � is the same as that of an electrically charged scalar
moving in a background magnetic field. The condensation
of� in such a situation has been considered in supergravity
theories [27], and leads to a vortex lattice [27,69], the bulk
analog of the Abrikosov flux lattice. In terms of the original
direct variables, this clearly corresponds to a boundary state
with crystalline order. However, as we noted in Sec. I, these
superfluid and solid phases are, strictly speaking, not
the conventional superfluids or solids of Sec. III A. They
contain a horizon in the infrared, and so correspond
to ‘‘fractionalized’’ phases with additional deconfined
excitations.
Indeed, it is best to think of the symmetry-broken phases

above as descending from, and retaining many of the
features of, the symmetric phase with no condensate or
broken symmetry. So let us turn to a characterization of
such a possible symmetric state in which none of the fields
�, �, Z1, Z2, W1, W2 condense, as may be arranged by
making their masses very large. The most natural conclu-
sion from our previous analysis of the boundary theory for
the abelian CP1 model is that such a symmetric phase is
a Bose metal, or related non-Fermi liquid. It is useful to
define the Bose metal in gauge-invariant terms, to help
identify it in the holographic theory: the Bose metal is
a compressible phase with gapless excitations at all
momenta, accompanied by signatures of a gauge-charged
Fermi surface, which include (i) Friedel oscillations in the
density correlations at the extremal wave vector, 2kF, of
the gauge-charged Fermi surface; (ii) logarithmic violation
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of the area law of the entanglement entropy, with a coef-
ficient fixed by the charge density [10,22]. A strong form of
the conjecture of Refs. [9,10,70] is that all compressible
phases which do not break any symmetry are ultimately
Bose metals, Fermi liquids, or allied phases with visible
and/or gauge-charged Fermi surfaces.

So can theories like those in (4.2) and (4.5) describe
Bose metals? We leave the answer of this question to future
work, and just make some general remarks here. As dis-
cussed earlier [10,22], the entanglement entropy for certain
hyperscaling violating backgrounds has numerous features
consistent with a gauge-charged Fermi surface. So a
key question is whether the holographic theories (4.2)
and (4.5), or their extensions, contain Friedel oscillations.
It is clear that information on the oscillatory structure is
already present: after all, condensates of the monopole
fields �, W1, W2, leads to crystalline order with precisely
the right period of an integer number of particles per unit
cell. So we need to make �, W1, W2 ‘‘almost’’ condensed
to obtain Friedel oscillations. Furthermore, the theories
(4.2) and (4.5) are similar to theories of vortex liquids in
classical superconductors in an applied magnetic field: the
latter systems have been studied using Feynman graph
expansions [71], density-functional theories [72,73] and
numerical simulations [74], and show clear oscillatory
structure in the vortex-vortex correlation functions. From
these studies, we can expect that the bulk ~Fab correlations
will have a structure factor with a maximum at a nonzero
wave vector, and the boundary limit of this structure factor
is the density-density correlator of the doped CFT3.

V. CONCLUSIONS

We have presented an analysis of possible phases of
doped CFT3s. The S duality properties of the parent
CFT3, and its electric and magnetic operators were impor-
tant in our analysis, and for our proposed bulk theory on
AdS4. We found that the doped CFT3s had phases with
superfluid and solid order, and a Bose metal phase which
broke no symmetries. The magnetic operators of the parent
CFT3 served as order parameters for the solid, and also
determined the size of its unit cell.

We checked the structure of the bulk theory on AdS4 by
both bulk and boundary computations of 3-point correla-
tors in Appendix B. We exhibited connections between the
Bose metal phases of doped CFT3s and the holographic
compressible phase with no broken symmetries on asymp-
totically AdS4 spacetimes, and these were summarized in
Sec. IV. The magnetic operators of the CFT3 translated
into new terms in the holographic theory which are sensi-
tive to the quantization of particle number, and produce
associated periodic correlations in the density. We also
noted that holographic states with broken symmetries are
best understood as Bose metals upon which a broken
symmetry has been superimposed: thus holographic
superfluids and solids have broken particle number and

translational symmetries, respectively, concomitant with
the excitations of a deconfined gauge theory.
The key step in obtaining a Bose metal in our doped

CFT3 was the flux tube attachment operator F c [65] in
(3.9) which converted the nonrelativistic bosons z1 and z�2
in (3.8) to nonrelativistic fermions f1 and f2 in (3.10). This
operation has a formal similarity to a relativistic analog in
our discussion of the CFT3 in (2.33), where the monopole
flux operator Mb [defined in (2.17)] was attached to the
relativistic fields z1 and z2 to obtain gauge-invariant primary
fields of the CFT3. The relativistic Mb operator has pro-
posed counterparts in bulk monopole/dyon fields on AdS4,
as discussed in Sec. IV. We now need to understand the
holographic extension of F c better, by finding additional
signatures of the gauge-charged fermions in the Bose metal.

A. Generalizations

The explicit analyses of this paper have been for CFT3s
with a global U(1) symmetry which are also Abelian gauge
theories, and are expressible using only bosonic degrees of
freedom.We conclude by briefly noting the applicability of
our results to other CFT3s with a global U(1) symmetry.
The analyses defining the monopole operator in direct

representation of the XY model in Sec. II A generalize to
any CFT3 with a global U(1). We can always gauge the
global U(1) as in (2.6), and insert monopole sources in the
background gauge field. Consequently, we expect there to
be an analog of the bulk field� in (4.2) for all such CFT3s.
The global U(1) current J� will be holographically dual to

a bulk U(1) gauge field Aa, and � will be electrically

coupled to the S dual gauge field ~Aa, just as in (4.2). It is
� that carries the information on periodic density modu-
lations in the compressible phases, and so these are
ubiquitous, as expected. However, the field � in (4.2) is
not as ubiquitous: its existence requires the presence of a
gauge-invariant CFT3 operator carrying the global U(1)
charge, and these need not be present, or could carry large
enough dimensions to be irrelevant.
When we restrict attentions to CFT3s with a global

U(1) which are also Abelian gauge theories, then further
applications of our result are possible, even in cases where
explicit S dual mappings are not known. As an example,
we can consider a CFT3 with Dirac fermions, such as those
in Ref. [9], obtained by replacing z1, z2 inLCP [Eq. (2.22)]
by two-component Dirac fermions, q1, q2. In this case also,
as in (2.33), we will have gauge-invariant operators q1Mb,
q2Mb carrying electric charge Q1 and magnetic charge
~Q2, even though their S dual counterparts are not evident.
And there should be fermionic bulk operators,Q1, Q2 with
the same quantum numbers which could reveal the
‘‘hidden’’ Fermi surfaces of Bose metal-like phases in
these Abelian gauge theories. However, this construction
of gauge-invariant operators carrying the fundamental
global electric charge does not appear to generalize to
non-Abelian gauge theories.
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APPENDIX A: S DUALITY OF THE XY MODEL

We review the duality mapping of the XY model [48,49]
in (2.6). We begin by writing �� ei�, and expressing the
action in the Villain form on a cubic lattice of sites i:

LXY½�� ¼ K

2
ð���i � �i� � 2
ni�Þ2; (A1)

where�� is a discrete lattice derivative, ni� are integers on

the links of the cubic lattice, and �i� is the monopole

background field. We perform a Fourier transform and
write

L XY½�� ¼ 1

2K
J2i� þ iJi�ð���i � �i�Þ; (A2)

where Ji� are another set of integers on the links of the

cubic lattice. Integrating over �i, we obtain the zero
divergence condition ��Ji� ¼ 0. We solve this condition

by writing

Ji� ¼ 1

2

���	��a|	; (A3)

where a|� resides on the links of the dual cubic lattice

with sites |, and takes values which are integer multiples of
2
. Then we have

LXY½�� ¼ 1

8
2K
ð���	��a|	Þ2 � i

2

a|��|�; (A4)

where �|� ¼ ���	���	 is the magnetic flux associated

with the monopole insertion. At this point, we can drop the
‘‘Dirac string’’ contribution to �|� because it only changes

the Lagrangian by integer multiples of 2
i.
So far, everything has been an exact rewriting of (A1).

Now we promote a|� to a continuous real field by writing

LS
XY½��¼

1

8
2K
ð���	��a|	Þ2�ycosða|�Þ� i

2

a|��|�:

(A5)

Note that (A5) is exactly equivalent to (A4) in the limit
y ! 1. But, as argued in Ref. [49], the physics at finite y is
the same as that as y ! 1, and so will work with the S dual
LagrangianLXY½��. We can make the Lagrangian have the
structure of a gauge theory by the shift a|� ! a|� �
��#|, where #| is a dual angular variable. The integral

over #| only introduces a redundancy on configuration

space, and the original expression merely corresponds to
the gauge choice #j ¼ 0. Finally, taking the continuum

limit with c � ei# , we obtain the S dual Lagrangian
(2.13), and also the correlator (2.15) after using (2.8).
Conversely, let us begin with a lattice version of the S

dual theory in the presence of a monopole background,
LS

XY½�� in (2.19):

LS
XY½�� ¼

y

2
ð��#| � a|� � �|� � 2
n|�Þ2

þ 1

8
2K
ð���	��a|	Þ2; (A6)

After similar steps, this maps exactly to

LS
XY½�� ¼

1

8
2y
ð���	��bi	Þ2 þ K

2
ð���i � bi�Þ2

� i

2

bi��i�; (A7)

where bi� takes values which are integer multiples of

2
 on the links of the direct lattice, and �i is a real variable
on the direct lattice. Then promoting bi� to a real variable,

and shifting bi� ! bi� ����i, �i ! �i � �i, as below

(A4), we obtain

LXY½�� ¼ 1

8
2y
ð���	��bi	Þ2 þ K

2
ð���i � bi�Þ2

� i

2

ðbi� ����iÞ�i� � y cosð���i � bi�Þ:

(A8)

This expression shows that the b� gauge field has been

Higgsed by ei�, and so ignoring the massive Higgs mode
we can set bi� ¼ 0 in the gauge �i ¼ 0. The resulting

theory is just a lattice version of the XY model of (2.1)
with �� ei�. Upon using (2.8), the effect of the monopole
insertion �|� is to yield the electric correlator in (2.2).

Other relationships between the correlators of the direct
and S dual theories can be obtained in a similar manner, by
inserting appropriate sources in the starting Lagrangian.

APPENDIX B: THREE-POINT CORRELATORS
OF THE XY MODEL

First, we compute the 3-point correlator between the
conserved current J� and the electrically charged field �

of the XY model in (2.10) shown in Fig. 2. For the free
CFT3, or in the large flavor number limit of the interacting
CFT3, this is

Kðp; k1; k2Þ ¼ "�ðpÞhJ�ðpÞ��ðk1Þ�ðk2ÞiLXY

¼ "�ðpÞðk1� þ k2�Þ
k21k

2
2

; (B1)
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where p� � k1� � k2�, and "�ðpÞ is a polarization vector
orthogonal to p�, "�ðpÞp� ¼ 0.

Let us now compare the result (B1) with that obtained by
a tree-level holographic computation from the bulk action
SXY in (4.2). We will label the holographic direction z and
the AdS4 metric

ds2 ¼ dz2 þ dx2�

z2
: (B2)

The correlator is given by the 3-point interaction in the
action SXY , evaluated with the bulk fields taking values
specified by the boundary-bulk propagators [4,75–77]; in
the gauge Az ¼ 0, @�A� ¼ 0 the bulk fields are

�ðk; zÞ ¼ jkj�e�3
2z3=2K�e�3

2
ðjkjzÞ

A�ðp; zÞ ¼ "�ðpÞe�jpjz;
(B3)

where �e is the scaling dimension of the � field. Then the
3-point correlator is

Kðp;k1;k2Þ¼
Z 1

0

dz

z2
ðk1�þk2�Þ��ðk1;zÞ�ðk2;zÞA�ðp;zÞ

¼ "�ðpÞðk1�þk2�Þ
jk1j5=2��e jk2j5=2��e

F
�jk1j
jpj ;

jk2j
jpj

�
; (B4)

where F is a dimensionless function of its dimensionless
arguments whose value can be deduced from the expres-
sions above. Notice the similarity between the vector

structure of the expressions in (B1) and (B4). It is expected
that the two results will match when the CFT3 computation
is extended beyond the free field limit to nontrivial values
of �e.
We now extend these computations to the 3-point corre-

lator between the current J� and the monopole operator of

the XY model, specified in (2.11) and shown in Fig. 2.
On the CFT3 side, it is difficult to work with (2.11),
and this computation is more easily performed using the
S dual representation of Sec. . Under this mapping, using
the transformations of Appendix A, (2.11) becomes the
gauge-invariant correlator

Kmðp; k1; k2Þ
¼

Z
d3yd3weipw�ik1y"�ðpÞ

�
�
J�ðwÞc �ðyÞ exp

�
� i

2


Z
d3xa���

�
c ð0Þ

�
LS

XY

;

(B5)

where the current J� is now given by (2.14). This correlator

is best computed in the large Nf limit of the CFT3s in

which c has Nf flavors. Then in the leading large Nf limit

the transverse gauge field propagator is [78]

ha�ðpÞa�ðpÞi ¼ 16

Nfjpj
�
��� �

p�p�

p2

�
: (B6)

Evaluating (B5) to order 1=Nf with this propagator

we obtain

Kmðp; k1; k2Þ ¼
�
16

Nf


�
���	"�ðpÞk1�k2	

k21k
2
2jpj

: (B7)

We note that the exponential factor in (B5) has a vanishing
contribution at this order, and (B7) arises only from the
current vertex of c .
Finally, let us compare (B7) with the tree-level holo-

graphic computation from the bulk action SXY in (4.2). Just
as in (B3), we will now have the bulk fields

�ðk; zÞ ¼ jkj�m�3
2z3=2K�m�3

2
ðjkjzÞ

A�ðp; zÞ ¼ "�ðpÞe�jpjz;
(B8)

where�m is the scaling dimension of cMa. We now need
to convert the above result for A� in (B8) to an expression

for ~A�. Let the holographic indices a; b . . . extend over the

directions z, x1, x2, x3, and let us choose the momentum
p� ¼ ðp; 0; 0Þ (with p > 0) and "� ¼ ð0; 1; 0Þ. Then, the
Maxwell tensor is

F12 ¼ ipe�pz; Fz2 ¼ �pe�pz (B9)

and all other components are zero. So, from (4.3), we have
the dual tensor

~F3z ¼ �pe�pz; ~F13 ¼ �ipe�pz; (B10)

FIG. 2. 3-point correlators of the XY model: (a) the electric
correlator K in (B1), (b) the magnetic correlator Km in (B5). The
labels are the boundary ! bulk fields.
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which corresponds to a dual vector potential

~A�ðp; zÞ ¼ �ð0; 0; 1Þe�pz: (B11)

From this we deduce the following result for general p�

and "�:

~A�ðp; zÞ ¼
���	p�"	ðpÞ

jpj e�jpjz; (B12)

and ~Az ¼ 0. Note that the simple exponential form of
the boundary-bulk correlator of the gauge field was crucial
in the above analysis leading to the simple result for the
dual gauge field in (B12). We can now obtain the 3-point
correlator as in (B4)

Kmðp;k1;k2Þ¼
Z 1

0

dz

z2
ðk1�þk2�Þ��ðk1;zÞ�ðk2;zÞ ~A�ðp;zÞ

¼ ���	"�ðpÞk1�k2	
jk1j5=2��m jk2j5=2��m jpj

~F
�jk1j
jpj ;

jk2j
jpj

�
;

(B13)

where again ~F is a dimensionless function of its dimen-
sionless arguments whose value can be deduced from the
expressions above. Now notice the remarkable match of
the magnetic holographic result (B13) to the CFT3 com-
putation in (B7), similar to that for the electric operator
case between (B1) and (B4).

APPENDIX C: S DUALITY OF THE
ABELIAN CP1 MODEL

We proceed just as in Appendix A, following Ref. [57].
We start from the S dual action (2.28), write w1;2 � ei#1;2 ,

and introduce the Villain action on the dual cubic lattice

LS
CP½�� ¼

K

2
ð��#1| � a|� � 1�|� � 2
n1|�Þ2

þ K

2
ð��#2| � a|� � 2�|� � 2
n2|�Þ2

þ 1

2e2
ð���	@�a|	Þ2: (C1)

Here �|� is a monopole background field defined by (2.7)

and (2.8). The choices of 1;2 ¼ 0, �1 will give expres-

sions for the different operator insertions. Thus, the choice
1 ¼ 1, 2 ¼ 0 yields (2.36).

We begin with a Fourier transform, as in (A2), to obtain

L S
CP½�� ¼

1

2K
ðJ21|� þ J22|�Þ � ia|�ðJ1|� þ J2|�Þ

� i�|�ð1J1|� þ 2J2|�Þ þ e2

2
f2i�

þ ifi����	��a|	; (C2)

where J1i� and J2i� are integer valued currents obeying

��J1i� ¼ ��J2i� ¼ 0, and f|� is a real-valued flux on the

links of the dual lattice. Integrating over a|� we obtain the

additional constraint J1i� þ J2i� ¼ ���	��f|	. We solve

these constraints by writing

J1|� ¼ 1

2

���	��b1i	

J2|� ¼ 1

2

���	��b2i	

f|� ¼ 1

2

ðb1i� þ b2i� � ���iÞ;

(C3)

where b1i� and b2i� are integer multiples of 2
, and �i is

real-valued. So the action is

LS
CP½�� ¼

1

8
2K
ðð���	��b1i	Þ2 þ ð���	��b2i	Þ2Þ

� i

2

�i�ð1b1i� þ 2b2i�Þ

þ e2

8
2
ðb1i� þ b2i� � ���iÞ2: (C4)

As in Appendix A, we can now drop the Dirac string in
�i� because it only changes the action by integer multiples

of 2
i. Also, up to this point, all transformations have
been exact.
Now we promote b1i� and b2i� to continuous real

fields, and shift b1i� ! b1i� � ���1j, b2i� ! b2i� �
���2j, and �i ! �i � �1i � �2i. Then we obtain the direct

lattice theory

LCP½��¼ 1

8
2K
ðð���	��b1i	Þ2þð���	��b2i	Þ2Þ

� i

2

�i�½1ðb1i�����1iÞ

þ2ðb2i�����2iÞ�

þ e2

8
2
ðb1i�þb2i�����iÞ2

�yðcosð���1i��b1i�Þþcosð���2i��b2i�ÞÞ:
(C5)

This action has the structure of a Uð1Þ � Uð1Þ gauge
theory, in the presence of charged matter fields, ei�1 and
ei�2 . One of the diagonal U(1)s has been Higgsed by the
term proportional to e2, with ei� acting as the Higgs field.
So we can drop the massive excitations associated with this
diagonal U(1) by setting b1i� ¼ �b2i� ¼ bi� in the gauge

�i ¼ 0. Then, in the continuum limit with z1 � ei�1 and
z2 � e�i�2 , and 1 ¼ 2 ¼ 0, we obtain the action of the
Abelian CP1 model in (2.22). Other values of 1, 2 can
now be used to establish the duality mappings of the
operator insertions, and we note typical examples
(i) 1 ¼ 1, 2 ¼ 0: This establishes the equality

between the correlators in (2.34) and (2.35) upon
applying (2.8).

(ii) 1 ¼ 1, 2 ¼ �1: This monopole flux couples to
the global Q2 charge of (2.28), and so corresponds
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to operator insertions with ~Q2 ¼ 2
, and all other
electric and magnetic charges equal to zero. The
above analysis shows that this is the two-point
correlator of z1z2M2

b, corresponding to the operator

identification in (2.32).

(iii) 1 ¼ 1, 2 ¼ 1: This is a monopole gauge flux in
the a� gauge field, and so via (2.30) only carries

Q1 ¼ 2 electrical charge. Above we find the cor-
relator z�2z1, which carries the expected charge, as
in (2.31).

[1] S. A. Hartnoll, P. K. Kovtun, M. Müller, and S. Sachdev,
Phys. Rev. B 76, 144502 (2007).

[2] J.M. Maldacena, Adv. Theor. Math. Phys. 2, 231 (1998);
Int. J. Theor. Phys. 38, 1113 (1999).

[3] S. S. Gubser, I. R. Klebanov, and A.M. Polyakov, Phys.
Lett. B 428, 105 (1998).

[4] E. Witten, Adv. Theor. Math. Phys. 2, 253 (1998).
[5] S. S. Gubser, Phys. Rev. D 78, 065034 (2008).
[6] A. Chamblin, R. Emparan, C. V. Johnson, and R. C.

Myers, Phys. Rev. D 60, 064018 (1999).
[7] T. Nishioka, S. Ryu, and T. Takayanagi, J. High Energy

Phys. 03 (2010) 131.
[8] G. T. Horowitz and B. Way, J. High Energy Phys. 11

(2010) 011.
[9] L. Huijse and S. Sachdev, Phys. Rev. D 84, 026001 (2011).
[10] L. Huijse, S. Sachdev, and B. Swingle, Phys. Rev. B 85,

035121 (2012).
[11] T. Faulkner and J. Polchinski, J. High Energy Phys. 06

(2011) 012.
[12] S. Sachdev, Phys. Rev. Lett. 105, 151602 (2010).
[13] S. Sachdev, Phys. Rev. D 84, 066009 (2011).
[14] S. Sachdev, Annu. Rev. Condens. Matter Phys. 3, 9 (2012).
[15] S. A. Hartnoll, arXiv:1106.4324.
[16] N. Iqbal and H. Liu, Classical Quantum Gravity 29,

194004 (2012).
[17] S. A. Hartnoll and L. Huijse, Classical Quantum Gravity

29, 194001 (2012).
[18] A. Allais, J. McGreevy, and S. J. Suh, Phys. Rev. Lett. 108,

231602 (2012).
[19] S. A. Hartnoll and D. Radicevic, Phys. Rev. D 86, 066001

(2012).
[20] C. Charmousis, B. Gouteraux, B. S. Kim, E. Kiritsis, and

R. Meyer, J. High Energy Phys. 11 (2010) 151.
[21] N. Iizuka, N. Kundu, P. Narayan, and S. P. Trivedi, J. High

Energy Phys. 01 (2012) 094.
[22] N. Ogawa, T. Takayanagi, and T. Ugajin, J. High Energy

Phys. 01 (2012) 125.
[23] S. Nakamura, H. Ooguri, and C.-S. Park, Phys. Rev. D 81,

044018 (2010).
[24] H. Ooguri and C.-S. Park, Phys. Rev. D 82, 126001

(2010).
[25] A. Donos and J. P. Gauntlett, J. High Energy Phys. 08

(2011) 140.
[26] A. Donos, J. P. Gauntlett, and C. Pantelidou, J. High

Energy Phys. 01 (2012) 061.
[27] A. Donos, J. P. Gauntlett, and C. Pantelidou, Classical

Quantum Gravity 29, 194006 (2012).
[28] N. Iizuka, S. Kachru, N. Kundu, P. Narayan, N. Sircar, and

S. P. Trivedi, J. High Energy Phys. 07 (2012) 193.

[29] E. Witten, arXiv:hep-th/0307041.
[30] C. P. Herzog, P. Kovtun, S. Sachdev, and D. T. Son, Phys.

Rev. D 75, 085020 (2007).
[31] T. Faulkner and N. Iqbal, arXiv:1207.4208.
[32] R. Gopakumar, A. Hashimoto, I. R. Klebanov, S. Sachdev,

and K. Schoutens, Phys. Rev. D 86, 066003 (2012).
[33] G. Murthy and S. Sachdev, Nucl. Phys. B344, 557 (1990).
[34] A. Kapustin and M. J. Strassler, J. High Energy Phys. 04

(1999) 021.
[35] V. Borokhov, A. Kapustin, and X.-k. Wu, J. High Energy

Phys. 11 (2002) 049.
[36] V. Borokhov, A. Kapustin, and X.-k. Wu, J. High Energy

Phys. 12 (2002) 044.
[37] M.A. Metlitski, M. Hermele, T. Senthil, and M. P. A.

Fisher, Phys. Rev. B 78, 214418 (2008).
[38] M. Hermele, Phys. Rev. B 79, 184429 (2009).
[39] M.K. Benna, I. R. Klebanov, and T. Klose, J. High Energy

Phys. 01 (2010) 110.
[40] A. Kapustin and B. Willett, arXiv:1106.2484.
[41] N. Read and S. Sachdev, Phys. Rev. Lett. 62, 1694 (1989).
[42] N. Read and S. Sachdev, Phys. Rev. B 42, 4568 (1990).
[43] T. Senthil, A. Vishwanath, L. Balents, S. Sachdev, and

M. P. A. Fisher, Science 303, 1490 (2004); T. Senthil, L.
Balents, S. Sachdev, A. Vishwanath, and M. P. A. Fisher,
Phys. Rev. B 70, 144407 (2004).

[44] O. I. Motrunich and M. P. A. Fisher, Phys. Rev. B 75,
235116 (2007).

[45] M. S. Block, R.V. Mishmash, R. K. Kaul, D.N. Sheng,
O. I. Motrunich, and M. P. A. Fisher, Phys. Rev. Lett. 106,
046402 (2011).

[46] M. S. Block, D.N. Sheng, O. I. Motrunich, and M. P. A.
Fisher, Phys. Rev. Lett. 106, 157202 (2011).

[47] R. V. Mishmash, M. S. Block, R. K. Kaul, D.N. Sheng,
O. I. Motrunich, and M. P. A. Fisher, Phys. Rev. B 84,
245127 (2011).

[48] M. E. Peskin, Ann. Phys. (N.Y.) 113, 122 (1978).
[49] C. Dasgupta and B. I. Halperin, Phys. Rev. Lett. 47, 1556

(1981).
[50] P. A.M. Dirac, Can. J. Phys. 33, 650 (1955).
[51] T.H. Hansson, V. Oganesyan, and S. L. Sondhi, Ann.

Phys. (Amsterdam) 313, 497 (2004).
[52] W. Rantner and X.-G. Wen, arXiv:cond-mat/0105540.
[53] J. Ye, Phys. Rev. B 67, 115104 (2003).
[54] M. P. A. Fisher, Phys. Rev. Lett. 65, 923 (1990).
[55] X.-G. Wen and A. Zee, Int. J. Mod. Phys. B 04, 437 (1990).
[56] M.A. Metlitski and S. Sachdev, Phys. Rev. B 77, 054411

(2008).
[57] O. I. Motrunich and A. Vishwanath, Phys. Rev. B 70,

075104 (2004).

COMPRESSIBLE QUANTUM PHASES FROM CONFORMAL . . . PHYSICAL REVIEW D 86, 126003 (2012)

126003-13

http://dx.doi.org/10.1103/PhysRevB.76.144502
http://dx.doi.org/10.1023/A:1026654312961
http://dx.doi.org/10.1016/S0370-2693(98)00377-3
http://dx.doi.org/10.1016/S0370-2693(98)00377-3
http://dx.doi.org/10.1103/PhysRevD.78.065034
http://dx.doi.org/10.1103/PhysRevD.60.064018
http://dx.doi.org/10.1007/JHEP03(2010)131
http://dx.doi.org/10.1007/JHEP03(2010)131
http://dx.doi.org/10.1007/JHEP11(2010)011
http://dx.doi.org/10.1007/JHEP11(2010)011
http://dx.doi.org/10.1103/PhysRevD.84.026001
http://dx.doi.org/10.1103/PhysRevB.85.035121
http://dx.doi.org/10.1103/PhysRevB.85.035121
http://dx.doi.org/10.1007/JHEP06(2011)012
http://dx.doi.org/10.1007/JHEP06(2011)012
http://dx.doi.org/10.1103/PhysRevLett.105.151602
http://dx.doi.org/10.1103/PhysRevD.84.066009
http://dx.doi.org/10.1146/annurev-conmatphys-020911-125141
http://arXiv.org/abs/1106.4324
http://dx.doi.org/10.1088/0264-9381/29/19/194004
http://dx.doi.org/10.1088/0264-9381/29/19/194004
http://dx.doi.org/10.1088/0264-9381/29/19/194001
http://dx.doi.org/10.1088/0264-9381/29/19/194001
http://dx.doi.org/10.1103/PhysRevLett.108.231602
http://dx.doi.org/10.1103/PhysRevLett.108.231602
http://dx.doi.org/10.1103/PhysRevD.86.066001
http://dx.doi.org/10.1103/PhysRevD.86.066001
http://dx.doi.org/10.1007/JHEP11(2010)151
http://dx.doi.org/10.1007/JHEP01(2012)094
http://dx.doi.org/10.1007/JHEP01(2012)094
http://dx.doi.org/10.1007/JHEP01(2012)125
http://dx.doi.org/10.1007/JHEP01(2012)125
http://dx.doi.org/10.1103/PhysRevD.81.044018
http://dx.doi.org/10.1103/PhysRevD.81.044018
http://dx.doi.org/10.1103/PhysRevD.82.126001
http://dx.doi.org/10.1103/PhysRevD.82.126001
http://dx.doi.org/10.1007/JHEP08(2011)140
http://dx.doi.org/10.1007/JHEP08(2011)140
http://dx.doi.org/10.1007/JHEP01(2012)061
http://dx.doi.org/10.1007/JHEP01(2012)061
http://dx.doi.org/10.1088/0264-9381/29/19/194006
http://dx.doi.org/10.1088/0264-9381/29/19/194006
http://dx.doi.org/10.1007/JHEP07(2012)193
http://arXiv.org/abs/hep-th/0307041
http://dx.doi.org/10.1103/PhysRevD.75.085020
http://dx.doi.org/10.1103/PhysRevD.75.085020
http://arXiv.org/abs/1207.4208
http://dx.doi.org/10.1103/PhysRevD.86.066003
http://dx.doi.org/10.1016/0550-3213(90)90670-9
http://dx.doi.org/10.1088/1126-6708/1999/04/021
http://dx.doi.org/10.1088/1126-6708/1999/04/021
http://dx.doi.org/10.1088/1126-6708/2002/11/049
http://dx.doi.org/10.1088/1126-6708/2002/11/049
http://dx.doi.org/10.1088/1126-6708/2002/12/044
http://dx.doi.org/10.1088/1126-6708/2002/12/044
http://dx.doi.org/10.1103/PhysRevB.78.214418
http://dx.doi.org/10.1103/PhysRevB.79.184429
http://dx.doi.org/10.1007/JHEP01(2010)110
http://dx.doi.org/10.1007/JHEP01(2010)110
http://arXiv.org/abs/1106.2484
http://dx.doi.org/10.1103/PhysRevLett.62.1694
http://dx.doi.org/10.1103/PhysRevB.42.4568
http://dx.doi.org/10.1126/science.1091806
http://dx.doi.org/10.1103/PhysRevB.70.144407
http://dx.doi.org/10.1103/PhysRevB.75.235116
http://dx.doi.org/10.1103/PhysRevB.75.235116
http://dx.doi.org/10.1103/PhysRevLett.106.046402
http://dx.doi.org/10.1103/PhysRevLett.106.046402
http://dx.doi.org/10.1103/PhysRevLett.106.157202
http://dx.doi.org/10.1103/PhysRevB.84.245127
http://dx.doi.org/10.1103/PhysRevB.84.245127
http://dx.doi.org/10.1016/0003-4916(78)90252-X
http://dx.doi.org/10.1103/PhysRevLett.47.1556
http://dx.doi.org/10.1103/PhysRevLett.47.1556
http://dx.doi.org/10.1139/p55-081
http://dx.doi.org/10.1016/j.aop.2004.05.006
http://dx.doi.org/10.1016/j.aop.2004.05.006
http://arXiv.org/abs/cond-mat/0105540
http://dx.doi.org/10.1103/PhysRevB.67.115104
http://dx.doi.org/10.1103/PhysRevLett.65.923
http://dx.doi.org/10.1142/S0217979290000206
http://dx.doi.org/10.1103/PhysRevB.77.054411
http://dx.doi.org/10.1103/PhysRevB.77.054411
http://dx.doi.org/10.1103/PhysRevB.70.075104
http://dx.doi.org/10.1103/PhysRevB.70.075104


[58] L. Balents, L. Bartosch, A. Burkov, S. Sachdev, and
K. Sengupta, Phys. Rev. B 71, 144508 (2005).

[59] O. I. Motrunich and A. Vishwanath, arXiv:0805.1494 and
references therein.

[60] M. P. A. Fisher and D.H. Lee, Phys. Rev. B 39, 2756
(1989).

[61] A. L. Fetter and P. C. Hohenberg, in Superconductivity,
edited by R.D. Parks (Marcel Dekker, New York, 1969),
Vol. 2.

[62] J. Carlstrom, E. Babaev, and M. Speight, Phys. Rev. B 83,
174509 (2011).

[63] Geometric Phases in Physics, edited by A. Shapere and
F. Wilczek, Advanced Series in Mathematical Physics,
Vol 5 (World Scientific, Singapore, 1988).

[64] Fractional Statistics and Anyon Superconductivity,
edited by F. Wilczek (World Scientific, Singapore,
1990).

[65] M. Barkeshli and J. McGreevy, Phys. Rev. B 86, 075136
(2012).

[66] J. Alicea, O. I. Motrunich, M. Hermele, and M. P.A.
Fisher, Phys. Rev. B 72, 064407 (2005).

[67] D. Bak and S.-J. Rey, J. High Energy Phys. 09 (2010)
032.

[68] A. Bayntun, C. P. Burgess, B. P. Dolan, and S.-S. Lee,
New J. Phys. 13, 035012 (2011).

[69] O. Domenech, M. Montull, A. Pomarol, A. Salvio, and
P. J. Silva, J. High Energy Phys. 08 (2010) 033.

[70] S. Sachdev, ‘‘The quantum phases of matter,’’ 25th Solvay
Conference on Physics, ‘‘The Theory of the Quantum
World’’, Brussels, Oct 2011.
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