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The Julia-Toulouse approach for condensation of charges and defects is used to show that the bosonized

Schwinger model can be obtained through a condensation of electric charges in 1þ 1 dimensions. The

massive model is derived by taking into account the presence of vortices over the electric condensate,

while the massless model is obtained when these vortices are absent. This construction is then

straightforwardly generalized for arbitrary dþ 1 spacetime dimensions. The d ¼ 3 case corresponds to

the large N chiral dynamics of SUðNÞ QCD in the limit N ! 1.
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I. INTRODUCTION

Schwinger model [1,2] is the name given to electro-
dynamics in 1þ 1 dimensions. This model was originally
examined by Schwinger as an example where mass and
gauge invariance coexists compatibly. While the classical
theory is confining due to the linear behavior of the
Coulomb interaction in 1þ 1 dimensions, quantum effects
can modify this picture. The quantum theory with massless
fermions is exactly solvable (i.e., all the Green’s functions
of the model can be obtained in closed form) and electric
probe charges are screened due to the mass acquired by the
gauge boson due to fermionic fluctuations [1–4]. On the
other hand, in the quantum theory with massive fermions
(which is not exactly solvable), electric probe charges
interact via an effective potential that features both, a
screening piece and a linear confining term. For large
intercharge separations the confining term prevails as
long as the theta-vacuum angle is different from � and
the probe charges are not integer multiples of the dynami-
cal fermionic charges, in which case the confining term
vanishes [2–4].

The quantized versions of both, the massless and mas-
sive Schwinger models, possess exact bosonic representa-
tions in 1þ 1 dimensions, where the fermions are replaced
by scalar bosons. This quantum fermion-boson map, called
bosonization, has been obtained in the literature by using
different techniques, as for instance, by computing the
fermionic determinant, through loop and derivative expan-
sions, etc. (see Ref. [5] for a review on the subject).

In this article we present a new path for obtaining the
bosonized versions of both, the massless and massive
Schwinger models. This new construction is realized by
considering a condensation of electric charges in 1þ 1

dimensions via the Julia-Toulouse approach (JTA) for
condensation of charges and defects [6–9]. The massless
Schwinger model is obtained when there are no vortices
over the electric condensate (complete condensation) and
the massive Schwinger model is obtained by taking into
account the contribution of these defects (incomplete
condensation).
The 1-form A1 is the gauge connection with maximal

rank that one can define in 1þ 1 dimensions. As observed
in Ref. [10], the general properties of the bosonized version
of the Schwinger model are associated with this fact and,
consequently, these general properties could be extended
for arbitrary dþ 1 dimensions by working in terms of a
maximal rank gauge connection Ad. By taking this obser-
vation into account, we show that the bosonized versions
of the massless and massive Schwinger models can be
straightforwardly generalized for arbitrary dþ 1 space-
time dimensions by considering the condensation of
d-currents Jd minimally coupled to a maximal rank gauge
connection Ad. Such a (dþ 1)-dimensional generalization
of the bosonized versions of the massless and massive
Schwinger models, however, contrary to what happens in
1þ 1 dimensions, is not associated to a fermion-boson
map in higher dimensional spacetimes. Indeed, as we shall
discuss, the (3þ 1)-dimensional extension of the boson-
ized version of the massive Schwinger model corresponds
to the large N chiral dynamics of the (3þ 1)-dimensional
SUðNÞ QCD in the limit N ! 1, extending a previous
observation reported in Ref. [10].
For uses of the maximal rank gauge connection in other

physical scenarios, see, for example Refs. [11,12]. The
results that we shall present here may be of interest for
the lines of investigation developed in these references.
The JTA [6,7] is a prescription used to construct a low

energy effective theory describing a system with con-
densed charges or defects, having previous knowledge of
the model that describes the system in the regime with
diluted charges or defects and also of the symmetries
expected for the condensed regime. Based mainly on
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Refs. [6,7], and taking also into account the ideas devel-
oped in Refs. [13,14] regarding the formulation of ensem-
bles of charges and defects, we introduced in Refs. [8,9] a
generalization of the JTA, which we shall use in this article.
In particular, we are going to work with the dual JTA [8],
which is defined in the dual picture to the one originally
proposed in Ref. [7].

II. THE BOSONIZED SCHWINGER MODEL
AS AN ELECTRIC CONDENSATE

In this article we shall use natural units of c ¼ ℏ ¼ 1.
We begin working in Minkowski spacetime R1;1.

The partition function describing the interaction of a
gauge boson with external electric charges dilutely distrib-
uted through the space is given by

Zd½J1� ¼
Z
G:F:

DA1 exp

�
i
Z
R1;1

�
� 1

2
dA1 ^ �dA1

� eA1 ^ �J1
��
; (1)

where J1 ¼ ��2 is the electric current that localizes the
worldline of the electric charge e, the physical boundary of
the world-surface of the electric Dirac string [15] (electric
Dirac brane) localized by the Chern-Kernel �2. The acro-
nym ‘‘G.F.’’ in the functional integral stands for some
arbitrary gauge fixing procedure that must be implemented
at some stage of the calculations.

By integrating out the gauge field we obtain a Coulomb
interaction between the classical electric charges, which is
confining in this dimensionality. This is easy to understand
in physical terms: with only one spatial dimension, the
electric field flows as it was in the interior of a straight flux
tube and, consequently, the Coulomb potential is linear in
the intercharges separation in 1þ 1 dimensions. However,
this picture is changed when we take quantum effects into
account. For this sake, we shall apply the JTA in the sequel
to study the effects produced by a condensation of electric
charges (after this step, one can include electric probe
charges into the system and compare the new results with
the classical confining picture).

The JTA has a very definite physical meaning: it con-
stitutes a mass generation mechanism for arbitrary p-forms
due to the condensation of topological p-currents (charges
or defects). The form of the effective theory describing the
low energy excitations of the condensate of topological
currents is obtained via JTA by following the cornerstone
of effective field theories, that is, the symmetry content of a
determined physical system. A given symmetry content
strongly constrains the form of the effective model for the
condensate of topological currents, such that one can reach a
great variety of different physical phenomenologies depend-
ing on the nature of the condensing currents: some ex-
amples, including condensates with and without violation
of discrete spacetime symmetries and also Lorentz invari-
ance violation, can be found in Ref. [8]. The specific way by

which the JTA links the diluted and condensed phases is
through the addition of a certain fugacity in the partition
function, corresponding to the complex exponential of an
activation term for the condensing currents, which is respon-
sible for accounting for changes in the number of charges
or defects in the system, allowing a proliferation of these
objects. The specific form of the fugacity is determined by
the symmetries expected for the condensed phase and by the
requirement that the effective theory obtained describes the
low-lying excitations of the established condensate: in this
way, only terms in lowest order in a derivative expansion of
the Chern-Kernels of the condensing currents compatible
with a given set of symmetries are retained in the expression
for the fugacity. Such an approach is sufficient to account for
the dominant contribution for the dynamics of the conden-
sate in the low energy regime. Furthermore, as a conse-
quence of this condensation process, there is generation of
mass for the initially massless p-forms present in the diluted
phase.
To implement the JTA here, we begin by adding to the

Boltzmann factor in (1) an activation term for the electric
currents (which effectively gives dynamics to the electric
Dirac branes) such that it preserves the relevant symme-
tries of the system (P, T, Lorentz and the local gauge
symmetry) and gives the dominant contribution for the
dynamics of the electric condensate in the low energy
regime [8,9,14]:

Sactivation½J1� ¼
Z
R1;1

�1

2�
J1 ^ �J1

¼
Z
R1;1

1

2�
d ��2 ^ �d � �2; (2)

where � is an adimensional free parameter of the
JTA which we shall fix afterwards by comparison with
the results obtained by using bosonization techniques.
Introducing also a formal sum over (the branes Poincare-
dual to) ��2, we obtain the partition function defining the
electric condensed regime:

Zc :¼
X
f��2g

Z
G:F:

DA1 exp

�
i
Z
R1;1

�
� 1

2
dA1 ^ �dA1

� eA1 ^ d ��2 þ 1

2�
d ��2 ^ �d ��2

��
: (3)

Introducing into (3) the identity 1¼R
D�P2�½�P2���2�,

we rewrite the partition function for the electric condensed
regime as

Zc ¼
Z
G:F:

DA1D � P2

� X
f��2g

�½�P2 � ��2�
�

� exp

�
i
Z
R1;1

�
� 1

2
dA1 ^ �dA1 � eA1 ^ d � P2

þ 1

2�
d � P2 ^ �d � P2

��
: (4)
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Next, we make use of a generalized version of the
Poisson’s identity (GPI) [14,16]:

X
f��2g

�½�P2 � ��2� ¼
X
f��0g

exp

�
2�i

Z
R1;1

��0 ^ �P2

�

¼ X
f�0g

exp

�
2�i

Z
R1;1

d2x�0ð�P2Þ
�
;

(5)

where �0 is the brane Poisson-dual to �2. The GPI works
as a geometric analogue of the Fourier transform: when
the brane configurations on the left-hand side of (5)
proliferate (condense), the brane configurations on the
right hand side become diluted and vice versa (see
Appendix A of Ref. [16] for a detailed discussion and
derivation of the GPI in the general case). Hence, the
proliferation of the electric Dirac branes �2 (which is
directly associated to the proliferation of the electric
currents J1 that live on their boundaries) is accompanied
by the dilution of the branes of complementary dimension
�0 and vice versa, which tells us that the branes �0 must
be interpreted as vortices (defects) over the electric
condensate.

Using (5) and redefining �P2 ¼:
ffiffiffiffi
�

p
�, we rewrite (4) as

Zc ¼
Z
G:F:

DA1D� exp

�
i
Z
R1;1

�
� 1

2
dA1 ^ �dA1

� e
ffiffiffiffi
�

p
A1 ^ d�þ 1

2
d� ^ �d�

��
ZV½��; (6)

where

ZV½�� ¼ X
f�0g

exp

�
i
Z
R1;1

d2x2�
ffiffiffiffi
�

p
�0�

�
; (7)

is the vortex partition function. Equations (6) and (7)
constitute the result of the use of the JTA for deriving the
effective low energy theory of an electric condensate in
1þ 1 dimensions, being � the scalar field describing the
electric condensate.

Now, to make explicit contact with the Schwinger
model, we must consider the vortex contribution formally
encoded in (7).

Case 1: The massless Schwinger model
Let us suppose that the system is in a state with complete

electric condensation, i.e., there are no vortices over the
electric condensate such that the partition function (7) is
trivial (�0 ! 0 ) ZV½�� ! 1). In this case, the partition
function (6) gives the bosonized version of the massless
Schwinger model:

Zm¼0
c ¼

Z
G:F:

DA1D� exp

�
i
Z
R1;1

�
� 1

2
dA1 ^ �dA1

� effiffiffiffi
�

p A1 ^ d�þ 1

2
d� ^ �d�

��
; (8)

where we fixed the JTA parameter � ¼ ��1 by compari-
son with the result obtained using bosonization techniques
(see, for example Ref. [3]).
By including electric probe charges into this system via

a minimal coupling with the gauge field, one finds that
the probe charges are screened by the electric condensate
(see, for example Ref. [4] for a detailed discussion). This
result already shows that the classical confining picture is
changed when quantum effects (electric condensation) are
taken into account.
Case 2: The massive Schwinger model
Let us suppose now that the system is in a state with

incomplete electric condensation, i.e., there are vortices
over the electric condensate such that the partition function
(7) is not trivial. In the present case, one can give a precise
prescription to realize the sum over point-vortices formally
encoded in (7). For this sake, we are going to adopt the
dilute gas approximation [17,18].
We begin byWick-rotating (7) to the Euclidean spaceR2

(t � �itE, d2x � �id2xE, �0 � �i�E
0 , � � �E),

where the sum over vortices is translated into a sum over
instantons [17]:

ZE
V½�E� ¼

X
f�E

0
g
exp

�
�i

Z
R2

d2xE2
ffiffiffiffi
�

p
�E

0�E

�
; (9)

where we used that � ¼ ��1. First, we consider the con-
tribution of a single instanton with winding numberþ1 for
the partition function ZE

V½�E�:
Z
R2

d2x�Ez exp

�
�i

Z
R2

d2xE2
ffiffiffiffi
�

p
�ð2ÞðxE � x�EÞ�EðxEÞ

�

¼
Z
R2

d2x�Ez expf�i2
ffiffiffiffi
�

p
�Eðx�EÞg; (10)

where z is the vortex fugacity (which gives the probability
density of existence of a single instanton in space-time
with winding number þ1) and we are integrating over all
the possible locations x�E of the instanton. Summing over
all the possible configurations of the system with an arbi-
trary number of instantons with winding number þ1,
assuming that the instantons do not interact among them-
selves, we have for ZE

V½�E�:
X1

Nþ¼0

1

Nþ!

�Z
R2

d2x�Ez expf�i2
ffiffiffiffi
�

p
�Eðx�EÞg

�
Nþ

¼ exp

�Z
R2

d2xEze
�i2

ffiffiffi
�

p
�EðxEÞ

�
; (11)

where the factor ðNþ!Þ�1 was introduced due to the fact
that the instantons are indistinguishable. Taking also into
account the contribution of an arbitrary number of anti-
nstantons with winding number �1 and neglecting the
contribution of instantons and antinstantons with higher
winding numbers (which are exponentially suppressed in
the partition function if we assume a small fugacity), we
get (see also Ref. [8])
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ZE
V½�E� � exp

�Z
R2

d2xEze
�i2

ffiffiffi
�

p
�EðxEÞ

�

� exp

�Z
R2

d2xEze
þi2

ffiffiffi
�

p
�EðxEÞ

�

¼ exp

�Z
R2

d2xE2z cosð2
ffiffiffiffi
�

p
�EðxEÞÞ

�
: (12)

Hence, the net effect of the instanton or vortex contribution
is to generate a cossine for the scalar field [17,18]. Wick-
rotating (12) back to Minkowski and substituting the result
into (6), we get the bosonized version of the massive
Schwinger model:

Zm�0
c ¼

Z
G:F:

DA1D� exp

�
i
Z
R1;1

�
� 1

2
dA1 ^ �dA1

� effiffiffiffi
�

p A1 ^ d�þ 1

2
d� ^ �d�

þ 2z cosð2 ffiffiffiffi
�

p
�Þd2x

��
: (13)

If we compare (13) with the result obtained using boson-
ization techniques, we fix the vortex fugacity to be

z ¼ me expð�Þ
4�3=2 , where m is the fermion mass and � is the

Euler constant (see, for example Ref. [3]). We then realize
that the condition for small fugacity (which allows one to
ignore the contribution of vortices with higher winding
numbers) corresponds to the small coupling regime.

By including electric probe charges into this system via
a minimal coupling with the gauge field, one finds that the
probe charges interact via an approximate effective poten-
tial that features two parts: a screening piece plus a linear
confining term. The confining term prevails for large inter-
charge separations, as long as the theta-vacuum angle is
different from � and the probe charges are not integer
multiples of the charge of the electric condensate, in which
case the confining term vanishes, restoring the screening
phase. The theta-vaccum angle is introduced in the calcu-
lations as an integration constant in the evaluation of the
interaction potential between the probe charges and corre-
sponds to a (generally) nonvanishing background electric
field (see, for example Ref. [4] for a detailed discussion).

The connection between the vortex contribution and the
mass of the fermions in 1þ 1 dimensions is discussed in
detail in Ref. [17]. There, it is pointed out that an index
theorem establishes the equality between the index of
the massless Dirac operator (that is given by the differ-
ence between zero modes of the Dirac operator with posi-
tive and negative chiralities) and the Pontryagin index
(topological charge or winding number) of the vortices.
In the presence of vortices, this topological charge would
be nonvanishing and, hence, there would be necessarily
null eigenvalues of the massless Dirac operator in the
fermionic determinant, in which case it would vanish.
Therefore, for the massless Schwinger model, the vortex
contribution is completely suppressed by the massless

fermions. The situation is quite different in the massive
case, since the massive Dirac operator has no zero modes
and the vortex contribution is nontrivial in this case.

III. (dþ 1)-DIMENSIONAL GENERALIZATION OF
THE BOSONIZED SCHWINGER MODELVIA JTA

One of the great advantages of the JTA is that it allows a
straightforward generalization of the preceding construc-
tion for arbitrary dþ 1 spacetime dimensions. For this
sake, we begin by considering the partition function
describing the interaction of a maximal rank gauge con-
nection Ad with external topological currents Jd dilutely
distributed through a (dþ 1)-dimensional Minkowski
spacetime with metric diagð�;þ; � � � ;þÞ [19]:

Zd½Jd� ¼
Z
G:F:

DAd exp

�
i
Z
R1;d

�ð�1Þd
2

dAd ^ �dAd

� eAd ^ �Jd
��
; (14)

where Jd ¼ ��dþ1. The JTA is implemented, as before, by
adding to the Boltzmann factor in (14) the following
activation term for the topological condensing d-currents:

Sactivation½Jd� ¼
Z
R1;d

�1

2�1�d
Jd ^ �Jd

¼
Z
R1;d

1

2�1�d
d ��dþ1 ^ �d ��dþ1; (15)

where � is a phenomenological JTA parameter with mass
dimension, being the partition function for the condensed
regime given by

Zc :¼
X

f��dþ1g

Z
G:F:

DAd exp

�
i
Z
R1;d

�ð�1Þd
2

dAd ^ �dAd

þ ð�1ÞdeAd ^ d ��dþ1

þ 1

2�1�d
d ��dþ1 ^ �d ��dþ1

��
: (16)

By repeating the same steps between Eqs. (3) and (6), we
rewrite (16) as

Zc ¼
Z
G:F:

DAdD� exp

�
i
Z
R1;d

�ð�1Þd
2

dAd ^ �dAd

þ ð�1ÞdmAd ^ d�þ 1

2
d� ^ �d�

��
ZV½��;

(17)

where m :¼ e�ð1�dÞ=2 is the topological mass [20] gener-
ated by the condensation of topological d-currents and

ZV½�� ¼ X
f�0g

exp

�
i
Z
R1;d

ddþ1x2��ð1�dÞ=2�0�

�
(18)

is the vortex partition function. As before, we can evaluate
the vortex contribution approximately by considering a
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small vortex fugacity z and the (dþ 1)-dimensional
generalization of the bosonized version of the massive
Schwinger model reads

Zc ¼
Z
G:F:

DAdD� exp

�
i
Z
R1;d

�ð�1Þd
2

dAd ^ �dAd

þ ð�1ÞdmAd ^ d�þ 1

2
d� ^ �d�

þ 2z cosð2��ð1�dÞ=2�Þddþ1x

��
: (19)

The (dþ 1)-dimensional generalization of the bosonized
version of the massless Schwinger model, corresponding to
a complete condensation of d-currents, is recovered from
(19) by taking the vortex fugacity z to vanish.

IV. APPLICATION: THE d ¼ 3 CASE
AND LARGE N CHIRAL DYNAMICS

Let us now consider the d ¼ 3 case of the preceding
construction and its connection with the large N chiral
dynamics of the (3þ 1)-dimensional SUðNÞ QCD [21].

By writing down the vacuum-to-vacuum transition am-
plitude in a given theta-vacuum for QCD, one identifies a
CP violating term given by [22]

L � ¼ �
g2

32�2
Tr½F2 ^ F2�; (20)

where g is the QCD coupling constant, F2 ¼ dA1 þ A1 ^
A1 and A1 ¼ Aa

1T
a, with fTag being the set of the N2 � 1

generators of the suðNÞ algebra. The action associated to
the Lagrangian density (20) is a surface term, which is
nonvanishing due to instanton configurations of the non-
Abelian connection.

It was pointed out in Ref. [23] that one can rewrite
the theta-term (20) in terms of an Abelian 3-form A3

according to

L � ¼ �dA3 ¼ �� � F; (21)

where F :¼ �F4 ¼ �dA3, being the Abelian 3-form A3 a
composite field defined by the trace of the non-Abelian
Chern-Simons 3-form. It can be shown that under an
arbitrary SUðNÞ gauge transformation, A3 transforms like
an Abelian connection; furthermore, it can be shown that
the 2-point correlation function of the composite field A3

corresponds to a Coulomb propagator, and hence A3

behaves as a massless colorless collective field propagating
a long-range interaction [23,24]. At this point, one could
aim to construct an effective action for the Abelian field A3.
The simplest one corresponds to the very low energy limit
(where the masses of the quarks and hence, the masses of
the mesons, are taken to infinity) of the very large N
approximation for the effective action of QCD describing
the pseudo-Goldstone bosons (pseudoscalar mesons) asso-
ciated to the chiral symmetry breaking produced by the
quark condensate [24]:

Seffd ½A3; J3� �
Z
R1;3

�
�1

2
dA3 ^�dA3 þ �dA3 � eA3 ^ �J3

�
;

(22)

where the mesons were integrated out in the above referred
approximations and we also added the last term in (22)
corresponding to a source J3 for the Abelian field A3. In
(22), we absorbed into the parameters � and e a constant
with mass dimension 2 corresponding to the square root of
the vacuum topological susceptibility (compare with equa-
tions (8) and (16) of Ref. [24]). But this, apart from the
theta-term, is exactly the diluted phase for the sources J3 in
the d ¼ 3 case of (14).
It is important to notice that the field strength F ¼

�F4 ¼ �dA3 propagates no dynamical degrees of freedom
in 3þ 1 dimensions, since it can be shown from the
equations of motion coming from (22), that F is just a
constant in spacetime [24]. Hence, the composite field A3,
although responsible for setting a constant background
field F into the theory, does not imply in the presence of
any dynamical massless colorless collective excitations of
the gluons in the QCD spectrum, what is desirable, other-
wise it would enter in conflict with the expectation that
there is a mass gap in QCD [24].
If the sources J3 undergo an incomplete condensation

process, there being vortices (instantons) over the bubble
condensate, the effective action for the condensed phase
can be read off from (19), taking into account the theta-
term coming from (22):

Seffc ½A3; �� ¼
Z
R1;3

�
� 1

2
dA3 ^ �dA3 þ �dA3 �mA3

^ d�þ 1

2
d� ^ �d�þ 2z cos

�
2�

�
�

�
d4x

�
:

(23)

Integrating out A3, we obtain

Seffc ½�� ¼
Z
R1;3

�
1

2
d� ^ �d�� Vð�Þd4x

�
; (24)

where the potential energy is given by

Vð�Þ ¼ 1

2
ðm�� �Þ2 � 2z cos

�
2�

�
�

�
: (25)

Redefining� � �
2�� (which gives a trivial Jacobian in the

path integral) and absorbing a constant factor of 2�
e into the

arbitrary constant �-parameter, we rewrite (25) as

Vð�Þ ¼ e2

8�2
ð�� �Þ2 � 2z cosð�Þ; (26)

which has exactly the same form of the potential energy
obtained in Ref. [21] when considering the large N effec-
tive action for QCD with the quark masses fixed and the
limit N ! 1, case in which the different flavors are
decoupled and the potential energy (26) refers to a given
flavor. In Ref. [21], the pseudoscalar field � describes a
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single meson (pseudo-Goldstone boson of the chiral sym-

metry breaking) of the one flavor potential (26), with e2

8�2 ¼
aF2

�

2N and 2z ¼ F2
��

2, where F� is the meson decay con-

stant, � is a constant contributing to the meson mass and a
is a constant of order 1 when N ! 1.

As observed in Ref. [21], the potential energy (26) is the
same one obtained by bosonizing the massive Schwinger
model in d ¼ 1, a fact that is made clear in the formalism
developed here, given that the effective action (23) is the
generalization of the bosonized version of the massive
Schwinger model generated via the JTA (19) for the
d ¼ 3 case. Notice also that the generalized version of
the massless Schwinger model in d ¼ 3 was already
reported in Ref. [10] to be connected with the large N
chiral dynamics of SUðNÞ QCD. As commented below,
this is the case for a massless quark. Here we extended this
connection by considering the generalized version of the
massive Schwinger model in d ¼ 3, which corresponds to
the realistic case with massive quarks.

Let us put some results into perspective. As stated
before, the effective action (22) is the limit of the effective
action (23) when the meson mass is very large. From the
JTA point of view, given the above identifications of pa-
rameters, this means that the topological mass m in (23) is
much lower than the vortex fugacity z, and hence there are
many vortices (instantons) over the bubble condensate,
which is effectively destroyed at large distances (low en-
ergy regime), making the system return to the diluted phase
(22). Another interesting limit is the chiral limit, which is
equivalent to consider a massless quark. From the JTA
point of view, this means that the vortex fugacity vanishes,
and hence there are no instantons in the system (complete
bubble condensation). As discussed in Ref. [21], when
there is a massless quark in the system, the �-parameter
can be eliminated from the theory via field redefinitions
and, in this case, there would be no strong CP violation:
this is in consonance with the fact that in the JTA picture a
massless quark would imply in the complete suppression of
the instantons, which are the basic reason behind the strong
CP violation.

V. CONCLUSION

In this article we showed how the bosonized versions
of the massless and massive Schwinger models can be

constructed via JTA by considering a condensation of
electric charges in 1þ 1 dimensions. The massless case
is obtained when there are no vortices over the electric
condensate (complete condensation) and the massive case
is derived when these defects are present (incomplete
condensation). We then discussed the (dþ 1)-
dimensional generalization of both, the massless and
massive bosonized Schwinger models, associating their
emergence with the condensation of topological
d-currents minimally coupled to a maximal rank gauge
connection Ad. In d ¼ 3, this generalization gives the
large N approximation for the effective action of SUðNÞ
QCD in the limit N ! 1 [21].
As a final remark, we point out the fact that the electric

condensate interpretation obtained here via JTA for
fermionic radiative corrections in the two-dimensional
electrodynamics is analogous to the induction of the
Chern-Simons term via JTA due to a P and T violating
electric condensate in three-dimensional electrodynamics
[8,25]: the Maxwell-Chern-Simons theory [26–28] consti-
tutes the low energy effective theory derived by integrating
out the fermionic degrees of freedom in 2þ 1 dimensions.
A mass term for the fermions in 2þ 1 dimensions violates
P and T and even for massless fermions these discrete
space-time symmetries are violated due to the parity
anomaly. This is the reason for electric condensates with
different symmetries in 1þ 1 and 2þ 1 dimensions. These
two explicit examples of fermionic radiative corrections
being described as electric condensation processes show
that the JTA can be made more general than just a dual
description of the Higgs mechanism as originally proposed
in Ref. [7]. This conclusion is rather reinforced by the fact
that there is no Higgs mechanism in 1þ 1 dimensions [29],
but still the Schwinger mechanism can be described via
JTA as showed in this article. Also, the Higgs mechanism is
a mass generation mechanism for 1-form gauge fields,
while the mass generation mechanism associated to the
condensation of arbitrary extended topological p-currents
described by the JTA can give mass for arbitrary p-form
gauge fields.
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