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Recent investigations have shown that inflation can be driven by four-dimensional strongly interacting

theories nonminimally coupled to gravity. We explore this paradigm further by considering composite

inflation driven by orientifold field theories. The advantage of using these theories resides in the fact that at

large number of colors they feature certain super Yang-Mills properties. In particular, we can use for

inflation the bosonic part of the Veneziano-Yankielowicz effective theory. Furthermore, we include the 1=N

as well as fermion mass corrections at the effective Lagrangian level allowing us to explore the effects of

these corrections on the inflationary slow-roll parameters. Additionally, the orientifold field theory with

fermionic matter transforming according to the two-index antisymmetric representation for three colors is

QCD. Therefore, this model can be interpreted as a new nonminimally coupled QCD theory of inflation.

The scale of composite inflation, for all the models presented here, is of the order of 1016 GeV. Unitarity

studies of the inflaton scattering suggest that the cutoff of the model is at the Planck scale.
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I. INTRODUCTION

Little is known about the mechanism underlying the
inflationary physics [1–3] postulated to occur soon after
the birth of our Universe. The simplest models of inflation
make use of elementary scalar fields. However, the funda-
mental constituents of space-time are spinors. Scalars can
be built out of the fundamental spinors but not vice versa. It
is, therefore, interesting to investigate whether the inflaton
field can emerge as a composite state of a new strongly
interacting gauge theory [4,5]. Holographic models of com-
posite inflation are also being currently investigated [6,7].

To investigate this class of inflationary models one may
use low-energy effective theories constrained by the global
symmetries of the theory, as well as conformal symmetries.
There is an interesting class of models featuring only
fermionic and gluonic degrees of freedom for which one
can use also supersymmetric relations [8,9] to further
constrain the low-energy effective theory. These are gauge
theories with fermionic matter transforming according to
the two-index representation of the underlying SUðNÞ
gauge dynamics. These theories can be connected to N ¼
1 super Yang-Mills (SYM) at a large number of colors and
are also known as orientifold theories.1 The field content of
the theories is reported in the Table I.

The name of orientifold field theory is borrowed from
string-theory terminology. In fact, these theories were shown
to live on a brane configuration of type 0A string theory
[12,13] which consists of NS5 branes, D4 branes, and an
orientifold plane. The gauge groups in the parent and daugh-
ter theories are the same, and so are the gauge couplings.
In Ref. [14], the effective Lagrangians for orientifold

theories were constructed in terms of the relevant low-lying
color-singlet states. The effective Lagrangians of this type
have a long history [15–28] and are known to concisely
encode nonperturbative aspects of strongly coupled theo-
ries, such as the vacuum structure and symmetries, both
exact and anomalous.2

We will start by summarizing the low-energy effective
Lagrangians [14] and then couple them nonminimally to
gravity. Since the bosonic sector of the nonsupersymmetric
orientifold field theories at large N maps into the one of
SYM, we identify first the gluino-ball state in SYMwith the
inflaton. We then explore the consequences on the infla-
tionary dynamics. We will then include the 1=N corrections
as well as the small gluino mass corrections. We investigate
the inflationary parameters and check the consistency of our
results against the slow-roll conditions and inflaton-inflaton
scattering. We discover that the inflationary dynamics to
lowest order in 1=N is insensitive to corrections coming
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1For matter transforming according to the two-index antisym-

metric representation it was recognized some time ago [10] that
these theories can be viewed as a large N generalization of QCD
different from the ’t Hooft large N. Yet, another distinct large N
generalization of QCD was introduced in Ref. [11].

2Among recent developments in this direction was the dem-
onstration of how the information on the center of the SUðNÞ
gauge group (i.e., ZN) is efficiently transferred to the hadronic
states [29]. This demonstration led to a deeper understanding of
the deconfining phase transition [30] in pure Yang-Mills theory.
When quarks were added, either in the fundamental or in the
adjoint representations of the gauge group, a link between the
chiral and deconfining phase transitions was uncovered [31].
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from the axial anomaly sector of the orientifold field
theories. However, it does depend on the corrections to
the vacuum energy and the gluino mass term. The orienti-
fold field theory with two-index antisymmetric matter and
three colors is QCD with one flavor. Therefore, one can
interpret the model as a new nonminimally coupled one-
flavor QCD inflationary model. For all the models the
compositeness scale is shown to be around 1016 GeV and
the unitarity constraint from inflaton scattering is safely
around the Planck scale.

II. NONMINIMAL SUPER
YANG-MILLS INFLATION

Before considering the coupling to gravity it is instruc-
tive to briefly review the construction of the SYM effective
Lagrangian while setting up the notation.

A. Super Yang-Mills effective action and setup

The Lagrangian of SUðNÞ supersymmetric gluodynamics
is3

L ¼ 1

4g2

Z
d2�TrW2 þ H:c:

¼ � 1

4g2
Ga

��G
a�� þ 1

2g2
DaDa þ i

g2
�a��D�

��a; (1)

where g is the gauge coupling, Ga
�� is the gauge field

strength, �a is the gluino field, and Da the auxiliary field.
The vacuum angle is set to zero and

TrW2 � 1

2
Wa;�Wa

� ¼ � 1

2
�a;��a

�: (2)

The effective Lagrangian in supersymmetric gluodynamics
was constructed by Veneziano and Yankielowicz (VY) [23].
In terms of the composite color-singlet chiral superfield S,

S ¼ 3

32�2N
TrW2; (3)

it reads

LVY¼9N2

4�

Z
d2�d2 ��ðSSyÞ13þN

3

Z
d2�

�
Sln

�
S

�3

�
N�NS

�
þH:c:; (4)

where� is an invariant scale of the theory. The factor N2 is
singled out in the Kähler term to make the parameter �
scale as N0; see Eq. (9) below. The standard definition of
the fundamental scale parameter is [32]

�st ¼ �

�
16�2

�0g
2ð�Þ

�
�1=�

2
0
exp

�
� 8�2

�0g
2ð�Þ

�
; (5)

which for the SYM theory is exact [33] and reduces to

�3
SUSY YM ¼ �3

�
16�2

3Ng2ð�Þ
�
exp

�
� 8�2

Ng2ð�Þ
�
: (6)

The exact value of the gluino condensate is due to the
holomorphic property of SYM theory and in terms of
�3

SUSY YM reads [34,35]

hSi ¼ 9

32�2
�3

SUSY YM: (7)

Comparing with Eq. (4) one deduces that

�3 ¼ 9

32�2
�3

SUSY YM (8)

is N independent. The gluino condensate scales as N as it
should. To determine the normalization of the constant �,
we require the mass of the physical excitations to be N
independent,

�� N0: (9)

Indeed, the common mass of the bosonic and fermionic
components of S isM ¼ 2��=3. The chiral superfield S at

the component level has the standard decomposition SðyÞ ¼
’ðyÞ þ ffiffiffi

2
p

��ðyÞ þ �2FðyÞ, where y� is the chiral coordi-
nate, y� ¼ x� � i��� ��, and

TABLE I. The fermion sector of the orientifold theories. c
and ~c are two Weyl fermions, while G� stands for the gauge

bosons. In the left (right) parts of the table the fermions are in the
two-index symmetric (antisymmetric) representation of the
gauge group SUðNÞ. UVð1Þ is the conserved global symmetry
while the UAð1Þ symmetry is lost at the quantum level due to the
chiral anomaly.

SUðNÞ UVð1Þ UAð1Þ
c fijg 1 1

~c fijg �1 1

G� Adj 0 0

SUðNÞ UVð1Þ UAð1Þ
c ½ij� 1 1

~c ½ij� �1 1

G� Adj 0 0

3The Grassmann integration is defined in such a way thatR
�2d2� ¼ 2.
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’ ¼ �3�a;��a
�

64�2N
;

ffiffiffi
2

p
� ¼ 3

64�2N
½Ga

���
a;� þ 2iDa�a

��;

F ¼ 3

64�2N

�
� 1

2
Ga

��G
a�� þ i

2
Ga

��
~Ga�� þ f:t:

�
;

(10)

where f.t. stands for (irrelevant) fermion terms.
The complex field ’ describes the scalar and pseudo-

scalar gluino balls while � is their fermionic composite
partner and the F field is an auxiliary field. To construct the
low-energy effective potential one uses the axial and trace
anomalies. These are

@�J� ¼ N

16�2
Ga

��
~Ga;��; J� ¼ � 1

g2
�a��

��a; (11)

and

#
�
� ¼ � 3N

32�2
Ga

��G
a;��; (12)

where J� is the chiral current and #�� is the standard

symmetric energy-momentum tensor.
In SYM theory these two anomalies belong to the same

supermultiplet [36] and, hence, the coefficients are the
same (up to a trivial 3=2 factor due to normalizations).
In the orientifold theory, the coefficients of the chiral and
scale anomalies coincide only at N ¼ 1; the subleading
terms are different.

Summarizing, the component bosonic form of the VY
Lagrangian is

LSYM ¼ N2

�
ð’ �’Þ�2

3g��@�’@� �’� VSYM;

VSYM ¼ 4�N2

9
ð’ �’Þ23 ln

�
’

�3

�
ln

�
�’

�3

�
;

(13)

with � as the constant. We consider this effective action
to be the large N limit of orientifold field theories and
neglect all the fermionic degrees of freedom which are
supposed to decouple in this limit.

B. Super Yang-Mills nonminimally coupled to gravity

The next step is to take the scalar component part of the
superglueball action and couple it nonminimally to gravity.
The action in the Jordan frame reads

SJ
SYM ¼

Z
d4x

ffiffiffiffiffiffiffi�g
p �

�M2 þ N2	ð’ �’Þ13
2

g��R��

þ N2

�
ð’ �’Þ�2

3g��@�’@� �’� VSGI

�
: (14)

We focus on the modulus of ’ which we shall continue
to call ’. The gravity-composite dynamics model is diago-
nalized by imposing a conformal transformation,

g�� ! �2g��; �2 ¼ M2 þ N2	’
2
3

M2
P

: (15)

We then land in the Einstein frame and the action reads

SE
SYM ¼

Z
d4x

ffiffiffiffiffiffiffi�g
p �

�M2
P

2
g��R��

þN2

�
��2

�
1þ�f

N2	2

3M2
P

��2’
2
3

�
g��’�4

3@�’@�’

���4VSYMð’Þ
�
; (16)

where f ¼ 1ð0Þ is the metric (Palatini) formulation and

VSYMð’Þ ¼ 4�N2

9
’

4
3

�
ln

�
’

�3

��
2
: (17)

We now introduce a canonically normalized field 

related to ’ via

1

2
~g��@�
ð’Þ@�
ð’Þ ¼ 1

2

�
d


d’

�
2
~g��@�’@�’; (18)

with

1

2

�
d


d’

�
2 ¼ N2

�
��2

�
1þ �f

N2	2

3M2
P

��2’
2
3

�
’�4

3: (19)

In terms of the canonically normalized field we have

SE
SYM ¼

Z
d4x

ffiffiffiffiffiffiffi�g
p �

� 1

2
M2

Pg
��R��

þ 1

2
g��@�
@�
�Uð
Þ

�
; (20)

with

Uð
Þ � ��4VSYMð’Þ: (21)

C. Slow-roll parameters for nonminimally coupled
super Yang-Mills

We will analyze the dynamics in the Einstein frame and,
therefore, define the slow-roll parameters in terms ofU and
,

� ¼ M2
P

2

�
dU=d


U

�
2
; � ¼ M2

P

�
d2U=d
2

U

�
;

N ¼ 1

M2
P

Z 
Ini


end

U

dU=d

d
: (22)

We consider here the large field regime, i.e.,

’
2
3 � M2

N2	
: (23)

In this limit � becomes, in the ’ variable,

�SYM ’ 1

ðlnð ’
�3ÞÞ2ðð�	Þ�1 þ f � 13Þ

: (24)
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Inflation ends when �SYM ¼ 1, such that

’SYM
end

�3
¼ exp

0
@ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðð�	Þ�1 þ f � 13Þ
q

1
A: (25)

In the large field limit the number of e-folding is

N ’ 1

2

��
ð�	Þ�1 þ f � 1

3

��
ln

�
’

�3

��
2
�
’ini

’end

: (26)

A simple way to determine the value of’ini associated to
when inflation starts is to require a minimal number of
e-foldings compatible with a successful inflation, i.e.,
N ¼ 60. This leads to

’SYM
ini

�3
’ exp

0
@ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

121

ð�	Þ�1 þ f � 13

s 1
A: (27)

Further relevant information can be extracted using the
WMAP [37] normalization condition,

Uini

�SYMini

¼ ð0:0276MPÞ4: (28)

The label ini signifies that this expression has to be
evaluated at the beginning of the inflationary period. This
condition helps estimating the magnitude of the nonmini-
mal coupling. We deduce

Uini ’ 4�M4
P

9N2	2

�
ln

�
’SYM

ini

�3

��
2 ’ 4�M4

P

9N2	2

�
121

ð�	Þ�1 þ f � 13

�
;

(29)

and

�SYMini ’ 1�
ln
�
’SYM
ini

�3

	�2�ð�	Þ�1 þ f � 13
	

’ 1�
121

ð�	Þ�1þf�13

��
ð�	Þ�1 þ f � 13

	 ¼ 0:0083: (30)

We can, therefore, determine the magnitude of the non-
minimal coupling which depends, in principle, on whether
we use the Palatini (f ¼ 0) or the metric formulation
(f ¼ 1). In the case of the Palatini formulation, we have

N2	 ’ 1:1� 1010�2 Palatini: (31)

The situation for the metric case turns out to be subtle
because of the interplay between the structure of the non-
minimal coupling to gravity and the large N counting. In
the limit in which ð�	Þ�1 � 1

3 , we find

N	 ’ 1:83� 105
ffiffiffiffi
�

p
Metric: (32)

With � of order unity we can still allow for relatively large
values of N satisfying (32). The phenomenologically large
value of 	 is common to the case of Higgs inflation [38],

and other earlier approaches [39–44]. A more complete
treatment for all these models would require to discover
in the future a mechanism for generating such a large
coupling.
The knowledge of the nonminimal coupling allows us to

estimate the initial and final value of the composite glue-
ball field ’, which reads

ð’SYM
end Þ13�e

ffiffiffiffiffiffiffi
�N2	

p
3N �;

�
’SYM

ini

	1
3�e

ffiffiffiffiffiffiffiffiffiffiffi
121�N2	

p
3N � Palatini

ð’SYM
end Þ13�1:8�;

�
’SYM

ini

	1
3�570� Metric with

ð�	Þ�1�1

3
: (33)

In the large N limit, also the Palatini formulation leads to
initial and final values for ’ within a few times �.
It is possible to further relate the strongly coupled scale

� with the Planck mass recalling that in the large field
regime (23) we expect that on/near the ground state, we
have N2	�2 ’ M2

P. This corresponds to assuming that on
the vacuum� ¼ 1. Assuming for the reduced Planck mass
the value 2:44� 1018 GeV, we obtain

� ’ 0:57ffiffiffiffi
N

p
�1=4

� 1016 GeV: (34)

These results are encouraging and indicate that it is pos-
sible to conceive an inflationary scenario driven by a SYM-
like composite inflaton. This value is not only consistent
with the results found in Refs. [4,5] but shows that it is
possible to lower the scale of composite inflation by
increasing the number of underlying colors. We recall
that � is given by the underlying theory and is expected
to be of order unity [45].

D. Inflaton scattering and its unitarity constraint

Next, we turn to the interesting question of the
constraints set by tree-level unitarity of the inflaton field.
According to the potential given above, the ground state
reads

h’i ¼ �3: (35)

It is worth noting here that the potential evaluated on the
ground state has zero energy. In addition, we are interested
in the large field regime which can be well approximated
by setting M ¼ 0. At the minimum of the potential, the
following relation naturally holds:

M2
P ’ N2	�2 ) � ¼ ’

1
3

�
: (36)

For later convenience in this section, we introduce the
field  possessing unity canonical dimension related to ’
as follows:

’ ¼ 3: (37)
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In the Einstein frame, we obtain

SE
SYM ¼

Z
d4x

ffiffiffiffiffiffiffi�g
p �

�M2
P

2
g��R��

þ 9N2

2�

�2

2

�
2þ 2

3
f�	

�
g��@�@�

� 4N2��4

�
ln

�


�

��
2
�
: (38)

Violation of tree-level unitarity of the scattering amplitude
concerns the inflaton field fluctuations � around its
classical time-dependent background cðtÞ during the
inflationary period

ð ~x; tÞ ¼ cðtÞ þ �ð ~x; tÞ: (39)

In first approximation it is possible to neglect the time
dependence of the classical field and write

ð ~xÞ ¼ c þ �ð ~xÞ: (40)

To estimate the actual cutoff of the tree-level scattering
amplitude we analyze independently the kinetic and potential
terms for the inflaton in the Einstein frame. Expanding the
kinetic term around the classical background, we obtain

3N2

2�

�2

2
c

ð6þ 2f�	Þð@�Þ2 X1
n¼0

ðnþ 1Þ ð��Þn
n

c

: (41)

It is possible to canonically normalize the first term of the
series, i.e., the kinetic term for a free field, by rescaling the
fluctuations as follows:

�

c

¼
ffiffiffiffi
�

p
� ~ffiffiffi

3
p

N�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið6þ 2f�	Þp : (42)

Under this field redefinition, we find

1

2
ð@� ~Þ2 X1

n¼0

ðnþ 1Þ ð� ffiffiffiffi
�

p
� ~Þn

ð18þ 6f�	Þn2ðN�Þn : (43)

For the potential term the higher-order operators are
also, respectively, of the form

ð ffiffiffiffi
�

p
� ~Þn

ð18þ 6f�	Þn2ðN�Þn : (44)

This implies that the tree-level cutoff for unitarity isffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
18þ 6f�	

�

s
N�: (45)

This result shows that the cutoff is background indepen-

dent. In the metric formulation, the cutoff is N�
ffiffiffiffiffiffi
6	

p �ffiffiffi
6

p
MP, i.e., a little higher than the Planck scale. Such a very

high cutoff means that unitarity does not constrain the
range of validity of the effective theory for composite
inflation, which is limited, however, from the composite-
ness scale of the theory.

III. ORIENTIFOLD INFLATION

We wish now to deform the supersymmetric effective
action to describe inflation driven by the gauge dynamics
of SUðNÞ gauge theories with one Dirac fermion in either
the two-index antisymmetric or symmetric representation
of the gauge group. Following [14] we start by recalling the
trace and axial anomalies for the orientifold theories,

#�
� ¼ 2N

�
N 	 4

9

�
ðFþ �FÞ

¼ �3

�
N 	 4

9

�
1

32�2
Ga

��G
a;��;

(46)

@�J� ¼ i
4N

3
½N 
 2�ð �F� FÞ ¼ ½N 
 2� 1

16�2
Ga

��
~Ga;��;

(47)

where the top (bottom) sign is for the antysimmetric (sym-
metric) theory and

’ ¼ � 3

32�2N
~c �;½i;j�
c �;½i;j�
 ; (48)

and F is given in Eq. (10). The gluino field of supersym-
metric gluodynamics is replaced here by two Weyl fields,
~c �;½i;j�
 and c �;½i;j�
 , which can be combined into one

Dirac spinor. The top (bottom) sign for the bracket in
~c �;½i;j�
 indicates antisymmetric (symmetric) color indices.

The color-singlet field ’ is bilinear in ~c �;½i;j�
 and c �;½i;j�
 .

A. 1=N: Orientifold effective action and then inflation

In this limit we can drop subleading 1=N terms in the
expressions for the trace and chiral anomaly. Then it is
clear that the anomalous currents map into the ones of
SYM. Therefore, the effective action built to saturate at
the tree-level trace and axial anomaly has the same form as
in Eq. (13). Hence, by keeping only the leading-N terms
only, one recovers the supersymmetry-based bosonic prop-
erties, i.e., degeneracy of the opposite-parity mesons and
the vanishing of the vacuum energy. Of course in this limit
the symmetric and the antisymmetric orientifold theories
are indistinguishable.
To parametrize the 1=N corrections at the effective

Lagrangian level, we use the results of Sannino and
Shifman [14] and write

LOI ¼ F ðNÞ
�
1

�
ð’ �’Þ�2=3@� �’@�’

� 4�

9
ð’ �’Þ2=3ðln �� ln�� �Þ

�
; (49)

where� is a numerical real and positive [14] parameter and
the field � and its complex conjugate are defined in (52),

� ¼ Oð1=NÞ; (50)

and

COMPOSITE INFLATION FROM SUPER YANG-MILLS . . . PHYSICAL REVIEW D 86, 125035 (2012)

125035-5



F ðNÞ ¼ N2ð1þ �0Þ with �0 ¼ Oð1=NÞ: (51)

However, the sign of �0 is unknown. In Ref. [14], one did
not have to take into account the leading 1=N corrections to
F ðNÞ since this function drops out from any physical
quantity. However, when coupled to gravity these correc-
tions cannot be neglected. We have also

� ¼ ’1þ�1 �’��2 ; �� ¼ �’1þ�1’��2 ; (52)

where �1;2 are parameters of order Oð1=NÞ,

�1 ¼ 
 7

9N
; �2 ¼ 
 11

9N
: (53)

The top (bottom) sign corresponds to the two-index anti-
symmetric (symmetric) theory. The scale and chiral dimen-

sions of �� and � are engineered to saturate the axial and
trace anomalies for the orientifold theories.

For the purpose of investigating the inflationary para-
digm we restrict the potential to the real part of the field ’
and write

LOI ! F ðNÞ
�

ð’Þ�4=3g��@�’@�’� VOIð’Þ; (54)

with

VOIð’Þ ¼ 4�0

9
’

4
3

�
ln

�
’

�3

�
2 � �

ð1þ �AÞ2
�
;

�0 � F ðNÞ�ð1þ �AÞ2; �A � �1 � �2:

(55)

To leading order in 1=N, we have

�0 ¼ N2�ð1þ 2�A þ �0 þOð1=N2ÞÞ;
�

ð1þ �2AÞ
¼ �þOð1=N2Þ:

(56)

Adding gravity, we have

SJ
OI ¼

Z
d4x

ffiffiffiffiffiffiffi�g
p �

�M2 þ N2	’
2
3

2
g��R�� þLOI

�
:

(57)

For the nonminimal coupling to gravity we have assumed,
for simplicity, the same as used for SYM. Neglected terms
in 1=N in the nonminimal coupling could be re-absorbed in
a redefinition of the function F . With this choice the only
1=N corrections come from the gauge sector.

The action in the Einstein frame reads

SE
OI ¼

Z
d4x

ffiffiffiffiffiffiffi�g
p �

�M2
P

2
g��R��

þF ðNÞ
�

��2

�
1þ �fN4

F ðNÞ
	2

3M2
P

��2’
2
3

�

� g��’�4
3@�’@�’���4VOIð’Þ

�
; (58)

with the same � as in the SYM case.

B. Orientifold slow roll parameters

In the large field regime ’2=3 � M2

N2	
, we obtain

�OI ’ �SYM

�
1þ 2

ðln ’
�3Þ2 �� 3

3þ f�	
�0
�
; with

�SYM ¼ 1

ðln ’
�3Þ2ðð�	Þ�1 þ f

3Þ
;

(59)

and ð�	Þ�1 ¼ 	�1=� defined first in (24). The value of the
field at the end of inflation can be determined by setting
�OIð’endÞ ¼ 1. We use perturbation theory in the small
parameters � and �0 and search for a solution to this
condition of the type,

’end ¼ ’SYM
end þ �’1 þ �0’0

1; with

’SYM
end ¼ �3e

ffiffiffiffiffi
3�	

pffiffiffiffiffiffiffiffi
3þf�	

p
:

(60)

The solution reads

’end ¼ ’SYM
end

2
41� 1

2�	ðð�	Þ�1 þ f
3Þ3=2

�0

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�	Þ�1 þ f

3

s
�

3
5: (61)

The number of e-foldings reads

N OI ’
�ðln ’

�3Þ2
2�	

�
1� 2 lnln ’

�3

ðln ’
�3Þ2 �þ �0

��
’ini

’end

: (62)

We fix the initial value of the inflaton field ’ini by
requiring a total of 60 e-foldings during inflation and
obtain

’ini ¼ ’SYM
ini

�
1þ ð1þ lnð11ÞÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�	Þ�1 þ f

3

s
�

11

� 11

2�	ðð�	Þ�1 þ f
3Þ3=2

�0
�
: (63)

For ð�	Þ�1 � 1=3 and in the metric case we get the
following range for inflation:

’1=3
ini

�
’ 570ð1þ 0:06�Þ;

’1=3
end

�
’ 1:8ð1þ 0:19�Þ Metric:

(64)

To take the limit above we have assumed �	 large at anyN
although strictly speaking at extremely large N this ap-
proximation may break down. However, for any large but
finite N we expect this result to hold.
Perhaps the most relevant result is that the slow-roll

parameters are insensitive to the breaking of holomorphic-
ity induced by �A, i.e., the corrections coming from the
mismatch between trace and axial anomaly coefficients.

CHANNUIE, JØRGENSEN, AND SANNINO PHYSICAL REVIEW D 86, 125035 (2012)

125035-6



The irrelevance of �A is due to the fact that all the slow-roll
parameters are defined as ratios of derivatives of the po-
tential divided by the potential itself. And �A appears only
in a function multiplying the overall potential to leading
order in 1=N. Therefore, the results are valid for both
orientifold field theories.

IV. ONE-FLAVOR QCD INFLATION

Another way to depart from a supersymmetric theory is
to add soft supersymmetric breaking operators such as the
mass for the gluino. FollowingMasiero and Veneziano [46]
one can, therefore, add the gluino mass term

�Lm ¼ � m

2g2
���� þ H:c: (65)

At the effective Lagrangian level, it reads

�Lm ¼ 4
m

2�
N2ð’þ �’Þ (66)

with � � g2N=8�2 the ’t Hooft coupling. We assume
here that the mass parameter is real and positive. If this
were not the case one can render it real and positive by
redefining the vacuum angle �. We will also assume that
softness condition m=� � �. One can, however, start
immediately from the orientifold theory where the mass
term reads

�Lm ¼ � m

g2
c � ~c � þ H:c: (67)

The color indices for the gluino and the orientifold field
theories are (implicitly) contracted to obtain color singlet
operators, while the spin indices are explicit and con-
tracted. In the large N limit this term, at the effective
Lagrangian level, maps exactly in the one above [14].
Since for three colors the orientifold field theory with
antisymmetric matter is QCD with one flavor we can,
therefore, study nonminimally coupled inflation driven
by a QCD-like theory even featuring a light fermion mass.

The effective Lagrangian augmented with the quark
mass reads [14]

L1F�QCD¼F ðNÞ
�
1

�
ð’ �’Þ�2=3g��@� �’@�’

�4�

9
ð’ �’Þ2=3ðln ��ln���Þ

�
þ4m

3�
N2ð’þ �’Þ;

(68)

where

� ¼ ’1þ�1 �’��2 ; �� ¼ �’1þ�1’��2 ;

�1 ¼ 7

9N
; �2 ¼ 11

2N
; � ¼ Oð1=NÞ;

(69)

V1F�QCD ¼ 4�0

9
’

4
3

�
ln

�
’

�3

�
2 � �

�
� 8N2m

3�
’: (70)

Here �0 assumes the same form of (56). The associated
slow-roll parameter epsilon expanded at the leading order
in �, �0 [defined in (51)], �A, and

m
� reads

�1F�QCD ’ �SYM

�
1þ 2

ðln ’
�3Þ2 �� 3

3þ f�	
�0

þ 2ð6þ lnð ’
�3ÞÞ

’1=3�ðlnð ’
�3ÞÞ2

m

�

�
: (71)

The dependence on �A � �1 � �2 is subleading to the order
we are investigating and, therefore, does not appear here.
This is so since it would necessarily come multiplied by m

� .

Imposing that the end of inflation occurs for �1F�QCD¼1
we obtain to the first order in �, �0, and m

� ,

’end ¼ ’SYM
end

�
1� 1

2�	ðð�	Þ�1 þ f
3Þ3=2

�0

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�	Þ�1 þ f

3

s
�þ ��1

exp½ð3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
	�1 þ f

3

q
Þ�1�

�
�
1þ 6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
	�1 þ f

3

s �
m

�

�
: (72)

In the metric formulation it collapses to:

’end ¼ �3e
ffiffi
3

p �
1þ �ffiffiffi

3
p þ ð1þ 2

ffiffiffi
3

p Þ
�e

1ffiffi
3

p
m

�

�
Metric; (73)

anticipating that 	 assumes a very large value.
However, for the initial value of the inflaton, obtained by

requiring 60 e-foldings, we get the same results for the
coefficients of � and �0 as in (63) while the coefficient for
m
� is cumbersome to write down explicitly. We, therefore,

opt for providing the result directly in the metric formula-
tion which reads

’ini ’ ’SYM
ini

�
1þ 1þ lnð11Þ

11
ffiffiffi
3

p �þ 0:46

�

m

�

�
: (74)

In the metric approach we have the following range for
inflation:

’1=3
ini

�
’ 570

�
1þ 0:06�þ 0:15

�

m

�

�
;

’1=3
end

�
’ 1:8

�
1þ 0:19�þ 0:83

�

m

�

�
Metric:

(75)

These results show that the inflationary slow-roll parame-
ters are not sensitive to the axial anomaly departure from
the supersymmetric limit. Furthermore, we learn that the
effects of a small nonzero negative vacuum energy induced
by the presence of a positive and real� term, of order 1=N,
leads to higher values of the inflaton field with respect to
the SYM values. Finally the effects of a quark mass are
similar to the 1=N corrections, albeit the sign of the
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corrections are sensitive to the � angle choice. Here we
have chosen a value of � leading to the same sign of the �
term.

V. CONCLUSIONS

We explored the paradigm of a nonminimally coupled
composite inflation further by considering orientifold field
theories. We have shown that the advantage of using these
theories is that at large number of colors they share certain

super Yang-Mills properties. Due to these properties we

were able to use for inflation the bosonic part of the

Veneziano-Yankielowicz effective theory. We have include

the 1=N and fermion mass corrections at the effective

Lagrangian level. This allowed us to determine the associ-

ated corrections on the inflationary slow-roll parameters.

Additionally, we showed that the scale of composite orienti-

fold inflation is of the order of 1016 GeV and that unitarity

for inflaton scattering leads to a cutoff at the Planck scale.
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