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The Casimir force between parallel lines in a theory describing condensed vortices in a plane is

determined. We make use of the relation between a Chern-Simons-Higgs model and its dualized version,

which is expressed in terms of a dual gauge field and a vortex field. The dual model can have a phase of

condensed vortices, and, in this phase, there is a mapping to a model of two noninteracting massive scalar

fields from which the Casimir force is readily obtained. We also discuss the details concerning the

boundary conditions required for the scalar fields and their association with those for the vectorial field.

We show that this association is subtle for the case of the transformations considered.
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I. INTRODUCTION

The Casimir effect is a manifestation of the quantum
vacuum fluctuations that can be tested at mesoscopic
scales. This quantum phenomenon has been of interest to
fundamental physics since its prediction by Casimir
in 1948 [1], and it has been studied extensively both
theoretically and experimentally since then (for some
recent reviews on both theory and experiments, see, e.g.,
Refs. [2,3]). In particular, many experiments have been
measuring the Casimir force with increasing precision. It is
then of increasing interest to look for possible novel situ-
ations where the theoretically computed Casimir force can
be confronted to experiments and where related quantum
phenomena, associated with the quantum vacuum, can then
be probed and tested in the laboratory.

In this work, we want to study how a vacuum state made
of topological excitations, more precisely, a vacuum con-
stituted of condensed vortices, will affect the Casimir force
between perfectly conducting parallel lines in a plane.
Let us recall that stable vortex configurations can appear
in important condensed matter systems, like in high-
temperature superconductors and superfluids (for a
detailed presentation, see, e.g., Ref. [4] and references
therein). There has being an increasing use of supercon-
ducting materials to study the Casimir effect (see, for
example, Ref. [5]). It has also been pointed out in
Ref. [6] that unusual behaviors of superconductors may
be found when the sizes of the samples shrink. But we note
that this is precisely the case, at the nanometer scales, that
we expect that the Casimir force to become more appre-
ciable. In the case of vortex-based superconducting detec-
tors [7,8], for instance, it can be expected that the Casimir
effect can possibly alter the microscopic parameters of
the detector, analogously to the case reported in Ref. [9].

Since superconductors can naturally form condensed
phases of vortices, it becomes a matter of interest to
investigate how a vacuum state constituted of a condensate
of vortex excitations would affect the Casimir force.
A vortex condensed phase constitutes a particular example
of a nontrivial vacuum state. The Casimir effect being a
manifestation of the quantum vacuum, it is then a funda-
mental problem to investigate how a vacuum state with
topological excitations can affect the Casimir force.
The simplest and, in our opinion, the most direct way for

studying a vortex condensate state is through the use of
dual transformations involving the field variables of the
original Lagrangian density. By following this procedure,
we can make explicit the system’s topological excitations
content. In the problem that we study in this work, these
topological excitations will be vortex ones. The duality
transformations are reminiscent of similar approaches first
used in condensed matter studies performed on the lattice
[10] and of routine use since then. Through a series of
appropriate dual transformations involving the original
fields in the functional action, an equivalent action is
obtained, in which the vortex excitations are made explicit.
By properly matching our dual action to a field theory
model, it is then possible to write it in terms of a vortex
field coupled to a vectorial field (for earlier implementa-
tions of this procedure, see, for example, the work done in
Refs. [11–13], and references therein).
Here we investigate the Casimir force for a massive

vectorial field in a Maxwell-Proca-Chern-Simons (MPCS)
model. Following the work in Refs. [12,13], we show
that this model can be seen as the dualized version of a
Chern-Simons-Higgs (CSH) model, in which the vortex
excitations of the CSH model are made explicit and
considered in a vacuum state. Vortex condensation in
Chern-Simons (CS)–type theories, particularly in self-
dual models, have been shown possible for some critical
value of the Chern-Simons parameter [14,15], with the
determination of the condensation point explicitly obtained
in Ref. [13]. The Casimir force for the dual MPCS type of
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model is studied here in this context, deep inside the vortex
condensate phase.

Irrespective of the connection of the dual MPCS model
with the CSH model, the study done in this work has an
interest of its own, which is associated with the determi-
nation of the Casimir force for massive vectorial fields.
Recall that the MPCS model represents, by itself, massive
photons in 2þ 1 dimensions, with the photon mass having
contributions from the usual Proca and the CS terms.While
the mass contribution coming from the Proca term can be
seen as having been generated through a symmetry break-
ing scalar field term, the contribution from the Chern-
Simons term is of purely topological origin [16]. The issue
of the Casimir force for a vectorial field is closely related to
important questions, from both experimental and theoreti-
cal points of views. For instance, in the case of 3þ 1
dimensions, the authors of Ref. [17] have analyzed the
existence of new expressions for the electromagnetic field
between conducting plates, where the photon has a possi-
bly non-null mass. They then study the dependence of the
Casimir force with the photon mass. Later, in Ref. [18], the
Proca equations were used to represent the photon mass. In
Ref. [9], it was considered the mass acquired by the photon
due to the spontaneous symmetry breaking that takes place
when a superconducting detector passes from its normal
(N) to the superconducting (S) state, as a consequence of
the detection of an external photon. In that reference, it was
argued that the Casimir effect can alter the S-N transition
in a detectable way and to be able to alter the microscopic
parameters of the detector. Also considered in Ref. [9] was
the viability of describing the Casimir force when the
corresponding Maxwell equations are replaced by the
Proca ones for massive photons.

The Casimir force between perfectly conducting parallel
lines in a plane for a MCS model has been determined
previously in Refs. [19–22]. In particular, it has already
been shown in Ref. [19] that the Casimir force obtained in
the MCS model is identical to that derived from a massive
noninteracting scalar field in 2þ 1 dimensions [23]. This
result can be understood from the fact that in both theories
the field satisfies the Klein-Gordon equation of motion and
both have only 1 degree of freedom. Note that, in this case,
the Chern-Simons term provides a mass term for the gauge
field, but this is a topological mass that still maintains the
field with only 1 (transverse) polarization degree of free-
dom. Besides, the boundary conditions (BCs) in both
models can be matched, making the Casimir force in
both models agree. On the other hand, in a symmetry-
broken case, a Proca mass term is generated for the gauge
field, which acquires a longitudinal polarization degree of
freedom, in addition to the transverse polarization. For the
case of the MPCS theory, the gauge field now has 2
polarization degrees of freedom. Similarly to the case of
the MCS theory, we now expect that the respective Casimir
force could be related to two massive noninteracting scalar

fields. In fact, it is well known that in this case the quantum
mechanical analogue of the MPCS theory is equivalent to
two noninteracting harmonic oscillators with distinct fre-
quencies [16]. At the quantum field theory level, this fact
must then correspond to the case of two noninteracting
massive scalar fields. This has been shown explicitly in
Ref. [24], where a mapping between the two theories was
constructed. However, in order to associate the correspond-
ing Casimir forces for both theories, a careful considera-
tion of the boundary conditions must be accounted for.
This issue was earlier discussed in Refs. [23,25]. Here we
will give a detailed account for the issue of the boundary
conditions when mapping our dual MPCS theory with
vortices with a model corresponding to two noninteract-
ing massive scalar fields. This will allow us then to
readily obtain the Casimir force for the model we are
studying here.
The remainder of this work is organized as follows. In

Sec. II, we introduce the MPCS model as a particular limit
of the vortex model considered in Ref. [13] and summarize
the relevant equations and relations that will be of rele-
vance for this work. In Sec. III, we discuss the mapping
that leads from the initial MPCS theory to a model of two
massive and noninteracting scalar fields. We also analyze
the respective mapping between the boundary conditions
needed for those two models. In Sec. IV, we then derive the
Casimir force related to a vacuum state of condensed
vortex excitations from the dual MPCS theory considered
and contrast the result with the case where vortex excita-
tions are absent. In Sec. V, we give our concluding remarks
and discuss possible extensions of our work. Finally, in the
Appendix, we give some technical details.

II. THE MPCS THEORYAS A DUAL MODEL
FOR VORTICES IN A PLANE

Let us initially consider the CSH model in 2þ 1 dimen-
sions, written in terms of a complex scalar field and an
Abelian gauge field, which here we will represent them by
� and h�, respectively. The quantum partition function and

the action of the model have the forms (in Euclidean space-
time and with indices running from 1 to 3)

Z ¼
Z

Dh�D�D�� expf�SE½h�; �; ���g; (2.1)

SE½h�; �; ��� ¼
Z

d3x

�
�i

�

4
����h�H��

þ jD��j2 þ Vðj�jÞ
�
; (2.2)

withH�� ¼ @�h� � @�h�,D� � @� þ ieh�, and� is the

CS parameter. Vðj�jÞ is a symmetry breaking polynomial
potential, independent of the phase of the complex scalar
field, and has a non-null vacuum expectation value (VEV)
jh�ij ¼ � � 0. As examples of Vðj�jÞ, we can cite the
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usual quartic order potential Vðj�jÞ ¼ �ðj�j2 � �2Þ2=4
and the sixth-order self-dual potential [26]: Vðj�jÞ ¼
e4ðj�j2 � �2Þ2j�j2=�2. By writing � in a polar form

� ¼ ð�= ffiffiffi
2

p Þ expði�Þ, the VEV for � becomes � ¼ �0=
ffiffiffi
2

p
.

The field equations associated with h� and � are known

to have a nontrivial solution associated with a vortex field
configuration [26]. When expressed in polar coordinates
ðr; �Þ, the nontrivial solution can be put in the generic form
that represents charged vortices:

�vortex ¼ 	ðrÞ expðin�Þ; (2.3)

h�;vortex ¼ n

e
hðrÞ@��; (2.4)

where n is an integer that can be interpreted as the vortex
topological charge and (	ðrÞ, hðrÞ) are obtained by numeri-
cally solving the classical field differential equations, sub-
jected to the BCs:

lim
r!0

	ðrÞ ¼ 0; lim
r!1	ðrÞ ¼ �; (2.5)

lim
r!0

hðrÞ ¼ 0; lim
r!1hðrÞ ¼ 1: (2.6)

A vortex represented by Eqs. (2.3) and (2.4) can be seen as
carrying an ‘‘electric’’ charge Q (the spatial integral of the
0 component of the density current j�) attached to a

magnetic flux � given by

� �
Z

d2xH12 ¼ Q

�
: (2.7)

This fact is a direct consequence of the presence of the
Chern-Simons term and also implies in an anyonic behav-
ior of the charge-flux composite, which has spin s ¼
Q�=ð4
Þ [27]. It can also be demonstrated that, when r
approaches infinity (or when it is sufficiently far from the
vortex core), the flux � becomes quantized. � in this case
is given by an integer multiple of flux quantum [27]:
� ¼ 2
n=e.

The vortex degrees of freedom present in the original
theory Eq. (2.2) can be made explicit through a series of
duality transformations [12,13]. The final result is a
theory of the form of a Maxwell-Chern-Simons-Higgs
(MCSH) model, where the vortex solutions, represented
by Eqs. (2.3) and (2.4), are associated with particles rep-
resented by a complex scalar field c that is coupled to a
dual vector field A�. The original fields and the dual fields,

at the classical level, are related to each other, e.g., by
�2ð@��þ eh�Þ ¼ ð�=eÞ����@�A�=ð2
Þ, where � is an

arbitrary parameter with mass dimension. The resulting
dual Euclidean action becomes equivalent to a MCSH
theory of the form [12,13]

Sdual ¼
Z

d3x

�
�2

16
2e2�2
0

F2
�� þ i

�2

8
2�
����A�@�A�

þ
��������@�c þ i

2�

e
A�c

��������2þVvortexðjc jÞ þLG

�
;

(2.8)

where F�� ¼ @�A� � @�A�, Vðjc jÞ is the effective poten-
tial term for the vortex field, andLG is a gauge fixing term.
Note that in the dual model, Eq. (2.8), the new CS coeffi-
cient appears inversely proportional to the initial one in
Eq. (2.2), � ! �1=ð4
2�Þ. This dualization of the CS
coefficient is a consequence of the transformations used
(see also Refs. [28,29]).
As argued in Refs. [14,15], there is a critical value for

the CS coefficient in the CSH theory, below which vortices
are expected to be energetically favorable to condense. In
terms of the dual action (2.8), this can be expressed in
terms of an existence condition for a VEV for the
dual vortex field, given in terms of the first derivative of

the potential with respect to the vortex field, V 0
vortexðjc j ¼

c 0=
ffiffiffi
2

p Þ ¼ 0, or, analogously, that the quadratic mass term
in the vortex potential be negative below some critical �c,
with�c determined by the condition on the second deriva-
tive of the effective vortex potential with respect to the
vortex field, V 00

vortexð� ¼ �cÞ ¼ 0. In Ref. [13], this critical
value has been obtained as given by �c ’ ðe2=
Þ ln6 and
shown to be robust against quantum corrections, changing
by no more than about 17%. In this work, we are interested
in deriving the Casimir force starting from the dual action
(2.8) considering the case in which vortex condensation is
favorable, i.e., for the region of parameters where�<�c.
Since the Casimir force is related to quantum vacuum

fluctuation of fields, if we want to determine an expression
for that force in the case of the MCSH theory of the form of
Eq. (2.8), we can, as an approximation, consider only small
variations of the vortex field around its nontrivial constant
VEV c 0. In other words, if we are deep inside the vortex
condensed phase, fluctuations of the vortex field can be
neglected, much like in the London approximation in con-
densed matter problems [4]. This approximation can then
be seen as a limiting case of Eq. (2.8), in which the term
j@�c þ 2i�A�c =ej2 in Eq. (2.8) gives rise to a Proca-like
term (i.e., we are in the vortex symmetry-broken phase in
the dual action), which will be written asm2A�A�. We can

also make use of the arbitrariness of � to rewrite Eq. (2.8)
in the form of a MPCS model (see also the Appendix).
Considering � � 2
e�0 and going back to Minkowski
space-time, the corresponding MPCS Lagrangian density
then becomes

L ¼�1

4
F��F��þ1

2
m2A�A�þ�

4
����A�@�A�; (2.9)

where in Eq. (2.9), for convenience, we have redefined the
parameters as
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� � 2e2�2
0=�; m � 4
�0c 0: (2.10)

The association of a covariant derivative of a field with a
mass term for a boson, in the broken vacuum state (for the
dual theory in our case), is a well known result. This is very
similar to the mechanism of mass generation for photons
inside superconductors, which can be explained in terms of
a symmetry breaking in the Landau-Ginzburg model for
superconductivity [30].

In the next section, the Casimir force related to the
theory described by Eq. (2.9) is determined by noticing
that it can be mapped to an equivalent model of two non-
interacting massive scalar fields, as mentioned in the intro-
duction, and by choosing the appropriate boundary
conditions for the corresponding scalar fields and the
dual vector field. In the association between the two theo-
ries, the two initial massive degrees of freedom of the
MPCS model are transposed to 2 degrees of freedom
represented by the scalar fields, as should be expected [16].

III. THE EQUIVALENT MODEL AND
THE MAPPING BETWEEN THE

BOUNDARY CONDITIONS

The MPCS theory given by Eq. (2.9) can be mapped,
after a sequence of mathematical transformations, in a
model of two noninteracting massive real scalar fields (�
and ’) in 2þ 1 dimensions [24]. Next we will explain the
main steps needed for this mapping and that will be useful
for setting the respective BCs needed in the calculation of
the Casimir force.

A. The MPCS theory equivalence to two
noninteracting scalar fields

From Eq. (2.9), the Euler-Lagrange equation for the dual
gauge field A� is

@�F
� þm2A þ�

2
���F�� ¼ 0; (3.1)

while the canonical momenta are


0¼ @L

@ _A0
¼0; 
i¼ @L

@ _Ai
¼Fi0þ�

2
�ijAj; (3.2)

where the indexes i and j vary from 1 to 2. The relation

0 ¼ 0 is a primary constraint of the model, which also
shows a secondary one, given by

@i

i þ�

4
�ijFij þm2A0 � 0: (3.3)

The primary and the secondary constraints are directly
related to the reduction of the number of degrees of free-
dom of the system (from 3 to 2). We also note that the
secondary constraint permits one to write A0 in terms of the
components Ai. This possibility can be seen as a direct
consequence of the fact that the vectorial field mass m is
non-null. As a consequence of the constraints, the physical

degrees of freedom of the system are represented by Ai and

i. The quantum partition function can now be written in
the form

Z ¼
Z

DAiD
i exp

�
i
Z

d3xð
i _Ai �H Þ
�
; (3.4)

where H is the physical Hamiltonian density

H ¼ 1

2

iKij


j þ 
iQijA
j þ AiS

ijAj; (3.5)

where Kij, Qij, and Sij are defined, respectively, by

Kij ¼ gij þ @i@j

m2
; (3.6)

Qij ¼ �

2

�
�ij þ 1

m2
@i ~@j

�
; ~@i ¼ �ij@

j; (3.7)

Sij ¼ 1

2

�
1þ �2

4m2

�
½ðr2 �m2Þgij þ @i@j�: (3.8)

It is important to note that, in order to write the
Hamiltonian density in the form Eq. (3.5), the surface
terms generated by the integrals of @ið
i@j


jÞ,
@ið
i�jkFjkÞ, @iðAj@iAjÞ, and @iðAj@jAiÞ are neglected.

As we will show below, this can be shown to be indeed
the case for the boundary conditions considered here.

Next,we introduce two newvariables ~Ai and ~
i (i ¼ 1, 2),
defined by the relations [24]

A1 ¼ ðÔ�1
1

~A1 � Ô�1
2

~A2Þ=ð2�Þ; (3.9)

A2 ¼ Ô1 ~

1 þ Ô2 ~


2; (3.10)


1 ¼ �Ô1 ~

1 � �Ô2 ~


2; (3.11)


2 ¼ �ðÔ�1
1

~A1 þ Ô�1
2

~A2Þ=2; (3.12)

where

� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ�2

4

s
(3.13)

and Ô1 and Ô2 are operators whose squares are given,
respectively, by

Ô 2
1 ¼

�
� 1

2
�2K11 � �Q12 þ S22

��1
; (3.14)

Ô 2
2 ¼

�
� 1

2
�2K11 þ �Q12 þ S22

��1
: (3.15)

We note from the above equations that, when acting the

operators Ô1 and Ô2 on some function [e.g., �ðxÞ], they
cannot be simply written in terms of the derivatives of the

function. In Eqs. (3.9) and (3.12), ~
i and ~Ai can be seen as
intermediate variables, related to the fields f�;’g and their
respective momenta f
�;
’g, as
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~
 1 ¼ 1ffiffiffi
2

p 
� � ffiffiffi
2

p �
S12

�
þQ22

2

�
�; (3.16)

~
 2 ¼ 1ffiffiffi
2

p 
’ � ffiffiffi
2

p ��S12

�
þQ22

2

�
’; (3.17)

~A 1 ¼
ffiffiffi
2

p
�; (3.18)

~A 2 ¼
ffiffiffi
2

p
’: (3.19)

The set of mathematical transformations shown above
makes it possible to rewrite the Hamiltonian of the MPCS
model as a sum of two separated and independent
Hamiltonians associated with two noninteracting scalar
fields ’ and �, i.e.,

H ¼1

2
½
2

�þ�ðm2
1�r2Þ��þ1

2
½
2

’þ’ðm2
2�r2Þ’�;

(3.20)

where

m1 ¼ ���

2
; m2 ¼ �þ�

2
: (3.21)

The relation between the model described by H ,
Eq. (3.20), and the MPCS theory can now be used to obtain
the Casimir force for the dual model Eq. (2.9), describing a
condensed vortex in the dual formalism. Since the Casimir
force for a massive scalar field in 2þ 1 dimensions is well
known [23], provided well defined BCs are considered, we
now turn our attention to this issue of setting the BCs for
the mapped theory.

B. The BC mapping between the gauge field
and the scalar fields

The method that we use here for determining the
Casimir force for the MPCS model is to associate it with
a model of scalar fields, as explained in the previous
subsection. The involved mathematical form of the
mapping between the vectorial field and the two scalar
fields, however, makes the problem of fixing the BCs in
this case a nontrivial one. Below, we will elaborate on this
problem of mapping the required BCs. As we will show
next, some usual BCs considered for scalar fields in
Casimir problems cannot be directly written in terms of
the vectorial field A� (at least in a simple form). This is an

important issue, since it is well known that the Casimir
force (for both its modulus and orientation) depends sig-
nificantly on the BCs considered.

Our aim is to obtain the Casimir force for the vectorial
field by equating it to a sum of two previously known
expressions of Casimir forces for two scalar fields that
have well-posed BCs. To be able to make this association
between the two models and to use the corresponding
Casimir force result known for massive scalar fields, the
BCs for the scalar fields have to be related to well-posed

and physically acceptable BCs for the vectorial field. As
an illustration, we could wonder whether the condition for
the fields � and ’ to vanish at the boundaries, which is a
well studied BC for scalar fields in Casimir problems,
would or not imply in perfect conductor BCs (for instance)
for the vectorial field and vice versa. To answer this ques-
tion requires having a clear map from f�;’g (and/or the
derivatives of those fields) into fA0; A1; A2g (and/or
the derivatives of those fields components), at least at the
boundaries. Hence, we need to invert the relations
fA0; A1; A2g ! f�;’g given in the previous subsection.

With this aim, we first use the expressions for ~A1 and ~A2,
given by Eqs. (3.18) and (3.19), and substitute them in
Eq. (3.9). From this, we obtain

A1 ¼ ½Ô�1
1 �� Ô�1

2 ’�=ð ffiffiffi
2

p
�Þ: (3.22)

Since the physical BCs are specified in configuration
space, we need to further elaborate on the meaning of the

terms Ô�1
1 � and Ô�1

2 ’ appearing in Eq. (3.22), in particu-
lar at the boundaries.
Let us consider initially the first term in Eq. (3.22),

Ô�1
1 �. Using the explicit forms of the operators K11,

Q12, and S22, given in Eqs. (3.6), (3.7), and (3.8), we can
write that

Ô 2
1� ¼ ðA� B@21Þ�1�; (3.23)

where two new constants A and B have been introduced in
the above equation and they are given, respectively, by

A � �2

2
� ��

2
þm2

2

�
1þ �2

4m2

�
;

B � � �2

2m2
� ��

2m2
� 1

2
� �2

4m2
:

(3.24)

From Eq. (3.23), we see that Ô�1
1 � can be written as

ðA� B@21Þ1=2�. Let us now evaluate this expression at
the boundaries. Our physical system is constrained in an
infinite strip, with boundaries at x ¼ 0 and x ¼ a. By also
considering that the field � obeys the Neumann BC, with
@1�ðx ¼ 0Þ ¼ @1�ðx ¼ aÞ ¼ 0, thus, at the boundaries,
we can write

ðA� B@21Þ� ¼ ð ffiffiffiffi
A

p þ i
ffiffiffiffi
B

p
@1Þ2�: (3.25)

From Eqs. (3.23) and (3.25), we can now write

Ô�2
1 � ¼ ðA� B@21Þ� ¼ ð ffiffiffiffi

A
p þ i

ffiffiffiffi
B

p
@1Þ2�: (3.26)

Hence, at the boundaries x ¼ 0 and x ¼ a, we determine
that

Ô�1
1 � ¼ ð ffiffiffiffi

A
p þ i

ffiffiffiffi
B

p
@1Þ� ¼ ffiffiffiffi

A
p

�: (3.27)

With these results, it is now easy to write the first term
of the left-hand side of Eq. (3.22) in the configuration
(coordinate) space and at the boundaries. We note that, in
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Eq. (3.27),
ffiffiffiffi
A

p
does not represent an eigenvalue of Ô�1

1 but
the mathematical expression of that operator itself (at the
boundaries).

We can use analogous considerations also for Ô�1
2 ’, the

second term in the left-hand side of Eq. (3.22). From

similar arguments as those used for Ô�1
1 � and consid-

ering the Neumann BC for ’, we can write, at the
boundaries, that

Ô�1
2 ’ � ffiffiffiffi

C
p

’; (3.28)

where the constant C in the above equation is defined as

C � �2

2
þ ��

2
þm2

2

�
1þ �2

4m2

�
: (3.29)

From the above results, we can write Eq. (3.22), at the

boundaries, as A1 ¼ ½ ffiffiffiffi
A

p
�� ffiffiffiffi

C
p

’�=ð ffiffiffi
2

p
�Þ. Hence we see

that A1 must also obey the Neumann BC:

@1A1ðx ¼ 0Þ ¼ @1A1ðx ¼ aÞ ¼ 0: (3.30)

Likewise, we can proceed analogously to obtain the
required conditions for A2. By making use of Eqs. (3.10),
(3.16), and (3.17), we obtain that

A2 ¼
ðÔ1
� þ Ô2
’Þffiffiffi

2
p � ffiffiffi

2
p

Ô1

�
S12

�
þQ22

2

�
�

� ffiffiffi
2

p
Ô2

�
� S12

�
þQ22

2

�
’: (3.31)

We can now use Eq. (3.31) to determine the behavior of A2

at the boundaries. Using Eqs. (3.27) and (3.28), we can

write (for x ¼ 0 and x ¼ a) that Ô1� ¼ �=
ffiffiffiffi
A

p
and

Ô2’ ¼ ’=
ffiffiffiffi
C

p
. Noticing that we are considering the

Neumann BC for � and ’, we can use the Hamilton
equations (
� ¼ @0� and 
’ ¼ @0’) and the explicit

forms of Q22 and S12 to rewrite Eq. (3.31) as

A2 ¼ @0�ffiffiffiffiffiffi
2A

p þ @0’ffiffiffiffiffiffi
2C

p : (3.32)

Equation (3.32) implies that A2 must also obey the
Neumann BC (since � and ’ are subjected to the same
type of BC).

The BCs considered for A1 and A2, together with the
Euler-Lagrange equations and the definitions of the ca-
nonical momenta, define the components of the strength
tensor at the boundaries. The behavior of those compo-
nents should not be confused with a new BC imposed to the
vectorial field but just direct implications of the Neumann
BCs considered for A1 and A2. For instance, from the
definition of 
i given in Eq. (3.2), we get

F20 ¼ 
2 þ�A1=2; (3.33)

or yet, from Eqs. (3.9), (3.12), (3.18), and (3.19),

F20 ¼ �

2
A1 �

ffiffiffi
2

p
2

½Ô�1
1 �þ Ô�1

2 ’�: (3.34)

Thus, at the boundaries and using Eqs. (3.27) and (3.28),
we obtain that

F20 ¼ �

2
A1 �

ffiffiffi
2

p
2

½ ffiffiffiffi
A

p
�þ ffiffiffiffi

C
p

’�: (3.35)

Since A1, �, and ’ are subjected to the Neumann BC,
Eq. (3.35) implies that F20 is also subjected to the same
BC.We can also write those BCs in terms of the dual tensor
F�, defined by F� � ����@�A�, to obtain

@1F
1ðx ¼ 0Þ ¼ @1F

1ðx ¼ aÞ ¼ 0: (3.36)

The result given by Eq. (3.36) can be seen as a BC for the
vectorial field and a direct consequence of the Neumann
BCs considered for A1 and A2, which, in turn, are a direct
consequence of the Neumann BCs considered for� and ’.
We can say that Eq. (3.36) is the analogue of the BC
F1ðx ¼ 0Þ ¼ F1ðx ¼ aÞ ¼ 0 considered in Ref. [19].
Also, we note that, in a similar manner to what occurred
in Ref. [19], the BC given by Eq. (3.36) can be seen as a
consequence of the Bianchi identity @�F

� ¼ 0, together
with the statics requirement @0F

0 ¼ 0, imposed to a per-
fect conductor. To better see this in a clearer manner, we
can first evaluate Eq. (3.1) for  ¼ 0 and  ¼ 1. Using the
BCs considered above, we can write (at the boundaries)

ð@1@1 þm2ÞA0 ��@2A1 þ @2F
20 ¼ 0; (3.37)

ð@0@0 þ @2@
2 þm2ÞA1 � @0@

1A0 þ�F20 ¼ 0: (3.38)

From Eq. (3.38), it is easy to see (by taking the derivative
with respect to x and using the BCs) that @0@1@

1A0 ¼ 0.
Using this result and representing A0 in terms of its trans-
verse Fourier transform (in y and t) [19],

A0ðx; y; tÞ ¼
Z d!

2

e�i!t

Z dk

2

eiky ~A0ðx; k;!Þ; (3.39)

we see that the condition @0@1@
1A0¼0 (valid for any t and y)

implies that@1@
1 ~A0ðx; k;!Þ ¼ 0 and, therefore,@1@

1A0 ¼ 0
(for x ¼ 0 and x ¼ a). We can now use this result in
Eq. (3.37) to obtain

m2A0 ��@2A1 þ @2F
20 ¼ 0: (3.40)

Since A1 and F20 are subjected to the Neumann BC,
Eq. (3.40) implies (by deriving with respect to x) that A0 is
also subjected to the same kind of BC as well: @1A0 ¼ 0 at
x ¼ 0 and x ¼ a. Hence, at the boundaries, we have

F2 ¼ F01 ¼ @0A1; (3.41)

where we made use of the BC for A0.
By considering that F0 is subjected to the statics require-

ment @0F
0 ¼ 0 [19], we get (at the boundaries, where

@1A2 ¼ 0)
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@0F
0 ¼ @0F12 ¼ @0@2A1 ¼ 0: (3.42)

We can now use Eq. (3.42) to establish the value of @2F
2

at the boundaries and show that it must vanish as well. This
result will then be used below, together with the Bianchi
identity, to obtain equally that @1F

1 ¼ 0, which can be
seen as a direct consequence of the Bianchi identity and the
statics requirement. First, we note that, since @1A0 ¼ 0 at
the boundaries, we can write for x ¼ 0 or x ¼ a that

@2F
2 ¼ @2F01 ¼ @2@0A1: (3.43)

By comparing Eqs. (3.43) and (3.42), we see that the statics
requirement implies that @2F

2 ¼ 0 at the boundaries.
Using this condition together with the statics requirement,
we get likewise that @1F

1 ¼ 0 at the boundaries. Thus, the
BC @1F

1 ¼ 0 can be seen as a consequence of the statics
requirement and the Bianchi identity considered here and
in Ref. [19].

By using the definitions of the canonical momenta and
the considerations about the behavior of Ai at the bounda-
ries, it is easy to prove that the surface terms generated
by the integrals of @ið
i@j


jÞ, @ið
i�jkFjkÞ, @iðAj@iAjÞ,
and @iðAj@jAiÞ, that appear in the generating functional,

will give no contributions. This justifies neglecting those
contributions to the partition function, as we have assumed.
Analogously, the BC considered here, written in terms
of �, ’, and their respective conjugate momenta, allow
us to neglect the surface terms related to those fields in
the process of obtaining the final Hamiltonian density
Eq. (3.20).

IV. THE CASIMIR FORCE

By having the relevant BCs fixed, it becomes straight-
forward to find the Casimir force for the dual MPCS theory
Eq. (2.9). This follows directly from the equivalence
between the original theory Eq. (2.9) with the model
represented by Eq. (3.20). The Casimir force for a massive
scalar field subjected to the Neumann (or Dirichlet) BC in
2þ 1 dimensions (which is also the same as the one
computed for a MCS theory) is [19,23]

fscalarðms; aÞ ¼ � 1

16
a3

Z 1

2msa
dy

y2

ey � 1
; (4.1)

where ms is the mass of the scalar field. The integral in
Eq. (4.1) is a second Debye function [31],

Z 1

x
dy

y2

ey � 1
¼ X1

k¼1

e�kx

�
x2

k
þ 2

x

k2
þ 2

1

k3

�
; (4.2)

indicating that the Casimir force due to massive scalars
exponentially decays with msa.

Using the equivalence between Eqs. (2.9) and (3.20), we
can then immediately write the corresponding Casimir
force, in the presence of a vortex condensate, as

fvortex ¼ fscalarðm1; aÞ þ fscalarðm2; aÞ; (4.3)

where m1 and m2, using Eqs. (2.10), (3.13), and (3.21), are
given by

m1ð2Þ ¼ e2�2
0

j�j

0
@ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 16
2c 2
0�

2

e4�2
0

s
� 1

1
A: (4.4)

For small values of mass ma & 1, Eq. (4.1) can be
expressed as

fscalarðms; aÞ ¼ � 1

8
a3

�
�ð3Þ � ðamsÞ2 þ 2ðamsÞ3

3

� ðamsÞ4
6

þOða5m5
sÞ
�
; (4.5)

where �ðxÞ is the Riemann zeta function. Using Eq. (4.4)
and keeping for simplicity up to the quadratic term in the
mass in Eq. (4.5), we obtain for the Casimir force Eq. (4.3)
the result

fvortex ’ � 1

4
a3

�
�ð3Þ �

�
e2�2

0

�

�
2
a2
�
1þ 8
2c 2

0�
2

e4�2
0

��
:

(4.6)

The result (4.3) allows us to immediately conclude that, in
the presence of vortex matter (c 0 � 0), the Casimir force
is always smaller in magnitude than in the absence of
vortices.
There are two mass scales in our original model

Eq. (2.2), which are the mass for the gauge field h� in

the broken phase, mh, and the mass for the scalar field �,
m�. These masses can be related to the relevant scales in

the context of superconductivity. The two naturally occur-
ring length scales in the theory of superconductivity are the
penetration depth � ¼ 1=mh, which describes the typical
length into which a magnetic field can penetrate into a
superconductor, and the coherence length 	 ¼ 1=m�,

which describes the length scale at which the order pa-
rameter varies in space. The ratio between these two
lengths is the Ginzburg-Landau parameter � ¼ �=	 �
m�=mh. Values of � > 1=

ffiffiffi
2

p
characterize type-II super-

conductors. Type-II superconductors in the presence of a
magnetic field can form a stable vortex state (the
Shubnikov phase [32]). On the other hand, materials with

� < 1=
ffiffiffi
2

p
characterize type-I superconductors. In type-I

superconductors, a magnetic field will destroy supercon-
ductivity without allowing the formation of a stable vortex
state.
Using the parameters of the original CSH model

Eq. (2.2) and taking as an example the self-dual potential
for the scalar field [26], we have that mh ¼ e�0 and
m� ¼ e2�2

0=�. The Ginzburg-Landau parameter becomes

� ¼ e�0=�. As shown in Ref. [13], vortices are energeti-
cally favored to condense for values of the CS para-
meter below a critical value �c � ðe2=
Þ ln6 ’ 0:57e2,
and for �<�c we have for the vortex condensate

c 2
0 � m�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6� expð
�=e2Þp

. By expressing Eq. (4.6) in
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terms of these values, we can write the fractional difference
for the Casimir force without vortices, fvortexðc 0 ¼ 0Þ, and
in the presence of vortices (c 0 � 0) as

�f

f
� fvortexðc 0 ¼ 0Þ � fvortexðc 0Þ

fvortexðc 0 ¼ 0Þ

� ðm�aÞ28
2 �
e2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6� expð
�=e2Þp

�ð3Þ � ðm�aÞ2
: (4.7)

If we use representative values consistent with the above
requirements of vortex condensation and in the regime of
validity of Eq. (4.6), e.g., �=e2 ¼ 0:1 and m�a ¼ 0:1, we

obtain for the ratio Eq. (4.7) the result �f=f ’ 0:14, rep-
resenting already a Casimir force that is 14% smaller due
the presence of a vortex condensate. For larger values of
m�a, or equivalently for m1ð2Þa * 1, we need to solve

numerically for the integral in Eq. (4.1), with the corre-
sponding Casimir force decreasing exponentially due to
the characteristic second Debye function displayed by the
Casimir force for a massive scalar particle Eq. (4.1). In
Fig. 1, we show the Casimir force Eq. (4.3) as a function of
arbitrary values for the vortex condensate.

The overall decrease of the Casimir force when in the
presence of a vacuum state with vortices can be interpreted
as follows. Vortices are expected to repel each other, much
like in the standard mean-field phenomenology for type-II
superconductors when vortices can form [32], e.g., in the
Shubnikov phase, where above some critical magnetic field
vortices are present. The repelling vortices will exert an
opposite, repulsive force on the external conducting lines
that tend to counterbalance the attractive Casimir force,
tending to make it smaller the larger the VEVof the vortex
condensate is. The resulting Casimir force can then be
made sufficiently small in the presence of vortex matter,
though it will never be exactly zero or become repulsive, as
it can be clear from the expression for the Casimir force
and from Eq. (4.4), where of course m1ð2Þ > 0.

V. CONCLUSIONS

We have studied in this work how a nontrivial vacuum
state, with condensed vortex excitations, affects the
Casimir force between two conducting lines in a plane.
By starting from a CSH model with field equations having
vortex solutions, and using its dualized form, which results
to be a MCSH model, vortex degrees of freedom are made
explicit. In the vortex condensation regime of the dual
model, it can be expressed simply as a MPCS theory, which
in turn can be mapped in a two noninteracting massive
scalar field model. Using the known expression for the
Casimir force for a massive scalar field, the corresponding
Casimir forces for the case of vortex matter between the
two lines have been computed.
We have shown that the Casimir force in the presence of

vortex matter is smaller than in the absence of vortices.
This result may have implications for Casimir effect
experiments using, e.g., superconductors, like in the next
generation of experiments [33], in the case that type-II
superconductors could eventually be used. The results we
have obtained are indicative that the presence of vortices in
the superconducting materials can make the Casimir effect
much smaller, making its detection through measurements
more difficult. Earlier experiments on the Casimir effect
performed by using superconducting materials, e.g., in
Ref. [5], investigated the variation of the Casimir energy
in the transition from the normal to the superconducting
state. Though this variation can be very small, it can have a
magnitude comparable to the condensation energy of a
semiconducting film. It has been shown in Ref. [5] that
this can cause a measurable increase in the value of the
critical magnetic field required for the transition. However,
these experiments were performed by using type-I super-
conductors, where a vortex state is absent. It is feasible to
expect, based on the results we have obtained here, that in
the case of type-II superconductors there should also be
observed another variation of the Casimir energy in the
transition from the superconducting state to the Shubnikov
phase, where vortices are formed.
Another important issue that must be cited is the possi-

bility of using our results to find the Casimir force, for the
MPCS theory, in the case of moving boundaries (i.e., the
dynamical Casimir effect). As mentioned in the introduc-
tion, it is expected that the Casimir energy plays an impor-
tant role in superconductors, especially at the nanometer
scale. Recently, the first experimental observation of the
dynamical Casimir effect in a superconductor circuit [34]
has brought great attention to this matter. Some of the
considerations that we have done here are also valid in
the dynamical case. Of course, where we set the boundaries
(e.g., x ¼ 0 and x ¼ a) is of decisive importance for
determining the expression for the Casimir force.
However, the mapping between the initial MPCS theory
and the model of the scalar fields makes use only of the
values of the derivatives of the functions�,’, and Ai at the

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.5

1.0

1.5

2.0

0 a1 2

16
a

f v
or

te
x

FIG. 1. The Casimir force as a function of the vortex
condensate c 0, for the choice of parameters �=e2 ¼ 0:1 and
�0a

1=2 ¼ 1.
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boundaries. But the value of x itself at those boundaries is
never actually needed there at any step. In other words, the
mapping used here is expected also to be valid in the case
of moving boundaries, as long as the BCs remain valid
(e.g., a perfect conductor parallel to the y axis, in a move-
ment in the x direction). Hence we conclude that we can
use the same arguments used here to study the dynamical
Casimir effect for the MPCS model. However, to find the
Casimir force in that case, we must know the force for a
massive scalar field between moving boundaries, which is
an issue that we intend to treat in a future work.
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APPENDIX: THE ENERGY-MOMENTUM TENSOR
AND THE CASIMIR FORCE

The Casimir force for the dual theory is expressed, as
usual, in terms of the VEV of the T11 component
of the symmetrized energy-momentum tensor [19,22]:
force=length ¼ h0jT11j0i. Thus, we can first write

T�� ¼ F�F� þm2A�A� � 1

2
g��ðF�F

� þm2AA
Þ;
(A1)

where, for the sake of simplicity, we made use of the
definition of the dual tensor F�:

F� � 1

2
����F��: (A2)

Usually, the components F� are associated to the compo-
nents of the ‘‘electric’’ and ‘‘magnetic’’ fields (F1 ¼ �Ey,

F2 ¼ Ex, and the scalar B ¼ F0). In this work, Ex, Ey, and

B may or may not (in the case of the dual gauge field)
represent a physical massive electromagnetic field (we are
just borrowing an usual nomenclature). Hence, h0jT11j0i at
the boundaries can be written in terms of VEVs of products
like A�A� and derivatives of them, taken at x ¼ 0 or x ¼ a
(the explicit values of x at the boundaries will not be
necessary for our purposes). Following Ref. [19], we write
those VEVs, at x ¼ 0, as

h0jA�ðxÞA�ðxÞj0ijx1¼0 ¼ lim
x1!x0

1
¼0
h0jA�ðxÞA�ðx0Þj0i; (A3)

where x and x0 stand for points in the three-dimensional
space-time. But the VEVs in the right-hand side of
Eq. (A3) are the two-point functions of the model, which
can be written in terms of the functional derivatives of the
normalized generating functional Z½J�, where J is a
source:

h0jA�ðxÞA�ðx0Þj0i ¼ � �2Z½J�
�J�ðxÞ�J�ðx0Þ

��������J¼0

¼ � �2

�J�ðxÞ�J�ðx0Þ

�
�RDA� expðiSþ i

R
JA

ÞR
DA� expðiSÞ

�
J¼0

:

(A4)

The derivatives appearing in Eq. (A4) are independent of
the norm of the field. This also shows that the Casimir force
should also be independent of the normalization of the
fields. For instance, the arbitrary mass parameter � appear-
ing in Eq. (2.8) can be put as a global multiplicative
constant �2 in all terms in Eq. (2.9) and be reabsorbed in
a redefinition of the norm of A�.
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