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Bulk properties of a Fermi gas in a magnetic field
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We calculate the number density, energy density, transverse pressure, longitudinal pressure, and
magnetization of an ensemble of spin one-half particles in the presence of a homogenous background
magnetic field. The magnetic field direction breaks spherical symmetry causing the pressure transverse to
the magnetic field direction to be different than the pressure parallel to it. We present explicit formulas
appropriate at zero and finite temperature for both charged and uncharged particles including the effect of
the anomalous magnetic moment. We demonstrate that the resulting expressions satisfy the canonical
relations ) = —Pjand P, = P — MB, with M = —9€) /9B being the magnetization of the system. We
numerically calculate the resulting pressure anisotropy for a gas of protons and a gas of neutrons and
demonstrate that the inclusion of the anomalous magnetic increases the level of pressure anisotropy in

both cases.
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I. INTRODUCTION

The determination of the bulk properties of a Fermi gas
in the presence of a magnetic field is important for under-
standing neutron stars and the early-time dynamics of the
quark gluon plasma created in relativistic heavy ion colli-
sions. In the presence of a uniform magnetic field, both the
matter and the field contributions to the spacelike compo-
nents of the energy-momentum tensor become anisotropic.
The degree of pressure anisotropy increases as the magni-
tude of the magnetic field increases. In this paper we revisit
the calculation of the bulk properties of a Fermi gas of spin
one-half particles in a uniform magnetic field with the goal
of unambiguously determining the pressure anisotropy
from first principles including the effect of the anomalous
magnetic moment.

As mentioned above, there is currently considerable
interest in the behavior of matter in the presence of high
magnetic fields. Neutron stars, for example, are known to
possess high magnetic fields. More specifically, magnetars
[1-7] are believed to have surface magnetic fields as strong
as 10'*-10"5 G. Based on such surface magnetic fields, one
could expect magnetic fields in the interior of magnetars to
be on the order of 10°-~10'" G. There have been many
previous studies of the effect of magnetic fields on neutron
stars and magnetars focusing on the effect of magnetic
fields on the equation of state of the matter composing
the star including hadronic matter, quark matter, and
hybrid stars composed of hadronic matter with a quark
matter core [8—48].

Among these references some authors have simply
assumed that the system continues to be describable in
terms of an energy density and an isotropic pressure deriv-
able from standard thermodynamic relations, while other
authors have included the fact that the background mag-
netic field breaks the spherical symmetry of the system.
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The breaking of the spherical symmetry has two distinct
contributions: (i) the matter contribution to the energy-
momentum tensor and (ii) the field contribution to the
energy-momentum tensor. For charged particles the pres-
ence of a magnetic field causes the pressure transverse to
and longitudinal to the local magnetic field direction to be
different, with the level of pressure anisotropy increasing
monotonically with the magnitude of the magnetic field.
The same occurs for uncharged particles that have a
nonvanishing anomalous magnetic moment as we will
demonstrate.

There have been dynamical models of neutron stars
which have attempted to include the effect of high mag-
netic fields on the three-dimensional structure of neutron
stars [49-54]. Some of these studies have self-consistently
included modifications of the general relativistic metric
necessary to describe the breaking of spherical symmetry
by the neutron star’s magnetic field. However, to the best
of our knowledge there has not been a study which has
simultaneously included the general relativity aspects,
effects of magnetic fields on the equation of state, and
effects of pressure anisotropy on the static and dynamical
properties of a high-magnetic-field neutron star. In order
to complete this program it is necessary to first under-
stand all sources of pressure anisotropy due to magnetic
fields.

Another area in which there has been a significant
amount of attention focused on the behavior of matter
subject to high magnetic fields is the consideration of the
first fm/c after the collision of two high-Z ions in a
relativistic heavy ion collision. Because of the large num-
ber of protons in the colliding nuclei, magnetic fields on the
order of 10'8-10'° G are expected to be generated at early
times after the initial nuclear impact [55-59]. The exis-
tence of such high magnetic fields prompted many research
groups to study how the finite temperature deconfinement
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and chiral phase transitions are affected by the presence of
a background magnetic field. These studies have included
direct numerical investigations using lattice quantum chro-
modynamics (QCD) [60-63] and theoretical investigations
using a variety of methods including, for example, pertur-
bative QCD studies, model studies, and string-theory
inspired anti—de Sitter/conformal field theory (AdS/CFT)
correspondence studies [64—87].

In order to have more a comprehensive understanding
of the behavior of matter in a background magnetic field,
we begin with the basics and study Fermi gases consisting
of charged and uncharged spin one-half particles includ-
ing the effect of the anomalous magnetic moment. Many
of the results obtained here are already available in the
literature; however, the results for the transverse pressure
including the effect of the anomalous magnetic moment
have not appeared previously. For the sake of complete-
ness, we present the results for all of the components of
the matter contribution to the energy-momentum tensor
with and without an anomalous magnetic moment as a
point of reference for future applications. In this paper we
consider systems at both zero and finite temperature. For
zero temperature systems, we demonstrate by explicit
calculation that the grand potential =€ — un=—P),
where € is the energy density, n is the number density, P
is the pressure along the direction of the background
magnetic field, and w is the chemical potential. For finite
temperature systems one also finds that () = —P;.

We then show that, both with and without an anomalous
magnetic moment, the resulting expressions satisfy the
canonical relation P; = Py — MB, where P is the pres-
sure transverse to the magnetic field direction and M =
—9{)/9dB is the magnetization of the system. Evaluating
the resulting expressions numerically, we demonstrate that
the magnitude of the pressure anisotropy is larger when
one takes into account the anomalous magnetic moment,
however, as the temperature of the system increases the
pressure anisotropy decreases.

The structure of the paper is as follows. In Sec. II we
introduce the basic formulas necessary to calculate the
bulk properties of an ensemble of particles using quantum
field theory. In Sec. III we present the resulting formulas
for charged particles with and without an anomalous mag-
netic moment. In Sec. IV we present the corresponding
formulas for uncharged particles. In Sec. V we compare the
numerical evaluation of the transverse and longitudinal
pressures. In Sec. VI we present our conclusions and an
outlook for the future. Finally, in Appendixes A and B we
present a quantum field theory derivation of the necessary
components of the energy-momentum tensor for charged
and uncharged particles.

II. GENERALITIES

In the presence of fields, the energy-momentum tensor
can be decomposed into matter and field contributions
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TH" = Thater + Thoas €]

If there is only a background magnetic field B pointing
along the z direction, then the field contribution to the
energy-momentum tensor takes the form Tk, =
diag(B%/2, B%/2, B%/2, —B%/2)." Since this contribution
is well understood, we do not spend more time discussing
it in this paper. Instead, we focus on T, for a system
composed of spin one-half fermions. In what follows, the
bulk properties of the system (energy density, transverse
pressure, etc.) are understood to specify the components of
Th . in the local rest frame of the system.

The matter contribution to the bulk properties of a
system can be expressed in terms of the one-particle
distribution function f. We consider a single particle
type with mass m and charge ¢ and sum over the spin
polarizations. The results obtained can be straightfor-
wardly extended to a system consisting of multiple particle
types. We present a derivation of the necessary compo-
nents of the energy-momentum tensor in Appendixes A
and B. Summarizing the results, one finds that the local rest
frame number density, energy density, longitudinal pres-
sure, and transverse pressure can be expressed in terms of
the following integrals of the one-particle distribution
function:

=37 @)
e=T"=Y) f Ef, 3)
k

p=1=3 [ 4)

1
P, = E(T“ + T7)
1 K m(v)

1 —_
_Z[ki Zﬂmz-i-kﬁ_

where we have singled out the z (parallel) direction for

— skBm(v) £, 5

future application, m*(v) = (ym*> + k3 — s«B)?, k3 is
the (discretized) transverse momentum, Y . represents a
sum over spin polarizations, k represents the anomalous
magnetic moment, and [, is a properly normalized (sum)
integration over momenta which we will define separately
for charged and uncharged particles. For charged particles
with a vanishing anomalous magnetic moment, the

'"This is the form in Heaviside-Lorentz natural units. In
Gaussian natural units, when converting the magnetic field to
GeV?, the magnetic field is increased by a factor of V47 and the
components of the energy-momentum tensor are divided by a
factor of 47 to compensate, e.g., €5 = B>/8.
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expressions above were first derived in Ref. [8]. For
charged particles with a finite anomalous magnetic
moment the expressions for the number density and en-
ergy density above were first derived in Ref. [11]. Here
we extend the treatment to include uncharged particles
and independently compute the transverse and longitudi-
nal pressures in the case of a finite anomalous magnetic
moment.

We note that in order to include interactions, one should
use the interaction-corrected expression for the particle’s
dispersion relation. In the mean-field approximation, this
amounts to including corrections to the bare mass of the
particle being considered, e.g., m — m*. The resulting
effective mass can depend on the chemical potential and
temperature. In what follows we indicate the effective mass
of the particle as m assuming that interaction corrections
could be absorbed into the mass.?

III. CHARGED PARTICLES

In the presence of a uniform external magnetic field
pointing in the z direction, the transverse momenta of
particles with an electric charge ¢ are restricted to discrete
Landau levels with k5 = 2v|g|B, where v = 0 is an inte-
ger [88] and one has

[~ fa o

where the sum over n represents a sum over the discretized
orbital angular momentum of the particle in the transverse
plane. For spin one-half particles the orbital angular mo-
mentum 7 is related to v via [88]

, )

where s = *1 is the spin projection of the particle along

the direction of the magnetic field and ¢ is the charge.3
An additional consequence of the quantization is that the

total energy of a charged particle becomes quantized [90]:

E = \/k% + ((m® + 2v|q|B)"/? — skB)* = \/k% + m2(v),
(8)

where k = k;uy with k; being the coupling strength for
the anomalous magnetic moment times the magneton, and

m?(v) = (Wm? + 2v|q|B — skB)?.

?In the following, spherical symmetry is broken by a uniform
magnetic field. Because of this, the effective mass could, in
principle, also depend on the angle of particle momentum
relative to the magnetic field direction. We do not take this
poss1b111ty into account in this work.

The present calculation is valid only for spin one-half parti-
cles. Spin zero, one and three-half particles, described, respec-
tively, by the Klein-Gordon, Proca and Rarita-Schwinger
equations, are affected differently by the magnetic field [86,89].
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A. Zero temperature

At zero temperature the one-particle distribution func-
tion is given by a Heaviside theta function

J(E) = 0(u — E), 9)

where u is the chemical potential (Fermi energy).

1. Zero anomalous magnetic moment

We begin by considering the case with no anomalous
magnetic moment, i.e., k = 0. In terms of the chemical
potential u, the maximum k, is defined via (8)

k.p(v) = \/,uz — 2v|q|B — m?. (10)

In addition, in the sum over the Landau levels one must
guarantee that the quantity under the square root in (10) is
positive. This requires m? < u? which results in

2 2
ue—m
= =|—] 11
v Vmax |_ 2|q|B J ( )

where |x] = max{n € Z|n < x} is the largest integer less
than or equal to x.

Using the above, we can write down an expression for
the number density using (2) and (6) to obtain [19,25]

|lq|B ' ”f k.0 — E)
n= B
e 2,
|q|B V<Vmax /kF |q|B Z stmax
=— k)F(V).
27T s—+1 n= s—il n=0 )

12)

Note that the upper limit on the # sum is set in terms of
the maximum Landau level and that » depends on n and s
via Eq. (7). Note that the k = 0 degeneracy factor for a
given Landau level is automatically taken into account by
the dual sum over spin and angular momentum.

Similarly, one can evaluate the energy density to
obtain [19,25]

I V Vmax
e=2‘1—_+ Z f " kI + 72 (v)
| |B =Vpmax _
=53 k) + i)

4 s=il n=0
+k

% log('LL_—Z’F(V)):I. (13)
m(v)

Next, we consider the parallel pressure P and

obtain [19]
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IqlB ”Z" k2
‘[kg + m*(v)

_lal z[ﬁ@Aw—m%w

2
4w s=*x1 n=0

X log(M)]. (14)

m(v)

Note that using (12)—(14) it is straightforward to see that
€ + Py = un and hence () = € — un = —Pj.

Finally, we consider the transverse pressure P, and
obtain

P, = ‘1_ y<zyg_m2y|q|3 [k” de— L
z
4 S S 0 V& + i (v)
|q|2BZ V=Vpax (/.L + k F(V)
= 1 7Z> 15
27T2 s=*1 n=0 roe n_’l(V) ( )

Numerically the results for P| and P, are different for
any value of B; however, they only become significantly
different for very large B. Using Eq. (11), for example, we
see that when B> (u?>— m?)/2|ql, only the lowest
Landau level contributes to the sums and one obtains

lg|B mt+ ke
28]

_ 91 m2
Lim Py =2 [MkF 10g<
where kp = +/u?> — m?. The transverse pressure on the
other hand vanishes in this limit:
glm P, =0 (17)
A relationship between P and P can be established
by evaluating the magnetization of the system M =
—dQ/dB = dP|/dB [91]. Performing the necessary de-
rivatives of the parallel pressure one finds M =
(P — P.)/B. Rearranging gives P = P; — MB which
is the canonical relationship one finds in the literature
between the transverse and longitudinal pressures.

2. Nonzero anomalous magnetic moment

We now turn to the case of a nonzero anomalous mag-
netic moment. In this case the expressions for k,  and vy,
must be adjusted to

kor = u? — (? + 201q|B)/2 — skBP,  (18)

_ | (u + skB)* — m?
Vmax = |- 2|q|B J (19)

4Formally one should use left or right derivatives in the
vicinity of magnetic field magnitudes where v,,, changes under
infinitesimal variation.
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With these two modifications Egs. (12)-(14) are
unchanged, but one should note that v, now depends
on the spin alignment s.

The transverse pressure, however, is modified when
there is a nonvanishing anomalous magnetic moment

B V<Vmax v
Pl——lql z [—lqlvm(v) —smﬁ(v)]
2m &2 = Lm? + 20]qB
kz,F ]
X[ dk, ———
0 V& + m2(v)
Bz V=Vpax 7
_lql y S [ lglvm(v) —sxn"z(v)]
2m &2 = Lm? + 20]qB
+k
X 10g<u_7“:(1/)>' (20)
m(v)
Evaluating the magnetization one obtains in this
case [25]°
_py_Py_ lqlB ¥ Z“[ ) lglvm(v) ]
IB B 27T s=*x1 n=0 Vm2+21/|q|B
+k P, P
X lo <7“ E Z’F(V)>=—”——i. @1
m(v) B B

So one finds once again P} = P — MB.

B. Finite temperature

We now turn our attention to the case of a finite tem-
perature ensemble of charged particles. In this case the
distribution function is

1

f+(ET, pn) = SBE 4 [ (22)

where f, describes particles, f_ describes antiparticles,
and u is the chemical potential.

1. Zero anomalous magnetic moment

We begin with the number density

IqlB

=D ] df(E T, m),  (@3)

s==*1n=0

recalling that E = k2 + m*(v) with m2(v) = m? +

2v|g|B. Introducing the variable x = E ¥ u we can
rewrite k. = /(x = u)> — m*(v) and using dk, =
(x = w)((x = u)? — m*(v))~/2dx one obtains

LY Tl
B = “'ln 0 m(V)"'M

\/(x T ) - ()
>We note that there appear to be some typos in the expression
contained in Ref. [25].

(24)
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Next, we consider the energy density. Using the same
change of variables as before, one obtains

lq|B S [© 0 ) f+(x,T,0)
ei:quZZ[ ® J; = (25)
(L n=0 )ﬁ(v)+/1, ‘\/()C * M) - (V)
Similarly, one obtains for the longitudinal pressure
IqlB [
Py = dxy(x £ p)? — m*(v)
I 21 = +1 n=0 m(v)F p J
X f+(x, T, 0). (26)
Finally, one obtains for the transverse pressure
|q|232 f fi(x’ T’ O)
Pl,i = .
2a? s—+l n= m<V)+”’ \/(x * :U’)z - mz(y)
27

Next we consider the magnetization obtained from M =
dP/0B. In order to do this we apply the fundamental
theorem of calculus

d b
e dxg(x,y,...) = —d(y)glay),y ...)
Y Ja(y)
b de(x,y, ...
[0 8y (28)
a(y) dy

Using this we can evaluate the derivative of the integral
appearing on the second line of (26)

P ——
TB([MW d(x + p)? = ) f (T, 0)>
_ i) ) Fe(0T,0)
B Jawmzu  Jix £ p) —m2(p)

(29)

where we have used the fact that in the case at hand the
first term on the right-hand side of (28) is zero. Using
mam/dB = 19m?/dB = |q|v we can obtain finally

P . Py. P
. =P _Pue  Pi-
SFY? B B

which is the canonical relation between the transverse
pressure, the longitudinal pressure, and the magnetization.
Rearranging we obtain P, .+ = P+ — M. B between the
perpendicular and parallel pressures at finite temperature in
the case that there is no anomalous magnetic moment.

, (30)

2. Nonzero anomalous magnetic moment

As was the case at zero temperature, when including
the anomalous magnetic moment, the primary thing that
changes is the mass m?(v) = (Jm? + 2v|q|B — skB)>.
With this change, the expressions forn., €., and P .. given
in Egs. (24)—(26), respectively, are unchanged. For the
transverse pressure, however, one must include additional
terms

PHYSICAL REVIEW D 86, 125032 (2012)

IqIB2 ~ lglv

=5 2 30| s ]
" foo i f+(x,T,0) ‘

aWFu f(x £ w)? — mA(v)

€1V

In addition, when including the anomalous magnetic
moment, the magnetization has a different form since

am(v) rh(v)[sx _ lglv

7 —_— |, 32
) Jm? + 21/|q|Bi| G2

which results in

Py« B e
Mﬁ B ”»— 4+ A4 |q| 2 Z ]’)_/l(V)[sK _ |‘1|V ]
B 2 s==*1n=0 sz + 2V|Q|B
o0 ~(x,T,0
X / dr—t=& 1O (33)
amFu f(x £ w)? — m2(v)

Once again we see that P| + = P+ — M.B.

IV. UNCHARGED PARTICLES

In the case that the particle being considered is
uncharged, then one does not obtain discrete Landau levels

and, as a result,
f [ ert (34)

in Egs. (2)—(5). Prior to proceeding with the calculations,
we note that for uncharged particles one has

m? = (‘/mz + ki - SKB)z. 35)

A. Finite temperature

We first consider the general case of uncharged particles
at finite temperature including the effect of the anomalous
magnetic moment. The derivation necessary is performed
in Appendix B. Here we summarize the results and list the
contributions from particles and antiparticles. The result-
ing expression for the number density is

1

I’li:ﬁz

[ ¥ dEEf.(E T, )
s=+1J m—skB
~ SKB — m T
X [k + st(arctan(T) + 3)]’ (36)

where k = /E2 — (m — s«B)?. The energy density is

1 00
=3 X [, BT

s==*1

X [12 + s;<B(arctan<SKBT_m) + g) ] (37

The longitudinal pressure is
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1
P+ = A2 >

s==*1

[  dEf.ET, p)
m—skB

X {ZIQ(SKB — m)(2m + skB) + E?

X |:4I€ + 6s;<B<arctan<SKBT_m> + g)]} (38)

The transverse pressure is
1 o0 A A
Pi.=— Z f dEf(E, T, w)(i> — 3skBmbk).
m—skB

o s=*1
(39)
Finally, we obtain the magnetization

K (o) .
M. = 472 Z § fm—mB dEf+(E, T, M)[k(SKB + m)

s==*1

+ E2<arctan<SKBT_m) + g) ] (40)

We see that the magnetization vanishes when « — O.
In addition, with these expressions one finds P . =
P”,i - MiB

B. Zero temperature
In the zero temperature limit there is only a particle
contribution since limy_f_(E, T, ) = 0 for E = 0 and
limy_of(E, T, u) = O(u — E). Using the results listed in
the previous subsection one finds for the number density [25]

1
n=mz

k
[?F (2k2 — 3sKBih)
s==*1

— st,zﬂ(arctan(%) - g):l 41

where 71 = m — skB, krp =/ u? — m?. Similarly the en-
ergy density can be obtained in this limit [25]:

1 . A
€ = m Zl[kpﬂ(6ﬂ2 - 3m2 - 4SKBm)
- 85KB,LL3(arctan(Z1—F) — g)
kp +
— 33 + 4skB) log( FTH )] 42)
)

And the longitudinal pressure can also be easily obtained:

1 N N
P = pry; Zl[kp/,b(Z/,Lz — 5im?* — 8skBi)

— 4s:<B,u3(arctan(%) — g)

Ky +
+ 3G + 45kB) log( F “)] 43)
m

N

Using the derived expressions for n, €, and P| one can
show that € + P = un is satisfied explicitly. The transverse
pressure is
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1
P15 2

s=*1

[kF,u(2,u2 —5m? — 125k Bt — 12(skB)?)

kp +
+3m2 (i + 2sKB)2log(¥) ] (44)
m

Finally, evaluating d P/ 9B one obtains the magnetization in
this case [25]°

M=—=Y S[MkF(ssKB + i) — M3(ar0tan<ﬁ) - Z)

127 &, kp/ 2
kp+
—ﬁ12(3SKB+2rh)10g< £t ”’)] 5)
m
From this result we can once again verify that

P, =P, — MB.

V. NUMERICAL RESULTS

In this section we present numerical evaluation of the
transverse and longitudinal pressures derived in the pre-
vious section. For the numerics that follow we will assume
(i) a gas of protons with a mass m = m, = 0.939 GeV,
electric charge g=+e, and an anomalous magnetic
moment of k=k,uy=1.79-¢/(2m,)=0.288633GeV !
in Heaviside-Lorentz natural units’ and (ii) a gas of neu-
trons with a mass m = m,, = 0.939 GeV, electric charge
g = 0, and an anomalous magnetic momentum of « =
Koy = —1.91-¢e/(2m,) = —0.307983 GeV~! [38]. In
all cases shown we consider a magnetic field magnitude
of 5 X 10"% G.

In Fig. 1 we plot the transverse and longitudinal pres-
sures of a zero temperature gas of protons including the
effect of the anomalous magnetic moment. The cusps in
the curves correspond to threshold crossings for the maxi-
mum Landau level. As can be seen from this figure, the
transverse and longitudinal pressures are not equal. In
addition, one can see from the figure that at low densities
the transverse pressure is negative at low densities when
there is a nonvanishing anomalous magnetic moment,
while the longitudinal pressure remains positive at all
densities.

In Fig. 2 we show the ratio of the transverse to longitu-
dinal pressures for a zero temperature gas of protons with
and without the effect of the anomalous magnetic moment.
In both cases we once again see cusps indicative of Landau
level crossings and a vanishing transverse pressure at low
densities. From this figure we also see that including the

SWe note that there appear to be some typos in the expression
contained in Ref. [25].

"In Gaussian natural units one has uy = 0.0454871 GeV~!
which is the Heaviside-Lorentz value divided by /4. Note that
if one uses Gaussian natural units, the magnetic field in GeV? is
scaled by a factor of Vi compared to the corresponding
Heaviside-Lorentz magnetic field. As a result the product of
My B is independent of the convention chosen.
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FIG. 1 (color online). Transverse and longitudinal pressures of
a zero temperature gas of protons as a function of the number
density. Results include the effect of the proton anomalous
magnetic momentum.

anomalous magnetic moment enhances the pressure
anisotropy.

In Fig. 3 we plot the background magnetic field times the
magnetization of a zero temperature gas of protons
obtained via Eq. (21). We note that there are two distinct
sets of cusps visible in Fig. 3. This is due to the fact that,
when the effect of the anomalous magnetic moment is
included, there are two different Landau level thresholds
for particles with spins aligned or antialigned with the
background magnetic field.

In Fig. 4 we plot the ratio of the transverse pressure to
the longitudinal pressure of a gas of protons as a function
of the net proton density (particle minus antiparticle) for
T = {0, 10, 30, 500} MeV. As can be seen from this figure,
as the temperature is increased, the cusps associated with
Landau level crossings are diminished and the level of the
pressure anisotropy also decreases. The highest tempera-
ture shown 7 = 500 MeV is on the order of those initially

FIG. 2 (color online). Ratio of transverse and longitudinal
pressures of a zero temperature gas of protons as a function of
the number density. Results are shown with and without the
effect of the proton anomalous magnetic moment.
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FIG. 3. Magnetization of a zero temperature gas of protons
times the background magnetic field. Result includes the effect
of the proton anomalous magnetic moment.

generated in relativistic heavy ion collisions at CERN’s
Large Hadron Collider. As we see, at these high tempera-
tures the pressure anisotropy for charged particles is quite
small, =< 1%. However, it should be noted that as the
system cools, the pressure anisotropy increases.

We consider next the case of neutral particles, focusing
on a specific example of a gas of neutrons. In Fig. 5 we plot
the ratio of the transverse to longitudinal pressures of a gas
of neutrons as a function of the neutron density with and
without the effect of the neutron anomalous magnetic
moment. This figure shows that without the anomalous
magnetic moment the pressures are completely isotropic;
however, when there is a nonvanishing anomalous mag-
netic moment the pressure anisotropy can be quite sizable.
In Fig. 6 we show the ratio of the total particle plus
antiparticle transverse to longitudinal pressures. This fig-
ure shows that as the temperature of the system increases,
the amount of pressure anisotropy, again, decreases.

=

+

+
&
=,
A

+

A
e-os5 /. T=10MeV

T=0MeV
1 ‘ ‘ : ‘
0 0.2 04 0.6 0.8 1

n,-n [fi?]

FIG. 4 (color online). Ratio of transverse to longitudinal pres-
sure of a gas of protons as a function of the net proton density for
four different temperatures T = {0, 10, 30, 500} MeV. Results
include the effect of the proton anomalous magnetic moment.
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FIG. 5 (color online). Ratio of transverse and longitudinal
pressures of zero temperature gas of neutrons as a function of
number density. Results are shown with and without the effect of
the neutron anomalous magnetic moment.

———- T =500 MeV

—— T=0MeV

0 0.2 0.4 0.6 0.8 1

n,-n [fm'3]

FIG. 6 (color online). Ratio of transverse and longitudinal
pressures of a gas of neutrons as a function of the net neutron
density for four different temperature T = {0, 10, 30, 500} MeV.
Results include the effect of the neutron anomalous magnetic
moment.

VI. CONCLUSIONS AND OUTLOOK

In this paper we have revisited the calculation of the
matter contribution to the energy-momentum tensor of a
Fermi gas of spin one-half particles subject to an external
magnetic field. We considered both charged and uncharged
particles with and without the effect of the anomalous
magnetic moment. For zero temperature systems we dem-
onstrated through explicit calculation that the resulting
energy density, number density, and longitudinal pressure
satisfy € + P = un. Using the standard definition of the
grand potential ) = € — wn allowed us to see that, in all
cases investigated, the grand potential is related to the
longitudinal pressure via {) = —P) in agreement with
previous findings in the literature.

We point out that some of the results contained herein
are known in the literature. The results obtained for the

PHYSICAL REVIEW D 86, 125032 (2012)

transverse pressure of charged and uncharged particles
with a nonzero anomalous magnetic moment are new. In
addition, we have presented in two Appendixes an explicit
derivation of the necessary statistical averages of the
energy-momentum tensor, taking into account the anoma-
lous magnetic moment. Using the results obtained, we dem-
onstrated that the standard relationship, P; =P —MB,
between the transverse pressure, longitudinal pressure, and
magnetization of the system holds in all cases considered.

The resulting formulas for the bulk properties can be
applied to both zero temperature and finite temperature
systems and hence could be useful in understanding the
impact of high magnetic fields on the evolution of proto-
neutron stars, proto-quark stars, and the matter generated in
relativistic heavy ion collisions. Applying the derived for-
mulas to a system of protons we found that there can exist a
sizable pressure anisotropy in the matter contribution to the
energy-momentum tensor which could have a phenome-
nological impact. Additionally we found that as the tem-
perature of the system increases, the pressure anisotropy
decreases. This is primarily due to the fact that increasing
temperature allows higher Landau levels to be partially
occupied and hence reduces the discrete effects one sees at
zero temperature. For uncharged particles Landau quanti-
zation does not play a role and, instead, any pressure
anisotropy exhibited comes from a nonvanishing anoma-
lous magnetic moment. Once again as the temperature
increases, the pressure anisotropy is reduced. This effect
is due to the fact that as the temperature increases high
momentum modes become highly occupied which causes
momentum terms in the energy to dominate over those
associated with the anomalous magnetic moment.

We note that although we presented results applicable to
the case of a single particle type, the resulting formulas can
be easily applied to the case of a system composed of
multiple particle types. Since the contributing particles
may have different pressure anisotropies depending on
the sign and the magnitude of the anomalous magnetic
moment, one must take care to sum over all particle types
subject to the necessary conservation laws prior to making
quantitative statements about the phenomenological
impact of magnetic-field induced pressure anisotropies
on dense matter [92]. Finally, we emphasize that although
the numerical results shown in the results section assumed
a particular magnetic field amplitude, the analytic results
derived herein are completely general and as such can be
applied to assess the impact of magnetic fields on the bulk
properties of matter in a wide variety of situations.
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APPENDIX A: ENERGY-MOMENTUM TENSOR

In this Appendix we derive the energy-momentum
tensor including the effect of the anomalous magnetic
moment. For this purpose we will use the method of metric
perturbations which allows one to most efficiently compute
a symmetric and gauge-invariant energy-momentum ten-
sor. The starting point is the following relation between the
variation of the action and the energy-momentum tensor:

1
oS = > fd“x«/—g’f“”@gw,,

where g = det(g,,). We proceed in the standard way by
writing the action in terms of the Lagrangian density,
varying the metric, identifying the energy-momentum ten-
sor by comparison with (Al), and finally taking g#” —
n*” where n*¥ = diag(1l, —1, —1, —1) is the Minkowski-
space metric.

We begin with the curved-space Lagrangian density for
a spin one-half fermion with charge ¢ in the presence of an
external magnetic field including the effect of the anoma-
lous magnetic moment

(A

L= (p(iw —m+ %KO"“VFMV)lﬂ — %F’“’Fw, (A2)

where « is the anomalous magnetic moment and, as usual,
4=vyta,, D,=500,—9,) +T,+igA, with T,
being the spin connection which is zero in flat space, and

o*¥ = i[y*, y”]/2. This allows us to write the covarian-
tized action as S = [d'x./~gL = S,, + S; with

-Ti
‘Sm = [d4x’\/ _glzbl:i 'yaD'B(ga,B + gﬂa) -m

1
+ KO PF 0y + gya)(ga T gap) [0 (AD

1
Sr=73% f d'xJ=gFPF"g,,8p5  (Ad)

where we have split the action into matter and field con-
tributions and used the the fact that the metric tensor is
symmetric to explicitly symmetrize the matter contribu-
tion. First, we evaluate 6S making use of the identity
0/—¢= —%\/'——gg“”b‘gw. Note, importantly, that the
gamma matrices themselves depend on the metric and
therefore one needs to take into account their variation
under metric variation. The variation can be computed
with [93] or without [94] the use of vierbeins.
Computing the variation, identifying 7 #”, and taking the
limit g#” — n#” one finds the following expressions for
the matter and field contributions to the energy-momentum
tensor in flat space:
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1
+ EK(O”U“QFVO( + o"“FF )y — 7 L,  (A5)

TV = —FreF", — " Ly, (A6)
where £,, and L are the matter and field contributions to
the Lagrangian density corresponding to the first and sec-

ond terms in Eq. (A2), respectively.

APPENDIX B: MATTER CONTRIBUTION TO T#*

In this Appendix we derive expressions for the
energy-momentum tensor in a uniform background mag-
netic field. We focus on the matter contribution since the
field contribution (A6) is standard. In the rest of this
Appendix we can therefore ignore the pure gauge field
term in the Lagrangian. In flat space the Lagrangian den-
sity for a spin one-half fermion with charge ¢ in the
presence of an external magnetic field including the effect
of the anomalous magnetic moment is

L= {p(ﬂz) —m+ %KO"“’FMV)lﬂ, (B1)

where « is the anomalous magnetic moment and, as usual,
4=vy*a,, D,=1%(9,—0d,) +igA,, and o’ =

i y*, v¥]/2. The equations of motion for # and i can
be determined using

) 5w
(82)

which result in

(iﬂ—qA—m+%KU“”FM,,)¢ =0, (B3)

- - 1
0, yy* + ¢(q4( +m— EKO'”’VFMV> = 0. (B4)

We note for application to the calculation of T#” that if we
multiply the first equation from the left by ¢ we obtain
L = 0. This demonstrates that the matter Lagrangian den-
sity vanishes when evaluated with solutions which obey the
equations of motion. This allows us to simplify Eq. (A5) to

Thry= L_ﬁ[é('y”D” + y”DH*) +%K(0’”0‘F”a + UWF“Q)] .
(B5)

To evaluate the necessary statistical average of T #” we
first need to solve the equations of motion in order to
determine the energy eigenvalues and spinors. The spinors
and energy eigenvalues are available in the literature
[90,95-97]; however, we review the derivation for sake
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of completeness and then use the resulting spinors to
evaluate the statistical averages of 7 #”. We note that the
spinor solutions have been expressed in various different
forms in the literature. We present a specific compact
form for the spinors; however, we have explicitly verified
that using the forms of the spinors presented in
Refs. [90,95-97] yields the same final results.

As in the main body of the text, we choose the magnetic
field to point along the z direction. Choosing the vector
potential to be A* = (0, —By,0,0) we have F*” =
B(8#*6%Y — §”*6*Y) and as a result

1 . g3 0
~KOoM'F,, =ikBy*y’ = kB =kBS;. (B6)
2 0 g3

Next we write Eq. (B3) in Hamiltonian form by searching
for static solutions of the form ¢ = e F'W(x) which
results in the Dirac-Pauli equation [98]

(-7 + v'm — kBy°S;)¥ = EV, (B7)

where @ = Y’y and w = —iV — gA.
Here we are interested in the diagonal components of
T *¥ which for a constant magnetic field are given by

T 0 = 4 (iy°DO) i, (B8)
T = §(iy*D* — kBa®), (B9)
T = §(iy’D¥ — kBa™) s, (B10)

T % = §(iy*DY)y. (B11)

1. Charged particles

We now search for the solution of the Dirac-Pauli equa-
tion for charged particles. Based on the structure of the
equation, we begin by making an ansatz for the bispinor ¥

of the form W(x) = etk ei*2,¥) () with [90]
c19,(y)

c20,-1(y)
c39,(y)

49,10y

: (B12)

where
(B13)

with n=0,1,2,... 3 The constants ¢; above implicitly
depend on the spin alignment s = *=1. The functions ¢,
are given by

8When » = 0 there could be an issue with the Hermite
functions with index » — 1 not being well defined; however, as
we will show below, in this case one finds that the coefficients
vanish identically.
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$n(€) = Ny €2H, (8, (B14)
where the variable ¢ is
ky
&= \llqlB(y + q—B), (B15)

n = 01is an integer, H, is a Hermite polynomial, and N,, =
(gB)'/4(\J/m2"n!)~ /2 is a normalization constant which
ensures [ dy¢2(y) = 1. Inserting this ansatz and sim-
plifying the Dirac-Pauli equation, one obtains

m—«kB 0 k, k,
0  m+«B k, —k,
k. k,  —m+ kB o XX
k, —k, 0 —m — kB
(B16)
where

Cyq )T

and k, = 4/2|g|Bv. Evaluating the determinant of the
matrix on the left we obtain the energy eigenvalues [90]

X=(C1 ¢y C3

;= 24k + (A — 5B, (B17)
where A = /m? + k2. The choice of an overall positive
sign for the energy eigenvalue above corresponds to parti-
cle states and the negative sign to antiparticle states.
Without loss of generality we can focus on the positive
energy states and, in the end, extend the result to include
the necessary contribution from the negative energy states.
The resulting positive energy eigenvectors are

sasﬁs
1 —k.k
) = S BI8
X e, B, | Bk, (B18)
aSkV

where a;, = E;, — kB + sA and B, = A + sm. The overall
normalization of the state is fixed by requiring that

[% dyul"T (x)ul)(x) = 2E,8"5,,,. The general quantum
state for positive energy states can now be constructed:

i b (K)u'(k)eikns", (B19)

P(x) =

§= ‘*'1

where b,(k) is a particle creation operator which obeys
{b,(p), I (K)} = (27)8,,8,,,8(p. — k.),

k =(nk,)withn=0,1,2,...,

ik Iqlefmzﬂ

(B20)
k= (Ey ky, 0, k,), and

(B21)
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Note that the factor of \/2E; in the denominator above is
fixed by the spinor normalization used above.

a. Energy density

To determine the energy density, we begin by evaluat-
ing the 00 component of the energy-momentum density
which is equivalent to the Hamiltonian density 7% =

H =iyto,y. Integrating over space gives the
Hamiltonian
H=i f Yoy
-2 [x Ipik[bi(p)u“”(p)e’f’ﬂx”]
><’[bs(k)u“‘)(k)(—iEk>e—f@X”], (B22)

where [ = [d’x. Using the orthonormality relations
listed above one finds

IqlB f

s—+1 n

dk, Ekb*(k)b (k).  (B23)

We can now compute the thermal average of the energy
using the density matrix p:

p = e PH+aN, (B24)

where is 8 = 1/T is the inverse temperature, @ = Bu
with w being the chemical potential, H is the Hamiltonian
operator, and

IqIB f
s= *1 n

is the number operator. The statistical average of the
Hamiltonian operator gives the energy density

Ti{pH]
Trlp]
Using the Baker-Campbell-Hausdorff formula one obtains
(bl ()b,(K)) = (b,(k)b] (K))e PEH,

which, upon application of the anticommutation relations
for the creation operators, gives the Fermi-Dirac distribu-
tion for particles:

(bl(k)by(k)) =

(B25)

(B27)

1

eBE~® 4+ 1 = fi(E, T, n). (B28)
With this we obtain our final expression for the particle

contribution to the energy density:
|q|B
—(H) = / e B BT ). (B29)
s**l n

Note that if one includes the antiparticle states, one must
normal order the Hamiltonian operator prior to perform-
ing the statistical average.
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b. Number density

Based on the above discussion, the number density can
easily be seen to be given by

B
— (V) = 'q' f —f+(Ek,T ). (B30)
x—+l n

c. Longitudinal pressure

We now consider the longitudinal pressure which is
given by P = ([, T%) with

S =Ly - @yl @3

Plugging in the explicit forms for the spinors we have

[xTZZ - %% L ipik{[bi (p)ut (p)ei?n*]

X YOy (K)u® (k) (ik?)eFu"]
— [bl(p)ut (p)(—ip?)e'Pn"]

X Oy b, () (k)e e ), (B32)
Evaluating the x and p (sum) integrals, making use of the
orthonormality relations and then taking the statistical
average gives

1] |B dk, k*
P=5ae X3 [ S elwn
s==1 n e

X j * Ut (k)0 y U (6], (B33)

where we have used the fact that (b](Kk)b,(k)) vanishes
unless r =s. Next we need to evaluate the spinor
contraction

foo dyu(‘y)*(k)'yo'yzu(x)(k) = —2k%, (B34)

which follows from the explicit form of the spinors
obtained previously. Using this and rewriting the statistical
average of the number operator as a Fermi-Dirac distribu-
tion, one obtains

dk, k*k*

B
Py s [t @)

d. Transverse pressure

We finally turn our attention to the transverse pressure.
By rotational symmetry, P, = ([ T7)={([ T*).
Choosing the former, which is somewhat easier to evaluate,
we should integrate and statistically average
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i -
Ty = §[¢yyay¢, —

Plugging in the explicit forms for the spinors we have

(@ 9)y" Y] — kBho™ .

PHYSICAL REVIEW D 86, 125032 (2012)

(B36)

j; T = %% [x ipik{[bi(p)u(’)*(p)eiﬁﬂx”]yovy [b,(k)0*u®(K)e~ %] = [bf (p)97u (p)eiPn"]

SR RANSTRISTS B 3 D i N (LTSI Ee e (RSP ISR WCET)
rs X 14

Evaluating the x and p (sum) integrals making use of the
orthonormality relations and then taking the statistical
average gives

= % s >/ m‘;iEl (BT (K)b, (K))

< [ sttt iy w)
— ut (k)Y y u) (k)]

— KB f " dyu<S>T(k)y°axyu<S>(k)}. (B38)
Integrating by parts one finds that the second term contrib-

utes the same as the first. Using the explicit representation
of the spinors obtained above one finds

/oo dyu(s)*(k)yoyyayu(s)(k)

= _i(C2C3 - CIC4) [jo d§(¢v—la§¢lf - ¢I/a§¢1/—1)

SkB
—l\/2|q|BV(c2c3 cicy) = —12|q|Bl/( - —)

(B39)

and
foo dyu®T (k)Y o u® (k) = 2s(A — skB).  (B40)

With this we can write down our final expression for the
transverse pressure for charged particles:
_ lqlB

s—+1 n

j dk, f+(Ek,T )

X M — s:<n"1(1/) ,
Jm? + 2v|q|B
where m(v) = ym?> + 2v|q|B — skB.

2. Uncharged particles

(B41)

We now consider the case of uncharged particles. This
case is different since the transverse momenta of the par-
ticles are not quantized. Starting from the Dirac-Pauli
equation (B7) we make an ansatz for the bispinor ¥ of
the form W(x) = e’* Xy with

u=(c; ¢ c3 c4)n.
This results in the following matrix equation for u:
m — kB 0 k, k_
0 m + kB ky —k,
u = Eu,
k, k_ —m + kB 0
ki —k, 0 —m — kB
(B42)

where k. = k, = ik,. Evaluating the determinant of the
matrix on the left we obtain the energy eigenvalues

E, = i\/k% + (A — skB)?,

where now we have A = {fm? + k3 with k3 = k2 + k2.
Once again the choice of an overall positive sign corre-
sponds to particle states and negative sign to antiparticle
states. We focus on particle states since the result is
straightforward to extend to antiparticles.

The resulting positive energy solutions are

(B43)

sagf
1 _k k+
©=___— ¢ B44
u »
Tl | sBik. (B4
ok

where as before oy, = E;, — kB + sA and B, = A + sm.
The overall normalization of the state is fixed in this case
by requiring that u”Tu®) = 2E 6. The general quantum
state for positive energy states can now be constructed:

4 = 3 ﬂ[

where b (k) is a particle creation operator and [, =
(27) 73 [dPk. Once again the factor of 2E; in the
denominator above is fixed by the spinor normalization
used above.

Following the same general procedures used in the
charged particle derivation one obtains the following result
for the energy density:

—(H Ef+(E, T,
e —(H)— 1[ oSBT, )

by(K)u®(k)eks", (B45)

(B46)
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The result for the number density is

n=W= 3 [fET 0 B4
s==*1
The result for the parallel pressure is
kZ
Py =1 =3 | Zf(Eu T p). (B48)
s==*1 kEk

And, finally, the result for the transverse pressure P; =
(Ty =(T7) is

1 Km
PJ_= Z fi _ = — skBm f+(EkrT’ Iu’)y
s=*1 kEk 2 \’mz + ki
(B49)

where m = \/mz + k4 — skB.

In all of the expressions above, we can perform two of
the three integrations by making the following change of
variables:

k, = MCOWL
ky, =VA? — m*sing, (B50)
k.= \/E2 — (A — skB)>.
Evaluating the Jacobian one finds
&k = EA dEd\d¢. (B51)

VE? — (A — s«kB)?

With this change of variables we obtain the number density

1 00
n=s-— D [_ BdEEf+(E,T,,u)

—s]

% fE+SKB A
m VE? — (X — skB)?

1 00
=— dEEf ,(E, T,
2772 S:Zil /m*SKB f+( M)

~ B —
X [k + s;cB(arctan(%) + g)] (B52)
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where k = +EZ — (m — skB)?. The energy density is
given by

1 00
€= —— dEE? ET,
Y fm_mB FAET, )

2
27" &=,

[E+SKB A
m VE? — (A — skB)?

1 0
=32 Z f_‘ BdEE2f+(E,T,,u)

s=*1

X I:Ig + sch(arctan(s’cBT_m) + g)] (B53)

For the parallel pressure we obtain

1
P||=ﬁ >

s==x1

j | dEfET)

E+skB
% [ A ER — (A2 - skB)?
m

1
= 2

s=%*1

/ | dEfET)
X {ZIQ(SKB —m)(2m + skB)

A B —
+ E2[4k + 6SKB<arctan<¥) + g)]}, (B54)

and for the perpendicular pressure we obtain

f, AEFAET )

s=*1
E+skB -
% j‘ JA A — skB
m VE? — (A2 — skB)?

X [%(Az - m?) — SKB)\]

1
Pl:z—ﬂ'zz
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