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We present a formulation of naturalness made in the framework of Bayesian statistics, which unravels

the conceptual problems related to previous approaches. Among other things, the relative interpretation of

the measure of naturalness turns out to be unambiguously established by Jeffreys’ scale. Also, the usual

sensitivity formulation (the so-called Barbieri-Giudice measure) appears to be embedded in our

formulation under an extended form. We derive the general sensitivity formula applicable to an arbitrary

number of observables. Several consequences and developments are further discussed. As a final

illustration, we work out the map of combined fine-tuning associated with the gauge hierarchy problem

and neutralino dark matter in a classic supersymmetric model.
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I. INTRODUCTION

The notions of naturalness and fine-tuning are a center of
interest in some domains of theoretical physics, like the
theoretical side of particle physics and cosmology. Loosely
speaking, these notions refer to the propensity of a model
to reproduce experimental observations. When they are
employed, their effect is to modify our degree of belief
in the model examined. Indeed, intuitively, our degree of
belief in a model follows its propensity to fulfill experi-
mental constraints. For instance, when the parameters of
a model must be adjusted very precisely to satisfy a
constraint, the model is said to suffer from a lack of
naturalness, or to have a fine-tuning problem, and this
consideration typically decreases our degree of belief in
the model.

But these considerations, even if they are taken to be
intuitive by a certain fraction of people, remain fully sub-
jective and unquantified. To be more precise and eventually
extract some objective information from these intuitive
observations, two things are necessary. First, it is necessary
to define a consistent measure of naturalness. Second, it is
also necessary to have a rule telling how the measure of
naturalness should be mapped to our degree of belief. This
second point is important, because the measure of natural-
ness would not be usable if the subjectivity were not under
control.

Several naturalness issues appear in particle physics—in
particular, with the gauge hierarchy problem, the strong
CP puzzle, and the flavor puzzle—as well as in cosmology,
with the cosmological constant problem, cosmological
coincidence, and the flatness problem, the latter of these
being resolved by the inflationary theory. We refer to the
Appendix for a short reminder of those different issues.

To our knowledge, it is in the context of the gauge hier-
archy problem that a measure of naturalness—i.e., of fine-
tuning—was first built. Indeed, supersymmetric (SUSY)

models solve the gauge hierarchy problem up to a certain
degree, leaving a so-called little hierarchy problem.1 In the
seminal Refs. [1,2], the amount of fine-tuning is defined
as the sensitivity of the electroweak scale (characterized
by the Z-boson mass) with respect to the model parameters.
An ad hoc formula quantifying the fine-tuning is then
derived:

maxi

��������@ logm
2
Z

@ log�i

��������: (1)

In this context, the formula gives a measure of the amount of
cancellation between the SUSY parameters, which are typi-
cally OðTeVÞ, necessary to reproduce the Z-boson mass,
1 order of magnitude below.
This sensitivity measure (often called the Barbieri-

Giudice measure) is largely exploited in the SUSY litera-
ture. We refer, for example, to Refs. [3–6] for recent work
making use of it. However, this formulation has also been
criticized, either for its limitations, or at the conceptual
level. At the conceptual level, maybe the most straightfor-
ward remark is that there is no rule connecting the
sensitivity measure to our degree of belief. The interpreta-
tion of the numbers provided by Eq. (1) is therefore fully
subjective.
Several attempts in the literature have already been

made to produce alternative definitions, in particular in
Refs. [7,8]. Among other things, Ref. [7] introduces the
key notion of the probability distribution of parameters,
while Ref. [8] also introduces the important notion of the
volume of parameter space. Other propositions have also
been discussed in Refs. [9–12]. However, even though all
of these alternative propositions are well motivated and

1The little hierarchy problem comes from the tension remain-
ing between the electroweak and TeV scales, and is in fact an
issue common to a lot of (all?) models of physics beyond the
Standard Model.
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contain interesting ingredients, it is unfortunately still
possible to find conceptual problems and criticisms.
Overall, one may find that all those measures of fine-tuning
are a bit ad hoc or lack for a robust framework.

It is with the will of offering a solid framework to the
notion of naturalness that we present an approach based on
Bayesian statistics. Among other things, the link between
the naturalness measure and the degree of belief will be
established from Jeffreys’ scale. Also, our approach turns
out to contain the sensitivity measure in a generalized
form. Once embedded in this framework, the usual limita-
tions and problems of the sensitivity measure vanish. An
attempt in this direction has been made in Ref. [5]; it is, to
our knowledge, the only paper containing this idea.

The article is organized as follows: Naturalness prob-
lems, the sensitivity formulation, and its conceptual flaws
are reviewed in a generic way in Sec. II. Section III is
devoted to the basics of Bayesian model comparison rele-
vant for our purpose, such that our presentation is self-
contained from the point of view of Bayesian statistics. We
then expose the Bayesian approach to naturalness and its
implications in Sec. IV. Finally, Sec. V is devoted to some
application of the results, focusing mainly on the gauge
hierarchy problem in supersymmetric models.

II. FINE-TUNING, PUZZLES, AND SENSITIVITY

In this section, we discuss in a generic way naturalness
problems and the sensitivity formulation. The presentation
is aimingly transverse, and applicable to any naturalness
problem. Along these lines, some of the statements might
appear weak or lacking in solid definitions. These inconsis-
tencies will be highlighted in the last paragraph. The critical
point of viewwill be adopted only in this last part. The rest of
the section is supporting the sensitivity formulation.

Throughout this section, we will consider a dimension-
less quantity � defined in a given model M with parame-
ters �i. We will assume that this � is subject to
experimental constraints (or any other piece of information
exterior to the model). In all generality, one can say that a
naturalness problem appears when � is constrained to
values that it is not expected to take. In particular, it can
be of an order different from Oð1Þ when it was expected to
beOð1Þ, or it can be ofOð1Þwhen it was not expected to be
Oð1Þ. For instance, the gauge hierarchy, cosmological
constant, and strong CP problems are represented in the
first category, with � being m2

Z=M
2
Pl, ��=M

4
Pl, and �=2�,

respectively. The Universe flatness problem and cosmo-
logical coincidence fall into the second category, with �
being �=�c and ��=�M, respectively. However, this split-
ting into two categories is in fact artificial. Indeed, one has
always the freedom to transform one into the other by
redefining � ! 1=ð�� 1Þ. Therefore, in this section,
whatever the naturalness problem is, we will always
choose to define � as a number unnaturally smaller than 1.

In all generality, � is a function of the model parameters,
�ð�iÞ. As we are concerned with the values that � can
potentially take, its dependence with respect to the parame-
ters is crucial. In the limiting case where � does not depend
at all on the parameters, it is completely determined by the
modelM. In that case,M is totally predictive, or in other
words, totally natural. In the opposite direction, the more �
depends on �i, the more one has to adjust precisely these
parameters to satisfy the experimental constraint—or, in
other words, the more M is fine-tuned.
It is then tempting to define a measure of naturalness

by making use of the derivative of � with respect to
the parameters. An appropriate quantity has to involve
the logarithm of � to measure a relative variation, and
the logarithm of �i to maintain independence with respect
to the choice of units, provided that �i is dimensionful.
Therefore, this measure has to be based on the quantity
j@ log�=@ log�ij. Two such measures have been provided
(see Refs. [1,2,9,13]) in the context of the gauge hierarchy
problem and its supersymmetric solution:

ca ¼ maxi

��������@ log�

@ log�i

�������� or cb ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
i

�
@ log�

@ log�i

�
2

s
: (2)

Whatever the exact definition is, we will denote this kind of
quantity as c. With this definition, a fully predictive model
has c ¼ 0, and a model requiring infinite fine-tuning has
c ! 1.
However, in between these two extreme cases, one can

also identify a particular threshold, when c ¼ 1. This is the
particular case where � is directly an input parameter of
M. The strong CP puzzle and the flavor puzzle in the
Standard Model, as well as the flatness of the Universe and
cosmic coincidence in the Standard Cosmological Model
are all examples of such a case. Depending on the context
and on the opinions, this situation is sometimes considered
as being a ‘‘puzzle’’ and not a ‘‘problem.’’ However, this
kind of consideration is subjective. It depends ultimately
on whether the scientist wishes to find a model more
natural than the one with c ¼ 1, or if he is satisfied with
that one. In any case, from the strict point of view of
sensitivity, c ¼ 1 appears well as a limit between predic-
tivity and fine-tuning.
Let us propose two toy examples to illustrate the c

measure. To explain the smallness of �, one often has to
invoke ‘‘special cancellations’’ between the �i’s. It is, for
example, the case in the gauge hierarchy problem, where
cancellations between OðM2

PlÞ quantum contributions need

to occur to obtain m2
Z; or the cosmological constant prob-

lem, in which cancellations between OðM4
PlÞ quantum

contributions have to occur to make � vanish. Let us
sketch this by � / 1� �, where � is a parameter expected
to beOð1Þ. To produce � � 1, � has to be tuned to be close
to 1. The c measure is then j@ log�=@ log�j ¼ �=�. c is
proportional to �, which is Oð1Þ, and to 1=�, which grows
with the precision of cancellation required. This quantity is
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thus well measuring the amount of cancellation necessary
to get � � 1.

The second toy example is the situation where � / e��,
with � still an Oð1Þ parameter. This case of ‘‘exponential
suppression’’ appears, for example, in the Randall-Sundrum
setup for solving the gauge hierarchy problem, in inflation-
ary theories to explain why �=�c � 1 is so small, and also in
the dimensional transmutation arising when an asymptoti-
cally free theory becomes confining in the infrared. In that
case, the c measure is j@ log�=@ log�j ¼ �. It does not
depend on � but only on the Oð1Þ parameter. Comparing
c ¼ �=� and c ¼ �, one can see that the ‘‘exponential’’
model is more natural by a factor of � with respect to the
‘‘cancellation’’ model.

This way of formulating a measure of naturalness using
sensitivity seems well justified, even if rather ad hoc.
However, taking a closer look, one can identify several
conceptual flaws, more or less linked together, some of
them being already obvious in what we have written above.

Firstly, the notion of ‘‘expectation’’ for the value of a
quantity, used throughout the section, is not rigorously
defined. Even if one tries to express things differently, at
some point this notion appears and requires a precise
definition. Secondly, the notion of parameter space does
not appear in this formulation. This is a bit worrying, as we
are concerned with all potential values that � could take.
These two remarks are particularly suggestive of the
Bayesian approach, which will be presented in the follow-
ing sections. But the third, worst issue is the following:
there is no rule telling us how to interpret the sensitivity
measure in terms of a degree of belief. This holds for the
absolute interpretation of c, and also at the level of the
relative interpretation, when one compares two different
values of c. For example, we said above that c in the
exponential toy model is enhanced by a factor of � with
respect to the cancellation model. But does it really mean
that our relative degree of belief between the two models

should be given by the value �? Or maybe �2, or
ffiffiffiffi
�

p
?

Finally, we can notice the freedom of redefinition of �. For
instance, if one redefines � ! �100, c is scaled by a factor
of 100. Given the absence of a rule to interpret c, this fact
does not constitute a problem in itself. Instead, it can be
taken as a constraint of consistency. That is, it would be
good if the interpretation of c varied consistently with a
redefinition of �, so that the conclusions would remain
unchanged.

III. BAYESIAN MODEL COMPARISON

The aspects of Bayesian statistics relevant for our pur-
pose are briefly reviewed in this section. For any additional
details, we refer the reader to the comprehensive review in
Ref. [14] and references therein, and the textbook in
Ref. [15].

Within the framework of Bayesian statistics, the notion
of probability is defined as a measure of the degree of

belief about a proposition. On the other hand, one also
knows that whatever the definition of probability p is, the
axioms of probability theory entail Bayes’s law:

pðAjBÞ ¼ pðBjAÞpðAÞ
pðBÞ ; (3)

which, with any additional true information I, takes the
form

pðAjB; IÞ ¼ pðBjA; IÞpðAjIÞ
pðBjIÞ : (4)

This well-known result gains a crucial meaning when
applied to probability as a degree of belief. Indeed, replac-
ing A by any hypothesis H, and B by the known informa-
tion available (called d for ‘‘data’’), the previous equality
becomes

pðHjd; IÞ ¼ pðdjH; IÞpðHjIÞ
pðdjIÞ : (5)

In Eq. (5), pðHjIÞ is the probability (i.e., the degree of
belief) given to the hypothesis without taking the data into
account, which is called the prior probability, or just the
‘‘prior.’’ pðHjd; IÞ is the probability of the hypothesis once
the data is taken into account, called the posterior proba-
bility. One thus sees that the Bayes formula, applied to a
piece of information d and a hypothesis H, tells how our
degree of belief in H should be updated in the light of d. It
is the remaining term, pðdjH; IÞ=pðdjIÞ, which performs
this action. pðdjH; IÞ is the probability of obtaining the
data, assuming that the hypothesis is true. But taken as a
function of H, this quantity is not a probability anymore,
and is called a likelihood function, denoted asLðHÞ. It has
to be normalized by the constant pðdjIÞ, which is called the
Bayesian evidence. The Bayesian evidence is the sum over
all possible realizations of H:

pðdjIÞ ¼ X
H

pðdjH; IÞpðHjIÞ: (6)

Two main applications follow from Eq. (5): parameter
inference and model comparison. We will be interested in
the latter for our purpose. For model comparison, it is the
Bayesian evidence [Eq. (6)] which will play the main role.
Let us consider Eq. (5), where the hypothesisH is ‘‘model

M is true,’’ and there is no additional proposition I. The
equation becomes

pðMjdÞ ¼ pðdjMÞpðMÞ
pðdÞ : (7)

Applying it to two models (which can be the same model
with two different priors),M0 andM1, and eliminating the
unknown constant pðdÞ, one obtains the equation

pðM0jdÞ
pðM1jdÞ ¼

pðdjM0Þ
pðdjM1Þ

pðM0Þ
pðM1Þ : (8)
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The quantity pðM0Þ
pðM1Þ is called the prior odds, while pðM0jdÞ

pðM1jdÞ is
called the posterior odds. The crucial quantity is the ratio of

the Bayesian evidences pðdjM0Þ
pðdjM1Þ , denoted as B01, and called

the Bayes factor.
The Bayes factor tells us how the relative degree of

belief between two models is updated given information
d. A Bayes factor larger (smaller) than 1 will favor M0

(M1). Bayes factors are usually interpreted with respect to
Jeffreys’ scale [16], given in Table I. This scale is empiri-
cally calibrated, with thresholds at values of the odds 3:1,
12:1, and 150:1, representing weak, moderate, and strong
evidence in favor of M0, respectively. It can also be
convenient to consider the logarithm logB01.

Note that for a model with continuous parameters, the
Bayesian evidence [Eq. (6)] takes an integral form:

pðdjIÞ ¼
Z
D
pðdj�;MÞpð�jMÞ: (9)

It is then the average of the likelihood function over the
parameter space D, weighted by the prior density of the
parameters within the model pð�jMÞ.

Bayesian model comparison tells us how the odds
between two models should be modified by taking into
account an external piece of information d. It formalizes
two competing effects: quality of fit and predictivity. The
first of these is the usual measure of deviation between data
and prediction, given by the likelihood function. The sec-
ond is a principle of economy, i.e., a formalization of
Occam’s razor. It will enter in the form of the notion of
volume in the parameter space. Roughly speaking, pro-
vided that the volume of parameter space allowed by the
likelihood is smaller than the one allowed by priors (i.e.,
that data is informative), the Bayes factor will favor the
model with the smaller prior volume. Or, in other words, it
favors the model which is the more predictive with respect
to data. This notion of volume is closely related to Fisher
information, which, in this context, is a measure of the
intrinsic amount of information that the likelihood function
and priors contain [17]. For our purposes, we will consider

the ‘‘observed’’ Fisher information, defined as IffgðxÞ ¼
j�@2 logf

@xixj
j. For example, Fisher information of a normal

density with variance �2 is 1=�2, and Fisher information
of a uniform density over the volume V is 1=V2. In the
present work, it will mainly be this second aspect of
predictivity that will matter.

To end this section, let us discuss the prior density
pð�jMÞ. The choices of both the functional form and the
range of the prior density are critical. The range, conser-
vatively, should be taken to be as wide as possible. It can be
crucial to have ranges which are intrinsically bounded,
such that prior volumes remain finite. On the other hand,
the functional form of the density is often chosen to be the
least informative one possible; i.e., the most objective.
Several approaches based on Fisher information (Jeffreys
prior) or the Kullback-Leibler divergence (reference
priors, see, e.g., Ref. [18]) have been elaborated to con-
struct such priors.
In this work, we will make use of the principle of indif-

ference, which is an approach to minimize the amount of
subjective information about a problem.This principle states
that our a priori degree of belief about a problem should be
invariant under transformations considered as irrelevant for
the problem [19,20]. Applied to continuous variables, this
condition constrains the objective densities and can some-
times fully determine them. For example, a change in coor-
dinates x0 ¼ xþ a should not influence our a priori degree
of belief on x. This transformation is thus considered irrele-
vant. This imposes the condition pðxþ aÞ ¼ pðxÞ, which
constrains p to be the uniform density. Another important
example is the one of a dimensionful quantity, �. The
principle of indifference states that our a priori degree of
belief pð�Þ should not depend on the choice of units, such
that�0 ¼ a� has the same prior as�. This translates as the
condition pð�Þ ¼ apða�Þ, which sets pð�Þ / ��1, called
a logarithmic prior, since��1d� ¼ d log�. As a lot of our
observables and parameters are dimensionful, this logarith-
mic prior will be omnipresent.

IV. NATURALNESS IN A BAYESIAN FRAMEWORK

We present in this section the Bayesian approach to the
notion of naturalness. First, let us set up the notations. We
consider a model M, with a set of dimensionful parame-
ters � ¼ ð�1; . . . ; �nÞ, spanning the parameter space D of
dimension n. We consider a set of m dimensionful observ-
ablesOð�Þ ¼ ðO1; . . . ;OmÞ (withm � n) predicted by this
model, taking the measured value Oex on the subset of the
parameter space Dex of dimension n-m. Data other than
the O measurement are collectively called d, and the like-
lihood function pðO ¼ Oexj�;MÞ is denoted as LOð�Þ.
An amount of precision � is associated with the measure-
ment ofO. It can be, for instance, the covariance matrix of
a multivariate normal law, or it can be more generally given
by the Fisher information of the likelihood LO (as a
function of O), IfLOgðOÞ ¼ ��1.
Calling O an ‘‘observable’’ is somewhat misleading. In

fact, it just has to be a quantity constrained by experimental
data (or any other exterior piece of information). Note that
compared to the � defined in Sec. II, we let the O be
dimensionful. We emphasize that we restrict ourselves to
dimensionful observables and parameters for the sake of

TABLE I. The empirical Jeffreys’ scale calibrating the odds
between model M0 and model M1.

j logB01j Odds Probability Strength of evidence

<1:0 & 3:1 <0:750 Inconclusive

1.0 �3:1 0.750 Weak evidence

2.5 �12:1 0.923 Moderate evidence

5.0 �150:1 0.993 Strong evidence
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simplicity. The consequence of this choice is to make
logarithmic priors appear everywhere. However, the whole
approach is general to any prior. The generalization does
not present difficulty, and it will be explained in the last
subsection. Finally, the reason for the restriction m � n is
that m> n is similar to m ¼ n from the naturalness point
of view. This point will be discussed afterwards, in the last
subsection.

A. Probability formulation

Loosely speaking, naturalness is the propensity of a
given model to reproduce the experimental observation.
Using the notations we adopted, the usual translation of
this idea is

(i) ‘‘Sensitivity ofO with respect to �, in the vicinity of
a point �ex belonging to Dex.’’
This leads to the c measure already presented above,

ca ¼ maxi

��������@ logO
@ log�i

���������¼�ex

(10)

or

cb ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
i

�
@ logO
@ log�i

�
2

vuut ���������¼�ex

: (11)

However, an alternative formulation for naturalness,
arguably as intuitive as the first one, is

(ii) ‘‘Probability of having O ¼ Oex in the model.’’
It is this second formulation which will be our starting

point. As it involves a notion of probability, it necessarily
has a Bayesian character. This formulation is translated as
the probability

pðO ¼ OexjM; dÞ: (12)

But we are interested in this quantity as a function of the
hypothesis ðM; dÞ. Taken as such, it is not a probability,
but instead a Bayesian evidence, as defined in Eq. (6). Due
to the absence of normalization, this evidence alone is not
usable. Instead, it has to appear inside a Bayes factor. As a
measure of naturalness, we therefore have to consider a
Bayes factor which compares our hypothesis ðM; dÞ to
another hypothesis ðM0; d0Þ:

B ¼ pðO ¼ OexjM; dÞ
pðO ¼ OexjM0; d0Þ : (13)

This well-defined quantity plays the main role in our
approach.

Two comments are in order. First, it is clear that such a
measure of naturalness has a relative character. In this
framework, comparing the naturalness of two models M
and M0 is certainly possible, but an absolute statement
about the naturalness ofM has to be done with care. To do
so,M0 would have to be defined such that it constitutes an
absolute reference. How this can be realized will be dis-
cussed further in the section. Second, we emphasize that

the distinction between the model M and the data d is
artificial. Indeed, d could as well be considered as a part of
M. It just depends on howM is defined. It is convenient to
keep this separation explicit for the discussion, and to
stress that d and d0 need not be identical.
Let us now specify the different options available for

ðM0; d0Þ. If one takes the two pieces of data to be identical,
d ¼ d0, and applies B to two realistic models M and M0,
it provides a measure of the relative naturalness between
these models. In particular, it makes sense to apply B to
the same model with two different prior densities. For
instance, one can compare the naturalness of two different
regions of the parameter space Dex. One can even choose
punctual priors; that is, priors that select a single point
belonging to Dex. In that case, B measures the relative
naturalness between two points ofDex. This brings us back
to a local measure of naturalness, just like the c measure.
Note that the selection of a single point of the parameter

space also happens if pieces of data dð0Þ are sufficiently
constraining. A necessary condition for that is to have at

least as many observables in dð0Þ as parameters in Mð0Þ.
Now, let the two models be identical,M ¼ M0, and let

the pieces of data be different, d � d0. This time, B indi-
cates the change in naturalness induced by going from data
d to data d0. Following the literature, this kind of quantity
may be dubbed as the ‘‘naturalness price’’ or ‘‘fine-tuning
price’’ associated with the change of data. A recent work
along this line is Ref. [21].
Finally, how can M0 be defined such that it constitutes

an absolute naturalness reference? In Sec. II, we already
identified the two limiting cases of total predictivity and
infinite fine-tuning. We also identified a threshold in
between, when observables O1...m are input parameters.
To define an absolute reference for naturalness, this thresh-
old as well as the limit of total predictivity may be
employed. This suggests two ways of defining a reference
model: (1) One can consider that M0 is an ideal, fully
natural model satisfying O ¼ Oex everywhere in its
parameter space. We will denote this ideal model as X.
(2) Or, M0 may be a hypothetical ‘‘puzzle’’ model, in
which the O1...m would be directly input parameters. This
model will be denoted as P . We call this a puzzle model
because, from the point of view of sensitivity, it stands at
the threshold between predictivity and fine-tuning.
These different possibilities for M0 and their implica-

tions will be discussed later in the section. What we have
obtained up to now is awell-definedmeasure of naturalness,
under the form of a Bayes factor. Unlike in other
approaches, a mapping (Jeffreys’ scale) between this
measure and our degree of belief exists. The measure is
therefore usable, and different applications are possible
depending on what one defines as being ðM0; d0Þ. Starting
from now, we will continue the development to show that
this probability formulation, instead of being an alternative
to the sensitivity formulation, actually embeds it.
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B. Apparition of a sensitivity measure

From this point until the end of the section, it is assumed
that the measurement ofO is sufficiently precise, such that
one can consider the Laplace approximation of the like-
lihood function. That is, the log-likelihood can be
expanded around a maximum �max 2 Dex as

logLOð�Þ ’ logLmax þ @2 logLO

@�i@�j

���������max

� ð�i � �imaxÞð�j � �jmaxÞ
2!

; (14)

in which the first-order derivatives of LO vanish, since
�max is an extremum. This expansion corresponds to
approximating the likelihood as a (multivariate) normal
law. Let us rewrite the right-hand term by introducing the

Jacobian matrix of the observables JOij ¼ ð@Oi

@�j
Þ,

@2 logLO

@Oi@Oj JOikJOjl

���������max

ð�k � �kmaxÞð�l � �lmaxÞ
2!

: (15)

One recognizes in that expression the quantity @2 logLO=
@Oi@Oj, which up to a minus sign is the observed Fisher
information associated with the O measurement, IfLOg�
ðOÞ. We rescale O by Oex to make appear a dimensionless
Jacobian and a dimensionless Fisher information associ-
ated with O=Oex, such that Eq. (15) becomes

@2 logLO

@ logOi@ logOj JlogOikJlogOjlj�max

ð�k � �kmaxÞð�l � �lmaxÞ
2!

:

(16)

The dimensionless Fisher information �@2 logLO=
@ logOi@ logOj describes the amount of relative uncer-
tainty associated with O. We will denote it as ��1 from
now on.

Given this expansion of LO, we can reconsider
our central quantity, the Bayesian evidence pðO¼
OexjM;dÞ. This evidence can be written as a continuous
sum over all the values of the parameters:

pðO ¼ OexjM; dÞ ¼
Z
D
LOð�Þpð�Þd�: (17)

It is the average ofLOð�Þ weighted by the prior density of
the model parameters pð�Þ ¼ pð�jM; dÞ. We will denote
the Fisher information associated with this prior density

as Ifpð�Þg ¼ jVj�1, and designate jVj1=2 as the ‘‘prior
volume.’’

Provided that the likelihood is informative with respect
to the prior, Eq. (17) takes the form

pðO ¼ OexjM; dÞ ¼ Lmax

j�j1=2
jVj1=2

Z
Dex

1

C
d�ð�Þ: (18)

Here, d�ð�Þ is the induced integration measure on the
manifold Dex, and C is the Jacobian factor,

C ¼ j detðJlogOJtlogOÞj1=2: (19)

From the point of view of Fisher information, C measures
how much information about the parameters � is contained
in O=Oex regardless of the uncertainty �. The interesting
fact is that C is a generalized version of the sensitivity
measure c, such that Eq. (18) makes the link between the
two formulations of naturalness.
Some remarks are in order. Firstly, Eq. (18) holds in the

limit where CjVj1=2 � j�j1=2 overDex. We will designate
the likelihood as informative when this condition is ful-
filled. When the condition is not satisfied, the overlap
between the likelihood and the prior has to be taken into
account properly, and the Bayesian evidence tends toLmax.
Secondly, we emphasize that JlogOJ

t
logO is indeed an

m�m matrix. Its size does not depend on the number of
parameters, but on the number of observables. Thirdly, by
choosing a punctual prior, or if the other data d are suffi-
ciently constraining, Dex is reduced to a single point �0,
and the integral

R
Dex

C�1d�ð�Þ is reduced to C�1j�0 . In
such a situation, we get closer from the sensitivity defini-
tion, which is a local measure.
We also emphasize that the derivatives which appear

withinC depend on the choice of prior. Indeed, in all general-
ity, these derivatives are performedwith respect to the ‘‘prior
repartition function’’ Gð�Þ, defined such that pð�Þd� ¼
dGð�Þ. Let us illustrate this fact by considering a single
observable and a flat prior on all parameters, restricted to
the volume ½a1; b1� � � � � � ½an; bn�. The prior volume is

jVj1=2 ¼ ðb1 � a1Þ � � � � � ðbn � anÞ, and the Jacobian

factor is C ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

ij@ logO=@�ij2
q

. Instead, if one chooses

a logarithmic prior for all parameters pð�iÞ / ��1
i , the

prior volume becomes jVj1=2 ¼ ðlogb1 � loga1Þ � � � � �
ðlogbn � loganÞ, and the Jacobian factor becomes C ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

ij@ logO=@ log�ij2
q

. The derivatives in C are then made

with respect to log� instead of �. In the case of dimensionful
parameters, the choice of the logarithmic prior has a particu-
lar meaning, because it is the more objective prior.
Through these several remarks, we can finally state thatR

Dex
C�1d�ð�Þ reduces to the c measure of the sensitivity

formulation, provided that one considers a single observ-
able, a single point in Dex, and that one gives logarithmic
priors to the parameters. It is more precisely the expression
cb, used in Ref. [13], which is exactly reproduced. The
measure ca is an approximation of cb when one of the
components of the gradient dominates.
Interestingly, the average

R
Dex

C�1d�ð�Þ has been pro-

posed in Ref. [7], in an attempt to normalize the cmeasure.
In our approach this quantity arises naturally, and we also
see that in itself it does not help to interpret the c measure.
On the other hand, the use of the volume of parameter
space has been proposed in Ref. [8], in an attempt to build
an alternative measure. These different ideas, somewhat
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intuitive as such, become rigorously usable once they appear
together through Eq. (18). Our approach also justifies
Bayesian studies which introduce C�1 as a ‘‘naturalness
prior.’’ This is not new; it was already explained in
Ref. [5]. However, we add that the prior of the parameters
has to correspond to the derivatives made in C to keep the
approach consistent.

The factor C is a generalization of the c measure.
Among other things, it tells us the information content of
several possibly correlated observables. Let us consider the
case of two observables. In this case, C is nothing but the
norm of the wedge product of the gradients,

C ¼ kr logO1 ^ r logO2k; (20)

which is also

C ¼ ðkr logO1k2kr logO2k2 � ðr logO1:r logO2Þ2Þ1=2:
(21)

It is instructive to discuss the behavior of C depending
on the correlation between the two observables which is
induced by the model. One can rewrite C as

C ¼ C1C2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �2

q
; (22)

where C1 and C2 are the one-dimensional sensitivities and
� is the correlation in the model, defined by

� ¼ jr logO1:r logO2j
kr logO1kkr logO2k : (23)

If the observables are independently predicted, the two
gradients are orthogonal, and thus � ¼ 0. Equation (21)
reduces in that case to the product of the one-dimensional
C measures. On the contrary, if the observables are corre-
lated within the model, one has � > 0, and C decreases. In
the Bayesian point of view, this should be interpreted as the
fact that it is more economical for a model to predict
correlated observables than independent observables. One
may be worried that Eq. (21) tends to zero in the limit of
total correlation, when the two observables are linearly
dependent. However, the formula does not apply in that
limit. Indeed, recall that the condition for having informa-

tive data is CjVj1=2 � j�j1=2. It translates here as an upper
bound on the correlation �,

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� j�j

jVjðC1C2Þ2
s

: (24)

For instance, for a pair of Gaussian measurements, one has

j�j1=2 ¼ �1�2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �2

exp

q
. When Eq. (24) is not satisfied,

the correlation is too large, such that the two observables
are not separately informative. That is, instead of two
constraints, the model effectively feels a single constraint

Ô 	 O1� / O2. Instead of Eq. (21), it is then a one-

dimensional sensitivity associated with Ô which appears
in the Bayesian evidence [Eq. (18)]. This discussion

illustrates also the fact that C taken outside of the formula
Eq. (18) can induce misunderstandings, and has to be
interpreted with care.
At this point, puzzling observations can be made about

priors and the meaning of logarithms which appear every-
where. What is, after all, the reason for having logO in C?
Is it for the sake of makingC dimensionless? Or is it for the
sake of measuring a relative variation, as we naively stated
in Sec. II? Here we assumed that O is dimensionful. By
doing so, we avoided this discussion in a first time,
since rescaling O by Oex makes C both dimensionless
and measuring a relative variation. Also, although the log
in @ logO is suggestive of an objective prior, this remains
just a way of writing @O=Oex. And, anyway, speaking
about a prior for O actually does not makes sense for the
moment, as O is determined by the parameters. These
observations will be resolved when examining the Bayes
factor BMP in the next subsection.
To summarize, we find that the sensitivity formulation of

naturalness turns out to be embedded in the probability
formulation. The c measure, Eq. (11), turns out to be a
particular case of the factor C, arising in the Bayesian
evidence [Eq. (18)]. The only assumption made to obtain
this result is the Laplace approximation, i.e., that the like-
lihood function can be reduced to a normal law. We will
now examine the different Bayes factors B that can be
constructed, and the role taken by the C measure.

C. The different versions of B

1. BMX

As a warmup, let us examine the Bayes factor comparing
a model M to the fully natural model X:

BMX ¼ pðO ¼ OexjMÞ
pðO ¼ OexjXÞ : (25)

By definition, X satisfies O ¼ Oex in all its parameter
space. The evidence of this ideal model is thus pðO ¼
OexjXÞ ¼ Lmax. Recall that Lmax is an overall normaliza-
tion constant, which will be canceled once we consider
the ratio of evidences. Assuming that the piece of data
O ¼ Oex is informative for M, BMX takes the form

BMX ¼ j�j1=2=jVj1=2
Z
Dex

C�1d�ð�Þ: (26)

Clearly, since M cannot be more natural than X, BMX
cannot be larger than 1. At most, it can tend to 1, if M
tends to be an ideal model like X. Equation (26) is not
valid in this limit, as it implies that the data are not
informative for M anymore. Let us interpret what
Eq. (26) is telling us as a Bayes factor. One sees that
BMX decreases with j�j. This is because when the con-
straint O ¼ Oex becomes more precise, M is penalized,
but notX. Also, BMX decreases as jVj increases, because
it penalizes the waste of parameter space of M excluded
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by O ¼ Oex. Finally, BMX also decreases with the sensi-
tivity C. C measures the amount of information that O
carries about the parameters of M. The larger C is, the
more O contains information, and the stronger the con-
straint O ¼ Oex is for M, regardless of the experimental
uncertainty.

BMX is certainly useful to understand the content of the
Bayesian evidence. On the other hand, it is a priori not very
useful in a concrete application, as it will just tell us that
the model under consideration is worse than the ideal
model. Does it provide a good basis for giving an absolute
interpretation to C? The interpretation of C would inevi-
tably depend on j�j. It would be necessary that j�j be
intrinsically bounded from below, independently of the
details of the experimental observations. This can actually
happen, for instance, in quantum theories when observ-
ables do not commute. But as far as we know, nothing of
this kind happens in a domain of physics having natural-
ness issues.

2. BMP

Consider now the Bayes factor comparing the modelM
to a model P in which the observablesO1...m (or any linear
combination of them) are directly input parameters, such
that C ¼ 1. It is defined by

BMP ¼ pðO ¼ OexjMÞ
pðO ¼ OexjP Þ : (27)

We recall that the model P is dubbed a ‘‘puzzle’’ model,
since from the point of view of sensitivity, it is at the limit
between predictivity and fine-tuning. In this case, the prior
density for O will enter the game, as O itself is an input
parameter of P .

The Bayesian evidence of P is

pðO ¼ OexjP Þ ¼ Lmax

j�j1=2
jVOj1=2

: (28)

jVOj1=2 is the prior volume associated with the parameter
O. In this expression, one can introduce the ratioO=Oex, as
we did for the Bayesian evidence of M, pðO ¼ OexjMÞ,
given in Eq. (18). By doing so, � has the same relative
uncertainty � ¼ �@2 logLO=@ logOi@ logOj as the one

which appears in pðO ¼ OexjMÞ. The two j�j1=2 thus
cancel in BMP , such that

BMP ¼ jVOj1=2
jVj1=2

Z
Dex

1

C
d�ð�Þ: (29)

With this choice, C / @ logO=@ . . . , and the prior volume
VO is dimensionless. VO is, however, not determined. To
do so, the prior of O would need to be specified.

To go further and specify a particular prior for VO, it is
necessary to impose a condition referring to some princi-
ple. Interestingly, there are two different principles, leading
to two different conditions, which lead to the same result.

Firstly, one can invoke the principle of indifference, intro-
duced in Sec. III. Applied to a dimensionful quantity, it
states that our a priori degree of belief should not depend
on the unit scale. This is translated as the invariance of
pðOjP Þ under the transformation O ! O� b, which
imposes the logarithmic prior pðOjP Þ / O�1.
But there is a second principle which gives the same

result. In this section, we restricted our discussion to a
dimensionful O. However, there is no specification made
about the actual dimension of O. It seems legitimate to
require that the whole approach lead to the same outcome
whatever the dimension of O is. Said differently, we
require that the measure of naturalness not depend on a
redefinition of O changing its dimension. We will desig-
nate this property as the ‘‘consistency’’ of the naturalness
measure. It is translated as the invariance ofBMP under the
transformation O ! Oa. The consequence of imposing
this condition is once again that pðOjP Þ is the logarithmic
prior pðOjP Þ / O�1.
We thus find that the logarithmic prior is independently

motivated by the principle of indifference and by the con-
sistency of the measure. This consistency condition is a
kind of principle of indifference, applied to a Bayes factor
instead of a probability. Depending on the point of view
adopted, one can claim either that the consistency of the
measure leads automatically to an objective prior, or that
the principle of indifference leads automatically to a con-
sistent measure. In any case, BMP is finally invariant under
the transformation O ! b�Oa.
Provided that prior volumes of both M and P can be

bounded, BMP provides a kind of absolute scale to C. As
expected, the puzzle model P plays the role of a reference
in terms of sensitivity, to whichM can be compared. Once
the volumes are determined, C is directly related to
Jeffreys’ scale. The interpretation of C in terms of degree
of belief does not depend on the definition of O. Indeed,
any redefinition of O is accompanied by a change in

jVOj1=2 ¼
R
d logO, such that the interpretation of C

always remains the same. For instance, in the gauge hier-
archy problem, it does not matter anymore whether we take
O ¼ mZ or O ¼ m2

Z, because this is compensated for in
the prior volume of mZ,

R
d logmZ ! R

d logm2
Z. This

consistency property resolves one of the issues raised
in Sec. II.

3. Relative naturalness

Finally, let us compare two hypotheses, ðM0; d0Þ and
ðM1; d1Þ. We make the assumption that the piece of data
O ¼ Oex is informative for both models. The Bayes factor

B01 ¼ pðO ¼ OexjM0; d0Þ
pðO ¼ OexjM1; d1Þ ; (30)

takes the form
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B01 ¼ jV1j1=2
jV0j1=2

Z
D0ex

C�1
0 d�ð�Þ

�Z
D1ex

C�1
1 d�ð�Þ

��1
:

(31)

Here, one can see clearly that this naturalness measure puts
in balance both the prior volumes and the sensitivities
integrated over the parameter space. M0 and M1 can be
two different models, or the same model with different
priors, or associated with different data d0 and d1. When
the two models are the same, one has C0 ¼ C1, but the
two domains of integration are still different. If the two
hypotheses differ only by the data d0 � d1, B gives the
‘‘naturalness price’’ between the two pieces of data. For
example, d0 could be the pre-LHC constraint on SUSY
particle masses, and d1 the constraint once LHC measure-
ments are taken into account.

Within the same model M, one can make the choice of
punctual priors, which select two different points �0, �1 of
Dex. In that case, the prior volumes cancel, leaving only
the Bayes factor

B01 ¼ C1

C0

: (32)

The Bayes factor, then, is simply reduced to the compari-
son of the sensitivities. This quantity shows clearly that the
relative sensitivity within a model has to be interpreted on
the basis of Jeffreys’ scale. It is also true for the usual c
measure, which is a particular case of C. This finishes
resolving all the issues raised in Sec. II.

D. Generalization and comments

To sum up, the Bayes factor BMP provides a handle on
the absolute interpretation of C and sets the functional
form of all quantities, once either the consistency or the
indifference principle is required. The relative versions of
B contain various possibilities of application, some of them
being reminiscent of previous work done in the literature.
We will now discuss generalization, absolute naturalness,
and some implications of this approach.

1. The general case

First of all, let us explain why we keep a number m of
observables O1...m smaller than or equal to the number of
parameters n. If one has n observables nonproportional to
each other, the model is fully constrained; i.e., Dex has
dimension zero. The likelihood function gets in that case
one or several maxima, with an uncertainty � associated
with each of them. If one adds a new constraint, the effect
will be to increase the precision, i.e., to reduce �, and
possibly to decrease the maximum of the likelihood, if this
new constraint is not in agreement with the n previous. But
from the point of view of the C measure, this new con-
straint is necessarily reduced around the maximum to a
linear combination of the n others. For that reason, the

contribution of this new constraint vanishes in the deter-
minant contained in the Jacobian factor C, and thus cannot
influence the sensitivity. Therefore, for the purpose of the
naturalness study, it is sufficient to keep m � n.
The second assumption we made in the beginning of

Sec. IVwas that our observables and parameterswere dimen-
sionful. We found that either applying the indifference prin-
ciple or requiring consistency of the naturalness measure
leads to the invariance of pðOÞ under logO ! logOþ b
and of BMP under logO ! a� logOþ b, where a is an
m�m matrix and b is an m-vector. These conditions

imply the use of the logarithmic prior, such that C ¼
j detðJlogOJtlogOÞj1=2, where JlogO ¼ @ logOi=@ log�j and

VO ¼ R
dm logOi, V ¼ R

dn log�j. All these properties are

the consequences of considering that a transformation law, a
change in unit scale, is irrelevant for our degree of belief
about the problem. Let us now go to the general case by
considering arbitrary, possibly dimensionless observables
and parameters. All the results can be generalized, provided
the existence of an irrelevant transformation. Let us assume
that the transformation GðOÞ ! GðOÞ þ b and the trans-
formation Hð�Þ ! Hð�Þ þ c do not modify our degree of
belief. Then, the naturalness measure is invariant under

GðOÞ ! a�GðOÞ þ b; the sensitivity takes the form C ¼
j detðJGðOÞJtGðOÞÞj1=2, where JGðOÞ ¼ @GðOÞi=@Hð�Þj; and
the prior volumes are VO ¼ R

dmGðOiÞ, V ¼ R
dnHð�jÞ.

What we stated above is based on the existence of a
continuous irrelevant transformation. However, other kinds
of conditions, possibly less obvious, can also be found. For
instance, when a theory is isomorphic to itself under a
duality transformation, it is possible to find the objective
priors of parameters transforming nontrivially under the
duality.
Finally, it is important to recall that results obtained in

Bayesian statistics depend to some extent on the parame-
trization of the problem. The choice of parametrization is
somehow intricate with the choice of prior for the parame-
ters. The indifference principle (Sec. III) plays a crucial
role with respect to this issue. It allows us to minimize the
amount of information contained in the priors—or, said
differently, it helps us to find a preferred, objective pa-
rametrization. For example, it happens that a dimension-
less parameter, whose objective prior is unknown, can be
seen as a ratio of two dimensionful parameters. This is, for
instance, the case of tan� 	 vu=vd in the minimal super-
symmetric standard model (MSSM). Given that the objec-
tive prior of dimensionful parameters is known, this
provides the (nontrivial) objective prior of the dimension-
less parameter. Or, equivalently, one can choose these
dimensionful parameters as input (we refer to Ref. [22]
for an application to the MSSM).
By construction, our Bayesian approach to naturalness

inherits all of these features. However, an extra subtlety is
that there is freedom of parameterization on both the
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parameters �i and the observable O. Without referring to
the indifference principle, there is no means to favor a
particular parametrization, and the naturalness measure is
dependent on this parametrization. Once applied, the indif-
ference principle provides the objective priors for both the
�i andO (as discussed in the analysis of BMP ). As a result,
we end up with a unique naturalness measure, depending
only on the transformation properties associated with the
indifference principle. The general result is given above in
this section. Speaking more formally, the indifference
principle defines an equivalence class among the parame-
trizations, and the naturalness measure turns out to be an
invariant of this equivalence class. In the usual example of
dimensionful parameters, the transformation defining the
equivalence class is O ! b�Oa. This is nothing but the
2D set of quantities of arbitrary dimensions. As a conse-
quence, whatever the dimension of O—e.g., O 	 mZ, m

2
Z,

or 3�m100
Z —the naturalness measure remains the same.

2. About absolute naturalness

The puzzle model P provides a reference in terms of
naturalness. It is the only sensible reference we are able to
find. But how can it be defined in practice? Let us try to do
this for the gauge hierarchy problem.

The Bayes factor associated with this problem is

BMP ¼ pðmZ ¼ mZexjM; dÞ
pðmZ ¼ mZexjP ; d0Þ : (33)

The pieces of datad andd0 have to be identical, as our goal is
not to compare different data. Which information is con-
tained in d? By construction, in our approach, all experi-
mental information available is split into two categories.
There is the one that contributes to indicate what the elec-
troweak scale is, which is called mZ ¼ mZex, and the one
that doesn’t, which is called d. With only the knowledge of
d, onewould know, for example, the strength of gravity and
gauge interactions and the fermion and hadron masses, but
not the electroweak boson masses or the Fermi constant.
Such a situation is, of course, impossible to imagine in
practice, but here we are simply splitting a set of existing
information, regardless of the way it was obtained.

Now, what should P be? It is a model which predicts
data d and has mZ both as an input and an output. We can
imagine that it is a kind of quantum field theory in which
the weak scale does not receive any quadratic corrections,
for some unknown reason. What should be the prior vol-
ume of mZ? We know from both the indifference principle
and the consistency of the measure that mZ should have a
logarithmic prior. The bounds of this density remain to be
found. Given that d contains the knowledge of gravity, P
has a cutoff at the Planck mass, so mZ � MPl. On the other
hand, as d contains the quark masses, mZ is bounded from
below due to the unitarity of quark scattering by weak
currents (see Ref. [23]), which implies roughly mZ *
10 GeV. The prior volume VmZ

in the model P is therefore

VmZ
¼ logðMPl=10 GeVÞ 
 40:0. This completes the defi-

nition of P . Using Laplace approximation, the Bayes
factor is

BMP ¼ jVmZ
j1=2

jVj1=2
Z
Dex

1

CmZ

d�ð�Þ; (34)

where CmZ
/ @ logmZ=@ . . . , and jVj is the prior volume

of M. With this equation, for any choice of M,R
Dex

C�1
mZ
d�ð�Þ is equal to Jeffreys’ scale up to a known

constant. Therefore, we get the absolute interpretation of
the sensitivity measure.
One may or not be satisfied with this approach. In any

case, it illustrates that it is not so obvious to define P in
practice. This, however, does not take away the general
results obtained by studying BMP .

3. Second-order fine-tuning

When considering a naturalness map, the following
interrogation often appears. The interest of a naturalness
map is to select regions of the parameter space which have
a relatively low fine-tuning. But suppose that a very tiny
region of the parameter space has a very smallC, whileC is
sensibly larger around, in at least one direction. Selecting
this tiny region and discarding the zone around it would be
itself an action of fine-tuning. We will designate such an
issue as a ‘‘second-order fine-tuning.’’ How is this taken
into account in our framework?
It is easy to guess that there is a relation to the choice of

punctual priors, which select single points of Dex. Indeed,
if 1=C were integrated around the tiny zone with small C,
the particularity of that zone would disappear. Formally,
the action of selecting regions with low fine-tuning corre-
sponds to imposing a prior such that C � Cmin þ�C,
where �C is a level of tolerance, and Cmin is a minimal
value. One can construct a Bayes factor comparing two
regionsD0 ex,D1 ex of the parameter space, containing the
minima C0min, C1min, respectively, and with the require-
ment of an upper bound onC. Several versions can be built,
depending, for example, on whether Cmin is considered a
common value, or if Cmin ¼ C1;0min, respectively. These

versions correspond to different reasonings. Provided that
C�1 can be approximated over the domain considered,
such Bayes factors can be computed analytically.
For example, let us consider the Bayes factor comparing

two regions D0 ex, D1 ex of the parameter space, contain-
ing minima C0min, C1min which are not on the boundaries.
We impose the condition C � Cmin þ �C, where Cmin is a
common value. It can be minðC0;min; C1;minÞ or a smaller

value. It does not matter, since it will not appear in the final
result. These two domains are denoted asD0

0 ex,D
0
1 ex. The

Bayes factor reads

B01 ¼
Z
D0

0 ex

C�1d�ð�Þ
�Z

D0
1 ex

C�1d�ð�Þ
��1

: (35)
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When �C is not too large, one can take the Laplace ap-
proximation of C around C0min and C1min. In that limit, the
integration can be done, and one obtains the Hessian of logC

H ¼ detðrirj logCÞjCmin
: (36)

As by assumption both boundaries @D0
i ex are inside the

corresponding boundaries @Di ex, the Bayes factor
reduces to

B01 ¼ C1min

C0min

H1=2
1

H1=2
0

: (37)

We can see that a new factorH1=2
1 =H1=2

0 appears in addition

toC1min=C0min. This is the quantity which renders account
for the second-order fine-tuning.

More generally, for Bayes factors where the minima are
on the boundaries, there will be contributions of the form

B01 /
Y
i

��������@C

@�i

��������C1min

��������@�i
@C

��������C0min

(38)

coming in. Terms in Eqs. (37) and (38) provide a compari-
son of the steepness of C around the two minima. This is
properly quantified and interpreted in terms of naturalness
with the Bayesian approach.

4. The top Yukawa in the gauge hierarchy problem

A recurring question about the gauge hierarchy problem
is whether or not the top quark Yukawa coupling yt should
be considered an input parameter, such that the derivative
@mZ=@yt appears in the CmZ

measure. On one hand, one

can think of yt as a simple constant, and not a parameter.
In that case, it should not appear in CmZ

. On the other hand,

one can think of it as an input parameter, fixed by the
experiment. In that case, yt must appear in the CmZ

mea-

sure. So what is the right point of view? Surprisingly, it is
the first proposition which makes sense. To understand
this, we have to examine more carefully the second
proposition.

Indeed, the choice of considering yt as an input parame-
ter or a constant is just a matter of viewpoint, and should
not modify the information content of our study. This
implies that if yt is taken as an input parameter, one has
to add to the set of experimental constraints the top quark
mass measurement, mt ¼ mt ex. But the observables mZ

and mt are not independent in the model. Therefore, to
study naturalness of the gauge hierarchy problem, they
need to be simultaneously taken into account. It is thus
the combined sensitivity CmZ;mt

which has to be used when

yt is seen as an input parameter.
At this point, it is instructive to wonder what is the

common fine-tuning associated with a generic observable
O and an observable � which is directly an input parame-
ter. The set of input parameters is denoted as pi ¼ ð�j;�Þ.
We assume a logarithmic prior for all quantities for

concreteness. If O and � are independent in the model,
the common sensitivity

CO;� ¼
�����@ logO@ logpi

^ @�

@ logpi

����� (39)

factorizes and reduces to

CO ¼
�����@ logO@ log�i

�����; (40)

given that C� ¼ 1. But what happens when the two
observables are correlated? It turns out that the answer is
the same. Whatever the ‘‘puzzle’’ observable � is, the
sensitivity always reduces to CO;� ¼ CO. We emphasize

that, although all priors are chosen to be logarithmic there,
these kinds of results hold whatever the priors are.
Let us come back to the top Yukawa and the CmZ;mt

measure. The previous remark does not apply directly,
because the observable is not yt, but rather the top mass
mt ¼ yt � v. Thus, yt does not play the same role as �.
However, the outcome will in fact be the same. We denote
the set of input parameters as pi ¼ ð�j; ytÞ. The objective

prior of mt is logarithmic, and it implies that the prior of
yt is also logarithmic. We also assume for simplicity that
the priors of the �j are logarithmic. The sensitivity is then�����CmZ;mt

¼ @ logmZ

@ logpi

^ @ logðvytÞ
@ logpi

�����: (41)

As mZ is directly related to v, the gradients @ logmZ=
@ logpi and @ logv=@ logpi are collinear. The v contribu-
tion therefore vanishes in the sensitivity measure. The
remaining part contains yt, which plays the same role as
� in the previous paragraph. As a consequence, the sensi-
tivity reduces to CmZ

, without the parameter yt:

CmZ;mt
¼

�����@ logmZ

@ log�i

�����: (42)

This result holds, whatever the priors are. Thus, to reply to
the initial question, the second proposition in fact gives the
same result as the first proposition, after a careful exami-
nation: yt should not appear in CmZ

.

5. Consequences of LHC searches

The existence of a scalar resonance whose properties are
roughly compatible with that of a Higgs boson has been
established beyond reasonable doubt at the LHC [24,25].
The mass of this new state is a stringent constraint on many
models of new physics. Some of them are almost excluded,
barring some very specific choices of parameters. As a
result, this constitutes a new naturalness problem associ-
ated with the Higgs mass constraint. It would therefore be
particularly appropriate to study the fine-tuning related to
the Higgs, either inside the parameter space of a single
model, or comparing two different models. The naturalness
measure to use for such study is
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B01 ¼ pðmh ¼ mh ex; mZ ¼ mZ exÞjM0Þ
pðmh ¼ mh ex; mZ ¼ mZ exÞjM1Þ : (43)

We emphasize once again that the two observables mh

and mZ, both independently responsible for some amount
of fine-tuning, should not be treated separately, because
their predictions are correlated in the models.

On the other hand, searches at the LHC and other experi-
ments have not, up to now, shown conclusive evidence of
existence of Beyond Standard Model physics. As the idea
of new physics (NP) at the multi-TeV scale is in part
motivated by the gauge hierarchy problem, one can wonder
to what extent NP models are more natural than the
Standard Model, given the increasing exclusion limits.
Let us answer this question in a very simplified way. For
concreteness, we assume the SM to be valid up to the
Planck scale. As the origin of the gauge hierarchy problem
is an issue of cancellations between square mass parameters,
we will consider a one-parameter ‘‘model’’ embedding this
property. That is, we just define the EW scale as given by
m2

Z ¼ M2
Plð1� �Þ. We also consider a BSM model sup-

pressing the quadratic corrections to the EW scale at a scale
~M<MPl. The EW scale is thus given by m2

Z ¼ ~M2ð1� �Þ
in this model. Picking similar priors for the � in each
hypothesis, the naturalness measure turns out to be

BNP;SM 
 M2
Pl

~M2
: (44)

We can see that, unless ~M is close toMPl, this ratio indicates
an extremely strong fine-tuning of the SM, far beyond the
typical value of 150 indicated in Jeffreys’ scale. If, for
instance ~M 
 100 TeV, one gets BNP;SM 
 1026. We

emphasize that, for the sake of comparing the SM to a NP
model improving substantially the gauge hierarchy problem,
there is no need to set up a more evolved analysis. This
estimation embeds the large leading contribution, which
flushes away any other subleading effects.

V. THE GAUGE HIERARCHY PROBLEM AND
NEUTRALINO DARK MATTER IN THE cMSSM

In this section, we apply our results to a concrete prob-
lem. We choose to study the naturalness of a classic super-
symmetric model, the constrained MSSM (cMSSM),
taking into account both the gauge hierarchy problem
and the fine-tuning of neutralino dark matter.

Supersymmetry solves the gauge hierarchy problem by
embedding the Standard Model fields into supermultiplets,
which do not generate quadratic corrections to the Higgs
mass. The simplest realistic model this one can build is
called the Minimal Supersymmetric Standard Model
(MSSM). But the superparticles which accompany the
SM particles in the supermultiplets are experimentally
constrained to be heavier than their standard partners.
This implies that supersymmetry has to be broken.
However, with broken SUSY, the gauge hierarchy problem

is not completely solved. Instead, it remains in the form of
a certain amount of special cancellations between the
SUSY parameters, of typical scale MSUSY, necessary to
reproduce the Z boson mass.MSUSY is constrained through
both direct and indirect observations, and the LHC experi-
ments are currently improving these direct limits (see, e.g.,
summary plots of Atlas [26] and CMS [27]). Roughly
speaking,MSUSY is at least O ðTeVÞ, 1 order of magnitude
above the Z mass mZ 
 91 GeV.
One of the simplest andmostwidely studied versions of the

MSSM with broken SUSY is the constrained MSSM
(cMSSM). The parameters of that model are a common
gaugino mass m1=2, a common scalar mass m2

0, a common

scalar trilinear coupling A0 	 aij=yij, the ratio of the two

Higgs vacuum expectation values tan� ¼ hHui=hHdi, and
the sign of the SUSY Higgs mass term, signð�Þ (see, e.g.,
Ref. [28] for an introduction to SUSYmodels). However, this
is a setupwhich already takes into accountmZ ¼ mZex. Aswe
are interested in the fine-tuning induced bymZ ¼ mZ ex, this
constraint must not be incorporated in the model in the first
place. Therefore, a new input parameter has to be introduced.
It is, in fact, interesting to trade tan� for the dimensionful
parameters� andB� of theHiggs sector. Indeed,whereas it is

not obvious to find an objective density for tan�, the objective
densities of� andB� are clearly logarithmic. In practice, it is

the former parametrization of themodel which is used. In that
case, the objective prior of tan� has to be inferred from the
priors of� andB�. This remarkwasmade inRef. [22],where

the resulting density is called the ‘‘REWSB prior.’’
Also, the MSSM has another celebrated feature. Its mass

spectrum contains the neutralino, a fermion charged only
under the weak force, and which is a mixture of neutral
Higgsinos and gauginos. If the lightest neutralino ~�0

1 is the

lightest particle of the SUSY spectrum, and if a remnant of
the Uð1ÞR symmetry of the SUSYalgebra is still present, it
cannot decay directly into SM particles and is therefore
stable. Such a particle is a good dark matter candidate.
Under the assumptions that the Cosmological Standard
Model is valid in the early Universe, and that the neutra-
linos were at the thermal equilibrium for some period,
today’s neutralino density can be precisely predicted using
the Boltzmann equation. This density is the relic remaining
after thermal freeze-out, when the neutralino annihilation
rate vanishes due to the expansion of the Universe. The
relic density predicted strongly depends on the masses and
compositions of all particles of the spectrum.
The latest release of the dark matter relic density mea-

sured by WMAP7 is �h2ex ¼ 0:1126� 0:0036 [29]. One
can know where this constraint is satisfied in the plan
ðm1=2; m0Þ by looking at the lines in the plots of Fig. 1.

This figure will be described in detail below. Experimental
uncertainty, by construction, does not appear in the plots.
Lines are set wide only to ease the reading of the color
code. Typically in the cMSSM, the dark matter relic
density predicted is a bit large compared to observations.
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FIG. 1 (color online). Quantified naturalness in the cMSSM. All of these plots are for A0 ¼ 0, signð�Þ ¼ 1, and mt ¼ 172:4 GeV,
with tan� ¼ 10 and 50 for the left and right panels, respectively. m1=2 and m0 are given in GeV units. Top row: Maps of the logarithm

of the electroweak fine-tuning measure CmZ
, normalized to the point of minimal fine-tuning. Center row: Maps of the logarithm of the

dark matter fine-tuning measure C�. The measure on both plots has the same normalization. Bottom row:Maps of the logarithm of the
combined electroweak and dark matter fine-tuning measure CmZ;�. The measure on both plots has the same normalization. Blue (gray)

and dark blue (dark gray) isolines show the mass of the gluino and the lightest squark with steps of 500 GeV. Following Jeffreys’ scale,
the relative degree of belief between two points 1 and 2 is given by j logðC2=C1Þj, such that the threshold values 1, 2.5 and 5 correspond
to weak, moderate, and strong evidence for point 1, respectively.
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To reproduce this experimental constraint, it is necessary
that one or several processes of neutralino annihilation be
particularly efficient [30]. There are at least four such
processes in the cMSSM.

Firstly, the neutralinos can annihilate through the ex-
change of a scalar. But this mechanism is only efficient for
light sparticles, which are more and more excluded by the
LHC. Secondly, the annihilation through the exchange of a
Higgsino or SUð2Þ gaugino is efficient if the mixing with
those states is large enough. This happens near the ‘‘No
EWSB’’ zone. Thirdly, a coannihilation with a slepton may
dominate if it is close to the neutralino mass, and if both
particles are not too heavy. This happens near the ‘‘Charged
LSP’’ zone. Finally, the exchange of a CP-odd Higgs A0 is
enhanced near the resonance pole, when mA0 
 2m~�0

1
. This

happens at large tan� and is dubbed ‘‘A-pole funnel.’’
But relying on the efficiency of such processes to obtain

the correct value for�h2 requires a rather precise adjustment
of parameters. It is therefore an act of fine-tuning. So if one
wants to explain dark matter by the neutralino, one ends up
with two naturalness problems, one induced by the piece of
information mZ ¼ mZ ex and the other due to � ¼ �ex. To
study fine-tuning in the cMSSM, it is therefore the common
sensitivity CmZ;�h2 which must be used. From the sensitivity

point of view, one has to consider the set of fundamental
parameterspi ¼ ðm1=2; m

2
0; A0; �; B�Þ. All of those parame-

ters are defined at the GUT scale. They all have a logarithmic
prior as objective density. On the other hand, although� ¼
�CDM=�c is a density rescaled to be made dimensionless,
�CDM is dimensionful, so it necessitates a logarithmicprior as
well. The common sensitivity measure is therefore

CmZ;� ¼
�����@ logmZ

@ logpi

^ @ log�h2

@ logpi

�����: (45)

We assume that the experimental uncertainties are suffi-
ciently small, such that Eq. (45) holds for all the parameter
space. This sensitivity will be denoted as C from now on.

In the MSSM, the top quark mass is given by mt ¼
ytv sin�. Thus, rigorously, yt should not be taken as a
constant, since what we explained in Subsection IVD
about the top Yukawa does not hold here due to the
presence of sin�. To stay exact, it would be necessary to
consider the sensitivity associated with the three observ-
ables, CmZ;�;mt

. However, the correction induced from

adding the observable mt is small, because in the sin�
contribution the derivative @ logsin�=@ logyt is dominant
over the other derivatives. Therefore we choose towork only
with the observables mZ, �h2, and keep yt as a constant.

We have evaluated the dark matter relic density, the
sensitivity C, and the SUSY spectrum over slices of the
parameter space of the cMSSM. Our analysis was realized
using a modified version of the spectrum calculator
SOFTSUSY [31] interfaced with MICROMEGAS 2.4 [32] to

compute the dark matter relic density. In spectrum calcu-
lators, these are not� and B�, which are input parameters,

but mZ and tan�. This is already taken into account in
SOFTSUSY to compute the mZ derivatives, but it has to be

carefully considered when implementing the �h2 deriva-
tives. The results obtained are presented in Fig. 1.
Figure 1 shows slices of the parameter space with A0¼0,

signð�Þ ¼ 1, and mt ¼ 172:4 GeV, for tan� ¼ 10 and 50.
The low-mass region of the parameter space is increasingly
excluded by the LHC bounds on sparticle masses (see
Refs. [26,27]). Instead of showing a particular limit, we
prefer to plot the gluino and lightest squark masses, and
leave the choice to the reader to apply his preferred bound.
All the plots display the logarithm of the sensitivity.
Following our results in Sec. IV, the difference between
two points 1 and 2 is given by j logC2 � logC1j ¼ � logC,
which has to be interpreted on the basis of Jeffreys’ scale.
That is, � logC ¼ 1, 2.5, 5 correspond to weak, moderate,
and strong evidence in favor of point 1, respectively. The
statements about naturalness that we will make when dis-
cussing the plots are based on this scale.
Plots in the upper line show maps of electroweak fine-

tuning. The fact that logCmZ
drops down near the ‘‘No

EWSB’’ zone is due to a feature of the MSSM renormal-
ization group equations, known as the mechanism of
‘‘focus point’’ [33]. In short, the low scale value of the
Higgs soft mass m2

Hu
becomes generically small in this

region, such that the cancellations required to reproduce
the Z mass are less important. This feature also implies a
large Higgsino fraction for the neutralino, so that the
experimental value of �h2 can be reproduced. In this
zone of the parameter space, the predictions of mZ and
�h2 are therefore particularly correlated by the model.
Plots in the center line show the darkmatter fine-tuning. In

the tan� ¼ 10 slice, one can see that the coannihilation
region has a very strong fine-tuning compared to the focus
point region. Formally, the coannihilation region continues
all along the ‘‘charged LSP zone’’ with an increasing fine-
tuning, but points are so fine-tuned that the numerical analy-
sis does not render them. In the tan� ¼ 50 slice, one can see
that the A-pole funnel and the focus point region have
sensibly the same naturalness. Relative to the tan� ¼ 10
focus point, these regions have a weak to moderate fine-
tuning. On the other hand, they are strongly more natural
than the tan� ¼ 10 coannihilation region. At tan� ¼ 50,
some very fine-tuned coannihilations can also occur on the
border, but are not shownon the plot.Darkmatter fine-tuning
has been previously investigated in the literature; see, e.g.,
Refs. [3,34], with slightly different definitions for C�.
Finally, plots shown in the lower line are for the com-

bined electroweak and dark matter fine-tuning measure
logCmZ;�. Compared to the dark matter fine-tuning alone,

here the C measure increases with M1=2 due to the gauge

hierarchy problem. In the tan� ¼ 10 slice, the coannihila-
tion region is still strongly fine-tuned with respect to the
focus point region. In the tan� ¼ 50 slice, the fine-tuning
of the focus point region increases by � logC 
 5 between
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m1=2 ¼ 500 GeV and 1500 GeV. At low m1=2, this region

is the most favored. At high m1=2, it is moderately fine-

tuned compared to the focus point region at tan� ¼ 10.
The A-pole funnel and the focus point region at high M1=2

are only moderately preferred to the tan� ¼ 10 coannihi-
lation region.

VI. CONCLUSION

The degree of naturalness is often intuitively defined as a
sensitivity, although this approach suffers from several
conceptual flaws. We propose a different definition to
formalize naturalness, working in the framework provided
by Bayesian statistics. This approach is self-consistent, and
interestingly turns out to embed the usual sensitivity defi-
nition in a generalized form.

So our approach is not an alternative. It appears that the
sensitivity is actually a piece, intuitively guessed, of a
larger setting. It is not consistent when taken alone, but
the flaws find an explanation once the embedding in the
Bayesian framework is done. Somehow, the essential miss-
ing piece was the notion of prior volume, which is also
intuitive on its own. In this paper, we work out the con-
sistent framework bringing together these notions.

The naturalness measure which appears in this frame-
work is a Bayes factor. The link between the naturalness
measure and our degree of belief, which was missing so far,
is therefore automatically provided by Jeffreys’ scale. The
generalized sensitivity which emerges takes into account
the fine-tuning of an arbitrary number of correlated observ-
ables. We discussed in details the two observable cases.

By studying the Bayes factor involving a ‘‘puzzle’’
model, we found that either the principle of indifference
or consistency of the measure are setting the functional
form of all quantities. For the sensitivity, it entails that
these are the objective prior repartition functions, both for
parameters and observables, which appear in the deriva-
tives. As the puzzle model is a reference in terms of
sensitivity, this Bayes factor gives a handle on the absolute
interpretation of C.

The Bayesian approach resolves without ambiguity the
question of whether or not the top Yukawa should enter
into the gauge hierarchy measure CmZ

. Also, it accounts

for the ‘‘second-order fine-tuning,’’ which is induced
when it is necessary to adjust precisely a parameter to select
a zone with small fine-tuning in the parameter space.
Consequences of recent LHC searches are also discussed.

We present a simple illustration of our results by exam-
ining the naturalness of a supersymmetric model, the
cMSSM. The sensitivity formulas associated with the
electroweak scale and dark matter relic density, taken
separately or together, are well defined, and differ from
some work in the literature. By using Jeffreys’ scale, we
make statements about the naturalness of the different dark
matter annihilation regions. Roughly speaking, the focus
point region is the winner of the naturalness comparisons,

while the coannihilation region comes last with a strong
evidence gap.
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APPENDIX: NATURALNESS PROBLEMS IN
PARTICLE PHYSICS AND COSMOLOGY

In this Appendix, we recall some of the main naturalness
problems. These are the most commonly discussed, but the
list is not intended to be exhaustive.
(i) Gauge hierarchy problem [28]: The electroweak

scale, often represented by the Z-boson mass mZ,
is Oð100 GeVÞ. On the other hand, the Planck

scale MPl¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏc=8�GN

p ¼2:4�1018GeV, sets the
scale at which the theory of quantum gravity
appears. Why is the electroweak scale so small com-
pared to MPl, when it should receive OðM2

PlÞ quan-
tum contributions?

(ii) StrongCP puzzle [35]: From neutron electric dipole
measurement, one deduces that the � angle,

contributing to the QCD Lagrangian LQCD �
�1=4g2G�	G�	 þ �=16�2G�	 ~G�	, is very small,

� < 10�12, while it could take values in ½��;��.
Then why is it so close to zero?

(iii) Flavor puzzle [36]: Ratios of successive SM fer-
mion mass eigenvalues, as well as CKM angles, are
all of roughly the same order. Why do they follow
this particular structure?

(iv) Cosmological constant problem [37]: The cosmo-
logical constant �, which appears in Einstein’s
equations R�	 � 1

2g�	R ¼ 8�GNT�	 þ�g�	,

is estimated to be of Oð10�47Þ GeV4 by fitting the
Standard Cosmological Model to CMB, large-scale
structures, and supernovae data. Within quantum
field theories, it should receive OðM4

PlÞ contribu-

tions, [or OðM4
SUSYÞ if there is SUSY]. Then why is

it so small?
(v) Flatness problem[38]: In the Standard Cosmological

Model, the curvature of the Universe is given by
1=R2 ¼ H2ð�=�c � 1Þ, where H is the Hubble con-
stant � is the total energy density contained in the
Universe, and �c ¼ 3H2=8�GN . �=�c � 1 is esti-
mated to be less than 0.01, and Oð10�61Þ at the
Planck era. Why did the Universe have such a small
curvature?

(vi) Cosmic coincidence [39]: Why are the densities of
matter and vaccum energy of the same order of
magnitude, i.e., �M � ��? And why now?
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