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We show from the action integral that in the special environment of a flux tube, QCD4 in (3þ 1)

dimensional space-time can be approximately compactified into QCD2 in (1þ 1) dimensional space-time.

In such a process, we find out how the coupling constant g2D in QCD2 is related to the coupling constant

g4D in QCD4. We show how the quark and the gluon in QCD2 acquire contributions to their masses arising

from their confinement within the tube and how all these quantities depend on the excitation of the partons

in the transverse degrees of freedom. The compactification facilitates the investigation of some dynamical

problems in QCD4 in the simpler dynamics of QCD2 where the variation of the gluon fields leads to a

bound state.
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I. INTRODUCTION

Previously, ’t Hooft showed that in the limit of large Nc

with fixed g2Nc in single-flavor QCD4, planar diagrams
with quarks at the edges dominate; whereas, diagrams with
the topology of a fermion loop or a wormhole are associ-
ated with suppressing factors of 1=Nc and 1=N2

c , respec-
tively [1]. In this case a simple-minded perturbation
expansion with respect to the coupling constant g cannot
describe the spectrum, while the 1=Nc expansion may be a
reasonable concept, in spite of the fact that Nc is equal to 3
and is not very big. The dominance of the planar diagram
allows one to consider QCD in one space and one time
dimensions (QCD2), and the physics resembles those of the
dual string or a flux tube, with the physical spectrum of a
straight Regge trajectory [2]. Since the pioneering work
of ’t Hooft, the properties of QCD in two-dimensional
space-time have been investigated bymanyworkers [1–16].

The flux tube picture of longitudinal dynamics is phe-
nomenologically supported in hadron spectroscopy [17], in
hadron collisions, and in eþe� annihilations at high ener-
gies [18–24]. In these high-energy processes, the average
transverse momenta of produced hadrons are observed to
be limited, of the order of a few hundred MeV. In contrast,
the longitudinal momenta of the produced hadrons can be
very large, as described by a rapidity plateau with a large
average longitudinal momentum. This average longitudinal
momentum increases with the collision energy. The limi-
tation of the average transverse momenta of the produced
hadrons means that the average momenta of partons in
produced hadrons are also limited,1 consistent with the
picture that the produced partons as constituents of the

produced hadrons are transversely confined in a flux tube.
Further idealization of the three-dimensional flux tube as a
one-dimensional string leads to the picture of the particle
production process as a string fragmentation in (1þ 1)
space-time dimensions. The particle production descrip-
tion of Casher, Kogut, and Susskind [18] in (1þ 1)
dimensional Abelian gauge theory led to results that mimic
the dynamics of particle production in hadron collisions
and in the annihilation of eþe� pairs at high energies.
Furthermore, the Lund model of classical string fragmen-
tation has been quite successful in describing quantitatively
the process of particle production in these high-energy
processes [19,22].
With the successes of the theoretical description of Casher

et al. and theLundmodel of string fragmentation, it should be
possible to compactify quantum chromodynamics in (3þ 1)
dimensional space-time (QCD4) approximately to quan-
tum chromodynamics in (1þ 1) dimensional space-time
(QCD2), in the special environment appropriate for particle
production at high energies. It is useful to examine the
circumstances under which such a compactification is pos-
sible. Such a link was given earlier in [23,24] and reported
briefly in [25]. Here, we would like to examine the problem
from the more general viewpoint of the action integral.
We note that the process of string fragmentation occurs

when a valence quark-antiquark pair pull part from each
other at high energies, as described in [18,19]. It is there-
fore reasonable to examine the QCD4 compactification
under the dominance of longitudinal dynamics in the
center-of-mass frame of the receding valence q �q pair.
Under such a longitudinal dominance in this frame, not
only are the magnitudes of the longitudinal momenta of the
leading valence quark and antiquark dominant over their
transverse momenta, so too are the magnitudes of longitu-
dinal momenta of the produced q �q parton pairs. The spa-
tially one-dimensional string is an idealization of a more

1Even though the average transverse momenta of the partons
are limited, the tails of the parton transverse momentum distri-
bution of partons in the produced hadrons can still extend to the
high pT region, but with small probabilities.
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realistic three-dimensional flux tube. The description of
produced q �q parton pairs residing within the string or flux
tube presumes the confinement of these produced partons
in the string. Hence, it is reasonable to examine further the
QCD4 compactification under transverse confinement.
As transverse confinement is a nonperturbative process
and is beyond the realm of perturbative QCD, we can
describe the transverse confinement property in terms of
a confining scalar interaction Sðr?Þ in transverse coordi-
nates r?, with the quark mass function described by
mðr?Þ ¼ m0 þ Sðr?Þ where m0 is the quark rest mass.

Having spelled out explicitly the circumstances under
which the QCD4 compactification may occur, we proceed
to start with the QCD4 action integral and begin our process
of compactification. We need to find out how we can relate
the field variables in four-dimensional space-time to those in
two-dimensional space-time in such a way that the four-
dimensional action integral can be simplified to contain only
field quantities in two-dimensional space-time. What is the
form of the two-dimensional action integral after compacti-
fication? How are the coupling constant g2D in the two-
dimensional action integral related to the coupling constant
g ¼ g4D in QCD4 in four-dimensional space-time? Are
there additional terms in the two-dimensional action integral
that arise from the compactification? How do all these
quantities depend on the excitation of the partons in the
transverse degrees of freedom?

We shall show that the compactification for QCD4 in a
flux tube leads to an action integral of a QCD gauge field
coupled to the quark field in two-dimensional space-time,
which can be appropriately called QCD2. The QCD gauge
field coupling constant is found to depend on the quark
transverse wave function in the flux tube. There are addi-
tional quark- and gluon-mass terms that arise from the
confinement of the quark and the gluon within the tube.

The success of the compactification program facilitates
the examination of some problems in QCD4 in the simpler
dynamics of QCD2. The QCD2 action integral allows one
to obtain the equations of motion for the quark field and the
gauge field. We find self-consistent solution of a boson
state with a mass in the flux tube environment, similar
to Schwinger’s solution of a massive boson in two-
dimensional Abelian gauge field theory.

It should be noted that the occurrence of a massive
composite bound state in gauge field theories has been
known in many previous investigations [26]. While the
basic principles of the massive bound state as arising
from interactions of the gauge fields in these theories are
the same as in the present investigation in a flux tube, the
physical environments and the constraints are quite differ-
ent. How the massive boson in a flux tube environment
examined here can be related to the massive boson formed
by purely gluons as a pole in the three gluon vertex in four-
dimensional space-time [27,28] is a subject worthy of
further investigation.

This paper is organized as follows. In Sec. II, we show
how the action integral in QCD4 can be compactified into
QCD2, under the assumption of longitudinal dominance
and transverse confinement. The relationship between
the four-dimensional (4D) quantities and those two-
dimensional counterparts are expressed explicitly. The fer-
mions and gauge bosons acquire contributions to their
masses that arise from the confinement. In Sec. III, we solve
the Dirac field equation in (1þ 1) space-time, and obtain
the relation between the current and the gauge field. In
Sec. IV, we examine the gauge field degrees of freedom in
two-dimensional (2D) space-time. In Sec. V, we determine
the equation of transverse motion for fermions in a tube. In
Sec. VI, we present our conclusions and discussions.

II. 4D! 2D COMPACTIFICATION
IN THE ACTION INTEGRAL

We employ the convention that before compactification
is achieved, all field quantities and gamma matrices are in
four-dimensional space-time unless specified otherwise.
With fermions interacting with an SU(N) gauge field and
a scalar field mðxÞ in the (3þ 1) Minkowski space-time,
the SU(N) gauge invariant action integral A is given
by [29]

A ¼
Z

d4x

�
Tr

�
1

2
½ �������� ��mðxÞ��

� 1

2
½ �����

 
��þ ��mðxÞ��

�
� 1

4
Fa
��F

��
a

�
; (1)

where Aa
� and � are the gauge and fermion fields, respec-

tively, in the Minkowski (3þ 1) dimensional space-time
with coordinates x � x� ¼ ðx0; xÞ ¼ ðx0; x1; x2; x3Þ and
transverse coordinates r? ¼ ðx1; x2Þ. Here in Eq. (1),

�� ¼ i@� þ g4DTaA
a
�;

Fa
�� ¼ @�A

a
� � @�A

a
� þ g4Df

a
bcA

b
�A

c
�;

(2)

� @�A
a
� � @�A

a
� � ig4D½Ab

�; A
c
��a; (3)

�� are the standard Dirac matrices, @� ¼ ð@=@t;rÞ, and a,
b, c ¼ 1 . . .N2 � 1 are SU(N) group indices. We use the
signature of ð1;�1;�1;�1Þ for the diagonal elements of
metric tensor g��. We should note that the action integral is

gauge invariant since mðxÞ is independent of the SU(N)
group generators Ta.

A. Fermion part of the action integral

The 4D-action integral A resides in four-dimensional
(3þ 1) space-time. There are environments in which the
full four-dimensional space-time is necessary, for example,
as in the discussion of the phase transition in a hot
quark-gluon plasma [30–32]. There are, however, envi-
ronments which are susceptible for compactification to
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two-dimensional (1þ 1) space-time, in which the dynam-
ics can be greatly simplified.

A proper environment for the compactification of QCD4

can be found in the special case in which a valence quark
and antiquark pull part from each other at high energies, as
in the case examined by Casher, Kugut, and Susskind [18].
It is convenient to work in the center-of-mass frame of the
receding quark-antiquark pair in which the magnitudes of
the longitudinal momenta of the valence quark pairs are
very large, much larger than the magnitudes of their trans-
verse momenta. Under such a dominance of longitudinal
dynamics, not only are the magnitudes of the longitudinal
momenta of the leading valence quark and antiquark pair
large, so are also those of the produced q and �q partons. It
is then convenient to choose the Lorentz gauge

@�Aa
� ¼ 0: (4)

In this Lorentz gauge, Aa
� is given by an integral of the

current Ja�. For a system with longitudinal dominance, the
magnitudes of the transverse currents are much smaller
than the magnitudes of the longitudinal currents. As a
consequence, the magnitudes of the gauge field transverse
components, Aa

1 and A
a
2 , along the transverse directions are

small in comparison with those of Aa
0 and Aa

3 . The gauge

field components Aa
1 and A

a
2 can be neglected. The absence

of the transverse components of the gauge fields in the
Lorentz gauge provides a needed simplification for com-
pactification. However, both Aa

0 and Aa
3 still depend on the

4D space-time variables, Aa
0ðx0; xÞ; Aa

3ðx0; xÞ.
The dominance of the longitudinal motion implies that

the valence leading quark and antiquark lie inside a longi-
tudinal tube. The limiting average transverse momentum
suggests further that the produced quarks reside within the
longitudinal tube with a radius inversely proportional to
this limiting average transverse momentum. As the con-
finement of the produced quarks within the tube is a non-
perturbative process that is beyond the realm of
perturbative QCD, we can represent the confinement prop-
erty in terms of a confining scalar interaction Sðr?Þ in
transverse coordinates r?, with the quark mass function
mðr?Þ ¼ m0 þ Sðr?Þ. The origin of r? coordinates lies

along the longitudinal axis of the receding valence quark
pair. Because of the presence of a scalar interactionmðr?Þ,
our dynamical problem does not maintain general Lorentz
in all directions. There remains, however, approximate
Lorentz invariance with respect to a finite boost along the
longitudinal axis and the range of this finite boost increases
as the energy of the receding quark pair increase.
Under such circumstances, we can carry out the com-

pactification of QCD4 in (3þ 1) dimensions as follows.
The fermion part of the 4D action AF in (1) is given by

AF¼Tr
Z
d4x

�
1

2
��������1

2
�����

 
��� ��mðr?Þ�

�
;

(5)

where � ¼ 0, 1, 2, 3 and �� is the 4D-Dirac matrices,

�0 ¼ 0 I

I 0

 !
; � ¼ 0 ��

� 0

 !
: (6)

To relate the field variables in four-dimensional space-
time to those in two-dimensional space-time in such a
way that the four-dimensional action integral can be sim-
plified, we write the Dirac fermion field �ðxÞ in terms of
the following bispinor with transverse functions G�ðr?Þ
and x0-x3 functions f�ðx0; x3Þ [21]:

�ðxÞ � ’ðx0; xÞ
�ðx0; xÞ

 !
�

’1ðx0; xÞ
’2ðx0; xÞ
�1ðx0; xÞ
�2ðx0; xÞ

0
BBBBB@

1
CCCCCA

¼ 1ffiffiffi
2
p

G1ðr?Þðfþðx0; x3Þ þ f�ðx0; x3ÞÞ
�G2ðr?Þðfþðx0; x3Þ � f�ðx0; x3ÞÞ
G1ðr?Þðfþðx0; x3Þ � f�ðx0; x3ÞÞ
G2ðr?Þðfþðx0; x3Þ þ f�ðx0; x3ÞÞ

0
BBBBB@

1
CCCCCA; (7)

where r? is a vector in the plane perpendicular to the x3

axis. Using this explicit form of the Dirac bispinor �, we
can carry out simplifications (with a detailed derivation
given in Appendix A) that lead from Eq. (5) eventually to

AF ¼ Tr
Z

d2X

�
1

2
��ð2D;XÞ½i��ð2DÞ@� þ g2D�

�TaA
a
�ð2D;XÞ��ð2D;XÞ

� 1

2
��ð2D;XÞ½i��ð2DÞ@ � � g2D�

�ð2DÞTaA
a
�ð2D;XÞ��ð2D;XÞ

� ��ð2D;XÞmqT�ð2D;XÞ
�

�AFð2DÞ;
� ¼ 0; 3; (8)

where we have introduced in the Dirac fermion field �ð2D;XÞ, � matrices, and metric tensor g��, according to the
following specifications in the (1þ 1) dimensional QCD2 space-time:
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�ð2D;XÞ ¼ fþðXÞ
f�ðXÞ

 !
; X ¼ ðx0; x3Þ; (9)

�0ð2DÞ ¼ 1 0

0 �1

 !
; �3ð2DÞ ¼ 0 1

�1 0

 !
;

g��ð2DÞ ¼
1 0

0 �1

 !
: (10)

The 2D coupling constant, g2D, is defined by the following
equation (see Appendix A):

g2D ¼
Z

dx1dx2g4D½jG1ðr?Þj2 þ jG2ðr?Þj2�3=2; (11)

where the transverse wave functions G1;2ðr?Þ are normal-
ized according toZ

dx1dx2ðjG1ðr?Þj2 þ jG2ðr?Þj2Þ ¼ 1: (12)

In the special case of the transverse ground state, we can
approximate the transverse density by a uniform distribu-
tion with a sharp transverse radius RTsharp,

ðjG1ðr?Þj2þjG2ðr?Þj2Þ� 1

�R2
Tsharp

�ðRTsharp�jrTjÞ; (13)

we then obtain for a sharp distribution in the transverse
ground state the approximate relation [23]

g2D � g4Dffiffiffiffi
�
p

RTsharp

: (14)

If we characterize the transverse ground state with a
Gaussian profile and a root-mean-square transverse radius

RT ¼
ffiffiffi
2
p

�T as

ðjG1ð~r?Þj2 þ jG2ð~r?Þj2Þ ¼ 1

2��2
exp

�
� r2

2�2
T

�
; (15)

then the corresponding g2D coupling constant becomes

g2D ¼ g4D
RT

ffiffiffiffiffiffiffi
2

9�

s
: (16)

The transverse quark mass mqT in Eq. (8) is given by (see

Appendix A)

mqT ¼
Z

dx1dx2fmðr?ÞðjG1ðr?Þj2 � jG2ðr?Þj2Þ
þ ðG�1ðr?Þðp1 � ip2ÞG2ðr?ÞÞ
� ðG1ðr?Þðp1 þ ip2ÞG�2ðr?ÞÞg: (17)

The transverse quark mass mqT contains a contribution

from the quark rest mass [through mðrÞ], in addition to a
contribution arising from the confinement of the quark in
the flux tube (through the confining wave functions
G1;2ðr?Þ). In obtaining these results, we have considered

2D gauge fields Aa
�ð2D; x0; x3Þ to be related to the 4D-field

gauge fields Aa
�ðx0; x3; r?Þ by

Aa
�ðx0; x3; r?Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jG1ðr?Þj2 þ jG2ðr?Þj2

q
Aa
�ð2D; x0; x3Þ;

� ¼ 0; 3: (18)

The above equation means that along with the confinement
of the fermions, for which the wave function G1;2ðr?Þ is
confined within a finite region of transverse coordinates
r?, the gauge field Aa

�ðxÞ, � ¼ 0, 3, is also considered to

be confined within the same finite region of transverse
coordinates, as in the case for a flux tube. Note that because
of the longitudinal dominance, we have assumed that
Aa
�ðx0; x3; r?Þ ¼ 0 for � ¼ 1, 2.

B. Gauge field part of the action integral

Having reduced the fermion part of the action integral
AF, we come to examine the gauge field part of the action
integral AA,

A A ¼ � 1

4

Z
d4xFa

��F
��
a : (19)

Our task is to find out what will be the form of AA

involving the gauge fields A�ð2DÞ the two-dimensional

space-time, when A�ð2DÞ the A� in four-dimensional

space-time are related by Eq. (18).
In Eq. (19) the summation over�, � includes terms with

�, � ¼ 1, 2. Previously, in going from AF in Eq. (5) to
AFð2DÞ in the action integral of Eq. (8), we have assumed
that the currents in the x0 and x3 directions are much
greater in magnitude than the currents in the transverse
directions so that Aa

1 and Aa
2 are small in comparison and

can be neglected. As a consequence, F12ð4DÞ ¼ 0 (we
omit the superscript color index a for simplicity).
We consider now the contribution of one of the terms,

F03F
03, in Eq. (19). Equation (18) gives F03ðx0; x3; r?Þ in

four-dimensional space-time as

F03ðx0; x3; r?Þ ¼ ½jG1ðr?Þj2 þ jG2ðr?Þj2�1=2
� ½@0A3ð2D; x0; x3Þ � @3A0ð2D; x0; x3Þ�
� ig4D½jG1ðr?Þj2 þ jG2ðr?Þj2�
� ½A0ð2D; x0; x3Þ; A3ð2D; x0; x3Þ�: (20)

On the other hand, the gauge field F03ð2D; x0; x3Þ in two-
dimensional space-time is given by definition as

F03ð2D; x0; x3Þ ¼ @0A3ð2DÞ � @3A0ð2DÞ
� ig2D½A0ð2DÞ; A3ð2DÞ�; (21)

where for brevity of notation, the coordinates ðx0; x3Þ in
A�ð2D; x0; x3Þ will be understood. As a consequence,

F03ð2D; x0; x3Þ in two-dimensional space-time and
F03ðx0; x3; r?Þ in four-dimensional space-time are related by
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F03ðx0; x3; r?Þ ¼ ½jG1ðr?Þj2 þ jG2ðr?Þj2�1=2fF03ð2D; x0; x3Þ þ ig2D½A0ð2DÞ; A3ð2DÞ�g � ig4D½jG1ðr?Þj2
þ jG2ðr?Þj2�½A0ð2DÞ; A3ð2DÞ�: (22)

The above equation can be rewritten as

F03ðx0;x3;r?Þ¼½jG1ðr?Þj2þjG2ðr?Þj2�1=2fF03ð2D;x0;x3Þþ½ig2D� ig4D½jG1ðr?Þj2þjG2ðr?Þj2�1=2�½A0ð2DÞ;A3ð2DÞ�g:
(23)

The product F03ðxÞF03ðxÞ in Eq. (19) becomes

F03ðx0;x3;r?ÞF03ðx0;x3;r?Þ¼½jG1ðr?Þj2þjG2ðr?Þj2�fF03ð2D;x0;x3ÞF03ð2D;x0;x3Þþ½ig2D� ig4DfðjG1ðr?Þj2
þjG2ðr?Þj2Þg1=2�ðF03ð2DÞ½A0ð2DÞ;A3ð2DÞ�þ½A0ð2DÞ;A3ð2DÞ�F03ð2DÞÞ
þ½ig2D� ig4D½ðjG1ðr?Þj2þjG2ðr?Þj2Þ�1=2�2ð½A0ð2DÞ;A3ð2DÞ�½A0ð2DÞ;A3ð2DÞ�Þg: (24)

The action integral AA in Eq. (19) involves the integration of the above quantity over x1 and x2. Upon integration over
x1 and x2, the second term inside the curly bracket of the above equation, is zero,Z

dx1dx2½ðjG1ðr?Þj2 þ jG2ðr?Þj2Þ�½ig2D � ig4D½ðjG1ðr?Þj2 þ jG2ðr?Þj2Þ�1=2� ¼ 0; (25)

where we have used the relation between g2D and g4D as given by Eq. (11) and the normalization condition of (12). As a
consequence, the integral of F03ðxÞF03ðxÞ in Eq. (19) becomesZ
dxF03ðx0;x3;r?ÞF03ðx0;x3;r?Þ¼

Z
dx½jG1ðr?Þj2þjG2ðr?Þj2�fF03ð2D;x0;x3ÞF03ð2D;x0;x3Þþ½ig2D� ig4D½ðjG1ðr?Þj2

þjG2ðr?Þj2Þ�1=2�2ð½A0ð2DÞ;A3ð2DÞ�½A0ð2DÞ;A3ð2DÞ�Þg: (26)

For the second term in the curly bracket, the integral over dx1 and dx2 isZ
dx1dx2½jG1ðr?Þj2 þ jG2ðr?Þj2�½ig2D � ig4D½ðjG1ðr?Þj2 þ jG2ðr?Þj2Þ�1=2�2; (27)

which can be considered as an integral over g2D in the form

2i
Z

dg2D
Z

dx1dx2½jG1ðr?Þj2 þ jG2ðr?Þj2�½ig2D � ig4D½ðjG1ðr?Þj2 þ jG2ðr?Þj2Þ�1=2�: (28)

Because of Eq. (25), the above integral gives an irrelevant constant which we can set to zero. After these manipulations, we
obtainZ

dx1dx2F03ðx0; x3; r?ÞF03ðx0; x3; r?Þ ¼
Z

dx1dx2½ðjG1ðr?Þj2 þ jG2ðr?Þj2Þ�F03ð2D; x0; x3ÞF03ð2D; x0; x3Þ
¼ F03ð2D; x0; x3ÞF03ð2D; x0; x3Þ: (29)

Following the same way (see Appendix B), we calculate terms containing F01ð4DÞ, F02ð4DÞ, F31ð4DÞ, and F32ð4DÞ. For
the gauge field part of the action integral, we obtain

1

4

Z
dxFa

��F
��
a ¼1

4

Z
dx0dx3Fa

03ð2D;x0;x3ÞF03
a ð2Dx0;x3Þ�

Z dx0dx3

4

Z
dx1dx2ðf@1½jG1ðr?Þj2þjG2ðr?Þj2�1=2g2

þf@2½jG1ðr?Þj2þjG2ðr?Þj2�1=2g2Þ½A0ð2D;x0;x3ÞA0ð2D;x0;x3ÞþA3ð2D;x0;x3ÞA3ð2D;x0;x3Þ�: (30)

It is useful to introduce the gluon mass mgT that arises from the confinement of the gluons in the transverse direction

m2
gT ¼

1

2

Z
dx1dx2½f@1½jG1ðr?Þj2 þ jG2ðr?Þj2�1=2g2 þ f@2½jG1ðr?Þj2 þ jG2ðr?Þj2�1=2g2�: (31)

Equation (30) becomes

1

4

Z
dxFa

��F
��
a ¼ 1

4

Z
dx0dx3fFa

03ð2DÞF03
a ð2DÞ � 2m2

gT½Aa
0ð2DÞA0

að2DÞ þ Aa
3ð2DÞA3

að2DÞ�g: (32)
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We collect all the fermion and gauge field parts of the action in Að4DÞ in Eq. (1). The action integral A ¼AF þAA

that was an integral in four-dimensional space-time now turns into an integral only in two-dimensional space-time. All
quantities inAð4DÞ are completely defined in (1þ 1) dimensional space-time coordinates; we rename this action integral
Að2DÞ that is given explicitly by

Að2DÞ ¼
Z

d2X

�
Tr

�
1

2
½ ��ð2D;XÞ�kð2DÞ�kð2DÞ�ð2D;XÞ � ��ð2D;XÞmqT�ð2D;XÞ

�

� 1

2
½ ��ð2D;XÞ�kð2DÞ�

 
kð2DÞ�ð2D;XÞ þ ��ð2D;XÞmqT�ð2D;XÞ�

�
� 1

4
Fa
��ð2DÞF��

a ð2DÞ

þ 1

2
m2

gT½A�
a ð2DÞAa

�ð2DÞ�
�
; (33)

where f�; �g ¼ 0, 3, and

��ð2DÞ ¼ i@� þ g2DTaA
a
�ð2D;XÞ

¼ p� þ g2DTaA
a
�ð2D;XÞ: (34)

Here, all terms (including matrices and coefficients) in the
action integral of Eq. (33) are in the (1þ 1) Minkowski
space-time. Thus, in the environment of longitudinal domi-
nance and transverse confinement, we succeed in compac-
tifying the action integral in four-dimensional space-time
to two-dimensional space-time by judiciously relating the
field operators in four-dimensional space-time to the cor-
responding field operators in two-dimensional space-time.

The result in this subsection indicates that the compac-
tified two-dimensional action integral has the same form as
QCD in two-dimensional space-time, and the compactified
field theory can be appropriately call QCD2. It has the
feature that the coupling constant g2D in QCD2 acquires
the dimension of a mass, and is related to g4D and the wave
functions of the confined fermions in the flux tube.
Fermions in different excited states inside the tube will
have different coupling constants as indicated in Eq. (11).
Furthermore, the action integral gains additional transverse
mass terms with an effective quark mass mqT and gluon

mass mgT that also depend on the transverse fermion wave

functions, as given in Eqs. (17) and (31), respectively.
The transverse quark mass includes a contribution from
the quark rest mass, in addition to a contribution due to the
confinement of the flux tube. In the lower two-dimensional
space-time, fermions in excited transverse states have a
quark transverse mass different from those in the ground
transverse states. All the transverse flux tube information is
subsumed under these quantities.

Provided that the fields Aa
�ð4D; x1; x2; x0; x3Þ are gov-

erned by the standard gauge transformation [29], the 2D
gauged fields Aa

�ð2D; x0; x3Þ introduced according to

Eq. (18) are found to transform under a gauge transforma-
tion as follows (see Appendix C):

Aa
�ð2D; x0; x3Þ ! ~Aa

�ð2D; x0; x3Þ
¼ Aa

�ð2D; x0; x3Þ
þ fabc"

bðx0; x3ÞAc
�ð2D; x0; x3Þ: (35)

As a consequence, the term Aa
�ð2DÞA�

a ð2DÞ transforms

under a gauge transformation as

Aa
�ð2D; x0; x3ÞA�

a ð2D; x0; x3Þ
! ~Aa

�ð2D; x0; x3Þ ~A�
a ð2D; x0; x3Þ; (36)

which indicates that the mass term in Eq. (33) does not
violate gauge invariance and does not violate the Slavnov-
Taylor [33] identities (see Appendix C) due to the 2D
gauge transformations given by Eqs. (35) and (C1).

III. SOLUTION OF THE DIRAC FIELDS IN
(1 þ 1) SPACE-TIME

Having completed the program of compactification of
QCD4 to QCD2, we shall employ the new notation hence-
forth that all field quantities and gamma matrices are in
two-dimensional space-time with � ¼ 0, 3, unless speci-
fied otherwise. We can use the QCD2 action integral to get
the equation of motion for the field. Varying the action

integral Að2DÞ given by Eq. (33) with respect to ��, we
derive the 2D Dirac equation,

fi��ð@� � ig2D � Aa
�ðXÞTaÞ �mqTg�ðXÞ ¼ 0; (37)

where 2D Dirac matrices are those given in Eq. (10). The
gauge field Aa

� written in component form is

Aa
�ðXÞ ¼ ðAa

0 ;�Aa
3Þ; X ¼ ðx0; x3Þ: (38)

We express the fermion field � in terms of fþðXÞ and
f�ðXÞ as in Eq. (9),

� ¼ 1
0

� �
fþðXÞ þ 0

1

� �
f�ðXÞ: (39)

Then, the Dirac equation (37) becomes
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i
@fþðt; zÞ

@t
þ i

@f�ðt; zÞ
@z

þ g2DTaA
a
0fþðt; zÞ � g2DTaA

a
3f�ðt; zÞ ¼ mqTfþðt; zÞ

� i
@f�ðt; zÞ

@t
� i

@fþðt; zÞ
@z

� g2DT
aA0

af�ðzÞ þ g2DTaA
a
3fþðt; zÞ ¼ mqTf�ðt; zÞ;

t � x0; z � x3: (40)

We introduce new functions as sum and difference of
fþ and f�:

�ðt; zÞ ¼ fþðt; zÞ � f�ðt; zÞ;
�ðt; zÞ ¼ fþðt; zÞ þ f�ðt; zÞ:

(41)

As a result, we obtain

i
@�ðt; zÞ

@t
� i

@�ðt; zÞ
@z

þ g2DÂ1�ðt; zÞ ¼ mqT�ðt; zÞ;

i
@�ðt; zÞ

@t
þ i

@�ðt; zÞ
@z

þ g2DÂ2�ðt; zÞ ¼ mqT�ðt; zÞ;
(42)

where

Â 1 ¼ TaðAa
0 þ Aa

3Þ; Â2 ¼ TaðAa
0 � Aa

3Þ: (43)

We look for a solution of Eq. (42) in the form

�ðt;zÞ¼Fðt;zÞ�ðt;zÞ; �ðt;zÞ¼Gðt;zÞ�ðt;zÞ; (44)

where the functions �ðt; zÞ, Fðt; zÞ, and Gðt; zÞ satisfy the
following equations:

i
@�ðt; zÞ

@t
� i

@�ðt; zÞ
@z

þ g2DÂ1�ðt; zÞ ¼ 0;

i
@�ðt; zÞ

@t
þ i

@�ðt; zÞ
@z

þ g2DÂ2�ðt; zÞ ¼ 0;
(45)

while

i
@Fðt; zÞ

@t
� i

@Fðt; zÞ
@z

¼ mqTGðt; zÞ;

i
@Gðt; zÞ

@t
þ i

@Gðt; zÞ
@z

¼ mqTFðt; zÞ:
(46)

The solution of Eq. (45) can be formally written in the
operator form as follows:

�ðt; zÞ ¼ fTlðM0;MÞ expg
�
ig2DTa

Z
dx�Aa

�

�
; (47)

where the symbol fTlðM0;MÞ expg means that the integration
is to be carried out along the line on the light cone from the
point M0 to the point M such that the factors in exponent
expansion are chronologically ordered from M0 to M.
Equation (46) includes the free 2D Dirac equations.
When mqT is a constant, the solution can be found as the
superposition of 2D plane waves:

Fðt; zÞ ¼
Z d2P

2�
FðPÞeð�iPXÞ ¼

Z d2P

2�
FðPÞe�ið!t�pzzÞ;

Gðt; zÞ ¼
Z d2P

2�
GðPÞeð�iPXÞ ¼

Z d2P

2�
GðPÞe�ið!t�pzzÞ:

(48)

Substituting the last expansion into Eq. (46), we obtain

FðPÞð!þ pÞ �mqTGðPÞ ¼ 0;

ð!� pÞGðPÞ �mqTFðPÞ ¼ 0;

P � P� ¼ ð!;pÞ ¼ ð!;pzÞ � ð!;pÞ: (49)

As a result, we have

fþ ¼ � þ �

2
/ GðPÞ þ FðpÞ;

f� ¼ � � �

2
/ GðPÞ � FðpÞ:

(50)

Taking FðPÞ ¼ 1 and GðPÞ ¼ ð	þ pÞ=mqT , we derive

fþ / !þ p

mqT

þ 1; f� / !þ p

mqT

� 1: (51)

The solution of Eq. (37) becomes

�ð2D;XÞ¼�ðx0;x3Þ

¼fþðx0;x3Þ
1

0

 !
þf�ðx0;x3Þ

0

1

 !

¼
Z d2P

2�
e�ið!t�pzzÞNð!;pÞ

!þp
mqT
þ1

!þp
mqT
�1

0
@

1
A ��ðXÞ;

(52)

where Nð!;pÞ is some normalization multiplier. We can
take the normalization condition0
@Nð!;pÞ

!þp
mqT
þ 1

!þp
mqT
� 1

0
@

1
A
1
AyNð!;pÞ

!þp
mqT
þ 1

!þp
mqT
� 1

0
@

1
A ¼ 1

L
; (53)

where L is the flux tube length. Then, we obtain

Nð!;pÞ ¼ mqT

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Lð!2 þ p!

p Þ
: (54)

As a result, the general solution is
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�ðXÞ ¼
Z þ1
�1

d!

2
ffiffiffiffi
L
p X

p

mqTffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
!2 þ p!

p expð�iP�x
�Þaðp;!Þ

� ½
ð!� "ðpÞÞ þ 
ð!þ "ðpÞÞ�
!þp
mqT
þ 1

!þp
mqT
� 1

0
@

1
A

� fTlðM0;MÞ expg
�
ig2DTa

Z
dx�Aa

�

�
; (55)

where aðp;!Þ are coefficients related to either particles or
antiparticles under the field quantization. We have not
deliberately separated out positive and negative frequency
terms in Eq. (55), because the structure of the fermion
vacuum is strongly dependent on the explicit form of the
external field Aa

�ðXÞ. Furthermore, when the external field
depends on time, there will be no stationary particles and
antiparticles states.

A. Fermion current and gauge fields

We envisage that a perturbative gauge field is introduced
inside the flux tube; such a field will generate a current, and
the current in turn will produce a gauge field self-
consistently. How do these quantities relate to each other?
We therefore need to obtain a relationship between the
fermion current and the gauge field.

The fermion field solution in Eq. (55) leads to a fermion
current J

�
a :

J
�
a ð2DÞ¼g2DTrf ��ðXÞ��Ta�ðX0Þg; X0 !X: (56)

Owing to the operation of trace calculation in the last
formula, the current (56) contains the factor

ðT expÞ
�
ig2DTa

Z X0

X
Aa
�dX

�

�
: (57)

We expand the operator exponent in the last equation as a
series with respect to ðX0 � XÞ ! 0,

ðTexpÞ
�
ig2DTa

Z X0

X
Aa
�dX

�

�
¼1þ ig2DTaðX0 �XÞ�Aa

�ð�Þ
þ i

2
g2DTaðX0 �XÞ�ðX0 �XÞ�@�Aa

�ð�Þ
�g22DðTaTbÞð ~X0� ~XÞ�ðX0 �XÞ�Aa

�ð~�ÞAb
�ð�Þ�ð~���Þ;

(58)

where ~� 2 ½ ~X; ~X0�; � 2 ½X;X0�, X0 ! X. We take the lim-
its ð ~X0 � ~XÞ ! 0 and ðX0 � XÞ ! 0 such that

ð ~X0 � ~XÞ
ðX0 � XÞ ! 0: (59)

Then, the last term in the expansion in Eq. (58) is equal to

zero. Substituting ðT expÞfig2DTa

R
X0
X Aa

�dx
�g into Eq. (56),

we obtain for ðX0 � XÞ ! 0:

J
�
a ¼ g2D

L
Tr
Z

d!
X
p;f

�
hayf ðp;!Þafðp;!ÞiðP�TaÞ

�
�
� @

@P�

expð�iPðX0 � XÞÞ
�
½
ð!þ "ðpÞÞ

þ 
ð!� "ðpÞÞ�
�
g2DTbA

b
�ð�Þ

þ 1

2
g2DTbðX0 � XÞ
@�Ab


ð�Þ
��
; (60)

where f denotes flavor states. In reaching the last equation,
we have successively calculated a trace, gone from summa-
tion to integration, introduced the additional integration
with respect to the p variable, and integrated by parts. We
note that upon taking the partial derivative @2 � @2ðXÞ on
ðX0 � XÞ
@�ðXÞAb


ð�Þ, we get
@2ðXÞ lim

X0!X
fðX0 � XÞ
@�ðXÞAb


ð�Þg
¼ lim

X0!X
@2ðXÞfðX0 � XÞ
@�ðXÞAb


ðXÞg
¼ lim

X0!X
f�2@
ðXÞ@�ðXÞAb


ðXÞ
þ ðX0 � XÞ
@�ðXÞ@�ðXÞf@�ðXÞAb


ðXÞgg: (61)

Upon taking the limit X0 ! X, the second term vanishes.
Therefore, we have in the limit of X0 ! X,

lim
X0!X
ððX0 � XÞ
@�Ab


ð�ÞÞ ¼ �2
@
@�
@2

Ab

ðXÞ: (62)

It should be noted that as QCD4 in the (3þ 1) dimen-
sional space-time is gauge invariant, and we have chosen
the Lorentz gauge (4) in QCD4 to simplify the compacti-
fied action integral in QCD2. We need to continue to use
the Lorentz gauge in QCD2 for consistency. In the Lorentz
gauge, the last term in the second circular brackets in
Eq. (60) is equal to zero because of Eq. (62). Calculating
a trace with respect to the color variables according to
Eq. (6), we can represent the current J

�
a in the following

form:

J
�
a ð2D;XÞ ¼ g22DS

4
A
�
a ð2D;XÞ;

S ¼ 1

2�

X
f

Z
d2P

@

@P� f½
ð!þ "ðpÞÞ

þ 
ð!� "ðpÞÞ�P�hayðp;!Þfafðp;!Þig;
d2P ¼ d!dp; (63)

where P� is the momentum introduced in Eq. (49). We can
introduce a boson mass mgfT by

m2
gfT ¼

g22DS
4

: (64)

Then, the current in Eq. (63) can be written as

ANDREY V. KOSHELKIN AND CHEUK-YIN WONG PHYSICAL REVIEW D 86, 125026 (2012)

125026-8



J�a ð2D;XÞ ¼ m2
gfTA

�
a ð2D;XÞ: (65)

We can calculate the quantity S. Changing p by�p in the
term corresponding to the negative !, we have

S¼ 1

2�

X
f

Z
d2P

@

@P� fP�ð
ð!�"ðpÞÞhayðp;!Þfafðp;!Þi

þ
ð!þ"ðpÞÞhayð�p;!Þfafð�p;!ÞiÞg: (66)

Integrating out the 
 functions, we obtain

S ¼ 1

�

X
f

Z
dpðhayf ðp; "ðpÞÞafðp; "ðpÞÞi

þ hayf ð�p;�"ðpÞÞafð�p;�"ðpÞÞiÞ
�
1� m2

qT

2"2ðpÞ
�
:

(67)

Since a fermion moves either along or opposite to the only
spatial axis, we haveZ

dphayf ðp; "ðpÞÞafðp; "ðpÞÞi

¼
Z

dphayf ð�p;�"ðpÞÞafð�p;�"ðpÞÞi
¼ 1: (68)

In the case of a flux tube for which mqT 	 p, we obtain

S ¼ 2

�
Nf; (69)

where Nf is the number of flavors. We note in passing that

in the special case of the massless QED2 [34], we obtain
after summing over all spin states of a fermion

S QED2
¼ 4

�
; ðNf ¼ 1Þ; (70)

and

m2
gfTðQED2Þ ¼ g2

�
; (71)

which agrees with the Schwinger massless QED2
result [34].

Finally, we note that under the gauge transformation


A�
a ¼ "bfa

bcA�
c ; (72)

the current (63) satisfies the gauge relation


J�a ¼ "bfa
bcJ�c : (73)

IV. EQUATION OF MOTION FOR THE
2D GAUGE FIELDS

The action integral A allows us to obtain the equation
of motion for the 2D gauge field. We rewrite the action
integral (33) by expressing explicitly the term correspond-
ing to the interaction between the fermion and the gauge
field,

Að2DÞ ¼
Z

d2X

�
i

2
½ ���k@k�� ��mqT��

� i

2
½ ���k@

 
k�þ ��mqT�� þ J�a Aa

�

� 1

4
Fa
��F

��
a þ 1

2
m2

gTA
a
�A

�
a

�
; (74)

where J�a ðxÞ is the fermion current governed by Eq. (65).
Substituting J�a ðxÞ given by Eq. (74) into the 2D action
integral (74), we obtain

Að2DÞ ¼
Z

d2X

�
i

2
½ ���k@k�� ��mqT��

� i

2
½ ���k@

 
k�þ ��mqT��

� 1

4
Fa
��F

��
a þ 1

2
M2

gTA
a
�A

�
a

�
: (75)

Here the constant MgT is given by

M2
gT ¼

1

2

Z
dx1dx2½f@1½jG1ðr?Þj2 þ jG2ðr?Þj2�1=2g2

þ f@2½jG1ðr?Þj2 þ jG2ðr?Þj2�1=2g2� þ g22DS
2

� m2
gT þm2

gfT 
 0: (76)

To find out the meaning of MgT , we consider the varia-

tion of the action integral (75) with respect to a variation of
the gauge field A�

aðxÞ. We obtain equation of motion for the
variation A�

aðxÞ. As a result, we derive the Klein-Gordon-
like equation:

hA�
a ¼ M2

gTA
�
a: (77)

We look for a solution for the variation of the gauge field in
Eq. (77) of the form

A�
a¼baðk;�Þe�aðkÞexpð�ik�X�Þ; k�¼ðk0;kÞ;

e0a¼ jkjMgT

ð1;0Þ; e3a¼ jk
0j

MgT

ð0;1Þ; (78)

where e�a denotes a pair orthogonal vectors; baðk; �Þ are
some coefficients being independent on X. Substituting A�

a

given by Eq. (78) into Eq. (77), we obtain

ðk0Þ2 ¼ k2 þM2
gT: (79)

Because of both the positivity of M2
gT and Eq. (79), MgT

can be interpreted as a mass of the particle whose energy is

EðkÞ � k0 ¼ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þM2

gT

q
: (80)

Equations (78) and (80) allow us to write down the general
solution of Eq. (77). Following the standard way [29], and
separating the negative and positive frequency terms, we
obtain
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A�
að2D;XÞ ¼X

k

e�aMgTffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðkþM2

gTÞ32
q fexpð�ikXÞbaðk; �Þ

þ expðþikXÞ �bya ðk; �Þg; (81)

where the symbols baðk; �Þ and �bya ðk; �Þ are the operators
of annihilation and creation of a boson with the massMgT .

In this way, MgT corresponds to the mass of the boson

responding to the space-time variation of the gauge field
variation.

The boson mass MgT in the action integral Eq. (75)

arises from the compactification of 4D! 2D and from
the interaction of the compactified fermions and gauge
field. We should also note that all masses (boson and
fermion field) as well as 2D coupling constant are gov-
erned by the functions of the transverse motion of a fer-
mion, G1;2ð~r?Þ. It is independent of the color index a. Out
of the gauge field variations of different color components
A
�
a , one can construct a colorless variation of the type

A�
color-singlet ¼

1ffiffiffi
8
p X

a

A�
a j8; ai; (82)

where j8; ai is the color-octet state with component a.
Equation (77) gives

hA�
color-singlet ¼ M2

gTA
�
color-singlet: (83)

Thus, we find thatMgT is also the mass corresponding to a

colorless variation of the gauge field of different color
components in a flux tube. Such a colorless variation
should lead to an observable quantity. If one considers
pion as the colorless dynamical response of the variations
of the gage fields in a string, thenMgT may be presumed to

be the mass of the pion within the environment of a flux
tube under consideration.

V. EQUATIONS OF TRANSVERSE MOTION IN A
TUBE AND THE FERMION EFFECTIVE MASS

To obtain the equations of motion for the functions
G1ð ~r?Þ and G2ð~r?Þ, we vary the action integral Að4DÞ in
Eq. (1) with the fermion fields �ð4D; xÞ given by Eq. (7),
under the constraint of the normalization condition Eq. (7).
To do this we construct a new functional F ,

F ¼Að4DÞ þ 


2

Z
dx1dx2ðjG1ð ~r?Þj2 þ jG2ð ~r?Þj2Þ

�
Z

dx0dx3ð ��ðx0; x3Þ�ðx0; x3ÞÞ; (84)

where 
 is the Lagrange multiplier. The last term in
Eq. (84) takes into account the unitarity of a fermion field
in the 4D space-time. Varying the last equation with respect
to the functions G1ð ~r?Þ and G2ð ~r?Þ, we obtain

ðp1 þ ip2ÞG1ð ~r?Þ ¼ ðmð ~r?Þ þ 
ÞG2ð ~r?Þ;
ðp1 � ip2ÞG2ð ~r?Þ ¼ ð
�mð ~r?ÞÞG1ð ~rÞ;
ðp1 þ ip2ÞG�2ð ~r?Þ ¼ ðmð ~r?Þ � 
ÞG�1ð ~r?Þ;
ðp1 � ip2ÞG�1ð ~r?Þ ¼ �ðmð~r?Þ þ 
ÞG�2ð~rÞ:

(85)

Carrying out complex conjugation in the last two equations,
we obtain


 ¼ 
�: (86)

Combining Eq. (85), we get

ðp2
1 þ p2

2 � 
2 þm2ð~r?ÞÞG1ð~r?Þ
¼ G2ð ~r?Þðp1 � ip2Þmð ~r?Þ;

ðp2
1 þ p2

2 � 
2 þm2ð~r?ÞÞG2ð~r?Þ
¼ �G1ð~r?Þðp1 þ ip2Þmð ~r?Þ: (87)

Substituting the Eq. (85) for G1;2ð ~r?Þ functions into the

formula (17) for mqT , we find that

mqT ¼ 
: (88)

Thus, the effective mass of the compactified 2D fermion
field is equal to the energy eigenvalue for the transverse
motion of the 4D fermion as described in Eq. (85). We
should note here that the 2D fermion can generally gain a
mass even when the initial 4D fermion appears to be mass-
less. The compactification effectively leads to a constraint
in moving a fermion from one point of a space-time to
another point due to decreasing the number of trajectories
in the 2D space-time as compared with the 4D situation.
This constraint leads to the presence of an effective mass.

VI. CONCLUSIONS AND DISCUSSIONS

Encouraged by the successes of the particle production
model of Casher, Kogut, and Susskind using the Abelian
gauge field theory in two-dimension space-time [18] and
the Lund model of string fragmentation [19], we seek a
compactification ofQCD4 toQCD2 in the environment of a
flux tube. Under the assumption of longitudinal dominance
and transverse confinement, the SU(N) gauge invariant
field theory of QCD4 can be compactified in the (1þ 1)
Minkowski space-time, from the consideration of the ac-
tion integral. This is achieved by finding a way to relate the
field variables in two-dimensional space-time to those in
four-dimensional space-time.
The compactified 2D action integralAð2DÞ depends only

on fields that are defined in two-dimensional space-time. It
has the same structure as those in QCD in four-dimensional
space-time and can therefore be appropriately called QCD2.
In the compactifiedQCD2 quantumfield theory, the coupling
constant is found to be dimensional, and there are additional
terms in the action associated with an effective quark mass
and effective gauge field mass as a result of the flux tube
confinement. These quantities depend on the transverse pro-
file and the transverse state of the quarks in the flux tube.
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On a basis of the derived QCD2 action integral, the
equations of motion for the fields can be obtained for
both the fermion field and the gauge field. The solution
of 2D Dirac equation can then be formally obtained.
The structure of the solution allows one to consider the
effects of the fermion-gluon coupling. As a result, the
2D action integral can be rewritten in the form such that
the gauge field acquires an additional effective mass
due to interaction with fermions. The structure of the
derived mass term appears to be identical to the one
obtained by Schwinger [34] in the special case of mass-
less QED2.

The occurrence of a massive composite bound state in
gauge field theories has been known in many previous

investigations [26]. How the massive bosons as a pole in
the three gluon vertex in four-dimensional space-time
[27,28] can be produced in the flux tube environment in
high-energy collisions will be an interesting subject worthy
of further investigations.
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APPENDIX A

Substituting �ð4D; xÞ � �ðxÞ given by Eq. (7) into the
first term in Eq. (5), we obtain

��ðxÞ�����ðxÞ ¼ �yð�0 � ðp1�1 þ p2�2Þ ��3�3Þ�þ ’yð�0 þ ðp1�1 þ p2�2Þ þ�3�3Þ’

¼ �y
�

�0 ��3 0

0 �0 þ�3

 !
� 0 p1 � ip2

p1 þ ip2 0

 !�
�þ ’y

�
�0 þ�3 0

0 �0 ��3

 !

þ 0 p1 � ip2

p1 þ ip2 0

 !�
’

¼ ��1ð�0 ��3Þ�1 þ ��2ð�0 þ�3Þ�2 � ��1ðp1 � ip2Þ�2 � ��2ðp1 þ ip2Þ�1 þ ’�1ð�0 þ�3Þ’1

þ ’�2ð�0 ��3Þ’2 þ ’�1ðp1 � ip2Þ’2 þ ’�2ðp1 þ ip2Þ’1

¼ ��1ð�0 ��3Þ�1 þ ��2ð�0 þ�3Þ�2 þ ’�1ð�0 þ�3Þ’1 þ ’�2ð�0 ��3Þ’2

� ��1ðp1 � ip2Þ�2 � ��2ðp1 þ ip2Þ�1 þ ’�1ðp1 � ip2Þ’2 þ ’�2ðp1 þ ip2Þ’1: (A1)

Integration of the last equation givesZ
d4x ��ðxÞ�k�k�ðxÞ ¼

Z
d4xf��1ð�0 ��3Þ�1 þ ��2ð�0 þ�3Þ�2 þ ’�1ð�0 þ�3Þ’1 þ ’�2ð�0 ��3Þ’2g

þ
Z

d4xf���1ðp1 � ip2Þ�2 � ��2ðp1 þ ip2Þ�1 þ ’�1ðp1 � ip2Þ’2 þ ’�2ðp1 þ ip2Þ’1g

¼
Z

d4xf��1ð�0 ��3Þ�1 þ ��2ð�0 þ�3Þ�2 þ ’�1ð�0 þ�3Þ’1 þ ’�2ð�0 ��3Þ’2g

�
Z

d4xfG�1ð~r?Þðp1 � ip2ÞG2ð~r?Þgðjfþj2 � jf�j2Þ

¼
Z

d4xðjG1ð ~r?Þj2 þ jG2ð ~r?Þj2Þ½f�þ�0fþ þ f���0f� þ f�þ�3f� þ f���3fþ�

�
Z

d4xfG�1ð~r?Þðp1 � ip2ÞG2ð~r?Þgðjfþj2 � jf�j2Þ: (A2)

Following the same way, we derive for the term ��ðxÞ�k�
 

k�ðxÞ:Z
d4x ��ðxÞ�k�

 
k�ðxÞ ¼

Z
d4xðjG1ð~r?Þj2 þ jG2ð~r?Þj2Þ½f�þ�

 
0fþ þ f���

 
0f� þ f�þ�

 
3f� þ f���

 
3fþ�

�
Z

d4xfG1ð~r?Þðp1 þ ip2ÞG�2ð ~r?Þgðjfþj2 � jf�j2Þ: (A3)

We substitute �ðxÞ of Eq. (7) into the last term in Eq. (5), and we obtain

��ðxÞmð ~r?Þ�ðxÞ ¼ mð ~r?ÞðjG1ð ~r?Þj2 � jG2ð ~r?Þj2Þ½jfþj2 � jf�j2�: (A4)

Collecting the above results and introducing the 2D-fermion wave function�ðXÞ, 2D-gamma matrices ��, and the metric
tensor g��ð2DÞ as given in Eqs. (9) and (10), we obtain the Fermion part of the action integral in Eq. (8).
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APPENDIX B

To compactify the gauge field parts of the (3þ 1) dimensional space-time to (1þ 1) dimensional space-time, we need to
evaluate F01, F02, F31, and F32. Direct calculations give (color indexes are omitted for simplicity)

F01ðx0; x3; r?Þ ¼ �@1A0ðx0; x3; r?Þ ¼ �@1½jG1ðr?Þj2 þ jG2ðr?Þj2�1=2A0ð2D; x0; x3Þ; (B1)

F01ðx0; x3; r?ÞF01ðx0; x3; r?Þ ¼ f�@1½jG1ðr?Þj2 þ jG2ðr?Þj2�1=2gf�@1½jG1ðr?Þj2
þ jG2ðr?Þj2�1=2gA0ð2D; x0; x3ÞA0ð2D; x0; x3Þ;

¼ �f@1½jG1ðr?Þj2 þ jG2ðr?Þj2�1=2g2A0ð2D; x0; x3ÞA0ð2D; x0; x3Þ;
(B2)

which contribute a gauge field mass in the A0ð2D; x0; x3Þ gauge field. Similarly, we can calculate

F02ðx0; x3; r?ÞF02ðx0; x3; r?Þ ¼ �f@2½jG1ðr?Þj2 þ jG2ðr?Þj2�1=2g2A0ð2D; x0; x3ÞA0ð2D; x0; x3Þ;
F31ðx0; x3; r?ÞF31ðx0; x3; r?Þ ¼ �f@1½jG1ðr?Þj2 þ jG2ðr?Þj2�1=2g2A3ð2D; x0; x3ÞA3ð2D; x0; x3Þ;

(B3)

which contribute a gauge field mass in the A3ð2D; x0; x3Þ gauge field. Similarly, we have also

F32ðx0; x3; r?ÞF32ðx0; x3; r?Þ ¼ �f@2½jG1ðr?Þj2 þ jG2ðr?Þj2�1=2g2A3ð2D; x0; x3ÞA3ð2D; x0; x3Þ: (B4)

Combining all similar terms, we get

½F01F
01 þ F02F

02 þ F31F
31 þ F32F

32�ðx0; x3; r?Þ ¼ �ðf@1½jG1ðr?Þj2 þ jG2ðr?Þj2�1=2g2 þ f@2½jG1ðr?Þj2
þ jG2ðr?Þj2�1=2g2Þ½A0ð2D; x0; x3ÞA0ð2D; x0; x3Þ
þ A3ð2D; x0; x3ÞA3ð2D; x0; x3Þ�

¼ �ðf@1½jG1ðr?Þj2 þ jG2ðr?Þj2�1=2g2 þ f@2½jG1ðr?Þj2
þ jG2ðr?Þj2�1=2g2Þ½A0ð2D; x0; x3ÞA0ð2D; x0; x3Þ
þ A3ð2D; x0; x3ÞA3ð2D; x0; x3Þ�: (B5)

Then, due to the normalization relation (12) we have the following [see Eqs. (26) and (27)] for the gauge field part:

1

4

Z
d4xFa

��ð4DÞF��
a ð4DÞ ¼ 1

4

Z
dx0dx3

Z
dx1dx2ðjG1ðr?Þj2 þ jG2ðr?Þj2ÞFa

03ð2DÞF03
a ð2DÞ

� 1

4

Z
dx0dx3

Z
dx1dx2ðf@1½jG1ðr?Þj2 þ jG2ðr?Þj2�1=2g2 þ f@2½jG1ðr?Þj2

þ jG2ðr?Þj2�1=2g2Þ½A0ð2D; x0; x3ÞA0ð2D; x0; x3Þ þ A3ð2D; x0; x3ÞA3ð2D; x0; x3Þ�
¼ 1

4

Z
dx0dx3Fa

03ð2DÞF03
a ð2DÞ � 1

2

Z
dx0dx3m2

gT½A0ð2DÞA0ð2DÞ þ A3ð2DÞA3ð2DÞ�; (B6)

where m2
gT is the mass term that arises from the confinement of the gluons in the transverse direction

m2
gT ¼

1

2

Z
dx1dx2½f@1½jG1ðr?Þj2 þ jG2ðr?Þj2�1=2g2 þ f@2½jG1ðr?Þj2 þ jG2ðr?Þj2�1=2g2�: (B7)

Note that using integration by parts, we get

�
Z

dx1dx2f@1½jG1ðr?Þj2þ jG2ðr?Þj2�1=2g2 ¼
Z

dx1dx2½jG1ðr?Þj2þ jG2ðr?Þj2�1=2@21½jG1ðr?Þj2þ jG2ðr?Þj2�1=2: (B8)

Therefore, adding the terms together, we obtain

m2
gT ¼

1

2

Z
dx1dx2½f@1½jG1ðr?Þj2 þ jG2ðr?Þj2�1=2g2 þ f@2½jG1ðr?Þj2 þ jG2ðr?Þj2�1=2g2�

¼ � 1

2

Z
dx1dx2½jG1ðr?Þj2 þ jG2ðr?Þj2�1=2ð@21 þ @22Þ½2jG1ðr?Þj2 þ jG2ðr?Þj2�1=2

¼
Z

dx1dx2½jG1ðr?Þj2 þ jG2ðr?Þj2�1=2ð� 1

2
r2

TÞ½jG1ðr?Þj2 þ jG2ðr?Þj2�1=2: (B9)
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APPENDIX C

1. Transformation of a gauge field in the 2D space-time

We would like to write down the gauge transformation properties for Aa
�ð2D; x0; x3Þ. For the corresponding gauge field

Aa
�ðxÞ in the 4D space-time x ¼ ðx0; x3; r?Þ, it transforms under a gauge transformation as [29]

Aa
�ðxÞ ! ~Aa

�ðxÞ ¼ Aa
�ðxÞ þ 
Aa

�ðxÞ; (C1)

where


Aa
�ðxÞ ¼ fabc"

bðxÞAc
�ðxÞ � 1

gð4DÞ@�"
aðxÞ: (C2)

According to Eq. (18) the gauge fields in the 2D and 4D space-time are related to each other as follows:

Aa
�ð2D; x0; x3Þ ¼ Aa

�ðx0; x3; r?ÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijG1ðr?Þj2 þ jG2ðr?Þj2
p ; � ¼ 0; 3;

Aa
�ðx0; x3; r?Þ ¼ 0; � ¼ 1; 2:

(C3)

From the last equation, we have


Aa
�ðx0; x3; r?Þ ¼ 0; � ¼ 1; 2:) @�"

aðxÞ ¼ 0; � ¼ 1; 2: (C4)

Then, we have

"aðxÞ ¼ "aðx0; x3Þ: (C5)

Next, we would like to transform Aa
�ð2D; x0; x3Þ by using the first relation in Eq. (C3):


Aa
�ð2D; x0; x3Þ ¼ 
Aa

�ðx0; x3; r?ÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijG1ðr?Þj2 þ jG2ðr?Þj2
p þ Aa

�ðx0; x3; r?Þ

�

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijG1ðr?Þj2 þ jG2ðr?Þj2
p �

: (C6)

The last term in Eq. (C6) is equal to zero since "a ¼ "aðx0; x3Þ. Then, substituting Eq. (C2) into Eq. (C6), we obtain


Aa
�ð2D; x0; x3Þ ¼ fabc"

bðx0; x3ÞAc
�ð2D; x0; x3Þ � 1

gð4DÞ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijG1ðr?Þj2 þ jG2ðr?Þj2
p @�"

aðx0; x3Þ: (C7)

Since the left-hand side of Eq. (C7) depends on ðx0; x3Þ the same must be for the right-hand side of this equation. This
means that "aðx0; x3Þ ¼ constant and the transformation relation for Aa

�ð2D; x0; x3Þ is

Aa

�ð2D; x0; x3Þ ¼ fabc"
bðx0; x3ÞAc

�ð2D; x0; x3Þ: (C8)

Varying the mass term in the 2D Lagrangian with respect to the group variables, we obtain


LmgT
¼ 1

2
m2

gT
½A�
a ð2DÞAa

�ð2DÞ� ¼ m2
gT
½A�

a ð2DÞ�½Aa
�ð2DÞ� ¼ m2

gTf
a
bc"

bðx0; x3Þ½Ac
�ð2DÞ�½A�

a ð2DÞ� ¼ 0; (C9)

due to the antisymmetry of the structure constants fabc. Using Eq. (C2) for the infinitesimal transformation of the gauge of
the field Aa

�ð2D; x0; x3Þ, we calculate the nth variation of Aa
�ð2D; x0; x3Þ. After such calculations, we derive that the gauge

transformation of the 2D gauge field has the form


ðnÞAa
�ð2D; x0; x3Þ ¼ fabc"

bðx0; x3Þfcb1c1"b1ðx0; x3ÞA
c1
� ð2D; x0; x3Þ . . . fcn�2bn�1cn�1"bn�1ðx0; x3ÞA

cn�1
� ð2D; x0; x3Þ;

~Aa
�ð2D; x0; x3Þ ¼ ef

a
bc
"bðx0;x3ÞAc

�ð2D; x0; x3Þ; ~A
�
a ð2D; x0; x3Þ ¼ Ac

�ð2D; x0; x3Þe�fabc"bðx0;x3Þ: (C10)

As a consequence,

~A a
�ð2D; x0; x3Þ ~A�

a ð2D; x0; x3Þ ¼ Aa
�ð2D; x0; x3ÞA�

a ð2D; x0; x3Þ; (C11)

which maintains the 2D gauge invariance of the derived 2D action integral Eq. (33).
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2. The Slavnov-Taylor identities in the 2D space-time in the Lorentz gauge

The Slavnov-Taylor identities in the standard 4D space-time in the Lorentz gauge have the form [33]Z
expðiAðAÞÞ �

Z
dzðJ�bðzÞ@�ðM�1Þbaðz; yÞ þ g4Dfd

b
cJ

d
�ðzÞA�

bðzÞðM�1Þcaðz; yÞÞ�ðAÞdA ¼ 0; (C12)

where Ja�ðzÞ is a fermion current, ðM�1Þcaðz; yÞ is the propagator of a scalar field, and �ðAÞ is the Faddeev-Popov
determinate. After the compactification with respect to Eqs. (7), (12), and (18), the action integral AðAÞ becomes
A½2D;Að2DÞ�. Integrating the first term in the circular brackets by parts with respect to the z variable and using
Eqs. (7) and (18), we obtainZ

dzðJ�bðzÞ@�ðM�1Þbaðz; yÞÞ ¼ �
Z

dzðM�1Þbaðz; yÞð½jG1ðz?Þj2 þ jG2ðz?Þj2�2ð@0J0bðz0; z3Þ
þ @3J

3
bðz0; z3ÞÞ � iTrfðp1 � ip2ÞG�1ðz?ÞG2ðz?Þ ��ðz0; z3ÞTb�ðz0; z3ÞgÞ: (C13)

The integral involving the first term inside the above curly bracket is equal to zero because of the Lorentz gauge for the A�
a

field and Eq. (65), while the second one is found to be the same due to the trace calculation. Thus, the first term in the
circular brackets in Eq. (C12) is equal to zero.

As for the second term in the circular brackets in Eq. (C12), by using Eqs. (12), (18), and (65) it can be written asZ
dzðg4DfdbcJd�ðzÞA�

bðzÞðM�1Þcaðz;yÞÞ¼g4Dfd
b
c

Z
dz½jG1ðz?Þj2þjG2ðz?Þj2�3=2Jd�ð2D;z0;z3ÞA�

bð2D;z0;z3ÞðM�1Þcaðz;yÞ

¼m2
gfTg4Dfd

b
c

Z
dz½jG1ðz?Þj2þjG2ðz?Þj2�3=2Ad

�ð2D;z0;z3Þ
�A�

bð2D;z0;z3ÞðM�1Þcaðz;yÞ
¼0: (C14)

The last expression is equal to zero because of the antisymmetry of the structure constant. Thus, the preexponent in
Eq. (C12) is found to be equal to zero after the 4D! 2D compactification. This means that the Slavnov-Taylor identities
are not violated in the 2D space-time we have considered.
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