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Effective dynamics of a non-Abelian plasma out of equilibrium
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Starting from kinetic theory, we obtain a nonlinear dissipative formalism describing the nonequilibrium
evolution of scalar colored particles coupled self-consistently to non-Abelian classical gauge fields. The
link between the one-particle distribution function of the kinetic description and the variables of
the effective theory is determined by extremizing the entropy production. This method does not rely
on the usual gradient expansion in fluid dynamic variables, and therefore the resulting effective theory can
handle situations where these gradients (and hence the momentum-space anisotropies) are expected to be
large. The formalism presented here, being computationally less demanding than kinetic theory, may be
useful as a simplified model of the dynamics of color fields during the early stages of heavy ion collisions

and in phenomena related to parton energy loss.
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L. INTRODUCTION

The results of numerous experiments on ultrarelativistic
heavy ion collisions carried out at the Relativistic Heavy
Ion Collider (RHIC) and the Large Hadron Collider
(LHC) clearly point to the conclusion that a hot, dense
and opaque nuclear medium is created in such events
[1-6]. By now, the standard picture for the evolution of
such matter consists in a preequilibrium stage dominated
by strong chromoelectromagnetic fields, followed by the
formation of the quark gluon plasma (QGP) in local
thermal equilibrium. The QGP thus formed expands and
cools under its own pressure, going through the deconfine-
ment transition in which hadrons are formed and later
on detected (for reviews see Refs. [7-9] and references
therein).

Before the collision, the occupation number of gluons
at high energy is so large that an approximation in terms
of classical gauge fields obeying Yang-Mills equations
becomes more suitable than a description in terms of
on-shell particles [9,10]. The time scale for this highly
nonlinear regime occurring at the earliest stage of a heavy
ion collision is Q; ' ~ 0.2 fm/c at RHIC, where Q; is the
saturation scale.

The dense system appearing between first impact and the
formation of the equilibrated QGP develops chromo-
Weibel instabilities (see e.g., Refs. [11,12]): the nonequi-
librium anisotropic distribution of the partons is responsible
for the fast growth of the chromomagnetic plasma modes,
which in turn isotropize the system and speed up the ther-
malization process to yield a thermalization time ~1 fm/c.
This is roughly the value of the thermalization time that
can be inferred from a comparison of state-of-the-art
hydrodynamic simulations to data. Moreover, a fast parton
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transversing the matter formed in heavy ion collisions
excites color fields and loses energy, a phenomenon known
as jet quenching [13,14]. For these reasons, the dynamics of
classical gauge fields (both coupled or not to hard partons)
has received a lot of attention in the context of heavy ion
phenomenology [9-12,15-54].

The color fields “see” the evolving matter (which in our
case is composed of colored partons) through the con-
served color current, as dictated by Yang-Mills equations.
The dynamics of the conserved currents, i.e., the color
current and the total energy-momentum tensor of the com-
bined system of matter plus gauge fields, is in general very
complex, since in principle it must be computed from the
dynamics of the matter fields (or particles in the kinetic
limit).

In the semiclassical kinetic approach, the coupling of
hard and soft modes is implemented through a non-Abelian
transport equation [55,56] which determines the evolution
of a one-particle distribution function f, which is a matrix
in color space (see Sec. IIB), or equivalently through
Wong’s equations [57]; see also Refs. [58-69]. Once f is
known, the color current acting as the source in the Yang-
Mills equation is completely determined, so the dynamics
of the gauge fields can be found.

Here, we take the view that it is a reasonable hypothesis
to assume that the dynamics of the conserved currents is
largely determined by the conservation laws themselves.
This opens up the possibility of constructing an effective
theory incorporating the conservation laws that allows one
to investigate relevant aspects of the dynamics of gauge
fields (for example, the border between stability and insta-
bility, or the backreaction of hard particles on the evolution
of color fields) in a simpler context as compared to the
microscopic theory.

The degrees of freedom of the effective theory include
hydrodynamic variables such as flow velocity. However,
since we are working in a strongly out-of-equilibrium
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regime, it is not possible to obtain a closed dynamics based
on hydrodynamic variables alone.

We obtain a closed theory by identifying a tensor A*”
(which is introduced in Sec. III) through which the system
couples to the hydrodynamic variables. One can think of
the introduction of the nonhydrodynamic variable A#” as a
simple way of modeling the backreaction of the distribu-
tion function (which could correspond to a highly non-
equilibrium situation) on the hydrodynamic modes (i.e.,
those modes associated to conservation laws and hence
relaxing much more slowly). A somewhat similar situation
is discussed in Refs. [70-74] in the context of the entropy
maximum principle (EMP), in Ref. [75] (see also Ref. [76])
where the moments of the collision term of the classical
Boltzmann equation are interpreted as independent varia-
bles rather than as infinite moment series, in Refs. [77,78]
in the context of “anisotropic hydrodynamics™, in
Ref. [79] in the framework of divergence-type theories
[80] (see also Refs. [81-83]), in Ref. [84] where the closure
is obtained from an expansion of the distribution function
in moments at all orders, and in Refs. [85,86] in relation to
the entropy production principle (EPP).

Here, the tensor A*” is identified with a Lagrange multi-
plier in a well-defined variational problem whose solution
yields the distribution function that extremizes the entropy
production (for a review of this method see Ref. [87]). This
procedure results in a closure for the distribution function
of colored particles which has two satisfying properties:
(i) it is nonlinear in the variables of the effective theory,
thus generalizing Grad’s quadratic ansatz [88-92] in a
nontrivial way [83,93] and (ii) it does not rely in any
way on the gradient expansion in fluid variables. The
equation of motion for A*” is then obtained from this
closure by the method of moments.

The result is an effective theory for the dynamics of color
fields coupled to colored particles that can handle highly
nonequilibrium situations, for example the large momen-
tum anisotropy present at early times in heavy ion colli-
sions. Our formalism is a simplified model that shares with
the true dynamics the conservation laws, Lorentz and gauge
invariance, being causal, and satisfies the second law.

In the spirit of finding the simplest possible theory
incorporating the conservation laws, we postulate a simple
Bhatnagar-Gross-Krook (BGK) form for the collision term
[90,91] in the Boltzmann equation and obtain solutions at
second order in the relaxation time. By going to second
order in the relaxation time (instead of the usual first order
treatment) we expect to broaden even more the range of
applicability of the effective theory, to be able to describe
better those situations with large momentum-space
anisotropies.

The limitations of the model put forward in this work are
discussed in the last section, but it is worth mentioning
them here. The model is phenomenological; it is valid
only when the gauge fields can be treated classically, and
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only when the relaxation time approximation is valid.
Moreover, the collision term is linear.

We would like to stress that our approach is not new. The
idea of obtaining a closure from a variational principle
whose Lagrange multipliers are identified with macro-
scopic variables is at the heart of the so-called extended
thermodynamic theories (see e.g., Ref. [94]), which use as
a variational principle the EMP. However, in most appli-
cations of this theory, the EMP is only used to express f in
terms of the Lagrange multipliers but not to obtain their
dynamics. In Refs. [70-74] the EMP was used to accom-
plish both tasks in the context of electron transport through
mesoscopic semiconductors in the nonlinear and nonequi-
librium regime (i.e., under conditions of very strong elec-
tric fields and large gradients). The result was a closed
effective theory which could reproduce well the results of
kinetic Monte Carlo simulations.

In this paper, instead of using the EMP, we rely on the
EPP, which allows us to find the distribution function that
extremizes the entropy production subject to constraints on
the conserved currents [87]. We note that the EPP was used
in Ref. [85] to construct a model of nonequilibrium elec-
tron transport and in Ref. [86] to describe radiative heat
transport in a photon gas, obtaining results that agree well
with more sophisticated approaches.

The motivation for the choice of the EPP is threefold.
This principle is deeply connected to nonequilibrium sta-
tistical physics, in particular to the evolution of fluctuations
around a stationary state (we shall not discuss this connec-
tion here; for details see Refs. [87,89,95,96]). Moreover, as
it is rigorously shown in Ref. [87] for nonrelativistic sys-
tems (see also Ref. [89]), the distribution function obtained
from the EPP actually solves the linearized Boltzmann
equation, which means that the closure provided by this
variational principle is able, at least in principle, to capture
some features of the microscopic dynamics. Finally, the
transport coefficients obtained from the EMP can differ
substantially from those computed from the EPP, the latter
providing better agreement with the results obtained from
kinetic theory (see for instance Refs. [70-74,82,86,87]).

In relation to our developments, we note in particular
Ref. [20] in which the so-called ‘“‘anisotropic hydrodynam-
ics” (that was developed in Refs. [77,78]) is coupled to
color fields in a way reminiscent of magnetohydrodynam-
ics. In Ref. [36], an effective model for the dynamics of
color fields coupled to particles is obtained from the
Boltzmann-Vlasov equations by the method of moments
and then applied to study chromoelectric oscillations in a
dynamically evolving anisotropic background; see also
Ref. [35]. As it will become clear in what follows, our
approach resembles those adopted in these studies in that
they are effective theories capable of dealing with large
deviations from equilibrium.

The colorless version of the effective theory developed
in this paper was investigated in Ref. [81] (although there
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it was obtained in a different way as the one followed here).
It was then applied to study the evolution of matter created
in heavy ion collisions at RHIC and to the calculation of
hadronic observables in Ref. [82], and compared to second
order fluid dynamics [97,98], to which the colorless effec-
tive theory reduces when deviations from equilibrium are
small. The connection between the (colorless) effective
formalism and kinetic theory was established in Ref. [83].

Similarly to what happens in the colorless version of
the effective theory [81,82], the formalism presented
here reduces to the so-called ‘“‘chromohydrodynamics”
[27,29,30,55] when deviations from equilibrium are small
(see Sec. IV). Previous studies based on chromohydro-
dynamics include the calculation of the wake potential
induced by a fast parton [26] as well as collective excita-
tions and instabilities in the QGP [27-29,99,100].

This paper is organized as follows. In Sec. II, we
describe the basic theoretical setup for our developments,
give a very brief overview of the kinetic theory of a non-
Abelian plasma, and introduce the conserved and entropy
currents. In Sec. III we obtain a closure for the distribu-
tion function from the entropy production principle and
derive the evolution equations of the effective theory by
the method of moments applied to the transport equa-
tion; this Section contains our main results. In Sec. IV
we compare our developments to the matrix approach to
chromohydrodynamics, and as a simple illustrative ex-
ample, we compute the polarization tensor of the colored
plasma including a finite relaxation time for the fluctua-
tions. We conclude in Sec. V with some comments on
the possible application of the developed formalism to
the dynamics of color fields and instabilities in heavy ion
collisions.

II. THEORETICAL SETUP
A. The system

We are interested in obtaining an effective theory for the
dynamics of a system of colored particles interacting with
non-Abelian classical gauge fields. In this work we will
deal with scalar particles coming in three colors, which in
our simple model would represent massless and spinless
quarks. We shall therefore consider a classical Yang-Mills
field coupled to conformal scalar matter in the fundamental
representation of SU(3).

In what follows, we will use (u, v, ...) to denote world
indices and (a, b, .. .) to denote internal (color) indices. We
shall denote with N = 3 the dimension of the fundamental
representation, and use 7 to indicate a generic dimension
(n = 3 or n = 8 for the fundamental or adjoint represen-
tations, respectively). The generators T, are traceless
Hermitian n X n matrices with commutation relations

[T, Tp] = iCg T, (M

and trace
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T, T, = %5ab. 2)

The Yang-Mills field is A,, = A{T,. The field tensor
F,,=d,A, —d,A, —ig[A,A,] 3)

belongs to the adjoint representation of the gauge group.
The equations of motion for the Yang-Mills field are

D, F* = —Ql[J,] “4)
where the covariant derivative is
D, X =09,X —ig[A, X] (5)
Q is a projection operator
Q[X] = 2%1, T, X = X — % trX. (6)
Equation (4) implies the Bianchi identity
Q[D, J*]=0. (7
We also have the energy-momentum tensor
TE, — «T, )
where
Ty = FXF" - %gWFAPFA,J ©)

is traceless in world indices. Using the identity D, F, ) =0
(where brackets mean symmetrization), we get

tr{D, T4, + J,F"} = 0, (10)

B. Kinetic theory

In principle, the scalar matter should be described by
quantum field theory. The reduction of the nonequilibrium
quantum field description to kinetic theory is fairly estab-
lished by now, see e.g., Ref. [58] and references therein.

The kinetic equation that governs the evolution of the
one-particle distribution matrix f reads [55,56] (see also
Refs. [58-62])

L e T | BRI
(1)
where
D, f=09,f—ig[A,f] (12)

with A, expressed in the fundamental representation.
f(X, p) is an N X N matrix (N = 3 for quarks) and obeys
f1(X, p) = £(X, p).

The collision kernel on the right-hand side encodes the
interaction among the hard excitations of the matter
field, and is, in general, a complicated functional of the
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self-energy [58]. However, to carry out our developments,
we really do not need to consider it in much detail, and we
anticipate that later on we will use a phenomenological
linear collision operator that will suffice for our present
purposes.

C. Conserved currents

We now introduce the matter entropy and the conserved
currents of the microscopic theory. The non-Abelian cur-
rent reads

Jy= g[DppAf, (13)

where Dp = d*pS(p?)/(2m)3.

We have not written down an explicit equation for the
matter stress-energy tensor TH” . but we know that since the
total stress-energy must be conserved, we must have

Ty = — Ty, = trJ F#A, (14)
We get this by writing

TH = 4T (15)

TLY = /Dpp/‘p”f. (16)

In Eq. (14), the semicolon stands for an ordinary derivative.
We shall drop the subindex m for T4,” and write T#” in
what follows.

Equations (7) and (10) are identically satisfied provided

ij®MﬂMRLw=H[DW%MﬁMWM=Q
(17

The entropy current is

i = [ Dppt sign(p®) tr{(1 + £)In(1 + £) — £ Inf},
(18)

leading to the entropy production
s = [ Dptr{Ig, Inf~1(1 + £)} (19)

We note that to go from Eq. (18) to Eq. (19), one must
assume that [f, D, f] = 0 (see Ref. [31]). If this condition
is not imposed on the distribution function, the entropy
production contains terms of the form tr{F,,, f} which
contribute to entropy production even in mean field.
Assuming [f, D, f] =0 then corresponds to assuming
that entropy is produced solely by collisions among the
particles. We shall stick to this approximation in what
follows.
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II1I. EFFECTIVE THEORY

A. Obtaining a closure for f

We will now obtain an expression for the one-particle
distribution matrix in terms of variables of the effective
theory. To do so, we will rely on the EPP [87] discussed in
the Introduction.

This method allows one to find the distribution function
which extremizes the entropy production S?;,, subject to the
constraints that the conserved currents take on known
values. It provides a prescription to associate a distribution
function to given macroscopic currents, yielding a
nonlinear closure that generalizes the well-known Grad’s
quadratic ansatz [88-92] in a nontrivial way [83,93].

The EPP does not rely on a gradient expansion, which
is usually invoked when deriving hydrodynamics from
kinetic theory. This results in effective theories capable
of describing highly nonequilibrium and nonlinear situ-
ations quite reliably as compared to microscopic
approaches [70-74,85-87].

1. Deviations from the unperturbed state

For simplicity, in what follows we will neglect quantum
statistics. Given tr(T#”) = T*”, we can define a flow
velocity u* and a temperature 7 by using the Landau-
Lifshitz prescription. We have

u,T"" = p(T)u, (20)

where p(T) is the energy density as obtained from the
equation of state. The prescription amounts to matching
the local nonequilibrium state of the flowing real matter to
a fiducial perfect fluid. We will show later that the stress
tensor IT#” is transverse, i.e., uﬂH’“’ = (), so the prescrip-
tion is consistent. With u* and T, we can define B* =
u* /T and then construct

folx#, p#) = e PP, 2D
We write the distribution function as
f = foll+(1+ fo)x]= foll + x] (22)
The entropy production

St = — /Dp tr{I., Inf} (23)
then reads
S =~ [Dpullam+ ) @b
where we have used that
[Dp tr{I o In(f)} = O. (25)

Given the expression for the entropy production given
by Eq. (24) and taking into account that we will consider a
linear collision operator, in order to satisfy the H-theorem,
we introduce a new variable Z such that
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L =1+ y. (26)

The solution to the variational problem entails finding Z as
a function of the Lagrange multipliers to be introduced
shortly. The outcome is a closure for the distribution
function f, i.e., an expression for f in terms of the variables
of the effective theory, which are the usual hydrodynamic
variables and the Lagrange multipliers. The latter encode
the backreaction of the distribution function on the hydro-
dynamic modes.

The basic plan we will follow is to divide relevant
variables into colorless and colored pieces. Therefore, we
parametrize Z as follows

Z =l§1+§“T“. 27
N
The quantities {“ can be identified with color fugacities
(%= u*/T, where u“ are the color chemical potentials
needed to conserve color [see Eq. (17)]. We shall show
later that the color chemical potentials must adjust to the
flow of matter as well as to the evolving gauge fields in
order to make the system globally colorless, resulting in a
highly nontrivial dynamics for the system of colored
particles and gauge fields.
We will work to quadratic order in Z, so we get

1
xX=7+ EZQ' (28)
Using that
1
TeT? = — §9b1 + KabTe 29
N c (29)
with
1
Kgb = E(icabc + dabc)r (30)

where d,;,. are the symmetric structure constants, we get

1 2 1 1 ,
=1+ O S+ E{“{”dg”T‘,

N2
€19
Having Z, we obtain
1 1T 1 2
=_—{1+ T+ = | 1+ =0T
TR R TS R
1 1
+—aa1+—ab‘%bTC]. 2
sy LL S et (32)

2. Currents, entropy production, and collision term

To solve the variational problem we must express the
currents and the entropy production in terms of Z.

The shear tensor
I1#7 = tr{p* p* x) (33)

reads

PHYSICAL REVIEW D 86, 125024 (2012)

171 1
e = (el o5 (e o)) 69
where we have introduced the notation
Joefot-y=n. (35)

From Eq. (13) we get the expression for the color
currents

3= ] e qar g |+ £ ezt Go

where we have defined 71 = g{w).
For the entropy production, we have
Sty =— po tr(I o Z). (37)
The collision operator contains color-independent

and -dependent parts, so similarly to the decomposition
used for Z, we put

Iy =191 + 12 T, (38)
We then have
tr(I.yZ) = 19¢ + L Ja za (39)
col col 2 col>
where we have used Eq. (2), so
1
sh== [op(18¢ + 51020)  @0)
We shall write the collision operator as
1
I; = ——R[FR|Z]], 41
5 = 5 RIFR(Z]] @n
where we have put
Lo = folg. 42)
In Eq. (41), 7 is the relaxation time, F = F(w) is an
arbitrary function of energy @ = —u,p*, and R is an

operator enforcing the integrability conditions given in
Eq. (17). The projector R explicitly reads

R[Z] = Z — R*(«(T,Z)T,,) — 1R, (p* tr(Z))  (43)
with
R, = ! u, + ! AVp, (44)
Nw) " Nw?) *
and R,;, = 26,,. Here,
AR = ghV + yhy? (45)

is the spatial projector. Note that this form for I ; guaran-
tees that the second law holds exactly. Moreover, it is
flexible enough to include the important cases of Marle’s
relativistic generalization of the BGK model [90,91], cor-
responding to F(w) = T, as well as the Anderson-Witting
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model corresponding to F(w) = w [91] (for a discussion
of these models in connection to the freeze-out stage in
heavy ion collisions see Refs. [83,93]).

From Eq. (41) we then have

o__ 1

15 = — 5 RIFR(C]] (46)
and

1

I = —;R[FR[g 1] 47

with
1

R[{] ZNZ—R,L(P”Z) (48)

and

TaR[ga] = aga _RbCT <§b> (49)

The integrability conditions then read
(pr1) =0 (50)
and
(Ig) = 0. (51)

Note that there are no restrictions on (p”I) or on <Ig))>.

3. Variational equations

In our case the conserved currents are J** and T*?, so
that the variational problem becomes

%[S’; = A, THY = Ay, J**] =0, (52)

where A, and A,, are Lagrange multipliers forcing the
energy momentum tensor and the color currents to take on
their known values.

We then have

o8k, _ 8™ 85I
of e w8l (53)
5SL, ST 5Jan
b = A7 T A 55
of of of

Using Egs. (34), (36), and (40), together with Egs. (46)
and (47), the variational equations (53) become

1 1 1
—y RUFRLZT = Auvi’”py[l " ﬁf] + g)tiip”[ﬁ f“]
(54)
and
lR[FR[Q“I’]]ZA Rprb 4 gha “[lé’(‘jab+l£ddhd:|
. PP gALP| Sl |

(55)
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We will solve the Egs. (54) and (55) to second order in
the relaxation time 7. To this end, we will follow Ref. [83]
and expand the nonequilibrium correction Z and the
Lagrange multipliers as follows

= /M 2 a — pa(l) a(2)
(=" +¢ (o= g 56)
Ay = A+ A% 28 = a8 + 252,

We now go over to solve the equations at first and second
order in 7. We note that the solution given here closely
follows the one given in Ref. [83]. For the reader’s conve-
nience, a brief summary of the logical steps carried out to
obtain the closure for the distribution function can be found
in Sec. I[IT A 6.

4. First order solution

At first order, the variational equations are
—R[FR[N]] = Aavp* (57)
and
L RIFRZ"]) = 0. (58)

Equations (49) and (58) imply that £*('' must be indepen-

dent of p”, as it must be given that /*® are color
fugacities.
From Eq. (57) we get

AD(prp”pPy = 0. (59)

Setting p = k, we obtain /\gk) = 0. Without loss of generality
we can take /\&)) = 0. Since we are dealing with a conformal
theory, {p'p’) = 8{w?)/3, and we get A" = 0. We thus
obtain

(W= /\“)p p. (60)
The first-order shear tensor is then

= (prp"{"). (61)

We find that I1% = IT*¥ = 0. Using that

o G N L oo
(Glw)pipiptply = (G2 ((105)‘" ) (58H + k57 + 51l

(62)

for any function of energy G(w), we get

27N

Hz] 17-5 < >)l(1)zj (63)

which is traceless and transverse. The first-order color
current is (recall that () must be independent of p*)

125024-6



EFFECTIVE DYNAMICS OF A NON-ABELIAN PLASMA ...

JH = qageWyr, (64)

The lowest-order nontrivial contributions to the entropy
current and the entropy production are

N o

SOZ_
! 15

< >/\<1>lu“> and Si=0 (65

in the rest frame, and

27N
SH = F( >/\<1)’//\“) (66)

respectively. The entropy flux (65) and the entropy pro-
duction (66) computed from the first-order solutions
(M, z2M) to the variational equations are already qua-
dratic in deviations from equilibrium, so we do not need to
consider higher- order contributions. Note that, because of
the first-order equation (58), { a(l) does not contribute to the
entropy production at quadratic order.

5. Second order solution

The variational equations at second order read
—R[FR[g“@]] = Xiphpt + W ptp®
ty Ai’f”p“z““) (67)
and
%R[FR[zb@]] = g%Ai’f“pﬂz(” + A ppr . (68)
The integrability conditions then read

! :
TNk pHp @) + (VP Fa) + grag Ve w?) = 0
(69)

TNAGKp plo) + A4 W (pipiy =0, (70)

corresponding to Eq. (50) and
8T
A0 g =0, (71)

corresponding to Eq. (51). The latter equation shows that
AW =0,

Any term in A2 v which is not strictly required by the
integrability conditions can be absorbed into Aﬁ}?, so there
is no loss of generality if we take )\&) = 0. Moreover, from
Eq. (70) we see that )\g) = (0 and /\j(]) = ( is a solution to
the integrability condition. Therefore, we can write

A = —AS; (72)

Lp
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where we have put

A= [(Fa(dM))]. (73)

1
N2r{w?)

The quadratic equations then read

R[FR[{?P]] = —7NAw? + %({“WF (74)

and
R[FR["P]] = —rAw? D). (75)

Note that the left-hand side of Eq. (74) vanishes when
integrated against w (which means that the equation has a
solution) but does not vanish when integrated against w/F.
Therefore, the solution to Eq. (74) is

2

[0 = %(g“))2 - NTA% - A%, (76)

where

A= (“’72>_1[%<w(§“>>2> - NrA(‘”%)]. 77

Similarly, we obtain from Eq. (75)

Bb

[0 = A2 gb“) + (78)

where
B = 7 AP {w?). (79)

Note that A o« ()2 is already quadratic in 7, which
means that {?@ is actually third order and therefore can
be neglected.

We are ready to compute 115
(36). We have

" and J3*; see Egs. (34) and

e = <pu [ ()2 4 - ga“)ga(l)—NrA——A ]>
(80)

Note that 119 = 0, but 19 # 0, so I14” is not the true
correction to the energy-momentum tensor, whereby the
parameter T in our equations is not the true temperature
(that would be measured by an observed moving with the
local rest frame). To obtain the physical correction to 7%,
which we call Hzphyv we must perform a temperature

shift. Putting T = T, — 8T with 6Tdp/dT = 11, the
true correction reads

mny, =1y -

3. phys SUTIY, (81)

which is traceless. Taking into account the above we find
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! 1)i A e ol
szphyg - L[A;() Ak — 55/)‘(1)1 AEWZ]
+ T{w)A U g g 82)
with
72N J®
L="5 () (83)

To obtain the last term in Eq. (82), we have used the
identity (w?) = 2T{w). Note also that H2 phys 1S transverse.
For simplicity, in what follows we will drop the subindex
“phys” in Hlthy%

The quadratic contribution to the color current can be
computed directly from Eqgs. (36), (76), and (78). We get

Jh = —utdeb g b0, (84)

&~

where we have used that AEI)] = 0 so that the last term in
Eq. (36) drops out.

Using the closure picked out by the EPP, we have
completed the task of expressing the currents tr(T#”) and
J# in terms of the variables of the effective theory.

6. Summary of the EPP method

For clarity, we now briefly summarize the main logical
steps followed to obtain the closure for f.

From a linear transport equation, we set up the varia-
tional problem given in Egs. (53). The solution to these
equations gives the distribution function that extremizes
the production of entropy subject to the constraints that
the conserved currents take on known values. Using the
expressions for the stress tensor, the color currents, and the
entropy production given in Egs. (34), (36), and (40),
respectively, together with the integrability conditions for
the collision term, Eqs. (46) and (47), the variational
equations become Egs. (54) and (55).

We then expand the Lagrange multipliers and the
nonequilibrium correction Z in powers of the relaxation
time 7 [Eq. (56)] and solve the variational equations to
second order in 7. The result is an expression for the
correction Z in terms of the Lagrange multipliers, which
is given by Egs. (60) and (76). From these equations, we
can express the shear tensor and the color currents in
terms of the Lagrange multipliers, obtaining Eqgs. (63),
(64), (82), and (84).

The distribution function then reads

m y (1) (1)
/\ij /\lm

N7
f —fo[l +— T pipiall) + 2F2 pp’pp

1 T o
0 0E0 |t fof 0 TADp g

1
+ ngfgd”gf“)]Ta. (85)
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For convenience, we denote by f and f“ the colorless and
colored parts of f,

Nt Y

T N272
f=fo[1+7pp —— PP PP A AL

2F?

1
= ra() ga()
tgde ] (86)

T o 1
7= S £+ TAP I 5 e g VF). )

As discussed in the Introduction, this method, or very
similar ones based on maximizing the entropy, have
been used in different contexts to obtain closures for the
distribution function, which resulted in effective models
whose dynamics compared well with kinetic theory
(see e.g., Refs. [87,95] for a broad perspective and
Refs. [70-74,83,85,86] for specific applications).

To obtain a dynamical model, we must now find the
equation of motion of the Lagrange multipliers.

B. Equations of motion

The EPP described above has provided us with an
expression for the distribution function f in terms of the
reduced set of variables of the effective theory: the usual
hydrodynamic variables u*, p, the nonhydrodynamic
tensor /\Ew encoding the backreaction of f on the hydro-
dynamic modes, and the color fugacities *"). This
expression is given in Eq. (85).

The equations of motion for u*, p, and g"‘“) are the
conservation equations for 7#” and J%*, respectively.
However, the conservation laws are not enough to fully
determine the dynamics of the system, and an equation
governing the evolution of IT#” must be given. Usually,
this is done within the gradient expansion for hydrody-
namic variables [7,8,88,89,91,97,98]. Here, instead, IT#”
is an algebraic function of AV and 7“1V, so we must
obtain the evolution equation for AV, We will get the
latter from the kinetic equation.

It will prove convenient to express our results in terms of
a new relaxation time 7, (related by a constant to the
previously introduced 7)

—— ) (F) )

and the shear viscosity

67N [\~ [w*\2
Gy e
15T \F F
which naturally arise in the context of second-order fluid

dynamics [7,8,97,98]. For simplicity, we also introduce a
new variable

yl = nT AV, (90)

125024-8



EFFECTIVE DYNAMICS OF A NON-ABELIAN PLASMA ...

We shall deal with the conservation equations first and
then go over to discuss the evolution equation for y*.

1. Conservation equations
Inserting the expression for f given by Eq. (85) into
Egs. (7) and (10), and using that T, = —T{y,
trJ 4 in the latter, we get equations of motion for the
velocity u*, the energy density p, and 1.
For the matter energy-momentum tensor 7#” = T4 +
I + 115", where

1
T = p(u“u” + §A’“’) 91)
is the perfect-fluid energy-momentum tensor,
Iy = yrv 92)
and
my M. ov + IA,U,V ap
2 772T2 YooY g Y 70’p
+ T(w)Arr W e, 93)
we get

1

1
T, + 140 + 114 = fz<§e<1) + Zdﬁdfc(l){d(l))u)\Fe“’\.

N

(94)

To avoid being cumbersome, we shall not write down the
explicit expression for 74", but it follows immediately
from Egs. (91)—(93).

The conservation equations for u* and p as given in
Eq. (94) involve the time derivative of /%" and y wv (these
quantities appear in the lhs of Eq. (94)). The evolution
equation for ¢ a(1) i obtained from the (covariant) conser-
vation of J*. We get

NT

Lo, VT (o N7
T ’ nT

(Nijp«m +
nT

1 1 T ii
+ EBVFZV<(§(1(I) + Zd;’zcé"b(l)gc(l))lvv(,l]bpff + ﬁgu(l),yijN{LPlf J) —

_ N
20T

%/(Nijpo + T YimN5 mﬂa)-
For brevity, we have defined the following quantities

MPIRY — (1 + i{a(l)gu(l))N{)’O’MV _

with

Nt

nT
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I:ﬁult(é’f(l) + %didé’b“’é“d(”ﬂ

g7

1
+ gﬁuncgbAz<§b(“ + defdfc(”{d(”) =009

2. Evolution equation

We shall now deal with the evolution equation for the
nonequilibrium tensor y,,. We will obtain this equation
from the second moment of the singlet sector of the trans-
port equation Eq. (11), i.e., from the equation that results
from taking the trace of (11). The reason for considering
the colorless part of the transport equation will be dis-
cussed after presenting the evolution equation.

The second moment of the colorless part of the kinetic

equation reads
£

(96)

of
ap,

of
—+
p,

popPp"p“[tr(DMf) - g tr(FM,,

= f Dp sign(p®) p? p7 tr(I o).

We have that p#tr(D,f) = p*a,t(f) = p*a,f,
where f is the colorless part of f given in Eq. (86) at
quadratic order.

The second term in the left-hand side of Eq. (96)
becomes

afe
ap,’

14

8 o
=% [Doprprpers, ©7)
where f“ is the colored part of f given in Eq. (87) at
quadratic order.
The right-hand side of Eq. (96) is
N | Dpp? p?sign(p®)I), 98
pp’p? sign(p)l. (98)
Using the explicit expressions for f and f“ given in
Egs. (86) and (87) in the moment equation (96), we obtain
(recall that yV = nTAWU and that, for simplicity, we
assume that 7 is a constant)

. 1
l
Néj mpoﬂ’)’lm)')’ij;p, + ENgoﬂga(l)g;%l)

87 j i
277TFZ.75‘1(1)7§N{LM

99)

2.2
pouvijlm

.4NP0'M1/1] W ,yl_j,ylm s

i

(100)
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1
NIV = <ﬁppp"p7 . ..p">. (101)

In order to find an explicit evolution equation for y;;. ,,
we must be able to invert the tensor with which it is

contracted, namely

. i N7 _ i
Hipop = NiJPU'M + NlJlmﬂa'M,y

il - (102)

For our present purposes, it is enough to display the
equation of motion for the nonequilibrium tensor y"/ to
linear order.

Using suitable generalizations of Eq. (62) to compute
the N's explicitly we get (in the local rest frame)

yil = —q eV AiiFa — 1(1 + lga(l)é«au))w‘j
bor 4

w

o1 T 1 N
+ a(l)FZ(l aj) _ ij [5_ 4+ Z k] ij
ax{ Y —va 73w |Y

A Co 2
+ yioh + yiok — 55”71{10“- (103)

In Eq. (103), 0”7 is the first-order shear tensor

o7 = Viey), (104)

where C*”) denotes taking the traceless and transverse
part of a tensor C and V# = A#?9, is the spatial gradient.
We have denoted the convective derivative by an overdot,
ie., C = u%d,C. The parentheses around indices denote
symmetrization.

The transport coefficients a; that appear in the evolution
equation are

5T Jwd\ [/ )\~ [/w*\"! 3
o (el(F) (7))
Tp \F F F
W)
a, =—(—NX—) .
N\F/\F
The transport coefficients a; and a, are novel coefficients
that couple the nonequilibrium tensor y*“ to color degrees
of freedom. A nonvanishing a; implies that the varying
color chemical potentials affect the evolution of y*“. The
term containing a, represents the coupling of y”? to the
gauge fields.

If 7,— 0 and 7D =0 in Eq. (103), we recover the
(colorless) Navier-Stokes limit with y#” — —no*”. On
the other hand, we have already shown in Ref. [81] that if
we expand y#” to second order in velocity gradients, the
above formalism (with ¢ all) = () goes over to the second-
order conformal hydrodynamics that was derived in
Refs. [97,98].

The equations of motion presented in this section are the

main result of this work. The essential features of the
effective formalism developed here are that it is nonlinear

(105)
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and that it is not tied up in any way to a gradient expansion.
Note that the nonequilibrium tensor y*”, from which the
shear tensor I1#” is obtained a posteriori as a quadratic
function, satisfies a differential equation (103) instead of
being an algebraic function of velocity gradients (as it is
IT#? in fluid dynamics). In the colorless case, it was shown
in Refs. [81,82] that this feature results in a faster iso-
tropization of the pressure as compared to second-order
hydrodynamics. Moreover, as opposed to the case of
hydrodynamics, in the (colorless) effective theory the lon-
gitudinal pressure is positive throughout the entire evolu-
tion. We note that similar results were obtained in Ref. [77]
within the so-called anisotropic hydrodynamics approach.
We expect that these two results hold also in the present
case including color degrees of freedom, although numeri-
cal simulations are needed to verify this.

The color fugacities enter nontrivially in both sides of
the total stress-energy tensor conservation equation,
Eq. (94). In the left-hand side they enter through the
expression for the matter stress-energy tensor, Eq. (93),
while in the right-hand side they enter through the coupling
to non-Abelian fields. Moreover, both the hydrodynamic
variables (u*, p) and the nonhydrodynamic variable y*”
couple to the color fields and to Z*! in the evolution
equation (103).

From Eq. (103), it is seen that the dynamics of the
system is highly nontrivial. In part, this is because the
color chemical potentials must adjust to the flow as well
as to the evolving gauge fields in order to make the system
globally colorless (recall that we obtained the evolution
equation from the singlet sector of the kinetic equation).
We emphasize that a nonvanishing color current does not
imply that the system as a whole carries a finite color
charge, because the space-time dependence of the color
chemical potentials can be such that the total color charge
vanishes [27].

The information about the constituents of the micro-
scopic theory is encoded in the transport coefficients of
the effective theory and should in principle be computed
from the former. However, the transport coefficients can
also be treated as adjustable parameters. A well-known
example is the case of fluid dynamics, which is usually
derived from kinetic theory in the weakly coupled limit and
under the relaxation time approximation (to first order in
7), but then used to describe strongly coupled matter [7,8].
This is done by replacing the transport coefficients of the
kinetic theory by those corresponding to strong coupling,
which must be computed by different means, for example,
by using the AdS/CFT correspondence [97,98]. A similar
route can be taken with the various transport coefficients
that arise in our formalism [at linear order in "/ these are
(1, 7 ay, a»)]. In this regard, it is important to emphasize
that the effective theory presented here is consistent by
itself, independent of its derivation from kinetic theory
(this is also true in the case of second-order hydrodynamics
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[97,98]), because it satisfies the second law and it is
expected to be causal (the colorless version was shown to
be causal in Ref. [81]).

The reason for considering the colorless part of the
transport equation is that, as discussed in Refs. [32,66],
the color currents can persist in the plasma significantly
longer than the color charge density, which is neutralized
rather fast. Therefore, a reasonable hypothesis is to assume
that the dynamics of the system is determined by the
singlet part of the distribution function. What this means
is that, even though the particles carry color (and thus
interact with non-Abelian fields), what we are actually
describing with the effective theory is the collective (or
macroscopic) behavior of these particles, and it is this
collective flow that is colorless. This hypothesis is physi-
cally well motivated because one does not expect the
plasma to be globally colorful, and due to this fact it has
been adopted in previous studies dealing with chromo-
hydrodynamics [26-29] and kinetic theory [33,51,52]
(see also Ref. [55] for a related discussion of this issue in
the context of the so-called “color hierarchy” transport
equations).

3. Yang-Mills equation

In order to obtain a self-consistent system of equations
for the variables (p, u#, £*D, y#¥ A%*), the conservation
equations (94) and (95) and the evolution equation (103)
must be supplemented with the Yang-Mills equation for the
gauge fields. For completeness, we write it

(APP)ie — (APR) + gCh(A“FATY). , + gAS Ch FImY
M N cd S Mmef

- ﬁuv(zb“) + idzdﬁ“);f’“)). (106)

IV. RELATION TO MATRIX
CHROMOHYDRODYNAMICS

In this section we will compare the linearized versions of
our approach to linearized matrix chromohydrodynamics
of Ref. [27]. We remark that beyond the linear order it is
not possible to establish a simple mapping between the
approach of Ref. [27], which relies upon a gradient expan-
sion, and the one presented here, which does not.

Although our approach involving nonhydrodynamic
variables is not tied up to a gradient expansion, for a local
equilibrium state /\5]1.) vanishes and so the effective theory
reduces to ideal fluid dynamics. The ideal fluid chro-
mohydrodynamic approach has been discussed in
Refs. [27,30,55] and later on applied to diverse studies
mostly related to plasma instabilities and medium-jet inter-
action in the context of heavy ion collisions [26,28,29,31].

In the matrix chromohydrodynamic approach [27], the
standard procedure is to linearize the matrix equations

D, T+ = J, F"* (107)
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D, J* =0 (108)

together with the Yang-Mills equation in matrix fluctua-
tions du*, dp, 6J%, SF** with respect to a given back-
ground. Additionally, a relation between fluctuations of the
matrix energy density p and the matrix pressure p is used.
To the best of our knowledge, in previous studies based on
the matrix approach, the relation used in all cases is
(8p), = c2(8p),. It is worth noting that the use of 6p =
c28p in our approach is completely equivalent to the one
adopted in the matrix formalism, as will be shown shortly.
In studies dealing with chromohydrodynamics, usually the
ideal fluid case is considered; for a recent extension to the
Navier-Stokes case, see Refs. [26,29].

A. Generalities

To understand the connection between ideal or Navier-
Stokes chromohydrodynamics and our effective theory,
we first note that our development of the effective theory
was ultimately based on Eq. (10), which determines the
coupling of matter to fields. In Eq. (10), the gauge fields are
coupled to the trace of the matter energy-momentum
tensor. Therefore, we end up with evolution equations for
tr(T#”), and not for T#” itself, coupled to the Yang-Mills
equation. Instead, the chromohydrodynamics of Manuel
and Mréwczynski [27] is based on TH#”, which requires
the introduction of color matrices u*, p.

The color current, defined in Eq. (13), is then written as
J* =nu*. In our formalism, the quantity 7{“ can be
interpreted (at least at linear order) as the average color
charge of a stream of colored classical particles. This
interpretation for J* can be seen from its linearized equa-
tion of motion given in Eq. (95),

A’V + giur !, AL P = 0. (109)
We see that it is identical to Wong’s equation [57] (see also
Refs. [25,58,61,62]) for an average classical color charge
0% = i1£*0), with the time derivative of the particle’s
trajectory replaced by u*, i.e., the flow velocity.

Having in mind the interpretation for ¢, described
above, the linearized colored fluctuations of the velocity
and the four-flow n of the matrix approach can be written
in terms of the scalar fluctuations used in our approach as
Sut = [*D gyt and §n¢ = a*V, where 7% stands for
the background value, which must be nonzero to avoid
ending up in the case of a truly colorless system, as
opposed to one which has color degrees of freedom but is
in a colorless equilibrium state. This mapping will be used
in the next section to obtain the polarization tensor of the
colored plasma.

B. A simple example: The polarization tensor

The polarization tensor characterizes the linear
response of the system to external perturbations
[34,45,50,55,58,62,63,101,102], and it is therefore an
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interesting quantity to compute in the formalism pre-
sented here. With the mapping between the matrix and
our approach described in the previous section, it is
straightforward to show that indeed the linearized equa-
tions of motion have the same structure, and thus a very
similar polarization tensor is obtained. However, the lin-
earized equations are the same only if we set y*” =0
or y*¥ = —no*”, which were the only cases studied so
far [27-29].

Our formalism naturally incorporates higher-order velocity
gradients, since the dissipative tensor y*” evolves according
to a differential equation rather than being expressed as an
algebraic function of velocity gradients, e.g., at first order as
y#¥ = —not?. It is therefore interesting to investigate the
role of higher-order terms on the polarization tensor. Such
terms are important, for instance, in the earliest stage of
evolution of the QGP created in heavy ion collisions or in
situations where a fast parton goes through the QGP
[103,104].

In order to quantify the impact of higher-order viscous
terms on the linear response of the system to an external
gauge field, we compute the polarization tensor explicitly
in our setting. The polarization tensor is defined through

SJ4 = -T™A,, (110)

where A, is a small external perturbation. For simplicity,
we shall consider an homogeneous, stationary and color-
less background described by 72, i##, and p. Using the
mapping described above, namely du* = Z*V§u* and
dn® = {0 together with (8p)* = 7*D§p and y*»+» =
Z*Wyrv our linearized equations become (covariant de-
rivatives become ordinary derivatives at this order),

flaué‘uﬁf + a9, on, =0
i*a,0p, + (1 + c)pa,dul =0
EA*y,8p, + (1 + cH)piaa,oul

111
— AL Fi" + 0,76% =0 (h

_ s 1 5
"9, yd" = —T—(ncra” + 2"

o

a,F4" = akdn, + idut,

where we have put A#” = gA” + j#j”. For reasons that
will become clear soon, in the above equations we use a
generic squared speed of sound c? instead of the conformal
value c% = 1/3, i.e., the relation between pressure and
energy density perturbations reads 8p = ¢28p.

Performing a Fourier transformation, we can express
8J% in terms of the gauge field perturbation and thus find
the polarization tensor (the calculation is very similar to
that presented in Ref. [29]). We get

PHYSICAL REVIEW D 86, 125024 (2012)

2

FMV = -0 b( wpl
ab PN+ WoW,)(k - i7)
- (k * I/—t)Zg,u,V + (Wl + W3)[k2W5 - k,ukl/(k * L_t)2

5 [Ws — kit i”

— k4uMﬁV]]), (112)
where
W= =&+ (c;2 = (k- )"
n
W, =
2+ A)plk- )l + it (k- )]
Wo(1 + 4W, W,
W, = — 2(2 - 1 Wy) (113)
3+ 3C5W + 4W2W4
W4=k2—(k'12)2
WE = (k - u)(a#k” + k*i”)
and
=2
2’ n
= 114
NI+ (o

is the plasma frequency. Note that I'/” is diagonal in color
space, as expected since as shown by Eq. (111) there is no
mixing of colors at linear order, and transverse with respect
to k*.

The result for I'") that we obtain is the same as that
obtained in Ref. [29] but with the shear viscosity 7
replaced by an effective one

n

T ir (k@) (115)

Nett =

The appearance of 7. in place of 7 is quite natural since
T 18 precisely the relaxation time of the shear tensor IT#”
toward its Navier-Stokes value. We emphasize that this
similarity with the chromohydrodynamic result holds
only when linearizing the equations. The fully nonlinear
evolution equations of the effective theory developed here,
which do not involve hydrodynamic gradients, are different
from those of Navier-Stokes chromohydrodynamics.

To quantify the effect of higher-order viscous terms on
the linear response of the plasma to an external gauge field,
we will work with the longitudinal part €; of the dielectric
tensor €. Similar analysis can be performed for the trans-
verse part of the dielectric tensor, €7, but for brevity we
shall only consider €;. We have (we suppress color indices
and put k# = (w, k) in what follows)

. i, 1 ..
€ll = 81 + — T (116)
w
and
_ kikjfij
e = (117)

In the rest frame #* = (1,0, 0, 0), we get
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2

[0 1
€ (w, k) =1 __;;1(
w

1—7Wzk2>(1 — (W +W3)), (118)

where we can use that (1 + ¢2)p = sT (5 is the entropy
density) to rewrite W, as

W2 = n

= 11
sTo(l + it w) (119)

For illustrative purposes, and following [29], we focus
on the soft modes w, VK% <« T and set VK2 = 2wy, and
T = 10w,,. The relaxation time is set to its value computed
from the kinetic theory of a Boltzmann gas (without color),
which is given by 7, = 6m/(sT). As a typical value for the
temperature, we shall use 7 = 200 MeV.

The comparison made between ideal chromohydrody-
namics and kinetic theory carried out in Ref. [33] in the
context of jet-induced instabilities shows that in order to
achieve reasonable agreement between both descriptions,
an effective speed of sound must be used in the former.
To be consistent with previous studies, we will show
numerical results obtained with this effective speed of
sound (instead of ¢2 = 1/3), which is given by

c? =1[1 Jrim(1 y)] e

3 2y 1+y y?

where y = vk2/w. We note that this expression for ¢? is
chosen to make the longitudinal dielectric function
obtained from the ideal chromohydrodynamic approach
of Ref. [33] identical to that obtained from kinetic theory
in the leading-order HTL approximation [9,58,62-69].

Specifically, in the soft limit w, VK? < T and putting
k = (k, 0, 0) for simplicity we have [29]

(120)

2

3w + k
e =1+ —"1(1 @ [m I @ | —imO(k* — w2)])

2 2k w—k
_12(()}2)1 neffw(1—21n|w+k|

Ko sT k w—k

w? wt+tk|? o?
+—1 — — 720(k* — w?
4k2[n|w—k|] TR
To 2 w+k

where 8 — 0% and we used that

w+k+id w+k
1n[7]=1n

7 t9k2— 2
w—k+ié w — i @)

(122)

with 6(x) as the Heaviside step function. This shows that,
in the soft limit, the modes with w > k are undamped if
7, = 0. If the relaxation time does not vanish, the imagi-
nary part of €; is nonzero even for w > k. We will now
show some illustrative examples of this feature.

Figure 1 shows the real and imaginary parts of €; as a
function of w/k for /s = 0.3. This value for 5/s is on the
high side in terms of fitting viscous fluid dynamics results
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to RHIC and LHC data [7-9]. It is seen that there are
significant differences between the longitudinal dielectric
function computed with different values of the relaxation
time. The most noticeable effects are seen on the imaginary
part of €;, which, for w <k, is smaller in the case with
nonvanishing 7,. This indicates that, in this range of
frequencies, the induced color excitations decay more
slowly as compared to the case with 7, = 0. This behavior
can be understood by recalling the physical meaning of 7
as the relaxation time of the shear tensor I1#” toward its
Navier-Stokes value —no*”. If the value of 7, is
increased, then hydrodynamic fluctuations will decay
more slowly. Since hydrodynamic fluctuations are coupled
to color fluctuations, the latter will decay more slowly as
well. This result is in agreement with those of Ref. [51]
obtained from kinetic theory with a BGK collision kernel,
showing that the addition of hard-particle collisions slows
the rate of growth of QCD plasma unstable modes.

As shown in Fig. 1, the results that we obtain for v > k
show that the damping of color excitations in this fre-
quency range is completely different according to whether
T, 18 zero or not. As expected, if 7, = 0 there is no
damping in this frequency range. This feature stems from
the analytic structure of the longitudinal dielectric function
in the regime where w, k < T, as given by Eq. (121). In
this limit, the imaginary part of €; is proportional to the
step function (k> — w?) (see e.g., Ref. [62]). On the
contrary, if 7, # 0 then those color excitations with
o = k become considerably damped, with a damping
rate which falls off steeply with increasing frequency.
Similar results were obtained in Ref. [49] for QED disper-
sion relations obtained from kinetic theory with a BGK

1.5 T T T T T T T

© T=6n/(sT)
- 1=0
1 - =
]
&
& osf |
or /
1 1 1 e/ 1
0.7 0.75 0.8 1.05 11
3 T T T T
25 q
ol 1
:;J 15
E i
1k . 1
0.5F kS i
0 L L L L L \vk
0.7 0.75 0.8 0.85 0.9 0.95 1 1.05 11

w/k

FIG. 1 (color online). Real (upper panel) and imaginary (lower
panel) parts of the longitudinal dielectric function €; as a
function of frequency, for 1/s = 0.3. The values of the parame-
ters are set to k = 2wy, T = 10w, 7, = 6m/(sT) or 7, =0,
and 7 = 200 MeV. The results are obtained using the effective
speed of sound given by Eq. (120).
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collision term. There it was found that when collisions are
included, the longitudinal dispersion intersects the light
cone w = k, in contrast to the case of collisionless disper-
sion where w >k for all k. In a collisionless plasma,
Landau damping, which is possible only for w <k, is the
only damping mechanism, and thus plasma waves are
undamped. In contrast, collisions introduce an additional
damping mechanism for plasma waves (see e.g., Ref. [51]).
We emphasize that a first-order hydrodynamic formalism,
in which the shear tensor relaxes instantaneously to its
Navier-Stokes value, cannot completely account for such
damping of plasma waves.

We now briefly discuss the influence of the value of 7/s
on the longitudinal dielectric function. Figure 2 shows the
real and imaginary parts of €; for a smaller value of the
viscosity-to-entropy ratio than before, namely n/s = 0.15.
It is seen that the impact of a nonvanishing relaxation time
on €; decreases with decreasing values of 7/s. For the
value 17/s = 0.15, the effect of 7, on €; is still significant,
and we still see that excitations with @ = k are damped
due to collisions. Although not shown, we find that for
1/s < 0.08 the difference between the longitudinal dielec-
tric function obtained with a vanishing or a nonvanishing
value of 7 is hardly appreciable.

The effective formalism discussed in this work is phe-
nomenological and involves several approximations. In
spite of this, it is interesting to qualitatively discuss pos-
sible implications of our results for the phenomenon of jet
quenching in heavy ion collisions. For this, and consider-
ing the already discussed limitations, we take the view
that our formalism constitutes an appropriate model to

1.5 T T T T T T

- 1=6n/(sT)
=0
0.7 0.75 0.8 0.85 0.9 0.95 1 1.0 1.1
3 T T T T T T T
0 1 1 1 1 1 b
0.7 0.75 0.8 0.85 0.9 0.95 1 1.05 1.1

w/k

FIG. 2 (color online). Real (upper panel) and imaginary (lower
panel) parts of the longitudinal dielectric function €; as a
function of frequency, for 7/s = 0.15. The values of the
parameters are set to k = 2wy, T = 10w, 7, = 671/(sT) or
7, =0, and T = 200 MeV. The results are obtained using the
effective speed of sound given by Eq. (120).
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understand some features of the response of the QGP to a
fast moving parton that crosses it.

There are two main energy-loss mechanisms which
contribute to energy loss: radiation of soft gluons and
collisions involving the exchange of hard (~ T or larger)
and soft (~ 2w) momenta [13,14]. The dominant source
of energy loss is gluon bremsstrahlung, although the con-
tribution of collisions to the total energy loss is significant,
particularly when attempting to fit the results of theoretical
models of jet quenching to data [13,14,41,42]. In connec-
tion to our results, we note that the contribution of soft
collisions to the energy loss can be directly calculated from
€; and €7 (see for example Refs. [40,102,105]). We shall
not discuss in detail this issue here but just mention that a
smaller imaginary part of €; will result in a decrease in the
energy loss. Our results then show that a nonvanishing
value of the relaxation time 7, is expected to lead to a
sizeable reduction in the energy loss.

As a final remark, we note that the radiation spectrum
and hence the energy loss of a hard parton crossing the
QGP is also modified by the dielectric polarization of the
medium (this is known as the Ter-Mikaelian effect [106]—
see Ref. [107] for an extension to QCD). As noted recently
[105], the effect of radiation damping occurring in an
absorptive medium on the spectrum of radiated gluons is
particularly interesting and might lead to sizeable effects
on energy loss related phenomena. The polarization tensor
derived from the formalism presented here naturally incor-
porates damping. A detailed study of the influence of 7. on
the energy loss of fast partons for the conditions prevailing
in heavy ion collisions at RHIC and LHC is left for future
work. We emphasize, however, that the richness of the
effective formalism presented here lies in its nonlinear
character, which is not reflected in the polarization tensor
but may become relevant when dealing with parton energy
loss phenomena.

V. SUMMARY AND OUTLOOK

In this work we have obtained from the kinetic theory of
non-Abelian plasmas an effective model describing the
evolution of a system composed of colored particles inter-
acting with non-Abelian classical gauge fields. The link
between the one-particle distribution function of colored
particles in the kinetic description and the variables of the
effective theory is determined by the entropy production
variational method. The closure provided by this method
does not rely in any way on a gradient expansion in macro-
scopic variables and can therefore be applied even when
these gradients are large.

In order to compare the developed effective theory
with chromohydrodynamic formalisms based on the
usual gradient expansion, we have calculated the longi-
tudinal dielectric function €; of the plasma. Using typi-
cal values of the plasma parameters appropriate for the
QGP, together with an effective speed of sound chosen to

125024-14



EFFECTIVE DYNAMICS OF A NON-ABELIAN PLASMA ...

reproduce the longitudinal dielectric function of hard-
thermal loop kinetic theory, we have found that the
relaxation time for the shear tensor has a strong influ-
ence on the dynamics of color fluctuations, in agreement
with the results of kinetic theory including collisions
among the hard partons. The implications of such
changes on the evolution of color excitations on phe-
nomena relevant to heavy ion collisions, particularly on
jet quenching, deserve further investigation.

The formalism presented here is a simplified model of
the dynamics of color fields during the early and inter-
mediate stages of heavy ion collisions. It may be useful to
shed light on issues that would require intensive simula-
tions in a microscopic approach, for example the magni-
tude of the backreaction of the particles’ flow on the gauge
fields. If the color fields eventually die out, the effective
theory goes over to second-order fluid dynamics if the
velocity gradients are small, so that the effective theory
could be used to describe (starting from suitable initial
conditions) the evolution of the fireball created in a heavy
ion collision from very early times (= 0.2 fm/c) till
freeze-out in a unified, albeit simplified, way.

Concerning the dynamics of color fields at early and
intermediate times, our formalism could be used to study
plasma instabilities and its effect on the evolution of matter
created in heavy ion collisions. It would be particularly
interesting to solve numerically the full nonlinear equa-
tions of the effective theory presented here for the con-
ditions prevailing in heavy ion collisions, and to compare
the results to those obtained by a microscopic approach. To
carry out this program, the inclusion of hard gluons into the
model is certainly required for a realistic description of the
physical processes involved at those stages. Work is in
progress along these lines.

At this point we would like to comment on the limita-
tions of our approach in connection to possible applica-
tions to describe the early-time dynamics of color fields in
heavy ion collisions (some of the issues discussed here are
also relevant for parton energy loss). We think that it is
clearer to distinguish between limitations inherent to our
approach (that are either truly unsurmountable or else very
difficult to address) and simplifying hypothesis that could
be relaxed in the future.

We start by discussing those limitations that are inherent
to our approach.

The effective theory presented here constitutes a sim-
plified model of the true dynamics given by kinetic theory
with a linear collision term, and therefore the equations
derived in this paper should be applicable for similar time
scales. The kinetic theory description of the early stage of
heavy ion collisions is valid for times = Q; ! (~ 0.2 fm/c
at RHIC) when particles having transverse momenta
greater than Q; are formed out of the color fields [9,10].
However, there are some limiting factors that should be
considered.

PHYSICAL REVIEW D 86, 125024 (2012)

The first one was already hinted to and refers to the
use of a linear collision term. Although one could, in
principle, write down the variational equations of the
EPP for a transport equation with nonlinear collision
kernels, there is not much prospect of being able to solve
them. However, this may not be a serious issue, because
several studies have shown that the Boltzmann-Vlasov
equation coupled to the Yang-Mills equation provides
a fairly reliable description of the early stages of a
heavy ion collision [11,12,23,33-36,43,44,46-48,50,53].
The short-range interaction between hard partons has
been incorporated in the kinetic models only recently
[15,21,37,51,52].

The second point is that the range of applicability of the
effective theory developed here is not determined by
the magnitude of velocity gradients, but rather by whether
the dynamics of the system as given by (linearized) kinetic
theory can or can not be described by few variables
(including nonhydrodynamic ones) coupled to classical
gauge fields. As it happens with other approaches to the
closure problem [70-76,79,80,84-86,88-90,101,102], it is
difficult to precisely establish a priori the range of validity
of the resulting effective theory. We believe that, as it
happens with fluid dynamics, our formalism may prove
useful to describe some stages of a heavy ion collision
provided the transport coefficients are suitably chosen. In
any case, this point should be settled by comparing the
results obtained from the effective theory to those obtained
from kinetic theory.

As an issue that can be improved in the future, we
mention first the fact that here we deal with excitations of
scalar fields (and not spinors), and second that we do not
take into account the hard gluons. In the early stage of
heavy ion collisions, the hard gluons are, as the hard
quarks, coupled to the soft gluons and therefore should
also be described by a kinetic equation with its corre-
sponding collision term. This term would involve not only
interactions among hard gluons themselves but also
between hard gluons and the excitations of the scalar
fields. The latter coupling should also be reflected in
I., of Eq. (11). The inclusion of hard gluons interacting
with the classical gauge fields is mandatory for the model
to be applicable to the early stage of a heavy ion collision,
in which strong fields decay into gluons to eventually
form the QGP.

Another point that can be addressed in the future is the
possibility of performing a quadratic expansion around
an anisotropic (in momentum space) distribution function
instead of the isotropic distribution function we use here.
This idea was exploited in Refs. [77,78] to obtain an
effective theory that can handle the very large aniso-
tropies in momentum space that are present at early
times in heavy ion collisions, and moreover reproduces
both the ideal fluid and the free-streaming limits. The
correct description of both regimes (which are ultimately
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determined by the value of the Knundsen number) may
be a relevant issue when dealing with plasma instabil-
ities. Although our formalism can handle very large
anisotropies as well, at present it is not clear how well
can it describe plasma instabilities, so further studies are
certainly needed to settle this point.

Finally, we plan to include stochastic terms into the
evolution equations of the effective theory [108,109].
This would allow us to address in a simple model setup

PHYSICAL REVIEW D 86, 125024 (2012)

the important question on the fate of fluctuations and their
impact on observables at RHIC and LHC.
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