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Our previous results on the nonperturbative calculations of the mean current and of the energy-

momentum tensor in QED with the T-constant electric field are generalized to arbitrary dimensions.

The renormalized mean values are found, and the vacuum polarization contributions and particle creation

contributions to these mean values are isolated in the large T limit; we also relate the vacuum polarization

contributions to the one-loop effective Euler-Heisenberg Lagrangian. Peculiarities in odd dimensions are

considered in detail. We adapt general results obtained in 2þ 1 dimensions to the conditions which are

realized in the Dirac model for graphene. We study the quantum electronic and energy transport in the

graphene at low carrier density and low temperatures when quantum interference effects are important. Our

description of the quantum transport in the graphene is based on the so-called generalized Furry picture in

QED where the strong external field is taken into account nonperturbatively; this approach is not restricted

to a semiclassical approximation for carriers and does not use any statistical assumptions inherent in the

Boltzmann transport theory. In addition, we consider the evolution of the mean electromagnetic field in the

graphene, taking into account the backreaction of the matter field to the applied external field. We find

solutions of the corresponding Dirac-Maxwell set of equations and with their help we calculate the

effective mean electromagnetic field and effective mean values of the current and the energy-momentum

tensor. The nonlinear and linear I-V characteristics experimentally observed in both low- and high-mobility

graphene samples are quite well explained in the framework of the proposed approach, their peculiarities

being essentially due to the carrier creation from the vacuum by the applied electric field.
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I. INTRODUCTION

A. General

It is well known that quantum field theory with an
external background is an adequate model for studying
quantum processes in the cases when a part of the quan-
tized field is strong enough to be treated as a given and a
classical one. Numerous problems in QED and QCD with
superstrong electromagnetic fields, which must be treated
nonperturbatively, are at present investigated in this frame-
work, with applications to astrophysics and condensed
matter physics (e.g., graphene physics) [1–4]. In these
models, one often needs to know how the external back-
ground affects admitted states of the quantized fields and to
what extent the external background idealization is
consistent, i.e., whether the backreaction on the external
background is sufficiently small. Here we consider the
quantized Dirac field interacting with an external electro-
magnetic background. The external electromagnetic field
changes the states of the Dirac field and induces transitions
between them. These changes in general occur as vacuum
polarization effects combine with those due to particle
creation. A uniform constant magnetic field, for instance,

can produce only vacuum polarization effects, whereas
particle creation is due to electriclike external fields.
The first calculations of vacuum polarization effects

have been carried out by Heisenberg and Euler in the
case of QED with constant, uniform, parallel electric
E and magnetic B fields, with E � Ec ¼ m2=e ’
1016 V=cm (Ec is Schwinger’s critical field) and arbitrary
B, ignoring particle creation [5]. It turns out that the
vacuum polarization effects (which are local in time in
the uniform background) can be described by some effec-
tive Lagrangians, in particular by the Heisenberg-Euler
Lagrangian, see Ref. [6]. On the other hand, the particle
creation effects are global ones, as they depend on the
history of the external field action and, therefore, cannot
be described by any local effective Lagrangian (this does
not contradict the fact that the imaginary part of the
Heisenberg-Euler effective action is related to the total
number of particles created, since this action is a global
quantity). A nonperturbative approach (with respect to the
external background) to the particle creation in the so-
called t-electric steps (electriclike fields that are switched
on and off at initial and final time instants, respectively)
was elaborated in the framework of relativistic quantum
mechanics in Ref. [7], and in the framework of quantum
field theory in Ref. [1]; a more complete list of publications
on the particle creation can be found in Ref. [3]. A direct
way to study the influence of an external electromagnetic
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background on the Dirac field is calculating nonperturba-
tively the mean energy-momentum tensor. In the case of a
quasiconstant electric field (the so-called T-constant elec-
tric field,1 i.e., a uniform electric field, constant within a
time interval T and zero outside it), such a problem was
solved in Refs. [9,10]. The obtained result allows one to
isolate, under certain conditions, vacuum polarization ef-
fects from the particle creation effects.

Until recently, problems related to particle creation from
the vacuum were of a purely theoretical interest. This is
related to the fact that, due to the presence of large gaps
between the upper and lower branches in the spectrum of
Dirac particles, particle creation effects can be observed
only in huge external electric fields of the magnitude of Ec.
However, recent technological advances in laser science
suggest that lasers such as those planned for the Extreme
Light Infrastructure project may be able to reach the non-
perturbative regime of pair production in the near future
(see review [11]). Moreover, the situation has changed
completely in recent years regarding applications to
condensed matter physics: particle creation became an
observable effect in graphene physics, an area that is
currently under intense development [12,13]. Briefly, this
is explained by two facts: first, the low-energy electronic
excitations in the graphene monolayer in the presence of
an external electromagnetic field can be described by the
Dirac model [14], namely, by a 2þ 1 quantized Dirac field
in such a background (that is, dispersion surfaces are the
so-called Dirac cones); and, second, the gap between the
upper and lower branches in the corresponding Dirac par-
ticle spectra is very small, so that the particle creation
effect turns out to be dominant (under certain conditions)
as a response to the external electriclike field action on the
graphene. In particular, this effect is crucial for under-
standing the conductivity of graphene, especially in the
so-called nonlinear regime [4,15–18]. The first experimen-
tal observation of nonlinear current-voltage characteristics
(I-V) of graphene devices and its interpretation in terms of
pair-creation has been recently reported [19].

It was also shown recently in Ref. [20] that linear
dispersion surfaces with the Dirac points, similar to those
in the graphene monolayers, are generic in the spectrum
of nonrelativistic 2þ 1-dimensional Hamiltonians with
potentials that have the symmetry of a honeycomb struc-
ture. Thus, one may expect the discovery of new materials
in which the conductivity is described by a Dirac model of
(2þ 1) massless fermions. Moreover, a mass gap in the
graphene band structure can be generated by several meth-
ods. One example is given by graphene nanoribbons. In
this case one has a quasi-one-dimensional spatial geometry
that confines the graphene electrons to a strip of large
length and small width. The confinement gap depends on

the strip width and on imposed boundary conditions, see
Ref. [13] for a review. The spectrum of graphene can also
be gapped by explicit or spontaneous sublattice symmetry
breaking, see Ref. [21] and references therein. It is an
important fundamental and practical problem under cur-
rent research.
It should also be noted that there is a deep connection

between graphene, which has two Dirac cones, and topo-
logical insulators, which are characterized by a single
Dirac cone on each surface; see Refs. [13,22] for a review
and Ref. [23] for the first experimental realization of a
single-valley Dirac system in zero-gap HgTe quantum
wells. In these Dirac systems, the mass gap can be gen-
erated by an appropriate selection of material parameters
that depend on the quantum well geometry. In our consid-
eration, it is assumed that the two cones of graphene are
decoupled and the system behaves like two copies of a
single Dirac cone. Thus, the results obtained for graphene
should also be relevant for the single Dirac cone on the
surface of a topological insulator. Then we expect the
interface transport properties of the topological insulator
to be similar to those described for graphene.
In the present article, we adapt our general results on the

particle creation to the cases that are realized in the Dirac
model for graphene. First, our previous results in calculat-
ing the vacuum mean current and the energy-momentum
tensor of the Dirac field in the T-constant electric field
[9,10] are extended to arbitrary dimensions, especially to
(2þ 1) dimensions. Then we consider some of immediate
applications of these results to a number of problems
related to the dc conductivity of graphene in the so-called
superlinear (nonperturbative) regime.
We show that the application of nonperturbative meth-

ods of QED with strong field and unstable vacuum to
studying the Dirac model in graphene allows one to more
adequately describe quantum transport in graphene. The
matter is that usually the electronic transport in graphene,
even near the Dirac point, is described within the frame-
work of traditional methods used in condensed matter
physics. For example, these are methods based on WKB
description of the carriers [15,19] or numerical methods
that attend one-particle quantum mechanical description
of the carriers [17]. Other numerical methods exploit a
Green’s function formalism of nonequilibrium statistical
mechanics adopted for describing states not very far from
the equilibrium [19]. In some cases the Boltzmann trans-
port theory, based on WKB approximation, describes the
system evolution quite well, and sometimes it allows one to
find analytic solutions. However, these cases are restricted
to the ones when the large carrier densities obey the
assumption that characteristic length scales of the system
be larger than typical wave lengths of carriers. Moreover,
the Boltzmann theory is not adapted to describe the motion
of massless carries created from the vacuum. The numeri-
cal methods in their present form are not adjusted for

1It should be noted that particle creation in the T-constant
electric field was first considered in Ref. [8].
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studying the time evolution of the system that would take
the electrodynamic backreaction into account, whereas the
latter may be of essential importance in the present highly
nonequilibrium environment caused by the pair creation.
Moreover, the electric field creates carriers in pure states,
whose distribution differs significantly from the equilib-
rium distribution. This is a nonstandard situation for usual
transport problems in the condensed matter physics. Thus,
a proper description of the quantum transport in graphene
close to the Dirac point both in the ballistic case and in the
presence of a disorder is still an open problem.

Our description of the quantum transport in the graphene
is based on strong-field QED; it is not restricted by a
semiclassical approximation of carriers and it does not
use any statistical suppositions typical of the Boltzmann
transport theory. Our approach is based on exact solutions
of the Dirac equation, where the strong external field is
taken into account nonperturbatively. A strong field ap-
proximation used for analytical calculations is related to
the consistency of the Dirac model with a given external
field and we show that it is working well under certain
conditions. In fact, we study the electronic and energy
transport in graphene at low carrier density and low tem-
peratures when quantum interference effects are important.

We consider the evolution of the mean electromagnetic
field in the graphene, taking into account the backreaction
of the quantum matter field on the applied external field. In
doing this, we use consistency restrictions that describe the
regime when the backreaction can be neglected. We derive
restrictions from above on the allowed strength of the
external electric field and on its duration, admitted at its
given strength. In making some experimental conclusions,
we try to compare these restrictions with typical experimen-
tal scales. We present a generalization of the QED model
with the T-constant external field to take into account the
backreaction of the mean current to the applied electric
field. We find a self-consistent solution of the Dirac-
Maxwell set of equations for this generalized model and
calculate the effective mean field and effective mean values
of the current and the energy-momentum tensor. We show
that the nonlinear and linear I-V experimentally observed
in low- and high-mobility samples, respectively, can be
explained in the framework of the presented consideration
and that such a behavior is a consequence of the fact that the
conductivity in the graphene is essentially due to the pair
creation from the vacuum by the applied electric field.

The article is organized as follows: In Sec. I B, we give
an introductory overview of the basics of the QED with
unstable vacuum and introduce the necessary general
notation. In Sec. II, we introduce the Dirac model in a
T-constant background, fix notation and collect previous
results (mainly of Refs. [10,24]) required for our work.
Exact solutions of the Dirac equation for this background
are presented, and we describe how they are related to
the particle creation and to the mean values of field

observables, following the general theory presented in
Ref. [1]. In Sec. III, we consider the vacuum mean values
of the current density and the energy-momentum tensor in
a T-constant background for the case of arbitrary dimen-
sions. Namely, in Sec. III A, we express the vacuum mean
values of the current density and the energy-momentum
tensor in terms of appropriate Green functions constructed
by the help of the exact solutions of the Dirac equation in
the external field. In Sec. III B, peculiarities in odd dimen-
sions are considered. In Sec. III C, vacuum polarization
and particle creation contributions to the mean values of
the energy-momentum tensor are isolated in the large
duration approximation, and the vacuum polarization con-
tributions are related to the one-loop effective Euler-
Heisenberg Lagrangian. In Sec. III D, we find renormalized
mean values of the energy-momentum tensor using the
zeta-function regularization and compute the vacuum po-
larization contributions to these mean values in arbitrary
dimensions. In Sec. III E, we compute the particle creation
contributions to the mean values of the current and the
energy-momentum tensor in arbitrary dimensions to gen-
eralize the four-dimensional results of Ref. [10]. Pair-
creation contributions are finite due to the finite duration
of the field. In Sec. IV, our results are applied to graphene
physics. Namely, in Sec. IVA, the Dirac model of graphene
is briefly described, and the mean values computed in the
previous section are used to determine the mean current
and energy-momentum tensor in the material. In Sec. IVB,
these results allow us to estimate scales for backreaction
effects, using the appropriate solution of the Maxwell
equations. We show that the superlinearity of I-V observed
experimentally in low-mobility samples is essentially due
to the pair creation from the vacuum by the applied electric
field in the regime where the backreaction is negligible.
In Sec. IVC, we study a generalization of the model with
the T-constant external field, taking into account the back-
reaction of the mean current to the applied electric field.
We find a self-consistent solution of the Dirac-Maxwell set
of equations (with unstable vacuum in the fermion sector)
and calculate the effective mean field and effective mean
values of the current and energy-momentum tensor. We
show that linear I-V experimentally observed in high-
mobility samples is due to the pair creation from the
vacuum by the applied electric field in the regime where
backreaction is important. In Sec. V (Summary), we briefly
list the main new results obtained in the article and add
some relevant comments.

B. Dirac model with external background

In order to study the Dirac field in the external back-
ground, we use a formulation of QED with unstable vac-
uum (the generalized Furry representation) developed in
Refs. [1,25], where a strong external field is treated non-
perturbatively. In this work we consider the case of the
so-called T-constant electric field, i.e., we assume that for
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t < tin and for t > tout, the T-constant electric field is
absent, therefore initial and final vacua are vacuum state
of free in-and out-particles, respectively. During the inter-
val tout � tin ¼ T, the Dirac field interacts with a constant
uniform electric field. The initial and final vacua are differ-
ent due to the difference of the initial and final value of the
external electromagnetic field potentials. In the Heisenberg
picture, there exists a set of creation and annihilation

operators ayn ðinÞ, anðinÞ of in-particles (electrons) and op-

erators byn ðinÞ, bnðinÞ of in-antiparticles (positrons), the
corresponding in-vacuum being j0; ini; at the same time
there exists a set of creation and annihilation operators

ayn ðoutÞ, anðoutÞ of out-electrons and operators byn ðoutÞ,
bnðoutÞ of out-positrons, the corresponding out-vacuum
being j0; outi,

anðinÞj0; ini ¼ bnðinÞj0; ini ¼ 0; 8 n;

anðoutÞj0; outi ¼ bnðoutÞj0; outi ¼ 0; 8 n:

In both cases, by n we denote complete sets of quantum
numbers describing in- and out- particles. The in- and out-
operators obey the canonical anticommutation relations:

½anðinÞ; ayn0 ðinÞ�þ ¼ ½anðoutÞ; ayn0 ðoutÞ�þ ¼ �n;n0 ;

½bnðinÞ; byn0 ðinÞ�þ ¼ ½bnðoutÞ; byn0 ðoutÞ�þ ¼ �n;n0 ;

the remaining anticommutators being zero.
The in-operators are associated with a complete ortho-

normal set of solutions f�c nðxÞg (� ¼ þ for electrons and

� ¼ � for positrons) of the Dirac equation with T-constant
electric field. Their asymptotics as t < tin can be classified
as free particles and antiparticles. The out-operators are
associated with a complete orthonormal out-set of solu-
tions f�c nðxÞg of the Dirac equation with T-constant elec-
tric field. Their asymptotics as t > tout can be classified as
free particles and antiparticles. The in- and out- operators
are defined by the two representations of the quantum
Dirac field �ðxÞ in the Heisenberg representation

�ðxÞ ¼ X
n

½anðinÞþc nðxÞ þ byn ðinÞ�c nðxÞ�

¼ X
n

½anðoutÞþc nðxÞ þ byn ðoutÞÞ�c nðxÞ�: (1)

In- and out-solutions with given quantum numbers n are
related by a linear transformation of the form

�c nðxÞ ¼ gðþj� Þþc nðxÞ þ gð�j� Þ�c nðxÞ; (2)

where the g’s are some complex coefficients. Then a linear
canonical transformation (Bogolyubov transformation)
between in- and out-operators which follows from
Eq. (1) is defined by these coefficients.

The vacuum mean current vector, the energy and the
momentum vector of the quantum Dirac field �ðxÞ at a
time instant t are defined as integrals over the spatial
volume. Due to translational invariance of the external

field under consideration, all these mean values are pro-
portional to the space volume. Therefore, it is enough to
calculate the vacuum mean values of the current density
vector hj�ðtÞi and of the energy-momentum tensor (EMT)
hT��ðtÞi,
hj�ðtÞi ¼ h0; injj�j0; ini; hT��ðtÞi ¼ h0; injT��j0; ini:

(3)

Here we stress the time dependence of mean values (3),
which does exist due to the time dependence of the external
field. The operators of the current density and the EMTare
described in terms of the quantum Dirac field as follows:2

j� ¼ q

2
½ ��ðxÞ; ���ðxÞ�; T�� ¼ 1

2
ðTcan

�� þ Tcan
�� Þ;

Tcan
�� ¼ 1

4
f½ ��ðxÞ; ��P��ðxÞ� þ ½P�

�
��ðxÞ; ���ðxÞ�g;

P� ¼ i@� � qA�ðxÞ; ��ðxÞ ¼ �yðxÞ�0;

where A�ðxÞ are electromagnetic potentials of the external

field, q is the particle charge (for an electron q ¼ �e), and
�ðxÞ is the Heisenberg operator of the Dirac field that
obeys the Dirac equation with the external background.
Note that the mean values (3) depend on the definition

of the initial vacuum, j0; ini and on the evolution of
the electric field from the time tin of switching it on up
to the current time instant t, but they have nothing to do
with the further history of the system. The renormalized
vacuum mean values hj�ðtÞi and hT��ðtÞi, tin < t < tout are

sources in equations of motion for mean electromagnetic
and metric fields, respectively. In particular, complete
description of the backreaction is related to the calculation
of these mean values for any t.

II. DIRAC FIELD IN T-CONSTANT
ELECTRIC BACKGROUND

In what follows we are going to deal with the Dirac
equation in (d ¼ Dþ 1)-dimensional Minkowski space
with an external electromagnetic field A�ðxÞ,

ð��P� �mÞc ðxÞ ¼ 0: (4)

Here c ðxÞ is a 2½d=2�-component spinor (the brackets
stand for ‘‘integer part of’’), m is the mass, q is the charge,
the greek index assumes values � ¼ 0; 1; . . . ; D, and
the gamma matrices satisfy the standard anticommutation
relations,

½��; ���þ ¼ 2���; ��� ¼ diagð1;�1; . . . ;�1Þ:
In what follows, we consider the T-constant field

described by a vector potential with only one nonzero
component A1ðtÞ (A�ðtÞ ¼ 0, � � 1),

2We use the relativistic units " ¼ c ¼ 1, in which the fine
structure constant is � ¼ e2=c" ¼ e2.
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A1ðtÞ ¼ E

8>>><
>>>:
tin t 2 I ¼ ð�1; tinÞ; tin ¼ �T=2;

t; t 2 Int ¼ ½tin; tout�;
tout; t 2 II ¼ ðtout;1Þ; tout ¼ T=2

such that the electric field EðtÞ has also only one nonzero
component, which is nonzero for t 2 Int, i.e.,

E1ðtÞ ¼ E; t 2 Int; E1ðtÞ ¼ 0; t 2 I [ II:

If one represents the spinor c ðxÞ in the form

c ðxÞ ¼ ð��P� þmÞ�ðxÞ; (5)

where �ðxÞ is a new spinor, then �ðxÞ obeys the following
equation: �

P2 �m2 � q

2
	��F��

�
�ðxÞ ¼ 0; (6)

where

F�� ¼ @�A� � @�A�; 	�� ¼ i

2
½��; ���;

q

2
	��F�� ¼ iqEðtÞ�0�1:

Solutions of the Dirac equation in a T-constant field were
studied in detail in Ref. [24]. Below, we use these results.

First we choose a set of constant orthonormalized spin-
ors vs;r, with s ¼ �1, and r ¼ ðr1; r2; . . . ; r½d=2��1Þ,
ri ¼ �1, such that �0�1vs;r ¼ svs;r. The indices ri
describe the spin polarization, which is not coupled to
the electric field, and together with the additional index s
provide a suitable parametrization of the solutions. Then
we represent the spinors �ðxÞ as follows:

�p;s;rðt;xÞ ¼ eip�x’p;sðtÞvs;r: (7)

Thus, the time evolution is described by the ordinary
differential equation of second order�
d2

dt2
þ ½p1 � qA1ðtÞ�2 þ jqEj
þ isqEðtÞ

�
’p;sðtÞ ¼ 0;

(8)

where 
 ¼ ðp2
? þm2Þ=jqEj and p? is the transversal

momentum, p? ¼ ð0; p2; . . . ; pDÞ.
At early (t < tin -region I) and late (t > tout -region II)

times, Eq. (8) has plane wave solutions ��p;s;r and
��p;s;r;

respectively, with � ¼ �1, which satisfy simple dispersion
relations

I: ’p;sðtÞ � e�i�!int; II: ’p;sðtÞ � e�i�!outt;

!in=out ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðp1 � qEtin=outÞ2 þ p2

? þm2
q

:
(9)

As was demonstrated in Ref. [24], the in-set f�c p;rg and
out-set f�c p;rg of solutions of the Dirac equation in the

T-constant electric field can be taken in the form

�c p;rðxÞ ¼ ð� � PþmÞ��p;�;rðxÞ;
�c p;rðxÞ ¼ ð� � PþmÞ��p;�;rðxÞ:

(10)

For t 2 Int, the general solution of Eq. (8) is completely
determined by an appropriate pair of the following linear
independent Weber parabolic cylinder functions:

D��ð1þsÞ=2ð�ð1� iÞ�Þ; D���ð1�sÞ=2ð�ð1þ iÞ�Þ;
where � ¼ �, � ¼ i
=2 and

� ¼ �ðtÞ ¼ jqEjt� p1sgnðqEÞffiffiffiffiffiffiffiffiffiffijqEjp :

According to relation (2), an out-solution corresponding to
a plane wave in interval II is thus described by a superpo-
sition of the Weber functions in interval Int, and extends
into a superposition of particle and antiparticle in-solutions
in I. Then one can explicitly find the coefficients g. In
terms of such coefficients, the differential mean number
@p;r of particles created from vacuum with given p and r at

a time instant t > tout is

@p;r ¼ h0; injayp;rðoutÞap;rðoutÞj0; ini ¼ @p ¼ jgð�jþÞj2;
(11)

where the Bogolyubov transformation between in- and out-
creation and annihilation operators is used. The number of
particles created is equal to the number of antiparticles
created. Then @p;r can be treated as the number of pairs

created. The result in (11) is independent of the spin
polarization. That is why we use in what follows the
notation @p for the quantity (11). Note that there is no

particle production after the time instant tout. Thus, @p

depends only on the interval T. The explicit expression
for @p was studied in detail in Ref. [24]. Here we just quote

the relevant results for the calculation of the vacuum mean
values of the EMT and current vector.
The electric field acting during the time T creates a

considerable number of pairs only in a finite region in
the momentum space. One can introduce a cutoff K 	
maxf1; m2=jqEjg such that, for

ffiffiffiffiffiffiffiffiffiffijqEjp
T=2>K, one needs

to consider only the region

jp?j 

ffiffiffiffiffiffiffiffiffiffiffiffi
jqE

�����q � ffiffiffiffiffiffiffiffiffiffi
jqEj

q
T � K

�
1=2

;

�T=2þ K=
ffiffiffiffiffiffiffiffiffiffiffiffi
jqE

�����q

 p1=qE 
 T=2� K=

ffiffiffiffiffiffiffiffiffiffi
jqEj

q
(12)

in the momentum space. After the cutoff, physical quanti-
ties that are expressed in terms of @p will, in general,

depend on K. But if T is big enough, so thatffiffiffiffiffiffiffiffiffiffi
jqEj

q
T 	 K 	 maxf1; m2=jqEjg; (13)

the dependence onK can be ignored. We shall suppose that
the stabilization condition (13) holds true. In this case the
differential mean numbers of created pairs have the form
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@p ’ e��
; (14)

which is the same for the case of the constant uniform
electric field.

Taking into account cutoff (12), we find that the
total number @ of pairs created is proportional to
d� 1-dimensional spatial volume Vðd�1Þ and can be

expressed through the total number density ncr of pairs
created during the interval T as follows:

@ ¼ Vðd�1Þ
ð2�Þd�1

Z
dp

X
rp

@p ¼ Vðd�1Þncr;

ncr ¼ rcr½T þ jqEj�1=2OðKÞ�;

rcr ¼ 2½d=2��1

ð2�Þd�1
jqEjd=2 exp

�
��m2

jqEj
�
;

(15)

where the quantity rcr is often called the pairs production
rate.

It should be noted that the stabilization condition is
written for arbitrary external field E. However, in what
follows we are interested in strong electric fields

E> Ec ) m2=jqEj< 1: (16)

In what follows, whenever we speak of the strong field case
we will have in mind the condition (16). In these cases the
stabilization condition is simplified,ffiffiffiffiffiffiffiffiffiffi

jqEj
q

T 	 K 	 1: (17)

The stabilization condition reveals another important di-
mensionless parameter ,

 ¼
ffiffiffiffiffiffiffiffiffiffi
jqEj

q
T: (18)

In the strong T-constant field under consideration, the
qualitative supposition that T is big enough is equivalent
to the supposition that  	 1. In what follows, we calcu-
late different mean values in an approximation that is
related to large ; we call such an approximation the large
 limit. To explain the meaning of such a limit, we consider
possible structures of the mean values that appear in our
further calculations. The most general structure of the
mean values has the form

hFi ¼ X1
n¼1

F�n
�n þ F0 þ ~F lnþ F1þ F2

2: (19)

The large  limit for the mean value hFi means the leading
term approximation for (19), having in mind the hierarchy
F0 � ~F ln � F1 � F2

2. For example, the rhs in
Eq. (14) represents the term F0, while rcr in Eq. (15)
represents F1 in the general formula (19).

It should be noted that below we encounter cases where

the large  limit is defined by  ¼ ffiffiffiffiffiffiffiffiffiffijqEjp
�t, with some �t,

such that  	 K 	 1.

It should also be noted that for large T, the in- and out-
solutions in the interval t 2 Int take the form

�þ’p;sðtÞ ¼ CD��ð1þsÞ=2ð�ð1� iÞ�Þ;
þ�’p;sðtÞ ¼ CD���ð1�sÞ=2ð�ð1þ iÞ�Þ;

(20)

with the normalization constant

C ¼ ð2�Þ�ðd�1Þ=2j2qEj�1=2 expð��
=8Þ: (21)

It is supposed that the measurement is carried out at
some time after switching off the electric field, i.e., deco-
herence occurs after the electric field is switched off.
Of course, one can consider the case when decoherence
occurs earlier, for example, at an instant tdec, tin < tdec <
tout. Let us suppose, for example, that the interval tdec � tin
satisfies stabilization conditions similar to (13),ffiffiffiffiffiffiffiffiffiffijqEjp ðtdec � tinÞ 	 K. Then the differential mean number
of pairs created in the large tdec � tin limit, when

jp?j

ffiffiffiffiffiffiffiffiffiffiffiffi
jqE

�����q � ffiffiffiffiffiffiffiffiffiffi
jqEj

q
ðtdec� tinÞ�K

�
1=2

;

tinþK=
ffiffiffiffiffiffiffiffiffiffi
jqEj

q

p1=qE
 tdec�K=

ffiffiffiffiffiffiffiffiffiffi
jqEj

q
;

(22)

is given by (14), and the total number density of particles
created is rcrðtdec � tinÞ. For the time of decoherence tdec,
which is sufficiently close to tout, ðtout � tdecÞ=T � 1, the
difference of this density from the density ncr can be
ignored, and the interpretation of particles at tdec as final
out-particles already makes sense.
However, if the interval tout � tdec is comparable with

the interval tdec � tin, then it is necessary to consider the
further evolution of the many-particle state given initially
by the distribution (14) at the time tdec, which is a com-
pletely different task, see for example Ref. [25]. In this
case, the differential mean numbers of additional pairs
created by the external field during the interval from tdec
to tout is given by Eq. (59) of the work [25] as follows:

�Np ¼ @p½1� ðNðþÞ
p ðinÞ þ Nð�Þ

p ðinÞÞ�; (23)

where NðþÞ
p ðinÞ ¼ Nð�Þ

p ðinÞ ¼ @p are differential mean

numbers of initial particles and antiparticles at tdec, given

by Eq. (14). If NðþÞ
p ðinÞ þ Nð�Þ

p ðinÞ> 1 then �Np is

negative, that is, the annihilation of the existing pairs of
particles and antiparticles results from the electric field.
Integrating and summing distribution (23) over the
quantum numbers under conditions (22), we obtain the
additional number density of pairs,

�ncr ¼
�
1� 22�d=2 exp

�
��m2

jqEj
��

rcrðtdec � tinÞ: (24)

Summing the density of pairs created at tdec, r
crðtdec � tinÞ,

the additional density �ncr, and the number density of
pairs created from vacuum states after tdec, r

crðtout�tdecÞ,
we find the following total number density of pairs created
during the interval T,
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ncrðtout � tdecjtdec � tinÞ ¼ ncr þ �ncr:

Thus, if decoherence occurs at tdec, the final number den-
sity of pairs at the time instant tout differs from ncr by �ncr.

In the case of a strong electric field, m2

jqEj � 1, �ncr � 0 for

d ¼ 4, �ncr < 0 for d ¼ 2, 3, and �ncr > 0 for d > 4. We
see that the intermediate decoherence at the early time
significantly reduces the measured density of final par-
ticles in low-dimensional systems, and increases in high-
dimensional systems. Decoherence can occur once or
many times during the interval T. The choice of a suitable
model of decoherence depends on the physical nature of
the phenomenon.

It is useful to comment on the case when the initial
many-particle state is the thermodynamical equilibrium
of noninteracting particles at the temperature � with the
chemical potential �ch,

Nð�Þ
p ðinÞ ¼ fexp½ð!in ��chÞ=�� þ 1g�1;

where !in is given by Eq. (9). Then the differential mean
number �Np of additional pairs created by the external

field during the interval T has the form (23), where @p is

given by (14). Taking into account the cutoff (12), one can
find the total number of additional particles created.
In consequence, one can see that at low temperatures,
ðm��chÞ=� 	 1, such a total number differs from the
zero-temperature result (15) by a next-to-leading term that
is not essential in the large  limit, see Ref. [25]. We
consider the system at high temperatures when all the
energies of the created and accelerated particles are
much lower than the temperature �, hence jqEjT=��1.
One can extract from results of the work [25] that the total
number of additional particles created under such a condi-
tion is much less than that in (15). However, we stress that
at high temperatures, the polarization effect in the current
and energy densities of the initial gas of charged particles
given by Eq. (127) in Ref. [10] is much stronger than the
effect from the pair creation given by Eq. (72) in Ref. [10].
This could lead to screening the electric field before the
effects of pair creation manifest themselves. One can see
that the vacuum contributions dominate in comparison
with contributions due to the low temperature and particle
density in the initial state. That is why we restrict ourselves
to the case of the vacuum initial state.

III. ENERGY-MOMENTUM TENSOR
AND CURRENT VECTOR

A. Observables and Green functions

We consider here various singular functions of the
Dirac field. With the help of these functions, different
physical quantities can be calculated. For example, mean
values (3) can be calculated with the help of the so-called
in-propagator,

Scinðx; x0Þ ¼ ih0; injT�ðxÞ ��ðx0Þj0; ini:
In turn, this propagator can be determined via the in-
solutions as follows:

Scinðx; x0Þ ¼ �ðt� t0ÞS�inðx; x0Þ � �ðt0 � tÞSþinðx; x0Þ;
S�inðx; x0Þ ¼ i

Z
dp

X
r

�c p;rðxÞ� �c p;rðx0Þ:
(25)

Using relation (2) and properties of the g coefficients, one
can divide the propagator (25) into a sum of two terms,

Scinðx; x0Þ ¼ Scðx; x0Þ þ Spðx; x0Þ; (26)

where the first term is the causal (Feynman) propagator,

Scðx; x0Þ ¼ ih0; outjT�ðxÞ ��ðx0Þj0; inic�1
v ;

cv ¼ h0; outj0; ini: (27)

Here cv is the vacuum-to-vacuum probability amplitude.
This propagator can be represented as follows:

Scðx; x0Þ ¼ �ðt� t0ÞS�ðx; x0Þ � �ðt0 � tÞSþðx; x0Þ;
S�ðx; x0Þ ¼ i

Z
dp

X
r

þc p;rðxÞgðþjþÞ�1þ �c p;rðx0Þ;

Sþðx; x0Þ ¼ i
Z

dp
X
r

�c p;rðxÞ½gð�j�Þ�1��� �c p;rðx0Þ:

(28)

The second term in (26) has the following form:

Spðx; x0Þ
¼ i

Z
dp

X
r

�c p;rðxÞ½gðþj�Þgð�j�Þ�1��þ �c p;rðx0Þ:

(29)

The current density, j
�
crðtÞ, and EMT, Tcr

��ðtÞ, of created
particles at t * tout are expressed via the mean values of the
normal form of j� and T�� operators with respect to the

out-vacuum, namely,

j
�
crðtÞ ¼ hj�ðtÞi � hj�ðtÞiout;

hj�ðtÞiout ¼ h0; outjj�j0; outi;
Tcr
��ðtÞ ¼ hT��ðtÞi � hT��ðtÞiout;

hT��ðtÞiout ¼ h0; outjT��j0; outi:

(30)

These mean values can be calculated with the help of the
so-called out-propagator

Scoutðx; x0Þ ¼ ih0; outjT�ðxÞ ��ðx0Þj0; outi:
Similarly to the case of the in-propagator, one can relate
this propagator to Scðx; x0Þ as follows:

Scoutðx; x0Þ ¼ Scðx; x0Þ þ S �pðx; x0Þ; (31)

where
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S �pðx; x0Þ ¼ �i
Z

dp
X
r

þc p;rðxÞgðþjþÞ�1gðþj�Þ� �c p;rðx0Þ:

(32)

The quantities (3) and (30) are real valued and can be
represented as

hj�ðtÞi ¼ Rehj�ðtÞic þ Rehj�ðtÞip;
hT��ðtÞi ¼ RehT��ðtÞic þ RehT��ðtÞip;

(33)

hj�ðtÞiout ¼ Rehj�ðtÞic þ Rehj�ðtÞi �p;
hT��ðtÞiout ¼ RehT��ðtÞic þ RehT��ðtÞi �p;

(34)

where

hj�ðtÞic;p; �p ¼ iq tr½��Sc;p; �pðx; x0Þ�jx¼x0 ;

hT��ðtÞic;p; �p ¼ i tr½A��S
c;p; �pðx; x0Þ�jx¼x0 ;

A�� ¼ 1=4½��ðP� þ P0�
� Þ þ ��ðP� þ P0�

�Þ�:
(35)

Here tr stands for the trace in the �-matrices indices and
the limit x ! x0 is understood as follows:

tr ½� � � ðx; x0Þ�x¼x0 ¼ 1

2

�
lim

t!t0�0
tr½� � � ðx; x0Þ�

þ lim
t!t0þ0

tr½� � � ðx; x0Þ�
�
x¼x0

:

The representations (33) and (34) imply that

j�crðtÞ ¼ Rehj�ðtÞip � Rehj�ðtÞi �p;
Tcr
��ðtÞ ¼ RehT��ðtÞip � RehT��ðtÞi �p:

(36)

Note that the mean current hj�ðtÞi and the physical part
of the mean value hT��ðtÞi are zero for t < tin, when the

electric field is zero. We are only interested in these mean
values for large T and for t 2 Int, when the time t from the
latter interval is sufficiently large,ffiffiffiffiffiffiffiffiffiffi

jqEj
q

ðt� tinÞ 	 K 	 maxf1; m2=jqEjg; (37)

where K is the cutoff introduced before in Eq. (22). Then it
is sufficient to use the in- and out-solutions in asymptotic
form (20) for the functions Sc;pðx; x0Þ defined above. At late
times, t > tout, the solutions

�c p;rðxÞ reduce to free plane

waves in accordance with Eq. (9).
Some components of hj�ðtÞic;p; �p and hT��ðtÞic;p; �p are

finite (do not have any T divergences) as T ! 1. In the
expressions for these components, we can use asymptotic
(as T ! 1) forms of the singular functions Sc;p; �pðx; x0Þ,
that is, the functions Sc;p; �pðx; x0Þ in the constant electric
field. For such singular functions, the so-called Fock-
Schwinger proper time representations hold true [26]
(it should be noted that the functions Spðx; x0Þ and
S �pðx; x0Þ defined above coincide with the functions
�Saðx; x0Þ and �Spðx; x0Þ, respectively, used in the article
[26]). In the Fock-Schwinger representations the causal

propagator Scðx; x0Þ defined by Eq. (28), Spðx; x0Þ in (29),
and S �pðx; x0Þ in (32) have the following integral
representations:

Sc;p; �pðx; x0Þ ¼ ð�PþmÞ�c;p; �pðx; x0Þ;
�cðx; x0Þ ¼

Z
�c

dsfðx; x0; sÞ;

�pðx; x0Þ ¼ �
Z
�p

dsfðx; x0; sÞ ��ðx1 � x01Þ

�
Z
�3þ�2��p

dsfðx; x0; sÞ;

��pðx; x0Þ ¼ �
Z
�p

dsfðx; x0; sÞ ��ðx01 � x1Þ

�
Z
�3þ�2��p

dsfðx; x0; sÞ; (38)

where the Fock-Schwinger kernel fðx; x0; sÞ reads

fðx; x0; sÞ ¼ exp

�
�i

q

2
	��F��s

�
fð0Þðx; x0; sÞ;

fð0Þðx; x0; sÞ ¼ � 1

ð4�iÞd=2
qEs�d=2þ1

sinhðqEsÞ e
iq�e�im2s

� exp

�
1

4i
ðx� x0ÞqF cothðqFsÞðx� x0Þ

�
;

(39)

cothðqFsÞ is thematrixwith the components ½cothðqFsÞ���,
and � ¼ ðx0 þ x00Þðx1 � x01ÞE=2. All integration contours

in the s-complex plane are shown in Fig. 1. The integral
along the contour �c, that is, along the real positive

FIG. 1. Contours of integration �2, �3, �c, �p.
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semiaxis, corresponds to the well-known Schwinger’s
representation of the Feynman propagator.

The only singular points of the kernel fðx; x0; sÞ in the
lower half-plane outside of the origin are sn ¼ �i�n=
jqEj, n ¼ 1; 2; . . . .

B. Peculiarities in odd dimensions

We shall see that in odd dimensions there exist current
components related to the so-called Chern-Simons term of
the effective action. The components hj1ðtÞip; �p are ill
defined in the proper time representation due to the diver-
gence in the limit T ! 1. They will be treated in detail at
finite T in Sec. III E. All other current components
hj�ðtÞic;p; �p are finite as T ! 1 and can be determined
with the help of Eqs. (38). We first consider the case of
d ¼ 3 dimensions. In this case, there are two nonequiva-
lent representations for the � matrices,

�0 ¼ 	3; �1 ¼ i	2; �2 ¼ �ið�1Þ	1; (40)

where 	i are the Pauli matrices and the signs �1 corre-
spond to different fermion species, which we call as
�-fermions, respectively. By using the formula

exp

�
�i

q

2
	��F��s

�
¼ coshðqEsÞ þ �0�1 sinhðqEsÞ;

one finds that

tr ½��mfðx; x; sÞ� ¼ �ið�1Þ2m sinhðqEsÞfð0Þðx; x; sÞ��;2:

Inserting this expression and fð0Þðx; x0; sÞ given by Eq. (39)
into Eqs. (38) and taking into account that the integral along
the contour �3 þ �2 � �p does not contribute to quantities

given by Eqs. (35), we obtain the following result:

hj�ðtÞic ¼ ���;2

e2E

4�
; hj0ðtÞip; �p ¼ 0;

hj2ðtÞip; �p ¼ � e2E

4�3=2
�

�
1

2
;
�m2

jqEj
�
;

(41)

where �ð1=2; xÞ is the incomplete gamma function. In
d � 3 dimensions we find that

hj�ðtÞic¼0; 8�; hj�ðtÞip; �p¼0; ��1: (42)

We see that in d ¼ 3 dimensions there are nonzero compo-

nents hj�ðtÞic;p; �p? ¼ ��;2hj2ðtÞic;p; �p that are orthogonal to

the electric field direction. By covariance, one concludes
from Eq. (41) that the component hj�ðtÞic in an arbitrary
inertial reference frame is

hj�ðtÞic ¼ � e2

8�
e���F��

for any electriclike field (i.e., when the magnetic field can
be removed by a Lorentz transformation). This expression
has previously been obtained for the magneticlike uniform
electromagnetic field and related to the additional Chern-
Simons term in the Euler-Heisenberg effective action,

�CS ¼ � e2

16�

Z
dtdxe���F��A�;

in Refs. [27,28], while the expression for hj�ðtÞip; �p? that can

be extracted from Eq. (41) is new. This radiatively induced
term �CS is the topological mass term (Chern-Simons in-
variant). The Chern-Simons term �CS formally vanishes for
a uniform field, but its variation with respect toA� produces

a nonvanishing current hj�ðtÞic. For the case of a magnet-
iclike field, i.e., when the electric field can be removed by a
Lorentz transformation, one has hj�ðtÞi ¼ hj�ðtÞic and

hj�ðtÞip; �p? ¼ 0. However, in the case of an electriclike field

under consideration, we see that there is an additional term
hj2ðtÞip; �p � 0 given by Eq. (41). This is what distinguishes
substantially the case of an electriclike field from the case
of a magneticlike field. Thus, we see that the Chern-Simons
term is present in a properly regularized effective action for
the electriclike field with odd number of fermion species.
The signs ‘‘�’’ in Eq. (41) are opposite for each of the two
possible fermion species. The absence of similar compo-
nents in expressions (42) in higher (d > 3) odd dimensions
is related to the fact that we consider a special case where
the magnetic field is absent. Note that in an arbitrary
constant field, such current components are orthogonal to

the electric and magnetic field, hj�ðtÞic;p; �p? F�� ¼ 0, and

proportional to the product of all eigenvalues of the field
tensor F��; see the appropriate expression for

tr½��mfðx; x; sÞ� in Ref. [26]. Separating the transverse
components, we represent the vacuum current density in
the final form

hj�ðtÞi ¼ hj�ðtÞi? þ hj�ðtÞipk ;
hj�ðtÞi? ¼ hj�ðtÞic? þ hj�ðtÞip?;

(43)

where finite quantities hj�ðtÞic;p? are given by Eqs. (41) and

(42), whereas the component hj�ðtÞipk ¼ ��;1hj1ðtÞip
directed along the electric field must be treated for finite
T. One can see from Eqs. (36) and (41) that the transverse
current of created particles is absent, j2crðtÞ ¼ 0, and this
conclusion holds true for an arbitrary constant field in
higher odd dimensions. Then the term hj�ðtÞi? represents
transverse vacuum-polarization current, in particular for
d ¼ 3, it has the form

hj�ðtÞi? ¼ ���;2

e2

4�3=2
�

�
1

2
;
�m2

jqEj
�
E; (44)

where �ð1=2; xÞ is the incomplete gamma function.
The factor in front of E in Eq. (44) can be considered as

the nonequilibrium Hall conductivity for large duration of
electric field�t satisfying condition (37). It should be noted
that the expression (44) is close to the one given by Eq. (7)
in Ref. [29]. The latter was obtained in the framework of
one-particle WKB calculations, using an analogy with the
Landau-Zener tunneling. Note that it is quite difficult in the
framework of the one-particle theory to distinguish between
the current of real particles, which remains after switching
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off of the electric field, and the pure vacuum-polarization
current, which disappears in this case, although there is no
dissipation in the model. We stress that the latter current
vanishes together with the electric field. Therefore, in this
problem, use of the analogy with the tunneling, i.e., with
Schwinger’s pair-production rate, should be justified. In
fact, our exact result (44), obtained in the framework of
QED, is such a justification of the one-particle calculation
[29], and at the same time it shows the limits of its validity;
namely, it holds true only before the switching off the

electric field. The quantity hj�ðtÞip; �p? is exponentially small

for weak electric fields, m2=jqEj 	 1, in which case
hj2ðtÞi � hj2ðtÞic. On the other hand, in the strong-field
limit, m2=jqEj � 1, both contributions are comparable,
hj2ðtÞip � �hj2ðtÞic, and then

hj2ðtÞi � � e3=2Em

2�
ffiffiffiffiffiffiffijEjp : (45)

The conductivity that follows from Eq. (45) coincides with
the one given by Eq. (9) in Ref. [29].

As it is known, the term hj2ðtÞic is related to the standard
effective action and therefore to probability amplitudes of
processes, while the term hj2ðtÞi presents a contribution to
mean values which, in general, are quite different from
such amplitudes. We see that hj2ðtÞic and the probability
amplitudes remain unchanged as m ! 0. In contrast to the
behavior of quantity hj2ðtÞic, the mean value hj2ðtÞi tends to
0 as m ! 0. It is important to note that these constant
values of both hj�ðtÞic? and hj�ðtÞip? are obtained in the

limit T ! 1, that is, Eqs. (41) hold true for instants of time
t before the electric field is switched off. At early times,
t < tin, and late times, t > tout, the T-constant electric field
is absent, and one can see from the exact formula (35) that
the vacuum polarization current vanishes in this case,
hj�ðtÞic ¼ hj�ðtÞip? ¼ 0. These results can be generalized

to the case of massless fermions in an electriclike constant
electromagnetic field in higher odd dimensions, when the
electric field cannot be removed by the Lorentz transfor-
mation and all eigenvalues of the field tensor F�� are

different from zero. In this case when t < tout, the trans-
verse component of vacuum polarization current hj�ðtÞic?
is nonzero; however, the total transverse mean value
hj�ðtÞi? is equal to zero. Thus, the vacuum polarization
in the electric field in odd dimensions is qualitatively
different for mean values and amplitudes of processes.
This is what distinguishes substantially the case of the
electriclike field from the case of the magneticlike field.

C. EMT

Using representations (35) and (38), we obtain compo-
nents of the EMT as follows:

hT��ðtÞic;p; �p¼0; ���;

RehT00ðtÞic¼�RehT11ðtÞic¼E
@ReLðtÞ

@E
�ReLðtÞ;

(46)

Re hTiiðtÞic ¼ ReLðtÞ; i ¼ 2; 3; . . . ; D; (47)

where

L ¼ 1

2

Z 1

0

ds

s
trfðx; x; sÞ;

trfðx; x; sÞ ¼ 2½d=2� coshðqEsÞfð0Þðx; x; sÞ:
(48)

It should be noted that the diagonal elements hT��ðtÞip are

ill defined in the proper time representation due to the
divergence at the limit T ! 1 and will be treated at finite
T in Sec. III E. The quantity L in (48) can be identified as
the nonrenormalized one-loop effective Euler-Heisenberg
Lagrangian of the Dirac field in an uniform electric field.
It is the density of the one-loop effective action W,

W ¼
Z

Ldtdx ¼ �i lncv; (49)

that is defined in general via the vacuum-to-vacuum am-
plitude (27). Its imaginary part represents the vacuum-
to-vacuum probability, as follows:

jcvj2 ¼ e�2 ImW: (50)

It is a global physical quantity. It is free of ultraviolet
divergences, because creation of pairs with infinitely large
momenta is suppressed. The Bogolyubov transformation
between in- and out-creation and annihilation operators
allows one to relate cv with the g coefficients from (2)
[1,25],

cv ¼ expftr lngð�j�Þ�g:
For the T-constant field, when T satisfies the stabiliza-

tion conditions (13), the probability (50) can be expressed
via the total number of particles created (15) in the follow-
ing form:

lnjcvj2 ¼ ��@;

� ¼ X1
n¼0

ðnþ 1Þ�d=2 expð�n�m2=jqEjÞ;
(51)

see Ref. [24]. It follows from (51) that @ � TVðd�1Þ, then
lnjcvj2 is proportional to the spatial volume Vðd�1Þ and the

field duration T. It can be verified that the result (51) can be
obtained with the help ofL (48), provided that the integral
over the time t is identified with the field duration T,R
dt ¼ T, [26]. Thus, ImW is finite for finite values of

Vðd�1Þ andT. Note that in the strong-field case,m2=jqEj�1,
for d  3, the leading term in the rhs of (51) is the ordinary
Riemann zeta function, � ¼ �Rðd=2Þ. For d ¼ 2, the lead-
ing term is � ¼ lnðjqEj=m2Þ. That means that in d ¼ 2
dimensions the vacuum-to-vacuum probability of massless
fermions in quasiconstant electric field is ill defined. In this
case, the mass term m � 0 has to be considered as an
infrared cutoff.
Both the vacuum mean values of the total current

density and of the EMT are represented as sums of two
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contributions: Rehj�ðtÞic (resp. RehT��ðtÞic and ReLðtÞ)
that can be associated with the vacuum polarization, while
hj�ðtÞip ¼ j

�
crðtÞ þ hj�ðtÞi �p (resp. hT��ðtÞip ¼ Tcr

��ðtÞ þ
hT��ðtÞi �p) can be associated with the pair creation due to

the term j
�
crðtÞ (resp. Tcr

��ðtÞ). The latter follows from the

fact that Spðx; x0Þ with all its derivatives, given by Eq. (29),
is exponentially small due to the smallness of jgðþj�Þj,
when the electric field is weak, m2=jqEj= 	 1. Of course,
in general, such unambiguous division of physical quanti-
ties due to particle creation and the vacuum polarization is
not possible. However, it can be done in some specific
cases and for some specific quantities. It is clear that
j
�
crðtÞ and Tcr

��ðtÞ depend on the history of the process and

retain their latest values at t > tout. On the other hand, we
see from Eqs. (41) and (47) that the nonzero real parts of
the quantities hj�ðtÞic, RehT��ðtÞic, and hj�ðtÞip? are time

independent for the time t 2 Int. At early t < tin and late
times t > tout, we have hj�ðtÞic ¼ hj�ðtÞip? ¼ 0, and the

mean hT��ðtÞic is reduced to its free value for E ¼ 0. Thus,

we see that hj�ðtÞic, hj�ðtÞip?, and RehT��ðtÞic depend on

the electric field at the time t but do not depend on the
history of the process; that is, they are local quantities and
represent the vacuum polarization contribution. We con-
tinue to study each of these local and nonlocal terms
independently in the following sections.

D. Mean values: renormalization

The integrals (47) are divergent due to the real part of the
effective Lagrangian (48) which is ill defined. This real
part must be regularized and renormalized. In low dimen-
sions, d 
 4, ReL can be regularized in the proper-time
representation and renormalized by the Schwinger renorm-
alizations of the charge and the electromagnetic field [30].
In higher dimensions, a different approach is required.
Note that in the case of d > 4 dimensions, plane QED is
a rather unrealistic system; however, it is common to use it
as a simple (Abelian) model to consider the qualitative
behavior of a quantum gauge field theory as a function of
d; see, for example, Refs. [27,28]. One can treat it as an
effective theory given by one-loop effective action that can
be regularized and renormalized in some appropriate way.
Of course, the exact meaning of finite and divergent terms
of effective action at d > 4 can be understood only from
the corresponding fundamental theory. In our article we
consider the strong-field asymptotic behavior of the one-
loop effective action. One can see that this asymptotic
behavior is insensitive to methods of regularization and
renormalization; see, for example, Refs. [6,31]. At d > 4
one can give a precise meaning and calculate the one-loop
effective action using zeta-function regularization [32].
An application of this method to the case of a uniform
magnetic field and self-dual field in arbitrary dimensions
is described in detail in Ref. [31]. It can be shown
that for d 
 4 such a renormalization is equivalent to

the above-mentioned Schwinger’s renormalization, see
Ref. [31]. Let us consider the application of this technique
for the case of a constant uniform electric field in arbitrary
dimensions of interest here.
First, we remind that the effective action W from (49)

can be represented as the functional determinant,

W ¼ � i

2
lndetM2;

M2 ¼ m2 � i0� P2 þ q

2
	��F��:

(52)

The operator M2 becomes elliptic when it is continued to
the Euclidean space, M2 ! ~M2, by means of the replace-
ments t ! �i�, @0 ! i@�, and qE ! iB. Then the func-

tional determinant is well defined with the help of the zeta

function � ðdÞðsÞ in d dimensions,

lndet ~M2 ¼ �d� ðdÞðsÞ
ds

��������s¼0
;

� ðdÞðsÞ ¼ ��1ðsÞ
Z 1

0
duus�1KðuÞ;

(53)

where KðuÞ is the heat kernel,

KðuÞ ¼
Z

d�dx trfEuclðx; x; uÞ;
fEuclðx; x; uÞ ¼ h�;xj expð�u ~M2=�2Þj�;xi:

Here the quantity � is a renormalization scale, which is
introduced to keep the zeta function dimensionless. The
dependence on � of the functional determinant corre-
sponds to a finite renormalization.
The effective action W can be written as the follow-

ing integral over the Euclidean space time volume:
W ¼ �i

R
Ld�dx. It is real when it is continued to the

imaginary electric field qE ! iB, so that ~W ¼ WjqE¼iB,

Im ~W ¼ 0. Note that for d  3, ~W coincides with the
effective action of the magnetic field B=q. Consequently,
we obtain a regularized and finite form of the effective
Lagrangian of a constant electric field in an arbitrary d
dimensions as follows:

ReLreg ¼ Re ~LjB¼�iqE;

~L ¼ � 1

2

d� ðdÞðsÞ
ds

��������s¼0
��1

ðdÞ ;
(54)

where�ðdÞ ¼
R
d�dx is the Euclidean space-time volume

in d dimensions.
An explicit form of the quantity trfEuclðx; x; uÞ can be

extracted from the quantity trfðx; x; sÞ [given by (39) and
(48)] as follows:

trfEuclðx; x; uÞ ¼ �trf

�
x; x;� iu

�2

���������qE¼iB
: (55)

Then we have
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� ð2ÞðsÞ ¼ �ð2Þ
2�

1

�ðsÞ
Z 1

0
us�1B coth

�
Bu

�2

�
e�m2u=�2

du;

� ðdÞðsÞ ¼ �ðdÞ2½d=2��1

�ð2Þ

�
�2

4�

�
d=2�1 �ðs� d=2þ 1Þ

�ðsÞ � ð2Þðs� d=2þ 1Þ; for d > 2: (56)

If B> 0, the function � ð2ÞðsÞ can be written in terms of the Hurwitz zeta function as follows [31,32]:

� ð2ÞðsÞ ¼

8>>><
>>>:

�ð2ÞB
2�

�
2

�
2B
�2

��s
�H

�
s; 1þ m2

2B

�
þ

�
m2

�2

��s
�
; for m � 0;

�ð2Þ B�

�
2B
�2

��s
�RðsÞ; for m ¼ 0:

(57)

The Hurwitz zeta function is defined as an analytic con-
tinuation of the series

�Hðs; xÞ ¼
X1
n¼0

ðnþ xÞ�s; Res > 1;

to the entire complex plane of s. One can see that �RðsÞ ¼
�Hðs; 1Þ is the ordinary Riemann zeta function. For odd d,
and taking into account that ��1ðsÞ � s at s � 0, we get
from (56) that

d� ðdÞðsÞ
ds

��������s¼0
¼ �ðsÞ� ðdÞðsÞjs¼0: (58)

By using Eq. (54) we find a finite expression for ReLreg in
arbitrary dimensions. Then we have to implement an addi-
tional finite renormalization of the cosmological constant
and the electric charge [31]. For d > 4, a finite renormal-
ization of some high-dimensional quantities could be

needed. Thus, we obtain the final form of the renormalized
effective Lagrangian ReLren. The corresponding final
forms for ~L and for the B field in d ¼ 2, 3, 4 dimensions
are treated in detail in Ref. [31].
We are interested in the case of a very strong field,

m2=jqEj � 1. In this case the leading contribution to
ReLren is given by ReLreg in (54), where m ! 0. Using

(56)–(58), we find that this contribution has the form

ReLren � 1

2
Re

8>>>><
>>>>:

�
ln

�
B
�2

�
� ðdÞð0Þ
�ðdÞ

�
B¼�iqE

; for even d;

�
�
�ðsÞ � ðdÞðsÞ�ðdÞ

��������s¼0

�
B¼�iqE

; for odd d:

(59)

In particular,

ReLren �

8>>>>>>>>><
>>>>>>>>>:

�Re

�
B
4� ln

�
B
�2

����������B¼�iqE
¼ jqEj

4 ; for d ¼ 2;

�Re

�
1

2�2

�
B
2

�
3=2

�R

�
3
2

����������B¼�iqE
¼ jqEj3=2

8�2 �R

�
3
2

�
; for d ¼ 3;

Re

�
B2

24�2 ln

�
B
�2

����������B¼�iqE
¼ � ðqEÞ2

24�2 ln

�
jqEj
�2

�
; for d ¼ 4:

(60)

For d ¼ 4, the obtained ReLren coincides with the already
known result [6]. For the magnetic field, the leading term in
the form of the second Eq. (60) has previously been
obtained in Ref. [28] for d ¼ 3. Note that despite the fact
that the nonzero vacuum current hj�ðtÞic is present in
d ¼ 3 dimensions, the Chern-Simons term vanishes for
the constant field strength [28]. In general, we have for a
very strong electric field that

ReLren �
8<
: jqEjd=2; d � 4n;

jqEjd=2 lnðjqEj=�2Þ; d ¼ 4n:

In contrast to the electric field case, where the logarithmic
factor lnðjqEj=�2Þ appears only for d ¼ 4n, in a strong

magnetic field it is present in any even dimension—
ReLren � Bd=2 lnðB=�2Þ for even d and ReLren � Bd=2

for odd d. In the framework of the on-shell renormalization
of massive theory, we have to set � ¼ m.
Thus, we have obtained the renormalized mean values of

EMT components in the following form:

RehT00ðtÞicren ¼ �RehT11ðtÞicren
¼ E

@ReLrenðtÞ
@E

� ReLrenðtÞ;
RehTiiðtÞicren ¼ ReLrenðtÞ; i ¼ 2; 3; . . . ; D;

(61)

whereLðtÞren at t 2 Int is given by (59). Thus, in the strong-
field case, the quantities (61) have the following behavior:
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RehT��ðtÞicren �
( jqEjd=2 lnðjqEj=�2Þ; d ¼ 4n;

jqEjd=2; d � 4n; n 2 N:

(62)

At early t < tin and late t > tout times, we have ReLðtÞren ¼
0 and RehT��ðtÞicren ¼ 0. Taking into account (61), we find

the final form for the vacuum mean values of the EMT,

hT��ðtÞiren ¼ RehT��ðtÞicren þ RehT��ðtÞip; (63)

where, according to (46), the off-diagonal elements are equal
to zero and the diagonal elements of RehT��ðtÞicren are given
by (61); the diagonal components of RehT��ðtÞip are studied

in detail in the next section.

E. Mean values: pair-creation contributions

We know that the mean values hj1ðtÞip; �p and hT��ðtÞip; �p
are divergent as T ! 1. Therefore, in the representation
(35), they have to be considered always at finite T. Let us
evaluate these quantities in the large -limit approximation

with  ¼ ffiffiffiffiffiffiffiffiffiffijqEjp ðt� tinÞ. Consider the time t 2 Int for
which the interval t� tin satisfies condition (37) and the
cutoff approximations

jp?j 

ffiffiffiffiffiffiffiffiffiffiffiffi
jqE

�����q � ffiffiffiffiffiffiffiffiffiffi
jqEj

q
ðt� tinÞ � K

�
1=2

;

tin þ K=
ffiffiffiffiffiffiffiffiffiffi
jqEj

q

 p1=qE 
 t� K=

ffiffiffiffiffiffiffiffiffiffi
jqEj

q (64)

hold true. In Eqs. (64) it is taken into account that physical
observables in the time moment t 2 Int are affected by the
electric field that acted for the time ½tin; t�. Let us call the
corresponding region in the momentum space by �ðtÞ.
Using the transformation (2), one can represent the propa-
gator Sp in Eq. (29) in terms of out-solutions. In the
asymptotic regime, as z ! 1, the Weber functions have
the following asymptotic expansion:

D�ðzÞ ’ z� expð�z2=4Þ
�XN
n¼0

ð� �
2Þnð12 � �

2Þn
n!ð�z2=2Þn

�
;

which is valid for j argzj< 3�=4. Then, keeping only the
zeroth (n ¼ 0) term in the last equation, we obtain for
x ’ x0,

Spðx; x0Þ ¼ ð�PþMÞ�pðx; x0Þ; (65)

�pðx; x0Þ ¼ �i
Z

dp2jqEt
� p1j@pe

ip�ðx�x0Þ½þ’p;�1ðtÞþ’�
p;�1ðt0Þ

þ �’p;þ1ðtÞ�’�
p;þ1ðt0Þ�: (66)

Considering the large  limit in representations (35), the
domain of integration in (66) can be restricted to the region
�ðtÞ described by the inequalities (64). Using Eq. (14) for
the differential mean values @p, we obtain

�pðx; x0Þ ¼ �i
Z t�K=

ffiffiffiffiffiffiffi
jqEj

p

tinþK=
ffiffiffiffiffiffiffi
jqEj

p h?ðx?;x0
?Þhkðxk; x0kÞd~t;

hkðxk; x0kÞ ¼
1

t� ~t
eip1ðx1�x01Þ cos

�
1

2
½�ðt0Þ2 � �ðtÞ2�

�
;

h?ðx?; x0?Þ ¼
jqEjd=2�1

ð2�Þd�1
exp

�
��m2

jqEj �
ðx? � x0

?Þ2jqEj
4�

�
;

(67)

where p1 ¼ qE~t.
It follows from Eqs. (35) and (67) that

hj1ðtÞip ¼ �iq2½d=2�P1�
pðx; x0Þjx¼x0 ;

hT��ðtÞip ¼ i2½d=2�P2
��

pðx; x0Þjx¼x0 :
(68)

Integrating over p1, we obtain the following result in the

large  limit (with  ¼ ffiffiffiffiffiffiffiffiffiffijqEjp ðt� tinÞ):
hj1ðtÞip ¼ 2e sgnðEÞrcr½t� tin þ jqEj�1=2OðKÞ�; (69)

hT00ðtÞip ¼ hT11ðtÞip ¼ jqEjrcr½t� tin þ jqEj�1=2OðKÞ�2;
hTiiðtÞip ¼ ��1rcrfln½

ffiffiffiffiffiffiffiffiffiffi
jqEj

q
ðt� tinÞ� þOðlnKÞg;

for i ¼ 2; 3; . . . ; D; (70)

where rcr is given by (15). We see that all the leading
contributions given by (69) and (70) are real. The quanti-
ties hj1ðtÞip and hT��ðtÞip depend on the time interval

(t� tin) of the electric field action, showing that they are
global quantities.
Now we estimate, for t � tout, the current density and

EMTof created particles, j
�
crðtÞ, Tcr

��ðtÞ, given by Eqs. (32).
At this time instant, the solutions �c p;rðxÞ reduce to free

particle plane waves in agreement with Eq. (9). Thus,
taking into account representation (32), one can see that
the quantities hj1ðtÞi �p and hT��ðtÞi �p from (35) can be

neglected in the large  limit. Using Eqs. (69) and (70),
we obtain

j
�
crðtÞ ’ ��;1hj1ðtÞip;

Tcr
��ðtÞ ’ ��;�hT��ðtÞip; at t � tout; (71)

where Eqs. (41), (42), and (46) were taken into account.
For t > tout (after the electric field is switched off),
the quantities j

�
crðtÞ and Tcr

��ðtÞ are constant and retain

their values at tout; for this reason, we always have to set
t� tin ¼ T in such cases. The renormalized vacuum po-
larization contributions in expressions (43) and (63) vanish
in the absence of an external field. Therefore, for t > tout,
the vacuum mean values hj�ðtÞi and T��ðtÞiren represent

the mean current density and EMT of pairs created by the
complete T-constant electric field,

hj�ðtÞi¼ j
�
crðtoutÞ; hT��ðtÞiren¼Tcr

��ðtoutÞ; t>tout:

(72)
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We see that the current density of created particles j
�
crðtÞ

is directed along the direction of the electric field. In d ¼ 3
dimensions, in contrast to this almost obvious property, for
tin < t < tout, the mean current density of each massive
fermion species deviates from the direction of the electric
field. Indeed,

hj2ðtÞi
hj1ðtÞi ¼ �

ffiffiffiffi
�

p
2

�

�
1

2
;
�m2

jqEj
�
expð�m2=jqEjÞffiffiffiffiffiffiffiffiffiffijqEjp ðt� tinÞ

; (73)

where ð ffiffiffiffiffiffiffiffiffiffijqEjp
TÞ�1 � 1 according to stabilization condi-

tion (13). One finds a similar deviation of the mean current
density of each massive fermion species in higher odd
dimensions for tin < t < tout in the case of an electriclike
constant electromagnetic field, when all eigenvalues of the
field tensor F�� are different from zero. The total mean

current density of an even number of fermion species is
directed along the direction of the electric field, since the
contributions of the �-fermions differ only in sign.

One can see from Eq. (69) that rcrT is the total number
density of pairs created and accelerated during the time T
to velocities nearly the speed of light. It coincides with the
quantity ncr obtained in a different manner in (23). The
quantity Tcr

00 ¼ jqEjTncr is the mean energy density of

pairs created at any time instant t 2 Int with zero longitu-
dinal kinetic momentum and then uniformly accelerated to
kinetic momenta from zero to the maximum jqEjT, so that
jqEjT=2 is the mean kinetic momentum per particle. The
energy density Tcr

00 is equal to the pressure Tcr
11 along the

direction of the electric field. This equality is a natural
equation of state for noninteracting particles accelerated by
an electric field to relativistic velocities. The momentum
density of created pairs Tcr

0i is zero due to the symmetry

between particle and antiparticle distributions.
The vacuum mean values (43) and (63) for t 2 Int are

sources in equations of motion for mean electromagnetic
and metric fields, respectively. It should be noted that only
when the time t is sufficiently close to tout, ðtout � tÞ=T �
1, the differences between the densities hj1ðtÞip and
hT��ðtÞip and the respective densities j1crðtÞ and Tcr

��ðtÞ of
final pairs created, can be neglected and the interpretation
of particles at t as final out-particles is correct.

In the general case when the time t is not close to tout,
there is an essential difference between the definition of the
vacuum at t < tout and the final vacuum state j0; outi at tout.
That is why the quantities hj1ðtÞip and hT��ðtÞip have

nothing to do with characteristics of final out-particles.
They present contributions to mean values due to vacuum
instability which depend on the history of the process; that
is, they are global quantities, in contrast to the local quan-
tities hj�ðtÞic, hj�ðtÞip?, and RehT��ðtÞic. In the general

case, rcr in Eqs. (69) and (70) is the total number density
of excited states per unit of time. For example, the longi-
tudinal component of the mean current density hj1ðtÞip
increases linearly as (t� tin) grows, since the decoherence

does not take place for t < tout. We note that hj1ðtoutÞi �
j1crðtoutÞ. However, it maybe not be so if the decoherence
starts earlier, for example, at the time instant tdec, tdec < tout
and tout � tdec is macroscopic; see discussion in the end of
Sec. II. In this case, the quantity hj1ðtoutÞi decreases sig-
nificantly in low-dimensional systems and increases in
high-dimensional systems.
We can compare contributions from the vacuum insta-

bility with contributions from the vacuum polarization. Of
course, all contributions due to pair creation in expressions
(63) are exponentially small for the weak electric field,
m2=jqEj 	 1, so that the vacuum polarization terms are
principal. We are interested in the strong-field limit,
m2=jqEj � 1. In such a limit, we obtain from (70) that

hT00ðtÞip ¼ hT11ðtÞip � jqEjd=2jqEjðt� tinÞ2;
hTiiðtÞip � jqEjd=2 ln

� ffiffiffiffiffiffiffiffiffiffi
jqEj

q
ðt� tinÞ

�
;

i ¼ 2; 3; . . . ; D;

(74)

where the large dimensionless parameter
ffiffiffiffiffiffiffiffiffiffijqEjp ðt� tinÞ

satisfies the stabilization condition (37). Comparing the
evaluation of the EMT components from (74) and (62),
we see immediately that when d is not a multiple of four,
the energy density of vacuum polarization, RehT00ðtÞicren, is
negligible compared to the energy density due to pair
creation, hT00ðtÞip, due to inequality (37).
If d ¼ 4, the ratio jhT00ðtÞip=RehT00ðtÞicj in a massive

theory with on-shell renormalization, � ¼ m, is of the
order jqEjðt� tinÞ2= lnðjqEj=m2Þ. In order to estimate the
allowed values of the logarithm in the latter equation, we
have to have a physical model that describes the origin of
the external classical quasiconstant electric field. In prob-
lems of high-energy physics, it is usually assumed that just
from the beginning there exists a uniform classical electric
field having a given energy density. The system of fermions
interacting with this field is closed, that is, the total energy
of the system is conserved. Under such an assumption, we
take into account that quantum electrodynamics in d ¼ 4
dimensions with the strong T-constant external electric
field can be considered as a consistent model only if the
backreaction due to pair creation is relatively small with
respect to the background, which implies the following
restriction from above:

jqEjðt� tinÞ2 � �2

2�
; (75)

where � is the fine structure constant, see Refs. [10,33].
We consider macroscopic time intervals, such that
m2ðt� tinÞ2 	 1, then it follows from (75) that
jqEj=m2 � �2=ð2�Þ, whence we obtain lnðjqEj=m2Þ �
6:5. On the other hand, according to condition (75), the
maximum value allowed for jqEjðt� tinÞ2 is two orders of
magnitude greater than the restriction obtained for the
logarithm. Thus, we see that in this case the quantity
RehT00ðtÞicren is negligible in comparison with hT00ðtÞip.
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This result can be generalized to d ¼ 4n dimensions. Note
that the ratio of the transverse components of the pressure

jhTiiðtÞip=RehTiiðtÞicj is of the order ln½ ffiffiffiffiffiffiffiffiffiffijqEjp ðt� tinÞ� if
d � 4n and ln½ ffiffiffiffiffiffiffiffiffiffijqEjp ðt� tinÞ�= lnðjqEj=m2Þ if d ¼ 4n.
One can see, for example, in d ¼ 4 dimensions, that these
logarithms cannot be considered, in general, as really big
quantities due to restriction from above (75), and this
evaluation can be generalized to arbitrary dimensions.
Then, in general, none of these transverse components
can be neglected. The evaluations may be different when
another model for the external classical quasiconstant
field is considered, for example, when there is an external
source that supports a given external field strength.

IV. MEAN CURRENTAND EMT IN GRAPHENE

A. One-loop results in a given external field

It is known that at certain conditions electronic excita-
tions in graphene monolayer (just graphene, in what fol-
lows) behave as relativistic Dirac massless fermions in
2þ 1 dimensions. The so-called Dirac model for elec-
tronic excitations in graphene was developed first by
Semenoff in Ref. [14], exploring results obtained decades
earlier in the study of the conductivity of graphite [34]; see
details in recent reviews [12,13]. It was found that at zero
temperature and chemical potential (i.e., at the so-called
charge neutrality point), low-energy electronic excitations
in graphene are described in a tight-binding approximation
by the Dirac equation for massless particles in 2þ 1
dimensions, with the Fermi velocity vF ’ 106 m=s playing
the role of the speed of light in relativistic particle dynam-
ics. In this section, we are going to explore such a corre-
spondence and consider applications of the results obtained
in the study of the quantized Dirac field in an external
background presented in the previous sections to some
problems of graphene physics that can be studied within
the Dirac model. In fact, we are going to study the elec-
tronic transport in graphene at low carrier density and low
temperatures when quantum interference effects are impor-
tant. Accordingly, from now on, we shall restrict ourselves
to the massless case in 2þ 1 dimensions.

First some comments about the Dirac model of graphene.
There are actually two species of fermions in this model,
corresponding to excitations about the two distinct Dirac
points in the Brillouin zone of graphene, i.e., each species
belongs to a distinct valley. The algebra of�matrices has two
inequivalent representations in (2þ 1) dimensions, as
described in (40), and a distinct (pseudospin) representation
is associatedwith eachDirac point. There is noparity anomaly
in the Dirac model; in particular, the sum of current densities
hj�ðtÞic (vacuum current contributions to the probability
amplitudes for processes with photons) for the two fermion
species given by Eq. (41) is zero. Note that the mean value of
transverse vacuum polarization current, given by Eq. (44), is
equal to zero for each massless fermion species. For all other

integral quantities, since intervalley scattering can be
neglected, the presence of two valleys is taken into account
simply by multiplying by the degeneracy factor 2.
Furthermore, there also is a spin degeneracy factor. The

derivation of the Dirac model starts from a nonrelativistic
Schrödinger equation for the conduction electrons in
graphene, leading to another doubling of fields due to the
(real) spin of the electron. As a result, there are four species
of fermions in the Dirac model corresponding to graphene.
The mean values that we have obtained in the previous
section hold true for each of the Dirac fields independently.
In order to find the corresponding mean values in graphene,
one should first add the contributions from the two valleys,
as discussed in the previous paragraph, and after that
multiply by the spin degeneracy factor 2.
We consider an infinite flat graphene sample on which a

uniform electric field is applied, directed along the plane
of the sample. We assume that the applied field is the
T-constant electric field studied in the previous sections:
the field is suddenly switched on at some time tin, acting
then for a time-interval T, during which electron-hole pairs
are created. We consider the case of zero temperature and
chemical potential, so that the Dirac model can be used,
and an initial state with neither electrons nor holes.
Under these circumstances, the Eqs. (15), (43), and (63),

multiplied by a degeneracy factor of 4, describe, respec-
tively, ncrg , the total number density of electron-hole pairs

created by the electric field; hj1ðtÞig, the mean longitudinal

current density; and hT��ðtÞig, the mean EMT in the

graphene. For the sake of comparison with known experi-
mental results, we are going to use SI units and restore the
Planck constant ℏ in this part of the work. We get the
following results:

ncrg ¼ rcrg T; rcrg ¼ ��2ðvFℏ3Þ�1=2jeEj3=2; (76)

hj1ðtÞig ¼ sgnðEÞA�t; A ¼ 2evFr
cr
g ; (77)

hT00ðtÞig ¼ hT11ðtÞig ¼ ejEjvFr
cr
g ð�tÞ2;

hT22ðtÞig ¼ hT22ðtÞipg þ hT22ðtÞicg;
hT22ðtÞicg ¼ ℏrcrg �Rð3=2Þ=2;
hT22ðtÞipg ¼ ℏrcrg ��1 lnð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ejEjvF=ℏ

q
�tÞ;

(78)

where �t ¼ t� tin. These results hold true for all t that
satisfy the stabilization condition (37), which has now the
form, ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ejEjvF=ℏ
q

�t 	 1: (79)

There appears a time scale specific to graphene,

�tst ¼ ðejEjvF=ℏÞ�1=2; (80)

which plays the role of the stabilization time in the case
under consideration. The vacuum polarization contribution
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to the mean value hT00ðtÞig ¼ hT11ðtÞig in (78) is small due

to Eq. (79) and is neglected, that is, hT00ðtÞig ¼ hT00ðtÞipg
and hT11ðtÞig ¼ hT11ðtÞipg .

At t � tout, we have �t � T ¼ tout � tin and relations
(71) show that the mean values hj1ðtÞig and hT��ðtÞipg
hardly differ from the current density j1crðtoutÞ and the
quantity Tcr

��ðtoutÞ caused by created particles. In the gen-

eral case, the quantity rcrg is the number density of pairs of

positive and negative charged states excited due to the
constant electric field per unit of time. Only at t � tout, it
can be treated as the production rate of electron-hole pairs.
In the presence of a mass gap �" ¼ mv2

F, the rate rcrg is

attenuated by a factor of exp½��ð�"Þ2=ejEjvFℏ� accord-
ing to Eq. (15). In this case, the stabilization condition has
general form (37) and the strong field condition reads
ð�"Þ2=ejEjvFℏ � 1.

There is a huge number of papers on the conductivity in
graphene, for the most part on optical conductivity and on
the minimal dc conductivity; see, for example, a recent
review of electronic transport in graphene [13] and an
analysis of the situation with the minimal dc conductivity
in Refs. [16,35]. It is shown in Refs. [16,17] that the time
scale �tst appears for the tight-binding model as the time
scale when the perturbation theory with respect to electric
field breaks down (�tst 	 t�, where the microscopic time

scale is t� ¼ ℏ=� ’ 0:24 fs, with � ¼ 2:7 eV being the

hopping energy), and the dc response changes from the
linear in E time-independent regime to a nonlinear in E and
time-dependent regime. Thus, it was established that the
minimal dc conductivity occurs for ballistic flight times �t
smaller than �tst. Our expression (77) is obtained for the
large-time interval �t satisfying the condition (79). Now
let us compare the results we have obtained with the known
results for sufficiently large duration of electric field in the
form of expression vs expression.

The formula for the current density of created particles
j1crðtoutÞ that follows from expression (77) agrees with the
result obtained from the WKB approach, see Eq. (8)
in Ref. [4], Eqs. (20) and (25) in Ref. [15], and Eq. (A3)
in Ref. [19] (the numerical analysis of Ref. [19] per-
formed in the frame of a nonequilibrium Green function
(NEGF) approach, which is referred to as a nonperturbative
quantum mechanical approach, is consistent with the semi-
classical result). In condensed-matter physics, such a
method is known as the Landau-Zener approach. (Note
that the WKB approach is valid when the differential
mean number @p, given by general expression (11), is

small. However, the WKB approximation for @p coincides

with the exact expression (14) in the limit T ! 1.) The
time dependence of mean current density hj1ðtÞig given by
Eq. (77) is consistent with the numerical solution of the
first-quantized tight-binding model equations obtained for
the ballistic case in the time interval �tst < �t <�tB, see

Eq. (82) in Ref. [17]; there, a factor 33=42�7=2 is replacing

our 2=�2, but these factors are both equal to 0.20, numeri-
cally. The�tB ¼ 2�ℏðejEjaÞ�1 is the Bloch time, required
for the constant electric field to shift the kinetic momentum
across the Brillouin zone (a � 0:142 nm is the carbon-
carbon distance) and, of course, this value falls beyond
what may be covered by the continuous Dirac model.
The expression for hj1ðtÞig given by (77) is a key formula

in the study of the conductivity in the graphene at low
carrier density beyond the linear response in dc. It
describes the mean electric current of coherent carriers
produced by the applied electric field. An exotic feature
of the electronic transport at the charge neutrality point, as
described by the Dirac model, is that one begins without
any charges to be accelerated at all: there are no electrons
or holes initially. The induced current can be considered, if
one likes semiclassical style comments, as a consequence
of two mechanisms: charged pairs of ultrarelativistic (with
the constant velocity vF) coherent electrons and holes are
first created with a strong suppression of large transverse

momenta (jp2j>
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ejEjℏ=vF

p
) and after that their longitu-

dinal kinetic momenta are coherently increased by the
electric field. The combined effect of both processes that,
in fact, cannot be localized and separated in the framework
of QED, is described by Eqs. (77) and (78). In contrast to
this, at high carrier density one has to consider the incre-
ment of the longitudinal kinetic momenta of an initially
given number of incoherent carriers by the electric field. In
the latter case the transport theory allows the semiclassical
description of carriers.
It follows from our results that the mean current in the

graphene is parallel to the applied field, proportional to

jEj3=2, and grows linearly with time. The fact that the
current grows indefinitely as T ! 1 is a consequence of
the absence of scattering and a backreaction mechanisms
in the model of unlimited size under consideration: only
effects caused by the applied external field have been taken
into account. In the experimental situation described in
Ref. [19], a constant voltage between two electrodes con-
nected to the graphene was applied, and current-voltage
characteristics (I-V) are measured within �1 s, which is a
very large time scale compared with the ballistic flight time
Tbal (the time which the electron spends to cross the
material of a finite length Lx), Tbal ¼ Lx=vF. To match
our results with these conditions, our time T should be
replaced by some typical time scale that we call the effec-
tive time duration Teff . Some kind of dissipation process
may truncate the pair creation at Tdis, in which case Teff ¼
Tdis. The standard candidates are collisions with impurities,
phonons, ripplons, and the electron-electron interactions.
A description of how the pair creation is counterbalanced
by dissipative processes so that a stable current settles
down is still an open question. In the absence of the
dissipation, the transport is ballistic; in this case, consid-
ering a strip with lateral infinite width and a finite length
Lx, we assume the ballistic flight time Tbal to be the
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effective time duration, Teff ¼ Tbal. It is experimentally
shown, see Refs. [13,36] and references therein, that the
low temperature (�� 5 K) and gate voltage (jVgj< 5 V)

transport in current-annealed, suspended devices with a
mobility �170000 cm2=Vs is close to the ballistic limit
over micron dimensions. In a realistic sample, placed on a
substrate, the effective time duration Teff can be many
times smaller than Tbal because of charged impurities or
structural disorder of the substrate. However, such an
effective time Teff remains macroscopically large, so that
Eq. (79) still holds. One can expect that in realistic high-
quality (high-mobility) samples, the time Teff is compa-
rable with the time Tbal. In any case, for a finite flake
length, the potential difference V ¼ ELx is finite, and
one can consider the I-V of graphene devices. Then
Eq. (77) describes a regime where the current behaves as

j� V3=2.
This fractional power dependence of the current-voltage

characteristic in graphene is at present called nonlinear
(or superlinear) transport in graphene (I-V of the form

j� V3=2). In the Refs. [4,15,17], this behavior was related
to a possible pair creation by a constant electric field and
experiments aiming at the observation of the effect were
proposed. An experimental observation was recently
reported [19]. It is agreed that such a superlinear transport
is a distinctive feature characterizing the regime dominated
by pair creation.

It should be noted that our description of the quantum
transport in graphene in the framework of strong-field
QED is not restricted by a semiclassical approximation
of carriers, and it does not use any statistical assumptions
inherent in the Boltzmann transport theory. The estima-
tions that follow show that this is important for the study of
the conductivity close to the Dirac point. A typical density
ncrg of carriers created in the ballistic case, given by

Eq. (76), e.g., for typical V � 1 V and Lx � 1 �m, is of
the order ncrg � 6� 1011 cm�2. Thus, in the general case,

the density ncrg is of the same order as the impurity density

nimp (10
10–1012 cm�2 [13]). It should be stressed that this

estimate is made for the ballistic case when Teff ¼ Tbal. If
Teff � Tbal, then the density ncrg is less than nimp.

Moreover, the electric field creates the carriers in pure
states with distribution (14) that differs significantly from
the equilibrium distribution. The carriers created at rela-
tively small times Teff ��tst are wave packets with partial
plane waves, which have wide range of wave lengths from
1 to approximately 0:2 �m. These lengths correspond to

maximum kinetic momenta of the order
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ejEjℏ=vF

p
, see

(14). As Teff increases, the range of the longitudinal kinetic
momenta of created particle grows to its maximum

ejEjTeff 	
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ejEjℏ=vF

p
; at the same time the range of their

transverse kinetic momenta remains unchanged. Thus, in
the ballistic case, the lower bound of the range of the
longitudinal wavelengths decreases achieving its minimum
of the order 4 nm. The estimated minimum wavelength of

the order 0:2 �m is not much less than sample sizes that
were used in experiments, and in some cases they are of the
same order. Thus, we see that the Boltzmann theory, based
on WKB approximation, is not well adapted to describe
evolution of massless carries created from the vacuum.
This is a nonstandard situation for usual transport problems
in condensed matter physics. Our approach gives a non-
perturbative description of the system evolution when
quantum interference effects are important. We see that
the QED derivation of the superlinear I-V presented above
gives additional arguments in favor of the interpretation
that such a behavior is due to the pair creation. At the same
time, in order to continue the study of the conductivity of
graphene in the framework of the QEDmethods, one has to
analyze in detail physical conditions in the graphene under
which all the machinery, and especially Eqs. (77) and (78),
are valid.

B. Mean electromagnetic field

The mean time-dependent current hj1ðtÞig is the source

in the Maxwell equations for a mean electromagnetic field
ð �E; �BÞ, where �E ¼ EþErad and �B ¼ Brad are electric and
magnetic components, respectively. Here, the initial exter-
nal constant uniform electric field E satisfies the homoge-
neous Maxwell equations, and the fields Erad and Brad are
due to the current hj1ðtÞig, representing the backreaction of
created pairs to the external field. The charged fermions in
the graphene should feel the total field ð �E; �BÞ; in particular,
the pair creation is induced by the mean electric field �E.
Since the current hj1ðtÞig increases linearly as�t increases,
the backreaction to the external field should become rele-
vant at some time instant. The situation looks similar to
that studied in Refs. [10,33] for QED in 3þ 1 dimensions,
although there are considerable peculiarities in the case
under consideration. Dealing with graphene devices, it is
natural to assume that the constant strength E on the
graphene plane is due to the applied fixed voltage V and
therefore is not changed when the created charges flow into
the reservoirs which are located outside the graphene and
have sufficiently large capacitances. It is assumed that an
external current flows to the electrodes to maintain the
fixed voltage, i.e., we are dealing with an open system of
fermions interacting with classical electromagnetic field.
Then Maxwell equations can be solved through infinite
space and we may assume that the strength E is fixed by
boundary condition at the infinity. The electromagnetic
field is not confined to the graphene surface, z ¼ 0, but
rather propagates in the ambient 3þ 1-dimensional space-
time, where z is the coordinate of axis normal to the
graphene plane. To take this into account, we have to
present the current term in the Maxwell equations as the
current J ¼ ðJ; 0; 0Þ restricted to a plane immersed in the
three-dimensional space. We are interested in the time
intervals �t that satisfy the inequality 0 
 �t 
 T. Then,
taking into account that the current hj1ðtÞig appears for
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�t > 0, we can write J ¼ hj1ðtÞig�ðzÞ�ð�tÞ for �t 
 T.

The nontrivial Maxwell equations to be solved are

r� �B ¼ �0Jþ 1

c2
@ �E

@t
; r� �E ¼ �@ �B

@t
; (81)

where�0 is the magnetic permeability and c is the speed of
light in the vacuum.

The only nonzero components of the irradiated field are
the x component of the electric field, Erad

x , and the y
component of the magnetic field, Brad

y . Solving the

Maxwell equations under initial condition Erad
x ¼ 0 and

Brad
y ¼ 0 at �t ¼ 0, one finds that for 0 
 �t 
 T, the

electromagnetic field produced by the current confined to
the graphene sheet is

Erad
x ¼ ��0

2
sgnðEÞAðc�t� jzjÞ�ðc�t� jzjÞ;

Brad
y ¼ sgnðzÞErad

x =c:
(82)

The direction of the induced magnetic field changes sign
across the graphene sheet, and sgnðzÞ ¼ �1 corresponds to
upper and lower regions. The electric field Erad

x is opposite
to the applied field E and is continuous in the z direction, in
particular at z ¼ 0. A real graphene flake is a film of very
large dimension in the x� y plane and a finite monolayer
atomic thickness of approximately 0.1 to 0.2 nm in the z
direction [13]. For realistic densities of carriers the poten-
tial field in the z direction looks like a deep potential well,
which effectively forbids the motion of carries in this
direction. Then it is natural to assume that the induced
electromagnetic field inside the graphene is the mean
between limiting values of the field from upper and lower
regions as jzj ! 0. Thus, the intensity of the induced
electric field on the graphene plane reads

Erad
x ¼ �sgnðEÞ 4�

�
jEj3=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
vFe=ℏ

q
�t; (83)

where � ¼ �0ce
2=2h is the fine structure constant. As to

the induced magnetic field, we believe that it is zero inside
the graphene.

The QED with an external constant electric field is a
consistent model as long as the field produced by the
induced current is negligible compared to the applied field,
jErad

x j � jEj. This gives the consistency restriction,ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
vFejEj=ℏ

q
�t � �

4�
: (84)

In this case, the external electric field can be considered as
a good approximation of the effective mean field. We call
the typical time scale related to Eq. (84),�tbr ¼ �tst�=4�,
the time of backreaction. On the other hand, the dimen-
sionless parameter in the lhs of Eq. (84) satisfies the
stabilization condition given by Eq. (79). Thus, there is a
window in the parameter range where the model is con-
sistent, t� � �tst � �tbr. Moreover, this restriction cor-

responds to a specific regime which might be relevant to

some known experiments with graphene, as we shall see
below.
In the description of the carrier creation inside a gra-

phene flake of a finite length Lx, we use a simple picture of
the pair creation due to the T-constant field. We assume
that the maximal duration of the electric field in our model
is the effective time duration Teff , and that, in the case of
ballistic transport, Teff ¼ Tbal. In typical experiments,
Lx � 1 �m, and then Tbal � 10�12 s. Taking �t ¼ Tbal in
Eqs. (79) and (84), we obtain the following restrictions on
the electric field:

7� 102 V=m � jEj � 8� 106 V=m: (85)

Since the voltage is V ¼ ELx, one finds the inequalities

7� 10�4 V � V � 8 V: (86)

These voltages are in the range typically used in experi-
ments with graphene.
In the experiment described in Ref. [19], for instance,

the I-V curve was studied in a range from decivolts to a few
volts, in samples with lengths Lx varying from 0.9 to
5:9 �m and widths from 70 to 1500 nm. A power law I �
V� was used to fit the I-V curves near the Dirac point, and
it was found that 1 
 � 
 3=2. It was shown that the I-V’s
in the graphene devices become superlinear in the presence
of disorder (in low-mobility samples) while in high-quality
(high-mobility) samples, the superlinearity is masked by
some other effect. The exponent � looks like a monotoni-
cally decreasing function of mobility for different devices
and superlinearity vanishes for devices with high mobility,
� ! 1. These results were interpreted as an interplay
between pair creation and scattering by charged impurities
and optical phonons. According to this interpretation, the
superlinearity of the I-V in low-mobility samples is in a
qualitative agreement with expression (77), while it is
compensated by the contribution of the intraband current
(the current of carriers that were present before the electric
field was switched on, due to an imperfect experimental
realization of the Dirac point conditions), which tends to
saturate in high-mobility samples due to interaction with
optical phonons. The absence of a compensation of the
superlinearity in low-mobility samples is explained by the
fact that the presence of a large number of charged impu-
rities prevents the growth of the intraband current, making
the interaction with optical phonons irrelevant. Except for
this qualitative analysis, however, there is no theoretical
description of these observations; the numerical analysis
(in the NEGF approach) of Ref. [19], in particular, does not
include the optical phonons which are central to their
interpretation of the effect, and it is argued that other
effects should also be relevant for the analysis, as self-
heating of the graphene sample, for instance Ref. [19].
In fact, according to our analysis, backreaction should

not be neglected. We have shown that the consistency of
the Dirac model with a given external field is ensured under
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the conditions (79) and (84) for �t and E, which are thus
extremely important for obtaining adequate physical
results in the course of the calculations. Analyzing the
experimental settings, one can be sure that the stabilization
condition (79) is satisfied for all known measurements,
which means that the lower bound in (86) is respected.
However, the condition (84) could be violated because the
voltage varies from 1 to 5 V, and sample length varies from
0.9 to 5:9 �m, as reported in Ref. [19]. Therefore, back-
reaction (appearance of the induced electric field Erad

x )
cannot be ignored in calculating the mean current in
high-mobility samples. This means that, in the ballistic
case, Eq. (77) can give overestimated values for the current
density of created particles for a given voltage. In the case
of low-mobility samples, the effective duration time Teff is
due to the scale of dissipation processes Tdis, which can be
many times less than the time Tbal, so that condition (84)
holds true at �t ¼ Tdis, and the regime of backreaction is
not reached. As mobility is increased, backreaction
becomes more pronounced, and it might compensate the
superlinearity of the pair-creation process. In order to
investigate whether this effect can lead to a transition
from a superlinear to a linear I-V curve, we investigate
in the next section how backreaction affects pair produc-
tion in graphene.

C. Effective mean field and mean current

In this section, we study a possible generalization of the
above considered model with the T-constant external field.
In particular, in the framework of this generalization we are
going to take into account the backreaction of the mean
current to the applied electric field.

Let us consider time intervals when the external electric
field is switched on, 0 
 �t 
 T. In realistic cases, after
switching on, the external field E remains constant on the
graphene plane due to the applied voltage V, which is
supported by external sources to remain fixed. Accord-
ingly, we assume that on the graphene plane E cannot be
changed due to pair creation inside of the sample. As to the
electric field �E inside the graphene, we suppose that it can
vary with time and it is directed along the axis x, so that
�EðtÞ ¼ ð �EðtÞ; 0; 0Þ. The x component �EðtÞ is a superposi-
tion of the applied external field E and a time-dependent
electric field Erad

x ðtÞ irradiated by the current induced in
the sample, �EðtÞ ¼ Eþ Erad

x ðtÞ. In the initial time instant
t1 ¼ tin, we have �Eðt1Þ ¼ E. Let �EðtÞ be a slowly varying
field within a time interval �ti ¼ tiþ1 � ti > 0 such that
the following condition holds:�������� 1

�EðtÞ
@ �EðtÞ
@t

���������ti � 1; t 2 ðti; tiþ1�; (87)

and let �ti be large enough to obey the stabilization
condition of the type (79),ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ej �EðtÞjvF=ℏ
q

�ti 	 1; t 2 ðti; tiþ1�: (88)

We consider now the time evolution of the mean field and
the vacuum mean current between the initial time tin when
the external field is switched on and a time instant tfin,

which coincides with tout, or precedes it, tfin 
 tout. We

first divide the interval ðtin; tfin� into N equal intervals �ti,

such that �t1 ¼ �t2 ¼ � � � ¼ �tN ,
P

N
i¼1 �ti ¼ tfin � tin.

We suppose that Eqs. (87) and (88) hold true for all
intervals. That allows us to treat the electric field as
approximately constant within each interval, �EðtÞ � �EðtiÞ,
for t 2 ðti; tiþ1�.
Let us find the vacuum mean current density for the

slowly varying electric field �EðtÞ. We begin with the case
t 2 ðt1; t2�. Here, according to Eqs. (67) and (68), the
current density hj1ðtÞig is formed by the contributions

from the vacuum states excited by the field E, these con-
tributions having momenta that are restricted to the region
(64). The phase volume of this region depends both on the
magnitude of the electric field E and on the interval t� t1.
It follows from the Eq. (67) that the density hj1ðtÞig grows
as t� t1 because the field E excites additional states with
larger longitudinal momentum p1. In the end of this time
interval, when t ¼ t2, the current density hj1ðtÞig takes the
form

�j1 ¼ sgnðEÞDj �Eðt1Þj3=2�t1; (89)

with D ¼ 2��2v1=2
F ℏ�3=2e5=2. According to Eq. (83), the

field Erad
x ðtÞ has a direction opposite to �Eð�t1Þ ¼ E, and from

inequality (89) its magnitude is small in comparison with
it, jErad

x ðtÞj � j �Eð�t1Þj. Therefore, Eq. (89) determines the
leading term in the mean value hj1ðtÞig in the correspond-

ing large  limit and in the mean field approximation, and
any corrections to hj1ðtÞig due to derivative @t �EðtÞ are

small. One can see that j �Eðt2Þj< j �Eðt1Þj. Now let us pro-
ceed to the case t 2 ðt2; t3�. The effective mean field �EðtÞ
is already different from E and, as before, the field �EðtÞ
is approximately constant, �EðtÞ � �Eðt2Þ.
The constant field �Eðt2Þ acting on the interval ðt2; t3�

excites new vacuum states which do not participate in
the formation of the current density hj1ðtÞig on the pre-

vious step. These new states have longitudinal momenta
p1sgnðEÞ greater than states excited from the vacuum
during the time t2 � t1 and transversal momenta p2 limited
by the field �Eðt2Þ. The region of these momenta is defined
by inequalities similar to those in (64). Such inequalities in
the mean field approximation have the form

jp2j 

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ej �EðtiÞjℏ=vF

q � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ej �EðtiÞjvF=ℏ

q
ðt� tiÞ � K

�
1=2

;

ti þ K

je �EðtiÞvF=ℏj1=2

 � p1

e �EðtiÞ

 t� K

je �EðtiÞvF=ℏj1=2
:

(90)
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In the case t 2 ðt2; t3�, one has to set ti ¼ t2 in these
relations. As a result, the current density hj1ðtÞig in the

second interval takes the form

hj1ðtÞig ¼ �j1 þ �jðt� t2Þ;
�jðt� t2Þ ¼ sgnðEÞDj �Eðt2Þj3=2ðt� t2Þ;

(91)

in the large  limit. As in the case considered above, this
current irradiates the corresponding field Erad

x , which is
directed against to the constant field �Eðt2Þ, but its magni-
tude is less than the latter. Because t� t2 
 �t2 and it is
supposed that condition (87) holds true, one can see that
the contribution from the derivative @t �EðtÞ to the current
density hj1ðtÞig is much less than the leading term, given by

(91). Due to the contribution Erad
x , the mean field will

decrease, j �EðtÞj< j �Eðt2Þj, reaching its minimal value at
t ¼ t3. The further evolution of the vacuum mean current
density and mean field has similar behavior for time t from
any interval �ti. In each such interval the region of the
momenta is given by Eq. (90). In the general case (in the
corresponding large  limit) when t 2 ðtM; tMþ1�,
2 
 M 
 N, we can represent the current density hj1ðtÞig
as the following sum of partial contributions:

hj1ðtÞig ¼
XM�1

i¼1

�ji þ �jðt� tMÞ;

�ji ¼ sgnðEÞDj �EðtiÞj3=2�ti;
�jðt� tMÞ ¼ sgnðEÞDj �EðtMÞj3=2ðt� tMÞ:

(92)

Condition (87) guarantees that corrections to the leading
terms �ji and �jðt� tMÞ, given by (92), due to the de-
rivatives @t �EðtÞ are small in each interval ðti; tiþ1�. In each
time interval, the mean current irradiates the corresponding
field Erad

x directed against the external field E, thus, the
mean field �EðtÞ is a monotonically decreasing function for
t 2 ðtin; tfin�.

Let us use the approximations

j �EðtiÞj3=2�ti �
Z tiþ1

ti

j �EðtÞj3=2dt;

j �EðtMÞj3=2ðt� tMÞ �
Z t

tM

j �Eð~tÞj3=2d~t:

Then the mean value hj1ðtÞig can be approximated by the

following integral form:

hj1ðtÞig ¼ sgnðEÞD
Z t

tin

j �Eð~tÞj3=2d~t: (93)

Note that Eq. (93) holds true within large  limit, in which
we neglect a contribution from the derivative @t �EðtÞ, if the
condition (87) is valid for all the intervals ðti; tiþ1�.

In a similar manner, one can find a unified representation
of the vacuum mean current density hj1ðtÞig and the diago-
nal elements hT��ðtÞipg for the slowly varying electric field
�EðtÞ in the same approximation,

hj1ðtÞig ¼ i8e �P1
��pðx; x0Þjx¼x0 ;

hT��ðtÞipg ¼ i8 �P2
�
��pðx; x0Þjx¼x0 ;

(94)

��pðx;x0Þ ¼ �i
Z t�K�tt

tinþK�tst

�h?ðx?;x0
?Þ �hkðxk; x0kÞd~t;

�hkðxk; x0kÞ ¼
j �Eð~tÞj

j �A1ðtÞj� j �A1ð~tÞj
exp

�
� i

ℏ
e �A1ð~tÞðx1 � x01Þ

�

� cos

�
1

2
½ ��ðt0Þ2 � ��ðtÞ2�

�
;

�h?ðx?; x0?Þ ¼
�
vF

ℏ3

�
1=2 je �Eð~tÞj1=2

ð2�Þ2 exp

�
�ðx2 � x02Þ2ej �Eð~tÞj

4�ℏvF

�
;

(95)

where

�P0 ¼ i
ℏ
vF

@

@t
; �P1 ¼ iℏ

@

@x1
þ e �A1ðtÞ;

�P2 ¼ iℏ
@

@x2
;

ℏ
vF

��ðtÞ d
��ðtÞ
dt

¼ e½j �A1ðtÞj � j �A1ð~tÞj�;

�A1ðtÞ ¼
Z t

tin

�Eð~tÞd~tþ Etin;

�tt ¼ ðej �EðtÞjvF=ℏÞ�1=2, and �tst is the characteristic
time interval determined by Eq. (80). These equations are
a generalization of representation (68) for the case under

consideration, where ��pðx; x0Þ is a generalization of the
function �pðx; x0Þ in (67). One can see that the expression
hj1ðtÞig given by (94) coincides with that given by Eq. (93)
in the large  limit. In this approximation the mean values
hT��ðtÞig have the form

hT00ðtÞig ¼ hT11ðtÞig ¼ hT11ðtÞipg;
hT22ðtÞig ¼ hT22ðtÞipg þ hT22ðtÞicg;

with

hT11ðtÞipg ¼ 2evF�
Z t�K�tt

tinþK�tst

j �Eð~tÞj3=2½j �A1ðtÞj � j �A1ð~tÞj�d~t;

hT22ðtÞipg ¼ ��1ℏ�
Z t�K�tt

tinþK�tst

j �Eð~tÞj5=2
j �A1ðtÞj � j �A1ð~tÞj

d~t;

hT22ðtÞicg ¼ 1

2
�Rð3=2Þℏ�j �EðtÞj3=2

(96)

and � ¼ ��2v�1=2
F ℏ�3=2e3=2.

By using Eq. (93), we obtain that in the Maxwell equa-
tions for the mean electromagnetic field the current term
for t 
 tfin has the form J ¼ hj1ðtÞig�ðzÞ�ðt� t1Þ. The
only nonzero components of the radiated field are the x
component Erad

x of the electric field and the y component
Brad
y of the magnetic field. Solving the Maxwell equa-

tions (81) under the initial conditions Erad
x ¼ 0 and

Brad
y ¼ 0 at t ¼ tin, one finds that for 0 
 t� tin 
 tfin �

tin, and within a distance jzj smaller than cðt� tinÞ to the
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plane, the electromagnetic field produced by the current
hj1ðtÞig confined to the graphene sheet is

Erad
x ðt; zÞ ¼ �sgnðEÞ�0D

2

Z
j �Eðt� l=cÞj3=2

� �ðt� tin � l=cÞ�ðl� jzjÞdl;
Brad
y ðt; zÞ ¼ sgnðzÞErad

x ðt; zÞ=c: (97)

It can be seen that the radiated field is a function of only the
light-cone variable, Erad

x ðt; zÞ ¼ Erad
x ðt� jzj=cÞ.

The electric field Erad
x ðt; zÞ has the same limit value near

the plane from the upper and lower regions, and we assume
that Erad

x ðt; zÞ is continuous at z ¼ 0. Thus, inside the
graphene film the irradiated electric field is Erad

x ðtÞ ¼
Erad
x ðt; 0Þ. The mean magnetic field inside the graphene

film is zero. Extracting the derivative @t �EðtÞ ¼ @tE
rad
x ðtÞ

from (97), we get that for t 2 ðtin; tfin� a self-consistency

equation for the mean field inside the graphene has the
form

dj �EðtÞj
dt

¼ � 4�

�

ffiffiffiffiffiffiffiffiffi
evF

ℏ

r
j �EðtÞj3=2; t 2 ðtin; tfin�: (98)

As was already established, the mean field field �EðtÞ is
collinear to the external field E. Taking into account the
initial condition, �EðtinÞ ¼ E, one finds the solution of
Eq. (98) as follows:

�EðtÞ¼E�ðtÞ�2; �ðtÞ¼
�
1þ2�

�
ðt� tinÞ=�tst

�
: (99)

Then the irradiated field is Erad
x ðtÞ ¼ �EðtÞ � E.

As t ! tfin the magnitude of the mean field �EðtÞ
decreases. Therefore, condition (88) will be satisfied for
all the intervals ðti; tiþ1� if it is satisfied for the last interval
ðtN; tfin�. In our approximation, this condition defines the

minimal possible length of the intervals �ti,

�ti 	 �t ¼ �tst�ðtfinÞ: (100)

Condition (87) is satisfied for all the intervals ðti; tiþ1�, if it
is satisfied for the period ðt1; t2�. With �t1 	 �t, the latter
implies the following restriction for the interval tfin � tin:

4�

�
�ðtfinÞ � 1 ) ðtfin � tinÞ=�tst � �2

8�2
: (101)

The mean field approximation is consistent if inequality
(101) holds true. This restriction is much weaker than the
one given by Eq. (84), which ensures consistency of the
external field approximation. Thus, in the approach under
consideration the largest time scale is �tfin, which is

related to time scales considered before as follows:

�tfin ¼ �

2�
�tbr ¼ �2

8�2
�tst:

When tfin � tin approaches �tfin, the magnitude j �EðtfinÞj
decreases and becomes of the order jEminj ¼ jEjð4�=�Þ2.

One can verify that in the case of ballistic transport, for all
the typical experimental parameters, when the voltage
varies from 1 to 5 V and sample lengths vary from 0.9 to
5:9 �m (see Ref. [19]), the corresponding ballistic times
satisfy condition (101), Tbal � �tfin. This means that in

realistic cases the evolution of quantum states in course of
the external field action satisfies the restrictions which
justify the approximation under consideration, so that we
can set tfin ¼ tout.

Note that in the case when the field duration t� tin
exceeds �tfin (that is unattainable for samples available

at present), the mean field �EðtÞ becomes too weak in
comparison with the external field E, and then the model
with pair creation by a constant external field fails to work.
It is possible to consider the evolution of the mean field and
the vacuum mean current for time intervals greater than
�tfin if one is able to calculate explicitly pair creation from

vacuum due to a time-dependent electric field, which could
be a task for further study. However, it is natural to assume
that the residual effect of a weak electric field cannot
significantly change the asymptotic behavior achieved by
the time t ¼ tfin, which effectively means that the effective

external field duration is T � tfin � tin. That is why in

what follows, we set tfin ¼ tout for any tout.

Substituting Eq. (99) in Eq. (93), we find the following
result for the density of the vacuum mean current:

hj1ðtÞig ¼ e2E

2�ℏ�
½1� �ðtÞ�2�; t 2 ðtin; tfin�: (102)

Thus, we have found self-consistent solutions for mean
field and vacuum mean current. From Eqs. (99) and (102)
we see that at ðt� t1Þ 	 �tbr ¼ �tst�=4�, the density of
the vacuum mean current and radiated electric field take
asymptotic forms,

hj1ðtÞig � e2E

2�ℏ�
; Erad

x ðtÞ � �E: (103)

Thus, the self-consistent system of the mean field and the
vacuum mean current at a given external electric field E
tends to a dynamic equilibrium state in which the external
field inside the graphene is completely compensated by the
radiated electric field. In this state the particle production is
stopped and the vacuum mean current saturates. Close to
this regime, the I-V is almost linear. The momentum trans-
ferred by the applied force is limited by the finite value
ejEj�tst�=2�. Due to the discrete structure of the lattice,
formed by atoms at the carbon-carbon distance a, there is a
natural momentum cutoff of the order ℏ=a. For this reason,
instead of being restricted by the Bloch time �tB men-
tioned in Sec. IVA, the applicability of the Dirac model is
restricted, because of the crystalline structure of graphene,
by the field strength EB,

EB �
�
4�

a

�
2 ℏvF

e
� 3� 107 V=m:
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Substituting Eq. (99) into Eq. (96), we can explicitly find
the diagonal elements hT��ðtÞipg . For example, the mean

energy density reads

hT00ðtÞig ¼ 8evF�jEj5=2ð�tbrÞ2
�
1

3
� 1

2�ðtÞ þ
1

6�ðtÞ3
�
:

(104)

For ðt� tinÞ 	 �tbr, we obtain from (104) the following
asymptotic form:

hT00ðtÞig � 8

3
evF�jEj5=2ð�tbrÞ2:

One can see that hT00ðtÞig � jEj3=2 asymptotically for large

times, while for small intervals ðt� tinÞ � �tbr one has a

dependence of the form hT00ðtÞig � jEj5=2. The asymptotic

behavior of the element hT22ðtÞipg reads

hT22ðtÞipg � ℏ�
3�

jEj3=2:

The behavior of the term hT22ðtÞicg, given by (96), is com-

pletely determined by the field j �EðtÞj at a given time
instant, which means that this term tends to zero asymptoti-
cally as �ðtÞ�3, and therefore can be neglected. We see that
hT00ðtÞig ¼ hT11ðtÞig 	 hT22ðtÞig during the whole evolu-

tion up to asymptotically large values of the interval
(t� tin). Then, in this approximation, we have that trace
hT�

� ðtÞig ¼ 0, as it can be expected for the equation of state

for massless particles.
At t ¼ tout, the expressions (102) and (104) represent the

current density and energy density of created particles,
respectively, and the consistent mean electric field in gra-
phene is given by Eq. (99). According to our problem
setting, before the time moment tout, we have an unitary
evolution of a pure state of the Dirac-Maxwell system. At
the initial time instant tin, this pure state is the vacuum for
carriers and the coherent state of electromagnetic field
with the initial mean value E. In the strong-field QED,
‘‘the measurement’’ which produces the decoherence [as a
result of which we obtain a many-particle state of carriers
and a final state of the electromagnetic field specified by
the mean value �EðtoutÞ] occurs not necessary at the moment
when the external field switches off. This measurement can
be done in any time instant after tout because the further
evolution of the system is trivial and mean values remain
unchanged. In the case of the finite graphene size and fixed
constant voltage this is not true because in such a case we
adapt our model with the T-constant external field to the
situation where the effective duration is given, i.e., we set
T ¼ Teff and, therefore, by definition, we have tout ¼ tin þ
T. (Note that one has to know the times tin and T in a
different experimental situation for the measurement of the
time evolution of the vacuum mean current, which has
been been early proposed [4] but not implemented yet.)
In this case, the time instant tout of switching off the
effective electric field is understood as the effective time

instant of the decoherence. We assume that the decoher-
ence stops evolution of pure states in a sufficiently short
time, so that the final mean electric current and EMT do not
feel the effect of switching off the effective electric field.
When the effective duration Teff is due to the time scale

of dissipation process Tdis ¼ lmfp=vF, we set tout � tin ¼
Teff ¼ lmfp=vF, while in the ballistic case lmfp ¼ Lx and

Teff ¼ Tbal. Then, using (102), we obtain the I-V curve in
the following form:

hj1ðtoutÞig ¼ e2V

2�ℏ�Lx

½1� �ðtoutÞ�2�;

�ðtoutÞ ¼ 1þ 2�Teff

��tst
;

Teff

�tst
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ejVjl2mfp

ℏvFLx

vuut
:

(105)

Example 1: Considering a sample with Lx � 1 �m and
a voltage 1 V in the ballistic case, we have Tbal ¼ 10�12 s
and jEj ¼ 106 V=m. Alternatively, in the case of dissipa-
tion, we can consider a sample of arbitrary length, where
the effective duration is Teff ¼ 10�12 s and the applied
field strength is jEj ¼ jVj=Lx ¼ 106 V=m. In both cases,
2�Teffð��tstÞ�1 ¼ 0:18, and condition (84) is satisfied.
But then the backreaction can be neglected and the I-V

curve from Eq. (105) is close to j� V3=2.
Example 2: Considering a sample with Lx � 4 �m and a

voltage 4 V in the ballistic case, we have 2�Teffð��tstÞ�1 ¼
0:72. Thus, condition (84) is not satisfied, and then the
backreaction contribution in Eq. (105) is important, result-
ing in an almost linear I-V. We see that our approach
describe a transition from a superlinear to a linear I-V curve
when passing from low-mobility to high-mobility samples,
in a manner similar to that observed in Ref. [19].
Note that outside the graphene film there is an irradiated

electromagnetic plane wave Erad
x ðt; zÞ ¼ Erad

x ðt� jzj=cÞ of
linear polarization given explicitly by Eqs. (97) and (99).
Therefore, the energy dissipation due to this irradiation
must be taken into account. In principle, such irradiation
may be experimentally observed. It is the radiation due to
the time-dependence of the mean current. We have calcu-
lated it nonperturbatively in the case when its electric
component strength is comparable to the external field
strength. Thus, the mechanism of the energy dissipation
due to irradiation considered here differs essentially from
that discussed in Ref. [18]. The authors of the latter work
have treated the radiation due to the electron-hole recom-
bination in the lowest order of the perturbation theory
assuming large enough densities of carriers. That is why
the relevance of such a consideration to the quantum
transport close to the Dirac point is not clear.

V. SUMMARY

In this summary, we briefly list the main new results
obtained in the article and add some relevant comments.
These results are collected in three blocks: I-General

S. P. GAVRILOV, D.M. GITMAN, AND N. YOKOMIZO PHYSICAL REVIEW D 86, 125022 (2012)

125022-22



results in strong-field QED; II-Adaptation of the general
results to the Dirac model in the graphene; and III-Analysis
of some immediate consequences to the graphene physics.

I. General results in strong-field QED
The one-loop renormalized mean current and EMT in-

duced in the vacuum by the T-constant external electric
field are computed in the framework of strong-field QED in
spaces of arbitrary dimensions.

In the large  limit, these quantities are represented as
sums of local contributions due to the vacuum polarization,
(hj�ðtÞic? and RehT��ðtÞicren), and of global contributions

due to the vacuum instability, (Rehj�ðtÞip and RehT��ðtÞip),

hj�ðtÞi ¼ hj�ðtÞi? þ Rehj�ðtÞipk ;
hT��ðtÞiren ¼ RehT��ðtÞicren þ RehT��ðtÞip:

These contributions are studied in detail. The vacuum
polarization contributions to the EMT are expressed via
the real part of the one-loop effective Euler-Heisenberg
Lagrangian. In odd dimensions, unusual peculiarities of
the vacuum polarization emerge: along with the longitudinal
mean current,Rehj�ðtÞipk (which behaves in the sameway as

in even dimensions), there appears a transversal mean cur-
rent, hj�ðtÞi?. Its components correspond to fermions of
different chiralities (pseudospin) moving in opposite direc-
tions. The sign of this current depends on the fermion
species. That is an indication that the Chern-Simons term
is present in a properly regularized effective action with odd
number of fermion species. In the case of an external electric
field, this transverse mean current depends essentially on the
fermion mass (in contrast to the corresponding contributions
to probability amplitudes of processes); in particular, it is
zero in the massless case. Thus, the vacuum polarization in
the electric field in odd dimensions is qualitatively different
for mean values and for amplitudes of processes. This is the
reason why the case of the electriclike field differs substan-
tially from the case of the magneticlike field. This fact is
important in understanding properties of new materials
where the electronic structure is described by the Dirac
model of (2þ 1)-d fermions, in particular in the case of
the interface transport in topological insulators, where there
is only one fermion species. Moreover, it should be noted
that even in the case of even number of fermion species with
nonzero masses, neutral electron-hole pairs induced due to
the applied electric field will be concentrated near lateral
surfaces. Pairs with different chirality are concentrated on
opposite lateral surfaces (there is a polarization with respect
to the chirality). Otherwise, properties of these mean values
in odd and even dimensions do not differ essentially. In
particular, the longitudinal mean current components
Rehj�ðtÞipk are linear functions of T, and the energy density

hT00ðtÞiren and the pressure along the direction of the electric
field hT11ðtÞiren are quadratic functions of T.

II-Adaptation of the general results to the Dirac model in
the graphene.

The general results described above are used in the
nonperturbative consideration of electronic and energy
quantum transport in graphene at low carrier density and
low temperatures.
We have found the time dependence of the mean longi-

tudinal current density hj1ðtÞig, the mean EMT hT��ðtÞig,
and the total number density of electron-hole pairs ncrg
created by the electric field in the graphene. In these
calculations, we have used the strong-field approximation
and the large  limit (when the duration T of the external
electric field is sufficiently large); the backreaction of
created particles in screening the external field was taken
into account. All these quantities are obtained for the case
of an unitary evolution of a pure state of the Dirac-Maxwell
system. To adopt our consideration to the existing experi-
mental situations, where the length of graphene flakes is
finite and a constant voltage is applied, the time T was
replaced by some effective time Teff , which is determined
by a certain decoherence. Assuming that this decoherence
stops the evolution of pure states in sufficiently short times
one can neglect effects of switching off the effective elec-
tric field on the final mean electric current and EMT.
The new approach proposed for treating the quantum

transport in graphene allows to study unitary (coherent)
evolution of system in the regime of large duration of a
strong external field, when the electrodynamic backreac-
tion is essential. In spite of the fact that we do not consider
statistical effects of the decoherence, we believe that exact
analysis of results of unitary evolution will be helpful as an
initial stage for further considering the thermalization of
the system.
It should be noted that in some high-energy physics

problems (QED and QCD) in (1þ 1) and (3þ 1) dimen-
sions, the backreaction from the pair production in electric
fields was frequently discussed, in particular in the frame-
work of WKB approximation (see e.g., Refs. [37–39])
and using the numerical approach (see e.g., Ref. [40]).
Recently, the exact solution for massless QED in 1þ
1-dimensions was obtained, which by the definition takes
the back reaction into account completely [41]. The
authors of all these works considered only closed systems
of fermions interacting with a mean electromagnetic field,
in which the total energy was conserved. However, in
considering the graphene in the framework of the Dirac
model the backreaction due to the pair creation from the
vacuum has never been studied. Our consideration of the
backreaction in the graphene due to the pair creation is
completely new and, moreover, is essentially different
from that of the works cited above, because it concerns
an open system with a source that maintains a given
voltage.
III-Analysis of some immediate consequences to the

graphene physics.
In the large  limit, the mean values hj1ðtÞig and

hT��ðtÞig are proportional to the number density of pairs
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rcrg of positive and negative charged states excited by the

electric field per unit time. At the end of pure state evolu-
tion, these quantities represent the current density and

EMT of created particles, respectively, so that hj1ðtÞig �
jEj3=2 and hT00ðtÞig ¼ hT11ðtÞig � jEj5=2.

It is shown that there exists a parameter range
1 � T=�tst � �=4� for which the external electric field
of long duration T is a good approximation of the effective
mean field inside the graphene. Two corresponding
characteristic time scales are established: one of them is

�tst ¼ ðvFejEj=ℏÞ�1=2, the time duration when the
dc response goes from a linear to a nonlinear regime and
the effect of the real electric field is indistinguishable
from the effect produced by a constant field; the other
one is �tbr ¼ �tst�=4�, the time duration when the back-
reaction becomes important. Such a specific regime is
relevant to describe the experimentally observed super-

linearity j� V3=2 of the I-V in low- mobility samples.
A generalization of the Dirac model with the T-constant

electric field is constructed that takes into account the back-
reaction of the mean current to the applied electric field set
by a constant voltage. It is shown that in the case of graphene
the electrodynamic backreaction is relevant and one can see
the interplay between two and three dimensions: the time-
dependent mean current is confined to the plane, but its
radiation, forming the backreaction on the plane, escapes
to the three-dimensional space in the form of linearly polar-
ized plane electromagnetic waves. A self-consistent solution
of the Dirac-Maxwell set of equations for this generalized

model is found and the effective mean field and effective
mean values of the current and energy-momentum tensor are
calculated. In this case the self-consistent system of the
mean field and the vacuum mean current tends to a dynamic
equilibrium state in which the external field inside the
graphene is completely compensated by the radiated electric
field, the particle production is stopped, and the vacuum
mean current saturates. Close to this regime, the I-V is

almost linear and the mean energy density reads hT00ðtÞig �
jEj3=2. This mean field approximation is consistent if the
inequality T=�tst � �2=8�2 holds true. This restriction is
muchweaker than the one that determines consistency of the
external-field approximation.
We show that nonlinear and linear I-V experimentally

observed in low- and high-mobility samples, respectively,
can be explained in the framework of the presented consid-
eration and that such a behavior is a consequence of the fact
that the conductivity in the graphene is essentially due to
the pair creation from vacuum by the applied electric field.
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