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This work deals with the presence of twinlike models in scalar field theories. We show how to build

distinct scalar field theories having the same extended solution, with the same energy density and linear

stability. Here, however, we start from a given but generalized scalar field theory, and we construct the

corresponding twin model, which also engenders generalized dynamics. We investigate how the twinlike

models arise in both flat and curved spacetimes. In the curved spacetime, we consider a braneworld model

with the warp factor controlling the spacetime geometry with a single extra dimension of infinite extent. In

particular, we study linear stability in both flat and curved spacetimes, and in the case of curved

spacetime—in both the gravity and the scalar field sectors—for the two braneworld models.
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I. INTRODUCTION

Topological structures are of great interest in high-
energy physics [1,2] and in other areas of nonlinear science
[3–5]. In high-energy physics, these structures are kinks,
vortices, monopoles, and other field configurations. These
are finite-energy field configurations that solve the
equations of motion of the respective models in the corre-
sponding spacetime dimensions. Kinks are the simplest
structures, and they are usually constructed under the
presence of real scalar fields in (1, 1) spacetime
dimensions.

In this work we focus on the presence of kinks in models
described by real scalar fields, drawing attention to the
recent issue concerning the investigation of twinlike mod-
els. This issue was first considered in Ref. [6], and then
studied in a diversity of contexts in the Refs. [7–11]. In the
papers on twinlike models [6–11], the key issue was to
construct and investigate twinlike models starting from a
standard model, and then to introduce the twin model,
which usually describes generalized or nonstandard dy-
namics. The important point is that it is sometimes possible
to find a standard model and another model, with general-
ized dynamics, both of which have the same defect solution
and energy density. The two models are then twinlike
models. However, in Ref. [9] it was shown that it is
possible to have twinlike models with the same stability
behavior. We call this the strong condition; that is, there are
twin models—if they have the same solution—with the
same energy density. However, there are models that are
twins in the strong sense that also have the same behavior
concerning linear stability.

To enlarge the scope of this work, we also investigate
models of the Randall-Sundrum type [12] in the presence
of scalar fields, as suggested in Ref. [13]. The issue was
investigated in several works [14,15], and here we consider
the scalar field with generalized dynamics, leading us to a

mathematical framework which is much more complicated
than in the case of standard dynamics. In spite of this, we
introduce a complete investigation of linear stability, both
in flat and curved spacetimes.
The main issue here is to open another route to deal with

twinlike models. Indeed, we consider the construction of
twinlike models, but now we start from a generalized
model instead of using a standard field theory. The issue
is of current interest, mainly because models with gener-
alized dynamics have been used to account for the presence
of dark energy and dark matter, and to test possible mod-
ifications of general relativity. However, this is not a simple
question due to the intricacy of the models to be inves-
tigated. To ease the investigation, we follow Refs. [16–18].
In particular, we introduce a new function W ¼ Wð�Þ,
from which we obtain simple first-order equations that
help us to study and solve the equations of motion. The
presence of Wð�Þ allows for supersymmetric extensions,
as was previously investigated in Refs. [19,20].
We organize the current paper as follows. In Sec. II we

introduce the procedure, starting from a generalized model.
In Sec. III we investigate other generalized models to show
that the procedure is general, and that it works for models
other than that introduced in the previous section. In
Sec. IV we extend the procedure to the braneworld sce-
nario, in the case of warped geometry with a single extra
dimension of infinite extent. Finally, in Sec. V we end the
work with some comments and conclusions.

II. THE NEW PROCEDURE

Let us start by following the lines of Ref. [7]. We
consider the model described by a single real scalar field
�, with the nonstandard Lagrange density

L ¼ 2n�1

n
XjXjn�1 �Uð�Þ; (1)

PHYSICAL REVIEW D 86, 125021 (2012)

1550-7998=2012=86(12)=125021(9) 125021-1 � 2012 American Physical Society

http://dx.doi.org/10.1103/PhysRevD.86.125021


where

X � 1

2
@��@��

and Uð�Þ is the potential that identifies the theory. In this
work we deal with bidimensional spacetime, with metric
ds2 ¼ dt2 � dx21, using x0 ¼ t and x1 ¼ �x1 ¼ x. Here
we take ℏ ¼ c ¼ 1 and we assume that the field and
coordinates are all dimensionless.

The equation of motion for this theory is

2n�1@�ðjXjn�1@��Þ þU� ¼ 0; (2)

where U� ¼ dU=d� and the energy-momentum tensor is

given by

T�� ¼ �g��LþLX@��@��; (3)

where LX ¼ @L=@X. Here we are interested in static
solutions, � ¼ �ðxÞ, so we have that

T00 ¼ � ¼ 1

2n
�02n þU; (4)

T11 ¼ ð2n� 1Þ
2n

�02n �Uð�Þ: (5)

Moreover, the equation of motion (2) becomes

ð�02n�1Þ0 ¼ U�j�¼�sðxÞ; (6)

where j�¼�s
indicates that we have to consider the field as

static, that is, � ¼ �ðxÞ. This fact will be denoted from
now on by js. This equation can be integrated once to
obtain

ð2n� 1Þ
2n

�02n �Uð�Þjs ¼ C; (7)

where C is a constant that can be identified with the stress
tensor T11. The stability of the static solution imposes that
C ¼ 0, and this makes the energy density T00 take the form

�ðxÞ ¼ �02n; (8a)

or

�ðxÞ ¼ 2n

2n� 1
Uð�ðxÞÞ: (8b)

Let us now follow the procedure introduced in Ref. [18] to
write the Eq. (8a) in another form that is much more
convenient for studying braneworld models. The key step
is to introduce a new function, W ¼ Wð�Þ, such that

L X�
0 ¼ W�: (9)

This fact leads us to

�0 ¼ W
1

2n�1

� ; (10)

and so we can write

Uð�Þ ¼ 2n� 1

2n
W

2n
2n�1

� : (11)

Therefore, the energy density has the form

�ðxÞ ¼ W
2n

2n�1

� : (12)

We illustrate this procedure by introducing two choices
for the function Wð�Þ. First, we choose the following
n-dependent function:

Wð�Þ ¼ �2F1

�
1

2
;�2nþ 1;

3

2
;�2

�
: (13)

This is a polynomial function of degree 4n� 1. The pres-
ence of the hypergeometric function 2F1 introduces a new
and general form in which to writeWð�Þ; for example, we
can write

Wð�Þ ¼ �� 1

3
�3; (14a)

Wð�Þ ¼ ���3 þ 3

5
�5 � 1

7
�7; (14b)

for n ¼ 1 and n ¼ 2, respectively.
In Ref. [17], it was shown that the two choices given by

Eqs. (14) leave us with a kinklike solution. Here we inves-
tigate the behavior of the model characterized by the
general parameter n.
Using Eq. (11), we obtain the potential

Uð�Þ ¼ 2n� 1

2n
ð1��2Þ2n: (15)

For the first potential Eq. (10) can be written as �0 ¼
1��2, whose solution is

�ðxÞ ¼ tanhðxÞ: (16)

The energy density is given by

�ðxÞ ¼ sech4nðxÞ: (17)

Although the solution does not depend on the parameter n,
the energy density does. The asymptotic behavior for
different values of n is

�ðxÞ ¼ 2ne�nx þ � � � (18)

is clear that the asymptotic behavior of the solutions
and energy densities slows down with increasing n. The
energy is

E ¼
ffiffiffiffi
�

p
�ð2nÞ

�ð2nþ 1
2Þ
: (19)

For n ¼ 1 and n ¼ 2, the energy is E ¼ 4=3 and E ¼
32=35, respectively.
Now we introduce the second function, given by

Wð�Þ ¼ �2F1

�
1

2
;�nþ 1

2
;
3

2
;�2

�
: (20)

For example, we can write this function as
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Wð�Þ ¼ �

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j1��2j

q
þ 1

2
arcsinð�Þ; (21a)

Wð�Þ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j1��2j

q �
5

8
� 1

4
�2

�
þ 3

8
arcsinð�Þ; (21b)

for n ¼ 1 and n ¼ 2, respectively.
In Ref. [17], we investigated the case n ¼ 2. Here we

use Eq. (11) to obtain the general potential

Uð�Þ ¼ 2n� 1

2n
j1��2jn: (22)

The choice (20) leads us to�0 ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffij1��2jp
, which does

not depend on n. It supports the compact solution

�ðxÞ ¼

8>>><
>>>:
1 for x <� �

2 ;

sinðxÞ for � �
2 � x � �

2 ;

�1 for x > �
2 ;

(23)

with the respective energy density

�ðxÞ ¼

8>>><
>>>:
0 for x <� �

2 ;

cos2nðxÞ for � �
2 � x � �

2 ;

0 for x > �
2 :

(24)

Here we note that the solution and energy density have a
compact structure for all n. These kinds of structures have
also been studied in Refs. [21,22]. The energy of the
solution is

E ¼
ffiffiffiffi
�

p
�ðnþ 1

2Þ
�ðnþ 1Þ : (25)

For n ¼ 1 and n ¼ 2, the energy is E ¼ �=2 and E ¼
3�=4, respectively.

A. Linear stability

Let us now investigate linear stability. We introduce a
small fluctuation �ðx; tÞ about the static solution�ðxÞ; that
is, we write

�ðx; tÞ ¼ �ðxÞ þ �ðx; tÞ; (26)

where �ðxÞ is solution of the static equation (6). With this,
we obtain, at first order in �,

@�

�
�02n�2

�
@���2ðn�1Þ@��@��@��

�02

��
þU���¼0:

Since � ¼ �ðxÞ is a static solution, we can assume that
�ðx; tÞ ¼ �sðxÞ cosð!tÞ. Thus, we have

� ð2n� 1Þ½�02n�2�0
s�0 þU��js�s ¼ !2�02n�2�s:

(27)

We follow Ref. [16] to rewrite the above equation as a
Schrödinger-like equation. To do this, we introduce

uðzÞ ¼ ð2n� 1Þ14�0ðn�1Þ�sð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2n� 1

p
zÞ; (28)

which allows us to write Eq. (27) as

�uzzðzÞ þ vðzÞuðzÞ ¼ !2uðzÞ; (29)

where

vðzÞ ¼ nU��

�2n�2
z

� nðn� 1Þ
ð2n� 1Þ

U2
�

�4n�2
z

: (30)

Then, using Eqs. (10) and (11) we obtain

vðzÞ ¼ nW
�2n�3

2n�1

� W��� � nðn� 2Þ
2n� 1

W
�4ðn�1Þ

2n�1

� W2
��: (31)

For kinklike solutions given by Eq. (13) the potential vðzÞ
is

vðzÞ ¼ 4ð2n� 1Þn2 � 2nð4n2 � 1Þsech2ð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2n� 1

p
zÞ:
(32)

This is the modified Pöschl-Teller potential [23]. This
potential supports the zero mode and other 2n� 1 bound
states, with energies Ek ¼ ð2n� 1Þkð4n� kÞ, for k ¼
0; 1; . . . ; 2n� 1. All the others states of the model, with
w � 4n2, are not bounded.
It is interesting to see that we could associate the pa-

rameter n with the number of bound states of the
Schrödinger-like potential. As one knows, the number of
bound states could in principle affect the rate of energy loss
by radiation in dynamical processes such as, for example,
in a kink-antikink collision in comparison with the usual
�4 model (which is obtained with n ¼ 1). See, e.g.,
Ref. [24].
For the compacton solutions given by Eq. (20), we get

vðzÞ ¼ n�2

8>>><
>>>:
1 for z <� �

2� ;

�nþ ðn� 1Þsec2ð�zÞ for � �
2� � z � �

2� ;

1 for z > �
2� ;

(33)

where � ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2n� 1

p
. This is the Pöschl-Teller potential

[23]. The interesting feature of this potential is that it
only supports bound states, and for k ¼ 0; 1; 2; . . . ,
the corresponding eigenvalues are given by Ek ¼
4ð2n� 1Þkðnþ kÞ. The radiation of energy for a collision
between compactons is then completely different from the
case of kinks.

III. TWINLIKE MODELS

Let us now introduce a new family of twinlike models.
We first recall that twinlike models are distinct models
having the same solution and energy density. The main
objective here is then to introduce a family of models
which is twin to the family of models investigated in the
previous section. We follow the lines of Ref. [9] and
consider the theory
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L ¼ �Uð�ÞFðYÞ; (34)

where Y is defined as

Y ¼ � 2n�1

n

XjXjn�1

Uð�Þ : (35)

We note that if n ¼ 1, we get back to the theory defined in
Ref. [9]; also, for FðYÞ ¼ 1þ Y we obtain the model
introduced in Eq. (1) above.

This new model has the following equation of motion:

n@�

�
U
Y

X
FY@

��

�
�U�Fþ YFYU� ¼ 0; (36)

and the energy-momentum tensor is given by

T�� ¼ g��Uð�ÞFðYÞ � nU
Y

X
FY@��@��; (37)

where FY ¼ dF=dY.
As before, here we are interested in static field configu-

rations; so, the equation of motion becomes

� 2n

�
U

Y

�0 FY

�0 þU�F� YFYU� ¼ 0: (38)

We suppose that viði ¼ 1; 2; . . . ; nÞ is a set of static and
uniform solutions of the equation of motion, meaning that
U0ðviÞ has to vanish. Also, we use the energy density and
take UðviÞ ¼ 0 to make the energy itself vanish for the
static and uniform solutions. (Recall that the same con-
ditions work for the standard model.)

Since we are considering a new family of models, we
guide ourselves with the null energy condition (NEC), that
is, we take T��n

�n� � 0, where n� is a null vector obey-

ing g��n
�n� ¼ 0. This restriction leads to FY � 0 for the

general field configuration �ðx; tÞ, which is supposed to
solve the equation of motion (36). Moreover, for static
solutions, the energy-momentum tensor gives

T00 ¼ UF; (39a)

T11 ¼ �UFþ 2nYFYU: (39b)

Equation (38) can be integrated once to give

2nYFY � F ¼ C

U
: (40)

Again, C is a constant identified with the stress tensor T11.
Furthermore, we have

Y ¼ 1

2n

�02n

Uð�Þ : (41)

Equation (40) can be written in the form

�02n ¼ 2nG

�
C

U

�
Uð�Þ; (42)

where G is a function with inverse G�1ðYÞ ¼ 2nYFY � F.

For stressless solutions, that is, for C ¼ 0, we have that
2nYFY ¼ F, and if we assume that Gð0Þ ¼ c, with c
constant and real, we find that Y ¼ c. With this result,
we can rewrite Eq. (42) in the form

�02n ¼ 2ncUð�Þ: (43)

Here we note that the solution �ðxÞ of this equation is
the same solution �sðxÞ of Eq. (7), which appears in the
previous model, with the position changed as x ! ffiffiffiffi

m
p

x,

with m ¼ ½cð2n� 1Þ�1=n. This means that we can write

�ðxÞ ¼ �sð
ffiffiffiffi
m

p
xÞ; (44)

and now the thickness of the solution is given by

� ¼ �s=
ffiffiffiffi
m

p
: (45)

Thus, the solution is thicker or thinner, depending on
whether the value of c is less or greater than unity. We
also note that c cannot be negative; furthermore, only
stressless solutions have the specific form given by
Eq. (44).
The energy density of the stressless solution (43) takes

the form

�ðxÞ ¼ FðcÞUð�ðxÞÞ: (46)

The energy is then E ¼ FðcÞR1
�1 dxUð�ðxÞÞ, or

E ¼ FðcÞ
½cð2n� 1Þ�1=ð2nÞ

Z 1

�1
dyUð�sðyÞÞ (47)

¼ ð2n� 1ÞFðcÞ
2n½cð2n� 1Þ�1=ð2nÞ Es; (48)

where Es is the energy for F ¼ 1þ Y.
The solutions with a nonvanishing T11 are different from

the corresponding solutions of the previous model because
they do not have the form given by Eq. (44). We recall that
for T11 ¼ C, only the stressless solutions are stable [16].
Usually, the energy of the other possible solutions are
divergent, and the solutions have oscillatory or divergent
profiles. We find the same behavior in the standard model.
Now we use again the formalism introduced in

Refs. [16,17] to rewrite the energy density for the gener-
alized model. Assuming that Eq. (9) is valid, we have that

�0 ¼ F
� 1

2n�1

Y W
1

2n�1

� : (49)

The potential is given by

Uð�Þ ¼ F
� 2n

2n�1

Y

2nY
W

2n
2n�1

� ; (50)

and we obtain the energy density in the form

�ðxÞ ¼ FF
� 2n

2n�1
Y

2nY
W

2n
2n�1

� : (51)

Now, using Eq. (40) with C ¼ 0 we have
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�ðxÞ ¼ F
� 1

2n�1

Y W
2n

2n�1

� : (52)

For m ¼ 1, i.e.,

c ¼ 1

2n� 1
; (53)

we have to impose

FYðð2n� 1Þ�1Þ ¼ 1 (54a)

in order to make Eqs. (49) and (52) identical to Eqs. (10)
and (12), respectively. This also imposes that

Fðð2n� 1Þ�1Þ ¼ 2n

2n� 1
: (54b)

The Eqs. (54a) and (54b) are the general restrictions on
FðYÞ required to make the model the twin of the previous
model.

A. Linear stability

Let us again investigate linear stability by introducing
small fluctuations �ðx; tÞ in the static solution�ðxÞ, as was
done in Sec. II A. Using (26) in (36) we obtain

� @�

�
�02n�2

�
�2ðn� 1ÞFY@

��
@	�@	�

�02

þ FY@
��þ FYY�Y@

��

��

¼ U��ðF� YFYÞ�þU�ðF� YFYÞY�Y; (55)

where

�Y � Y

�
� 2n

�02 @
�@
��U�

U
�

�
: (56)

Taking �ðt; xÞ ¼ �sðxÞ cosð!tÞ we get
� ½qðxÞ½2nFYYY þ ð2n� 1ÞFY��0

s�0

¼
�
U��ðYFY � FÞ �

�
�02n�1FYYY

U�

U

�0

� FYYY
2
U2

�

U

�
�s þ!2FYqðxÞ�s; (57)

where qðxÞ � �02n�2.
In the case of a stressless solution we can use Eq. (40)

with C ¼ 0 to transform (57) into the form

� ½qðxÞ�0
s�0 þU��Y�s ¼ !2

A2
qðxÞ�s; (58)

where

A2 ¼ 2nFYYY þ ð2n� 1ÞFY

FY

: (59)

We note that A is constant for a stressless solution. Also, it
is required that A is positive if we want to ensure the
hyperbolicity of the differential equation.

Again, we introduce the suggested exchange of variables

uðzÞ ¼ F
1
2

YA
1
2�0n�1�sðAzÞ: (60)

Here we get

�uzzðzÞ þ v2ðzÞuðzÞ ¼ !2uðzÞ; (61)

where

v2ðzÞ ¼ nA2Y

�
U��

�2n�2
z

� ðn� 1ÞY U2
�

�4n�2
z

�
�¼�sðAzÞ

: (62)

Now, using Eqs. (49) and (50) we obtain

v2ðzÞ ¼ A2F
� 2

2n�1

Y

2n� 1

0
@nW���

W
2n�3
2n�1

�

� nðn� 2Þ
2n� 1

W2
��

W
4ðn�1Þ
2n�1

�

1
A: (63)

We note that if we impose the twin conditions (54), we
obtain A2 ¼ 2n� 1þ 2nð2n� 1Þ�1FYY . With this, we
obtain the relation v2ðxÞ ¼ vðxÞ if we choose

FYYðð2n� 1Þ�1Þ ¼ 0: (64)

Thus, we see that it is possible to find twinlike models
starting from nonstandard theories. This is a new result,
since previously one usually started from a standard field
theory in order to construct the related twinlike model.

B. Examples

Let us now specify the function FðYÞ in order to illus-
trate how the formalism introduced above works. The first
model we consider is

FðYÞ ¼ aþ bYjYjk�1: (65)

Here we suppose that k � 1 and a, b are real numbers.
To consider the stressless solution, we write

c ¼
�

a

2nkb� b

�
1=k

: (66)

We note that

FYðcÞ ¼ bk

�
a

2nkb� b

�k�1
k

and FðcÞ ¼ 2nka

2nk� 1
:

(67)

The conditions (54) give

a ¼ 2nk� 1

kð2n� 1Þ and b ¼ ð2n� 1Þk�1

k
: (68)

The function given by Eq. (65) can be written as

FðYÞ ¼ 2nk� 1

kð2n� 1Þ þ
ð2n� 1Þk�1

k
YjYjk�1; (69)

and so the Lagrange density is
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L ¼ ð2n� 1Þk�1 2
ðn�1Þk

knk
XjXjnk�1

Uk�1
� 2nk� 1

kð2n� 1ÞUð�Þ:
(70)

To investigate linear stability we have to consider

A2 ¼ 2nk� 1; (71)

and so we note that the condition (64) requires that k ¼ 1.
However, in this case the twin theory is identical to the
original model.

We now introduce the second family of models, which
obeys the strong condition. Let us consider the following
function:

FðYÞ ¼ 1þ Y þG

�
Y � 1

2n� 1

�
: (72)

For the three conditions (same solution, same energy den-
sity, and same stability behavior) to be valid, one imposes
that

Gð0Þ ¼ G0ð0Þ ¼ G00ð0Þ ¼ 0: (73)

We can write a general function which obeys these three
conditions; it has the form

FðYÞ ¼ 1þ Y þX
i>2


i

�
Y � 1

2n� 1

�
i
; (74)

where all the 
i are real parameters.

IV. BRANEWORLD MODELS

Let us now investigate how the twinlike models studied
above can be used to represent generalized braneworld
models. Here we follow along the lines of Ref. [18]. In
this context, we consider an action in five dimensions that
describes gravity coupled to a scalar field in the form

S ¼
Z

d5x
ffiffiffi
g

p �
� 1

4
RþLð�;XÞ

�
; (75)

where we are using 4�G ¼ 1 and

X ¼ 1

2
rM�rM�; (76)

with M, N ¼ 0, 1, 2, 3, 4 running on the five-dimensional
spacetime. The equation of motion which we obtain is
given by

GNMrNrM�þ 2XLX� �L� ¼ 0; (77)

where

GNM ¼ LXXrM�rN�þ gMNLX: (78)

The energy-momentum tensor TMN has the form

TMN ¼ �gMNLþLXrM�rN�: (79)

The line element of the five-dimensional spacetime can be

written as ds2 ¼ e2A���dx
�dx� � dy2, whereA is used

to describe the warp factor. We suppose that bothA and�
are static, such that they only depend on the extra dimen-
sion y, that is,A ¼ AðyÞ and � ¼ �ðyÞ. In this case, the
equation of motion for the scalar field reduces to

ð2XLXX þLXÞ�00 � ð2XLX� �L�Þ ¼ �4LX�
0A0:
(80)

Moreover, from the Einstein equations we get

A00 ¼ 4

3
XLX; (81a)

A02 ¼ 1

3
ðL� 2XLXÞ; (81b)

where X ¼ ��02=2 for the static configuration, as before.
To get to the first-order framework, we suppose that

A0 ¼ � 1

3
Wð�Þ: (82)

In this case, Eqs. (81a) and (81b) lead us to, respectively,

�0LX ¼ 1

2
W�; (83)

L � 2XLX ¼ 1

3
W2ð�Þ: (84)

In the case of the theory (1), the equation of motion (80)
becomes

ð2n� 1Þ�02n�2�00 þ 4�02n�1A0 ¼ U�: (85)

We use Eq. (83) to write

�0 ¼ 2
1

1�2nW
1

2n�1

� ; (86)

with the potential

Uð�Þ ¼ 2n� 1

n2
4n�1
2n�1

W
2n

2n�1

� � 1

3
W2ð�Þ (87)

and the energy density

T00 ¼ e2A
�
2

2n
1�2nW

2n
2n�1

� � 1

3
W2ð�Þ

�
: (88)

Now we have to find the twin model. For this, let us
consider a scalar field theory governed by the following
Lagrange density:

L ¼ �Uð�ÞFðYÞ þ fð�Þ; (89)

where Y was defined in Eq. (35), and fð�Þ is to
be determined. We use Eqs. (83) and (84) to write,
respectively,

D. BAZEIA, A. S. LOBÃO JR., AND R. MENEZES PHYSICAL REVIEW D 86, 125021 (2012)

125021-6



�0 ¼ 1

ð2FYÞ 1
2n�1

W
1

2n�1

� (90)

and

�02n ¼ F

FY

Uð�Þ; (91)

where we have used fð�Þ ¼ W2=3.
We can rewrite Eq. (91) in the form

F ¼ 2nYFY: (92)

The Lagrange density of the twin brane model then has
the following form:

L ¼ �Uð�ÞFðYÞ þ 1

3
W2ð�Þ: (93)

Moreover, the energy density is

T00 ¼ e2A

2
42

2n
1�2n

F
1

2n�1

Y

W
2n

2n�1

� � 1

3
W2ð�Þ

3
5; (94)

which exactly reproduces the previous expression (88) if

FYðcÞ ¼ 1 (95a)

and, consequently,

FðcÞ ¼ 2nð2n� 1Þ�1: (95b)

Thus, the two models have the same solution and the same
energy density: these are the two conditions required for
the models to be twinlike models.

A. Brane stability

The investigation of the linear stability of the brane-
world model can be done following Ref. [18]. The metric is
perturbed in the form

ds2 ¼ e2AðyÞð��� þ h��ðy; xÞÞdx�dx� � dy2; (96)

and the scalar field in the form

� ¼ �ðyÞ þ ~�ðy; xÞ: (97)

For the starting model, given by Eq. (1), the first-order
contributions to the energy-momentum tensor are

�Tð1Þ
�� ¼ ���e

2A

3
W�

�
ðn� 1Þ ~�0 � 2

1
1�2nW

2�2n
2n�1

� W��
~�

þ 4

3
W ~�

�
� 2e2Ah��

�
2
1�4n
2n�1W

2n
2n�1

� � 1

3
W2

�
;

�Tð1Þ
�4 ¼

1

2
W�r�

~�;

�Tð1Þ
44 ¼ 2

1
1�2n

3
W

1
2n�1

� W��
~�� 4

9
W�W ~�þ 2n� 1

3
W�

~�0:

(98)

The first-order contributions to the Einstein equations are

e2A
�
1

2
@2y � 2

3
W@y

�
h�� � 1

6
���e

2AW@yð�	
h	
Þ

� 1

2
�	
ð@�@�h	
 � @�@	h�
 � @�@	h�
Þ

¼ 4e2A���

3
W�

�ðn� 1Þ
2

~�0 �W
2�2n
2n�1

� W��

2
1

2n�1

~�þ 4W

3
~�

�

(99)

and

1

2
�	
@yð@	h�
 � @�h	
Þ ¼ 1

2
W�@� ~� (100)

� 1

2

�
@2y þ 2

9
W2@y

�
�	
h	


¼ 1

3

1

2
1

2n�1

W
1

2n�1

� W��
~�� 4

9
W�W ~�þ ð2nþ 1Þ

3
W�

~�0:

(101)

The equation of motion for the scalar field leads to

W
2n�2
2n�1

� e2Ah ~�� ð2n� 1Þ½W2n�2
2n�1

�
~�0�0

þ 4ð2n� 1Þ
3

WW
2n�2
2n�1

�
~�0 þ 2

2
1�2n

2n� 1
W

2�2n
2n�1

� W2
��

~�

þ 1

2
2

2n�1

W
1

2n�1

� W���
~�� 2

4n�3
2n�1

3
W��W ~�� 2

4n�3
2n�1

3
W2

�
~�

¼ 1

2
1

2n�1

W��
	
h	
: (102)

For the general model (93), after substituting the two
twin conditions (95), one is led to following set of
equations:
(i) the energy-momentum components,

�Tð1Þ
�� ¼ ���e

2A

3
W�

��
nFYY

2n� 1
þ n� 1

�
~�0

�
�
1þ nFYY

ð2n� 1Þ2
�
2

1
1�2nW

2�2n
2n�1

� W��
~�þ 4

3
W ~�

�

� 2e2Ah��

�
2
1�4n
2n�1W

2n
2n�1

� � 1

3
W2

�
; (103a)

�Tð1Þ
�4 ¼

1

2
W�r�

~�; (103b)

�Tð1Þ
44 ¼ 2

1
1�2n

3

�
1� 2n

FYY

ð2n� 1Þ2
�
W

1
2n�1

� W��
~�

� 4

9
W�W ~�þ

�
2n

3

FYY

2n� 1
þ 2n� 1

3

�
W�

~�0;

(103c)
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(ii) the Einstein equations,

e2A
�
1

2
@2y � 2

3
W@y

�
h�� � 1

6
���e

2AW@yð�	
h	
Þ � 1

2
�	
ð@�@�h	
 � @�@	h�
 � @�@	h�
Þ

¼ 4e2A���

3
W�

�
1

2

�
n

FYY

2n� 1
þ n� 1

�
~�0 � 1

2
2n

2n�1

�
2þ nFYY

ð2n� 1Þ2
�
W

2�2n
2n�1

� W��
~�þ 4

3
W ~�

�
(104)

and

1

2
�	
@yð@	h�
 � @�h	
Þ ¼ 1

2
W�@� ~�; (105a)

� 1

2

�
@2y þ 2

9
W2@y

�
�	
h	
 ¼ � 4

9
WW�

~�þ 1

3

0
@1� 2n FYY

ð2n�1Þ2

2
1

2n�1

1
AW 1

2n�1

� W��
~�þ 1

3

�
2nFYY

2n� 1
þ 2nþ 1

�
W�

~�0;

(105b)

(iii) and the scalar field equation,

W
2n�2
2n�1

� e2Ah ~��
�
2n

FYY

2n� 1
þ 2n� 1

�
½W2n�2

2n�1

�
~�0�0 þ 4

3

�
2n

FYY

2n� 1
þ 2n� 1

�
W

2n�2
2n�1

� W ~�0

þ
0
@1þ 2n FYY

ð2n�1Þ2

2
2

2n�1ð2n� 1Þ

1
AW2�2n

2n�1

� W2
��

~�þ
0
@2n FYY

ð2n�1Þ2 þ 1

2
2

2n�1

1
AW 1

2n�1

� W���
~�

� 2
4n�3
2n�1

3

�
2nFYY

ð2n� 1Þ2 þ 1

�
W��W ~�� 2

4n�3
2n�1

3
W2

�
~�

¼ 1

2
1

2n�1

W��
	
h	
: (106)

We see that only when

FYY ¼ 0 (107)

are the set of equations equivalent to those corresponding
to the starting model. As we know, the study of stability is
not a trivial task [25]; however, we can assure here that,
using the three conditions—same solution, same energy
density, and the strong condition (107)—the linear stabil-
ities of the two models are the same.

In the gravity sector, we can simplify the investigation of
stability by considering the transverse traceless compo-
nents of metric fluctuations,

�h�� ¼
�
1

2
ð��	��
 þ��
��	Þ� 1

3
����	


�
h	
; (108)

where ��� ¼ ��� � @�@�=h. Indeed, we can check that

Eq. (99) reduces to the known equation

ð@2y þ 4A0@y � e�2AhÞ �h�� ¼ 0: (109)

The next steps are known: we introduce the z coordinate in

order to make the metric conformally flat, with dz ¼
e�AðyÞdy, and we write

H��ðzÞ ¼ e�ipxe3=2AðzÞ �h��: (110)

In this case, the four-dimensional components of �h�� obey

the Klein-Gordon equation and the metric fluctuations

of the brane solution lead to the Schrödinger-like
equation

½�@2z þUðzÞ�H�� ¼ p2H��; (111)

where

UðzÞ ¼ 9

4
A02ðzÞ þ 3

2
A00ðzÞ: (112)

We note that the stability behavior in the gravity sector only
depends on the warp factor A, so the first two conditions
for the models to be twins—that they have the same solution
and energy density—are necessary for the two models to
have the same stability behavior in the gravity sector.
Therefore, we can write the following two important

conclusions concerning the stability of the two general mod-
els, described by Eqs. (1) and (89), in the braneworld context:
(i) the stability in the gravity sector is controlled by the warp
factor, so the first two conditions for themodels to be twins—
explicitly, that they have the same solution and energy
density—results in the two twin models having the same
stability behavior, and (ii) the stabilities in the scalar field
sector are in general different, but the strong condition—as
given by Eq. (107)—results in the two models having the
same stability behavior in the scalar field sector as well.
The above results show that the modifications proposed

in the current work are robust and may be of direct interest
to high-energy physics.
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V. CONCLUSIONS

In this paper we introduced another route to construct
twinlike models, starting from one generalized model and
generating another. We investigated several examples,
showing that the procedure is generic and works for a
diversity of models.

To make the investigation stronger, in this paper we also
discussed the case of branes with warped geometry, in the
scenario with a single extra dimension of infinite extent.
Here we also investigated how the first two conditions for
the models to be twins—namely, that they have the same
solution and the same energy density—and the extra

condition, which we called the strong condition, enter the
analysis when one investigates stability. The result is that

stability in the gravity sector is controlled by the warp

factor, so it requires that the models are twins, that is,

that they present the same solution with the same energy

density. In the scalar field sector, however, the stabilities

also have the same behavior if we include the strong

condition (107).
The procedure seems to be robust, as it works for several

distinct models, is valid in both flat and curved spacetimes,

and in the last case is valid for a braneworld model with a

single extra dimension of infinite extent.
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