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We investigate the effects of explicit breaking of Z(3) symmetry due to the presence of dynamical

quarks on the formation and evolution of Z(3) walls and associated quark-gluon plasma (QGP) strings

within the Polyakov loop model. We carry out numerical simulations of the first order quark-hadron phase

transition via bubble nucleation (which may be appropriate, for example, at finite baryon chemical

potential) in the context of relativistic heavy-ion collision experiments. Using appropriate shifting of the

order parameter in the Polyakov loop effective potential, we calculate the bubble profiles using the bounce

technique for the true vacuum as well as for the metastable Z(3) vacua, and estimate the associated

nucleation probabilities. These different bubbles are then nucleated and evolved, and the resulting

formation and dynamics of Z(3) walls and QGP strings are studied. We discuss various implications of

the existence of these Z(3) interfaces and the QGP strings, especially in view of the effects of the explicit

breaking of the Z(3) symmetry on the formation and dynamical evolution of these objects.
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I. INTRODUCTION

The possibility of the existence of topologically non-
trivial structures such as Z(3) interfaces and associated
quark-gluon plasma (QGP) strings in the quark-gluon
plasma phase [1] is very exciting. In the context of relativ-
istic heavy-ion collision experiments (RHICE), it provides
the only system where domain walls and strings arise in a
relativistic quantum field theory which can be investigated
under laboratory control. In earlier works [1–3] we dis-
cussed various aspects of the existence of these objects in
cosmology as well as in RHICE. These topological objects
arise in the high temperature deconfined phase of QCD due
to spontaneous breaking of the Z(3) global symmetry of
finite temperature QCD, where Z(3) is the center of the
SUð3Þ color gauge group of QCD. Spontaneous breaking of
Z(3) symmetry arises from the nonzero expectationvalue of
the Polyakov loop, lðxÞ, which is an order parameter for the
confinement-deconfinement (C-D) phase transition for pure
gauge theory [4]. The interpolation of lðxÞ between three
different degenerate Z(3) vacua leads to the existence of
domain walls (interfaces) together with topological strings
when the three interfaces make a junction. We call these
strings QGP strings [1].

The properties and physical consequences of these Z(3)
interfaces have been discussed in the literature [5]. It has
also been suggested that these interfaces should not be taken
as physical objects in the Minkowski space [6]. The exis-
tence of these Z(3) vacua becomes especially a nontrivial

issue when considering the presence of dynamical quarks.
The effect of quarks on Z(3) symmetry and Z(3) interfaces,
etc., has been discussed in detail in the literature [7,8]. It has
been argued that the Z(3) symmetry becomes meaningless
in the presence of quarks [7]. Another viewpoint as advo-
cated in many papers asserts that one can take the effect of
quarks in terms of explicit breaking of Z(3) symmetry
[8–10], and we will follow this approach. In this context
we mention the recent work of Deka et al. [11], which has
provided support for the existence of these metastable vacua
from lattice. Although the temperatures are high (close to
1 GeV) at which the indications of metastable vacuum are
seen in Ref. [11], the important point is that these metastable
Z(3) vacua seem to exist at some temperature. Since the
presence of quarks lifts the degeneracy of different Z(3)
vacua [8–10], the Z(3) interfaces become unstable and move
away from the region with the unique true vacuum. Thus,
with quark effects taken in terms of explicit symmetry
breaking, the interfaces survive as nontrivial topological
structures, though they do not remain solutions of time
independent equations of motion. In our earlier investiga-
tions of these Z(3) walls and the QGP string, we neglected
the effects of such an explicit symmetry breaking arising
from quark effects [1–3], and investigated the properties and
physical consequences of these objects Z(3) in the context of
the early Universe as well as in RHICE. In the present work,
we will incorporate effects of explicit symmetry breaking
from quarks in the study of these objects.
Our numerical simulations in this work aim to inves-

tigate how the formation of Z(3) walls and string network
during the initial C-D transition in RHICE, and how
their subsequent evolution gets affected by such explicit
breaking of Z(3) symmetry. As in our earlier works, we
model the preequilibrium stage of phase transition in our
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simulation as a quasiequilibrium stage with an effective
temperature which first rises (with rapid particle produc-
tion) to a maximum temperature T0 > Tc, where Tc is the
critical transition temperature and then decreases due to
continued expansion of plasma.

In order to study the C-D phase transition in earlier
works for the pure gauge case, we have been using the
mean field effective potential of a polynomial form written
in terms of the Polyakov loop expectation value lðxÞ as
proposed by Pisarski [9,10]. A linear term in lðxÞ added
to this effective potential in the mean field framework
[12–15] accounts for the explicit breaking of Z(3) symme-
try by the dynamical quarks whose presence act like
a background magnetic field [16]. In our analysis in
Refs. [1,3] we discussed the effects of the explicit symme-
try breaking term in view of the estimates of such a term
from Ref. [17]. We found that the two degenerate vacua

(l ¼ ei2�=3 and l ¼ ei4�=3), which get lifted with respect to
the true vacuum (with l ¼ 1) on account of explicit break-
ing of Z(3) symmetry in the QGP phase, have higher free
energy than even the hadronic phase (with l ¼ 0) at tem-
peratures of order 200 MeV. This does not seem reasonable
because one would expect that any of the Z(3) vacua which
become metastable due to explicit symmetry breaking
should still have lower free energy than the hadronic phase
for values of temperature T > Tc enforcing that the system
lies in the deconfining regime for such temperatures. In
any case, the estimates of Ignatius et al. [17] refer to high
temperature regime and may not be applicable to tempera-
tures near Tc. We thus use the following considerations to
constrain the magnitude of the strength of the explicit
symmetry breaking term. One approach can be to limit it
such that the metastable vacuum remains lower than the
confining vacuum for temperatures above Tc. We, however,
limit explicit symmetry breaking to further lower values by
requiring that the first order nature of the transition should
remain at least in some range of temperatures above Tc.

We use this first order transition model in the present
work to discuss the dynamical details of quark-hadron
transition, even though the lattice results show that
quark-hadron transition is most likely a crossover at zero
chemical potential. The quark-hadron phase transition in
the context of relativistic heavy-ion collision experiments
is expected to be of first order for large values of the
chemical potential which may be relevant for our study.
Thus our study will be relevant for lower energy collisions
which explore relatively high chemical potential regime
of the QCD phase diagram. Further, we are primarily
interested in determining the time dependence of Z(3)
interfaces and string network structures, which result due
to explicit breaking of Z(3) symmetry during the phase
transition. The formation of these objects results from the
simple fact that the correlation length remains finite in a
fast evolving system, as shown by Kibble [18]. The distri-
bution of these objects therefore shows universal features,

independent of the details of the phase transition. The
Kibble mechanism was first proposed for the formation
of topological defects in the context of the early Universe
[18], but it is now utilized extensively for discussing topo-
logical defects production in a wide variety of systems
from condensed matter physics to cosmology [19]. The
essential ingredient of the Kibble mechanism is the exis-
tence of uncorrelated domains of the order parameter
which result after every phase transition occurring in finite
time due to finite correlation length. A first order transition
allows easy implementation of the resulting domain struc-
ture, especially when the transition proceeds via bubble
nucleation. Keeping this view in mind, we use the potential
for Polyakov loop augmented with the addition of a linear
term as in Refs. [9,10] to model the phase transition.
Further, we will be confining ourselves to the temperature/
time ranges and such values of the coefficient of linear term
in the effective potential that the first order quark-hadron
transition proceeds via bubble nucleation.
The Z(3) interfaces and strings will develop dynamics in

the presence of explicit symmetry breaking and the inter-
faces will start moving away from the direction where true
vacuum exists. The strings will also not have three inter-
faces forming symmetrically around them, and hence will
start moving in some direction. Such motions may cause
important differences on the long time behavior. Due to the
quark effects, wewill get different nucleation probabilities/
rates for the bubbles of metastable Z(3) vacua and the true
vacuum bubbles of the QGP phase. Metastable bubbles
being larger in size may cover a larger fraction of the
physical space and hence may lead to nontrivial consequen-
ces. The effects of quarks will be significant if a closed
spherical wall (with true vacuum inside) starts expanding
instead of collapsing. This effect may play an important role
in the early Universe case because an expanding closed
domain wall has to be large enough such that the surface
energy contribution does not dominate over the volume
energy. In the case of RHICE, the asymmetrical Z(3) walls
and associated strings will eventually melt away when the
temperature drops below the deconfinement-confinement
phase transition temperature Tc. However, they will be
leaving their signatures in the form of extended regions of
energy density fluctuations (as well as PT enhancement of
heavy-flavor hadrons [20]). We will be estimating these
energy density fluctuations which will lead to multiplicity
fluctuations. As in our earlier work [1], here also our main
focus is looking for the signals of extended regions of large
energy densities in space-time reconstruction of hadron
density. We mention here that a simulation of spinodal
decomposition in the Polyakov loop model has been carried
out in Ref. [21], where fluctuations in the Polyakov loop are
investigated in detail. Our work here and in Ref. [1] is
focused on the formation of extended structures Z(3) walls,
strings, and extended regions of energy density, etc., and in
the present work how these are affected by effects of quarks.
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The paper is organized in the following manner. In
Sec. II, we briefly recall the Polyakov loop model of
confinement-deconfinement phase transition and describe
the effective potential proposed by Pisarski [9]. Here we
discuss the effects of quarks in terms of a linear term in the
Polyakov loop in the effective potential, which leads to
explicit breaking of the Z(3) symmetry. We discuss differ-
ent estimates for the strength of this linear term in the
context of situations such that the transition is of first order.
In Sec. III, we discuss the effect of this term on the
structure of Z(3) walls and strings, and on the structure
of bubbles through which the phase transition is com-
pleted. Here we describe our approach to extend the con-
ventional technique of false vacuum decay to this case
where different Z(3) bubbles have different profiles. What
is of crucial importance to our discussion of the formation of
these objects is the nucleation rates of the bubbles of differ-
ent Z(3) vacua. Since these vacua are no more degenerate,
the corresponding bubbles will in general have different
nucleation rates. Section IV discusses nucleation rates for
these different bubbles. One may expect that the metastable
Z(3) vacua should be suppressed as the corresponding bub-
bles have larger actions. We discuss the very interesting
possibility that despite having larger action, the metastable
vacua may have similar (or even larger) nucleation rates as
compared to the true vacuum. This can happen when the
preexponential factor dominates over the exponential sup-
pression term in the nucleation rate. This possibility is
intriguing as the metastable vacua being larger in size may
cover a larger fraction of the physical space and hence may
dominate the dynamics of phase transition.

Section V presents the numerical technique of simulat-
ing the phase transition via random nucleation of bubbles,
which now have different sizes depending on the corre-
sponding Z(3) vacuum inside the bubble. The resulting
domain walls may show nontrivial behavior compared to
the case without the quark effects as a closed domain wall
enclosing the true vacuum may expand instead of contract.
Rough estimates with our parameter choices show that this
is expected when the domain wall size exceeds about
50 fm. The discussion of such a large physical region is
more relevant in the context of the early Universe and we
plan to study this in a future work. Here we will consider
the case relevant to RHICE with lattice sizes of about
ð15 fmÞ2 and study the effects of domain wall and string
formation with temperature evolution as expected in a
longitudinally expanding plasma. These results are pre-
sented in Sec. VI. We also calculate the energy density
fluctuations associated with Z(3) wall network and strings,
as in our earlier work [1], and discuss important differences
for the present case with quark effects. In Sec. VII, we
discuss possible experimental signatures resulting from the
presence of Z(3) wall network and associate strings espe-
cially including the effects of explicit symmetry breaking.
Section VIII presents our conclusions.

II. THE POLYAKOV LOOP MODELWITH
QUARK EFFECTS

We first briefly recall the Polyakov loop model for
the confinement-deconfinement phase transition. For the
case of pure SUðNÞ gauge theory, the expectation value of
Polyakov loop lðxÞ is the order parameter for the
confinement-deconfinement phase transition

lð ~xÞ ¼ 1

N
Tr

�
P exp

�
ig

Z �

0
A0ð ~x; �Þd�

��
; (1)

where A0ð ~x; �Þ is the time component of the vector poten-
tial A�ð ~x; �Þ ¼ Aa

�ð ~x; �ÞTa, Ta are the generators of SUðNÞ
in the fundamental representation, P denotes path ordering
in the Euclidean time �, g is the gauge coupling, and � ¼
1=T with T being the temperature. (N ¼ 3 for QCD) is the
number of colors. The complex scalar field lð ~xÞ transforms
under the global ZðNÞ (center) symmetry transformation as

lð ~xÞ ! expð2�in=NÞlð ~xÞ; n ¼ 0; 1; . . . ðN � 1Þ: (2)

The expectation value of lðxÞ is related to e��F where F
is the free energy of an infinitely heavy test quark. For
temperatures below Tc in the confined phase, the expecta-
tion value of the Polyakov loop is zero corresponding to the
infinite free energy of an isolated test quark. [Hereafter, we
will use the same notation lðxÞ to denote the expectation
value of the Polyakov loop.] Hence the Z(N) symmetry is
restored below Tc. Z(N) symmetry is broken spontaneously
above Tc where lðxÞ is nonzero corresponding to the
finite free energy of the test quark. Effective theories of
the Polyakov loop have been proposed by several authors
with various parameters fitted to reproduce lattice results
for pure QCD [9,10,22]. We use the Polyakov loop effec-
tive theory proposed by Pisarski [9,10]. The effective
Lagrangian density can be written as

L ¼ N

g2
j@�lj2T2 � VðlÞ; (3)

where the effective potential VðlÞ for the Polyakov loop in
the case of pure gauge theory is given as

VðlÞ ¼
��b2

2
jlj2 � b3

6
ðl3 þ ðl�Þ3Þ þ 1

4
ðjlj2Þ2

�
b4T

4: (4)

At low temperature where l ¼ 0, the potential has only
one minimum. As the temperature becomes higher than Tc

the Polyakov loop develops a nonvanishing vacuum expec-
tation value l0, and the cos3� term coming from the l3 þ
l�3 term above leads to Z(3) generate vacua. Now in the
deconfined phase, for a small range of temperatures
above Tc, the l ¼ 0 extremum becomes the local minimum
(false vacuum), and a potential barrier exists between the
local minimum and global minimum (true vacuum) of the
potential.
To include the effects of dynamical quarks, we follow

the approach where the explicit breaking of the Z(3)
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symmetry is represented in the effective potential by inclu-
sion of a linear term in l [8–10,12]. The potential of Eq. (4)
with the linear term becomes

VðlÞ ¼
�
�b1

2
ðlþ l�Þ � b2

2
jlj2 � b3

6
ðl3 þ l�3Þ

þ 1

4
ðjlj2Þ2

�
b4T

4: (5)

Here, coefficient b1 measures the strength of explicit
symmetry breaking. The coefficients b1, b2, b3, and b4 are
dimensionless quantities. With b1 ¼ 0, the other parame-
ters b2, b3, and b4 are fitted in Refs. [9,10,23] such that the
effective potential reproduces the thermodynamics of pure
SUð3Þ gauge theory on lattice [12,23,24]. The coefficient
b2 is temperature dependent and given by

b2ðrÞ ¼
�
1� 1:11

r

��
1þ 0:265

r

�
2
�
1þ 0:3

r

�
3 � 0:487;

r ¼ T

Tc

; Tc ¼ 182 MeV:

We use the value of temperature independent coeffi-
cients b3 ¼ 2:0 and b4 ¼ 0:6061� 47:5

16 . We choose the

same value of b2 for real QCD (with three massless
quarks flavors). b4 is rescaled by factor 47:5

16 to incorporate

extra degrees of freedom of QCD relative to pure
SUð3Þ gauge theory [23]. As temperature T ! 1 the
Polyakov loop expectation value approaches the value

x� b3=2þ 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b23 þ 4b2ðT ¼ 1Þ

q
. To have the normaliza-

tion hlðxÞi ! 1 at T ! 1, the coefficients and field in
the effective potential VðlÞ in Eq. (5) are rescaled as
b1ðTÞ ! b1ðTÞ=x3, b2ðTÞ ! b2ðTÞ=x2, b3 ! b3=x, and
b4 ! b4x

4, l ! l=x.
At temperatures above the critical temperature Tc, the

potential VðlÞ has three degenerate vacua in pure gauge
theory (with b1 ¼ 0). The barrier heights between the local
minimum (lðxÞ ¼ 0) and the three global minima (l ¼ 1, z,
z2, corresponding to � ¼ 0, 2�=3, 4�=3) are all the same.
As the value of b1 becomes nonzero, the degeneracy of
Z(3) vacua gets lifted. Vacua corresponding to � ¼ 2�=3
(l ¼ z) and � ¼ 4�=3 (l ¼ z2) remain degenerate, with
energy which is higher than the l ¼ 1 (� ¼ 0) vacuum.
Thus, l ¼ z and l ¼ z2 vacua become metastable and the
l ¼ 1 remains the only true vacuum (global minimum).
Note that l ¼ z and l ¼ z2 are the two metastable vacua in
the QGP phase. Along with these, there is a metastable
vacuum at l ¼ 0 (for a small range of temperatures above
Tc) which corresponds to the confining phase.

Estimates of explicit Z(3) symmetry breaking arising
from quark effects have been discussed in the literature.
In the high temperature limit, the estimate of the difference
in the potential energies of the l ¼ z vacuum and the l ¼ 1
vacuum �V is given in Ref. [17] as

�V � 2

3
�2T4 Nl

N3
ðN2 � 2Þ; (6)

where Nl is the number of massless quarks. If we take
Nl ¼ 2 then �V ’ 3T4. At T ¼ 200 MeV, the difference
between the confining vacuum and the true vacuum from
the effective potential in Eq. (5) is about 150 MeV=fm3

while �V from Eq. (6) at T ¼ 200 MeV is about four
times larger, equal to 600 MeV=fm3. As T approaches
Tc, this difference will become larger as the metastable
vacuum and the stable vacuum become degenerate at Tc,
while �V remains nonzero. It does not seem reasonable
that at temperatures of order 200 MeV [with Tc ¼
182 MeV for Eq. (5)], a QGP phase (with quarks) has
higher free energy than the hadronic phase. In any case,
the estimates of Eq. (6) were made in high temperature
limit and the extrapolation of these to T near Tc may be
invalid. We thus use different physical considerations to
estimate the strength of the explicit symmetry breaking
term; i.e., the value of parameter b1 in Eq. (5) as follows.
Note that as b1 is increased from zero, the potential tilts

such that the barrier between the metastable confining
phase and the true vacuum in the � ¼ 0 direction
decreases, resulting in the weakening of the first order
phase transition. Finally, this barrier disappears for b1 �
0:11 (at T ¼ Tc ¼ 182 MeV). For b1 � 0:11 there is no
range of temperatures where the phase transition is first
order. As we mentioned, our approach is to study the phase
transition dynamics via bubble nucleation. We thus choose
a small value of b1 ¼ 0:005 such that the confinement-
deconfinement phase transition is a (weakly) first order
phase transition for a reasonable range of temperatures.
The plot of the potential in � ¼ 0 direction for b1 ¼ 0:005
is shown in Fig. 1 for T ¼ 200 MeV. Note that with b1 > 0
the confining vacuum at l ¼ 0 shifts towards the positive
real value of l. With this value of b1, the barrier between
the confining metastable vacuum and the true vacuum
exists up to a temperature ’ 225 MeV, which allows for
a reasonable range of temperatures to discuss the bubble
profiles and their nucleation probabilities. If we choose
larger values of b1, the range of temperatures allowing first
order transition becomes very narrow, and the formation
and nucleation of bubbles require fine-tuning of time scale.
This apparently ad hoc procedure of fixing the value of

b1 can be given a physical basis in the following way.
Changing the value of coefficient b1 changes the nature
of the phase transition from a very strong first order to a
very weak one. One can attempt to interpret it in the
context of a QCD phase diagram drawn in the plane of
chemical potential (�) and temperature (T). The QCD
phase transition is of strong first order for large �; it
becomes a weak first order transition with decreasing �,
reaches to its critical end point where the transition is of
second order, and then becomes crossover at lower �
values. If we assume that the effective potential in
Eq. (5) (at least in form) can describe these situations of
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varying chemical potential, then it seems natural to assume
that changing the value of � is interpreted in terms of
changing the value of the b1 parameter in Eq. (5). Thus,
increasing � corresponds to lowering the value of b1
making the phase transition of stronger first order.

Note that the potential barrier between the confining
vacuum and the true vacuum is maximum when b1 is
zero, and the first order phase transition is strongest. This
should correspond to the situation of largest � according
to the above argument, presumably corresponding to the
transition at very low temperatures in the QCD phase
diagram. However, with b1 ¼ 0 there is no explicit sym-
metry breaking. This will not be consistent with the
expectation of explicit symmetry breaking arising from
quark effects. Though one cannot exclude the possibility
that the effects of dynamical quarks and that of net baryon
number density may have opposite effects on the value of
b1 so that a strong first order transition at large � can be
consistently interpreted in terms of b1 ¼ 0. However, it is
simpler to assume that even for the largest value of �
(where the first order curve intersects the � axis in the
QCD phase diagram), b1 never becomes zero so that
explicit symmetry breaking remains present as expected.

Of course, it is clear that the parameter values used in
Eq. (5), which were fitted using lattice results for the � ¼
0 case, are no longer applicable if nonzero values of b1 are
interpreted in terms of nonzero �. We will then need to
assume that the required changes in the parameters of
Eq. (5) for nonzero � are not large. At the very least, we
can say that even if the b1 values we use here cannot be
justified, they help us capture some qualitative aspects of
changes in the formation and evolution of Z(3) walls and
QGP strings when quark effects are incorporated.

III. DOMAIN WALLS, STRINGS, AND BUBBLES
WITH EXPLICIT SYMMETRY BREAKING

The explicit symmetry breaking arising from quark
effects will have important effects on the structure of
topological objects: Z(3) walls and the QGP strings. It
will obviously also affect the nucleation of bubbles of

different Z(3) phases. First we qualitatively discuss its
effects on Z(3) walls and the QGP strings. For nondegen-
erate vacua, even planar Z(3) interfaces do not remain
static, and move away from the region with the unique
true vacuum. Thus, while for the degenerate vacua case
every closed domain wall collapses; for the nondegenerate
case this is not true anymore. A closed wall enclosing the
true vacuum may expand if it is large enough so that the
surface energy contribution does not dominate. Similarly,
it is no more possible to have a time independent solution
for the QGP string. Without explicit symmetry breaking, a
QGP string forming at the intersection of three symmetri-
cally placed Z(3) walls will be stationary. However, with
b1 � 0 this is not possible for any configuration of domain
walls. In fact, this type of situation has been discussed in
the context of the early Universe for certain types of
anionic string models [25].
Apart from the structure of these objects, one also

expects important changes in the basic mechanism of the
formation of these objects during the phase transition.
Without explicit symmetry breaking, these objects will
form via the Kibble mechanism, as discussed in detail in
Ref. [1]. In the presence of explicit symmetry breaking,
new effects may arise as discussed in Ref. [26] where many
string-antistring pairs with small separations (which means
small loops of strings or small closed domain walls in the
present context) can form at the coalescence region of two
bubbles. This mode of production of topological objects
arises from the fluctuations of the order parameter, and it is
entirely different from the basic physics of the Kibble
mechanism. As we are using a very small value of explicit
symmetry breaking we do not expect this new mechanism
to play an important role here. However, for larger values
of b1, this production mechanism may play an important
role in determining the Z(3) wall and string network result-
ing from a first order QCD phase transition.
A general picture of the formation of these objects

during first order QCD transition via bubble nucleation
was described in detail in Ref. [1] for the case without
explicit symmetry breaking, and we briefly summarize it
below. Subsequently, we will discuss the effects of explicit

FIG. 1 (color online). (a) Plot of VðlÞ (in MeV=fm3) in the � ¼ 0 direction for T ¼ 200 MeV with b1 ¼ 0:005; (b) shows the plot
near the origin showing that the confining vacuum has shifted slightly from l ¼ 0 towards the � ¼ 0 direction.
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symmetry breaking on the bubble profiles, their nucleation
rates, and on the general dynamics of the phase transition.

We calculate the bubble profile of the QGP phase using
Coleman’s technique of bounce solution [27] for true
vacuum (l ¼ 1) and for metastable vacua (l ¼ z, z2). We
seed these bubbles in the false (hadronic) background
randomly with their nucleation rates calculated at an
appropriate value of temperature T > Tc (such that the
nucleation rate is appreciable). The value of the phase of
the complex order parameter l is constant inside a given
bubble (to minimize the free energy), while it changes
from one bubble to another randomly (corresponding to
the choices of three vacua). The variation of the orientation
of the order parameter from one bubble to another provides
the essential ingredient of the Kibble mechanism leading to
a domain structure and formation of topological objects at
the intersection of domains. We evolve this initial field
configuration with the equations of motion using a leapfrog
algorithm. Bubbles grow with time and coalesce with each
other. The bubbles with same vacuum merge together to
form a bigger region of same vacuum while the bubbles
with different vacua remain separated by a wall/interface
of high energy density after coalescence. These are the
Z(3) domain walls. These domain walls are the solutions of
field equations of motion interpolating between different
Z(3) vacua and survive for a very long time as QGP
evolves. Eventually, either walls collapse/merge away, or
they melt as the temperature of expanding QGP falls below
Tc and Z(3) symmetry is restored.

Spontaneous breaking of Z(3) symmetry in the QGP
phase leads to three different topological domain walls
separating the three different Z(3) vacua. The intersection
point of the three domain walls leads to a topological string
(the QGP string) which was discussed in detail in Ref. [2].
This string arises as the order parameter l completes a
closed loop around l ¼ 0 in the complex l space when
one encircles the intersection point of the three domain
walls in the physical space [2]. Thus, these are topological
strings which exist in the QGP phase and have confining
core (with l ¼ 0). As bubbles of different Z(3) vacua
coalesce with each other, a network of Z(3) walls forms,
and at the intersection of Z(3) walls, QGP strings form.
A detailed investigation of this for the case without explicit
symmetry breaking (i.e., b1 ¼ 0) using 2þ 1 dimensional
simulation representing the central rapidity region was
carried out in Ref. [1].

The above picture of the dynamics of bubble nucleation,
coalescence, and formation and evolution of Z(3) walls and
QGP strings will be affected by the presence of explicit
symmetry breaking in important ways. With b1 � 0, the
three Z(3) vacua are no longer degenerate. The two vacua
(l ¼ z, z2) corresponding to � ¼ 2�=3, 4�=3 get lifted
and become metastable. Only the third one with a real
expectation value of l remains stable. The energy differ-
ence between the confining vacuum (near l ¼ 0, note that

due to b1 � 0, the confining vacuum shifts slightly) and the
two metastable Z(3) vacua (with l ¼ z, z2) are smaller
than the energy difference between the confining vacuum
and the true vacuum. This leads to larger size for the bubble
of metastable vacuum compared to the bubble of true
vacuum. Consequently, the associated action (free energy)
of the matastable vacuum bubble is also larger. The energy
difference between the confining vacuum and the true or
metastable vacuum increases with an increase in tempera-
ture, so the bubble sizes decrease with an increase in
temperature.
In the nondegenerate case with nonvanishing explicit

symmetry breaking, the false vacuum of potential gets
shifted towards the real axis by a small amount �. This
shift is minimum for temperatures closer to Tc and
increases as we increase the temperature. Further, the local
maximum of the potential barrier and the metastable vacua
are not in the same direction, but there is a small angular
shift between them. These aspects make it difficult to apply
the standard technique of finding the bounce solution for a
scalar field for the present case as we will discuss below.
First we review the basic features of the first order tran-
sition via bubble nucleation.
In a first order phase transition via bubble nucleation, a

true vacuum bubble forms in the background of false
vacuum. This bubble will grow or collapse depending on
the free energy change of the system. The change in the
free energy of the system because of the creation of a true
vacuum bubble of radius R is

FðRÞ ¼ Fs þ Fv ¼ 4�R2�� 4�

3
R3�: (7)

Here Fv is the volume energy, and Fs is the surface
energy of the bubble. For a strong first order phase tran-
sition, one can analytically determine the potential energy
difference � between the confining vacuum and relevant
Z(3) vacuum and the surface tension � from the bounce
solution (at least for a scalar field). Minimization of this
free energy determines the critical radius Rc ¼ 2�

� . The

volume energy of the bubbles with radius R> Rc domi-
nates over its surface energy, and the bubbles expand to
transform the false vacuum to true vacuum. The smaller
bubbles (R< Rc) for which surface energy dominates over
the volume energy, shrink and disappear. For strong first
order transition, the calculation of � and � separately can
be done as one is dealing with the thin wall bubbles where
the bubble size is much larger than the thickness of the
bubble wall, so that there is clear separation between the
bubble core and the bubble wall. For the parameter values
and the temperature range of our interest, we will be deal-
ing with thick wall bubbles where the bubble size is of the
same order as the bubble wall. For this purpose, the
expression in Eq. (7) is not of use, and one has to calculate
the bubble profile numerically using Coleman’s technique
of bounce solution and determine its action to calculate
nucleation probabilities.
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The theory of semiclassical decay of false vacuum at
zero temperature is given in Ref. [27], and its extension to
finite temperature was given in Ref. [28]. Coleman’s tech-
nique is applicable for a real scalar field. To calculate the
bubble profile for a complex scalar field l (with b1 ¼ 0) in
Ref. [1], the phase angle � was taken to be constant by
fixing it in the direction of the relevant Z(3) vacuum, i.e.,
� ¼ 0, 2�=3, or 4�=3. This reduced the problem again to a
real scalar field calculation and Coleman’s technique could
be directly applied. (However, there are important issues
for the case of a complex scalar field regarding the calcu-
lation of nucleation rates which require the calculation of
the determinant of fluctuations around the bounce solution.
A brief discussion of these issues is provided in Ref. [1]).

We calculate the bubble profile in 3þ 1 dimensions.
However, we evolve it only by the 2þ 1 dimensional field
equations. This is because of a rapid longitudinal expan-
sion which simply stretches the bubbles in the longitudinal
direction, while its transverse evolution proceeds accord-
ing to field equations. We neglect the transverse expansion
of the system which is certainly a good approximation
during the early stages of bubble nucleation (during the
initial transition from the confining phase to the QGP phase
with time scales of order 1 fm). At finite temperature, the
3þ 1 dimensional theory will reduce to an effectively
three-dimensional Euclidean theory if the temperature is
sufficiently high, which we will take to be the case [1]. For
this three-dimensional Euclidean theory, the bubble profile
is the solution of the following equation:

d2l

dr2
þ 2

r

dl

dr
¼ g2

2NT2

@V

@l
; (8)

where r ¼ rE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~x2 þ t2E

q
and subscript E denotes coor-

dinates in the three-dimensional Euclidean space. We use
the fourth order Runge-Kutta method to solve Eq. (8). For
b1 ¼ 0, the relevant boundary conditions on l to calculate
the bubble profile are l ¼ 0 as r ! 1 and dl

dr ¼ 0 at r ¼ 0.

However, with b1 > 0 this is no longer applicable. This is
because with b1 � 0 the confining vacuum is shifted from
l ¼ 0 along the � ¼ 0 direction by an amount �. We
calculate the bubble profile at T ¼ 200 MeV and at this
temperature � ¼ 0:0045 [see Fig. 1(b)]. We thus rewrite
the effective potential in Eq. (5) in terms of a shifted field
l0 ¼ l� �. In terms of l0, the confining vacuum again
occurs at l0 ¼ 0, and the standard boundary conditions as
discussed above can be applied for solving Eq. (8) for the
bounce solution. Hereafter, all discussion will be in terms
of this shifted field l0, which for simplicity we will denote
as l only.

Another complication occurs in calculating the bubble
profile for the metastable Z(3) vacua. The earlier technique
for the b1 ¼ 0 case of simply fixing � ¼ 2�=3 or � ¼
4�=3 for the two respective vacua, thereby reducing the
problem to a real scalar field case, cannot be applied here
directly. This is because with b1 � 0, the maximum of the

respective potential barrier and the direction of the corre-
sponding metastable vacuum are not in the same direction
(due to the tilt of the potential resulting from b1 � 0).
However, the difference between the two directions, i.e.,
between the l ¼ z vacuum and the direction of the top of
the corresponding barrier, is very small, of order � ¼ 0:9�.
The same is true for l ¼ z2 vacuum. We then fix � along
l ¼ z and l ¼ z2 vacua, respectively, to get the approxi-
mately valid bubble profile using Eq. (8). (Both of these
directions differ slightly from � ¼ 2�=3 and � ¼ 4�=3
now. Note again all this is using the shifted field which we
are again denoting as l). Recall that we are calculating the
3þ 1 dimensional critical bubble and evolving it by 2þ 1
dimensional equations with the bubble becoming super-
critical for 2þ 1 dimensional equations [1]. Further, we
are studying the situation of rapidly changing temperature.
Thus, the exact profile of the critical bubble at the nuclea-
tion time is not of much relevance.
As we mentioned above, we choose the value of b1 such

that the barrier between the confining vacuum and various
Z(3) vacua remains nonzero up to some range of tempera-
tures so that bubble formation can be carried out. We
choose b1 ¼ 0:005 with which the barrier between the
confining vacuum and true vacuum exist up to temperature
’ 225 MeV. The first order phase transition via bubble
nucleation is possible only up to this temperature.

IV. NUCLEATION RATES FOR
DIFFERENT BUBBLES

For the finite temperature case, the tunneling probability
per unit volume per unit time in the high temperature
approximation is given by [28] (in natural units)

� ¼ Ae�S3ðlÞ=T; (9)

where S3ðlÞ is the three-dimensional Euclidean action for
the Polyakov loop field configuration that satisfies the
classical Euclidean equations of motion. The dominant
contribution to the exponential term in � comes from the
bounce solution which is the least action Oð3Þ symmetric
solution of Eq. (8). For a theory with one real scalar field in
three Euclidean dimensions, the preexponential factor
arising in the nucleation rate of critical bubbles has been
estimated, see Ref. [28]. The preexponential factor
obtained from Ref. [28] for our case becomes

A ¼ T4

�
S3ðlÞ
2�T

�
3=2

: (10)

As emphasized in Ref. [1], the results of Linde [28] were
for a single real scalar field, and one of the crucial ingre-
dients used in Ref. [28] for calculating the preexponential
factor was the fact that for a bounce solution the only light
modes contributing to the determinant of fluctuations were
the deformations of the bubble perimeter. Even though we
are discussing the case of a complex scalar field lðxÞ, this
assumption may still hold as we are calculating the
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tunneling from the false vacuum to one of the Z(3) vacua.
This assumption may need to be revised when light modes
(e.g., Goldstone bosons) are present which then also have
to be accounted for in the calculation of the determinant.

A somewhat different approach for the preexponential
factor in Eq. (9) is obtained from the nucleation rate of
bubbles per unit volume for a liquid-gas phase transition as
given in Refs. [29,30]. In Ref. [1], we considered these
estimates for the nucleation rate as well as those obtained
from Eq. (10). It was found that for the parameter values in
Eq. (5) and for the temperature/time scales relevant for
RHICE, the nucleation rates obtained using the liquid-gas
transition approach of Refs. [29,30] were completely neg-
ligible such that even the nucleation of one bubble of the
QGP phase was not likely in RHICE. As one needs several
bubbles to discuss the formation of Z(3) walls and strings,
these estimates clearly cannot be used here. As in Ref. [1],
we will follow the approach based on Eq. (10) for our case
which gave reasonable nucleation rates leading to the
possibility of the formation of several bubbles for the
case of RHICE. We may mention here that for the nuclea-
tion of bubbles of the Polyakov loop l, it may anyway be
better to use a field theory approach as in Ref. [28], rather
than the approach of Refs. [29,30] which is more suitable
for the description of phase transition in terms of plasma
degrees of freedom. Though the parameters of Eq. (5) have
been fitted with lattice QCD, it is still not very clear
whether the bubbles should be viewed in terms of an order
parameter field representing some background condensate
(as the Polyakov loop l), or just different phases of an
interacting plasma.

We thus proceed with the calculation of nucleation rates
of the bubbles, using Eqs. (9) and (10). Figure 2 shows
the profiles of the bubbles for l ¼ 1 and l ¼ z vacua at
T ¼ 200 MeV (l ¼ z2 bubbles have the same profile as
the l ¼ z bubble). We note that the l ¼ z bubble is some-
what larger, as expected. Using such bubble profiles, we

calculate the respective values of the action S3 and estimate
the nucleation rates for metastable and true vacuum at
different temperatures. To calculate the number of bubbles
for a typical nucleus-nucleus collision, we consider a circle
of 8-fm radius in transverse plane with 1-fm thickness in
the longitudinal direction. The bubble nucleation for 1-fm
time obtained from the nucleation rate given in Eqs. (9) and
(10) leads to about three to five bubbles in this region. (The
approach followed in Ref. [30] gives the nucleation rate of
about 10�4 fm�4 in the relevant temperature range, lead-
ing to negligible nucleation of bubbles).
One may expect that the nucleation rate of the two

metastable Z(3) vacua will be smaller than that of the
true Z(3) vacuum due to larger action S3 of the metastable
vacuum leading to exponential suppression. However, here
we see an interesting interplay between the exponential

factor e�S3ðTÞ=T [Eq. (9)] and the prefactor A as given in
Eq. (10). If S3ðTÞ is much larger than T then the nucleation
rate is dominated by the exponential factor confirming the
above expectation. Thus, the nucleation rate of the meta-
stable vacuum bubble is much smaller than the true vac-
uum bubble when the temperature is closer to Tc. The
nucleation rate of the true vacuum bubble and metastable
vacuum bubble at a temperature near Tc (at T ¼ 185 MeV)
is of the order of �1:3� 10�5 fm�4 and �3:4�
10�7 fm�4, respectively. As we increase the temperature
from Tc ¼ 182 MeV, the nucleation rate of the metastable
vacuum bubble increases and becomes almost equal to that
of the true vacuum bubble at T ’ 200 MeV (both rates
being �2:4� 10�2 fm�4). This happens because at these
temperatures S3 ’ T so that the decrease of the exponential
term for a larger S3 (corresponding to the metastable
vacuum) is not very significant. However, the preexponen-
tial factor A in Eq. (10) increases with S3, and this increase
of the prefactor term starts dominating the exponential
factor in the nucleation rate equation for T � 200 MeV.
For higher temperatures, the nucleation rate for metastable
vacuum bubbles becomes larger than the true vacuum
bubbles. The nucleation rates of metastable and true vac-
uum bubbles at temperature 215 MeV are the order of
�1:5� 10�2 fm�4 and 7:7� 10�3 fm�4, respectively.
At higher temperatures though, the nucleation rate for
both bubbles decreases, but the metastable bubble nuclea-
tion rate remains larger. This result is very interesting as it
shows that at suitable temperatures the metastable Z(3)
vacua will have a larger nucleation rate than the true Z(3)
vacuum. Further, these metastable vacuum bubbles are also
of larger size than the bubble of true vacuum. Thus, one
may expect a larger fraction of the QGP region to end up in
the metastable Z(3) vacuum regions after the phase tran-
sition, which may have interesting implications. For ex-
ample, we will see below that the metastable vacuum
bubble walls have a much higher concentration of energy
density than the true vacuum bubble walls. We will use
T ¼ 200 MeV for the bubble nucleation, as the nucleation

FIG. 2 (color online). Critical bubble profiles for the different
Z(3) vacua for b1 ¼ 0:005.
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rates are the same for both the true vacuum and metastable
vacuum bubbles.

V. NUMERICAL TECHNIQUES

In this work, we carry out a 2þ 1 dimensional field
theoretic simulation of the formation and evolution of QGP
phase bubbles representing the central rapidity region of
QGP in RHICE. Bubbles are nucleated randomly in the
confining background. We calculate the bubble profiles
in 3þ 1 dimensions and use these profiles for the evolution
in 2þ 1 dimensions. As explained above, this represents
transverse evolution of these bubbles by field equations and
their longitudinal evolution is simply given by the Bjorken
longitudinal expansion [31]. We nucleate bubbles at the
temperature 200 MeV at which the metastable and true
vacuum bubbles have the nucleation rates of the same order
’ 0:024 fm�4 so that the number of metastable and true
vacuum bubbles seeded remains almost equal. Initially the
the field lð ~xÞ is zero everywhere, and the bubbles of
the QGP phase are nucleated over the whole lattice with
random choice of their location. (Again, recall that we are
using the shifted field here with b1 � 0). The bubbles are
nucleated with the condition that one bubble should not
overlap with the other. We implement this condition by
checking whether or not the region where the bubble is
going to be nucleated lies in the false vacuum. If in the
region a bubble has seeded already, the next bubbles will be
seeded at some other random position with the same con-
ditions. (These techniques for the formation and evolution
of bubbles in a first order transition are the same as those
used in Ref. [32].)

We take the initial temperature of the system to be zero
(representing the initial confining system), and it is taken to
increases linearly with time up to T ¼ 400 MeV at
(proper) time � ¼ �0 ¼ 1 fm. The bubble nucleation is
possible only in the range of temperatures where the tran-
sition is of first order. The barrier in between false vacuum
and true vacuum as well as false vacuum and metastable
vacua of Eq. (5) exists only for the temperature T ¼
182 MeV to T ’ 225 MeV for our chosen value of b1 ¼
0:005. The nucleation of bubbles is possible only during
the time when the temperature linearly increases from T ¼
Tc ¼ 182 MeV to T ’ 225 MeV. In order to have a rea-
sonable range of temperatures for bubble nucleation and
evolution, we nucleate bubbles at T ¼ 200 MeV. Note that
the bubbles should also be nucleated at higher tempera-
tures, say near T ¼ 225 MeV. These will be smaller in
size. Along with such bubbles there will also be subcritical
bubbles that will shrink fast and disappear due to the
surface energy domination. Such bubbles should be incor-
porated to account for fluctuations [32], but we will ignore
these here.

In RHICE, the QGP bubbles are nucleated in the had-
ronic phase during the time span when the temperature
changes from the transition temperature to the maximum

temperature T0 ¼ 400 MeV in the preequilibrium stage;
hence, this should lead to the presence of metastable and
true vacuum bubbles of different sizes at a given time.
These bubbles expand in hadronic background with time,
and ultimately the whole system gets converted to the QGP
phase. We choose to seed the bubbles at a fixed nucleation
temperature because the QGP bubbles being nucleated in
hadronic background have zero velocity initially and
remain almost static during the remaining preequilibrium
time ’ 0:5 fm when the temperature increases from T ¼
Tc ¼ 182 MeV to T ¼ T0 ¼ 400 MeV. The growth of
bubbles nucleated at different time and the increase in their
velocity until the temperature reaches 400 from the nu-
cleation temperature are negligible in this short time span.
Therefore, for simplicity our choice to seed bubbles at a
fixed temperature is a reasonable approximation. We
choose T ¼ 200 MeV as at this temperature the true vac-
uum and the metastable vacuum bubbles have almost equal
nucleation rates and both kinds of bubbles are possible with
equal probability. This provides us a better opportunity to
study the dynamics of metastable vacuum bubbles together
with that of true vacuum bubbles, and its effect on the
evolution of true vacuum bubbles.
After nucleation, the bubbles are evolved by the time

dependent equation of motion in Minkowski space [33]:

@2lj

@�2
þ 1

�

@lj
@�

� @2lj

@x2
� @2lj

@y2
¼ � g2

2NT2

@VðlÞ
@lj

;

j ¼ 1; 2
(11)

with
@lj
@� ¼ 0 at � ¼ 0 and l ¼ l1 þ il2.

We take a 2000� 2000 lattice with a physical size of
16 fm� 16 fm (as appropriate for an Au-Au collision in
RHICE). We take this lattice as the transverse plane of the
QGP formed in a central collision and consider the longi-
tudinal extension of 1 fm in the midrapidity region. The
evolution of metastable and true vacuum bubbles with
different Z(3) vacuum inside gives rise to the domain wall
and string networks. The domain walls form when the two
bubbles of different Z(3) vacua coalesce with each other.
The intersection of three domainwalls forms a string. In our
simulation, these objects are formed in the transverse plane.
Hence, the domain walls appear as curves while the cross
section of three-dimensional strings appear as vortices.
In the relativistic heavy-ion collision, the thermalization

time for an Au-Au collision at 200 MeV is expected to be
� � 1-fm time. As mentioned above, we model the system
in our simulation such that there is a linear increase in
temperature in the preequilibrium stage; it starts from T ¼
0 and reaches a maximum value of T ¼ 400 within time
� ¼ 0 to � ¼ �0 ¼ 1. After that, it decreases according to
Bjorken’s scaling due to the continued expansion in longi-
tudinal direction [31]

Tð�Þ ¼ Tð�0Þ
�
�0
�

�
1=3

: (12)
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In our numerical simulation, we evolve the field using the
periodic, fixed, and free boundary conditions for the square
lattice. We present our results for the free boundary condi-
tion case where the field (waves) crossing the boundary
during evolution go out permanently. This condition mini-
mizes effects due to boundary points in the evolution of field
(for example, field reflection from boundary points in fixed
boundary condition and mirror reflection as in periodic
boundary condition). We use additional dissipation in a
thin strip of ten points near the boundary to reduce the
(minor) boundary effects in the use of free boundary con-
ditions. To represent the situation of heavy-ion collision
experiments, we nucleate bubbles within a circular region
of 8-fm radius on the lattice of physical size 16 fm�
16 fm. With �x ¼ 0:008 fm, we use �t ¼ �x=

ffiffiffi
2

p
and

�t ¼ 0:9�x=
ffiffiffi
2

p
to satisfy the Courant stability criteria.

The stability and accuracy of the simulation is checked
using the conservation of energy during simulation. The
total energy fluctuations remain a few percent without any
net increase or decrease of total energy in the absence of

dissipative _l term in Eq. (11) as well as any other dissipation
for periodic and fixed boundary conditions.

VI. RESULTS OF THE SIMULATION

The general picture of the phase transition remains
similar to the case of b1 ¼ 0 discussed in Ref. [1], but
there are important differences. We show in Fig. 3 the
various stages of the formation and evolution of different
Z(3) bubbles and the subsequent formation and evolution
of Z(3) walls and strings. In order for one to compare the
b1 ¼ 0 case with the case discussed in Ref. [1], we
present in Fig. 3 the case of five bubbles in a 16 fm�
16 fm region, similar to the case discussed in Ref. [1].

Figure 3(a) shows the initial plot of lðxÞ showing the
nucleation of five bubbles at � ¼ 0:5 fm. Figure 3(b)
shows the plot of lðxÞ at � ¼ 1:5 fm showing the expansion
of bubbles. Figure 3(c) shows the plot of the phase of lðxÞ at
the initial stage, and Fig. 3(d) shows the phase plot at � ¼
3:2 fm showing clearly the formation of domain walls and
a QGP string near (x ¼ 8 fm, y ¼ 9 fm). The important
difference in the dynamics of true vacuum bubbles and the
metastable vacuum bubbles can be seen in the surface plots
of energy density (in GeV=fm3) at � ¼ 0:75 fm [Fig. 3(e)]
and at � ¼ 2:6 fm [Fig. 3(f)]. Note that in all the figures we
plot energy density in GeV=fm3 as we are considering the
central rapidity region with thickness of about 1 fm. With
similar energy densities to begin with, by the time � ¼
2:6 fm, the energy density at the walls of the bubbles of
true vacuum is much smaller than the energy density of the
walls for the false vacuum bubbles.

A. Variance of energy density

The general evolution of bubble coalescence and the
formation of walls and strings are similar to those shown
in Ref. [1] for the b1 ¼ 0 case, and we do not show those
here. As we are discussing the case of a relatively small
value of b1 here, we do not expect dramatic effects arising
from explicit symmetry breaking (e.g., from the different
mechanism of production of topological objects as dem-
onstrated in Ref. [26]). However, it is still important to see
if there are any qualitative differences between the b1 ¼ 0
case and the b1 � 0 case. We find an interesting difference
in the plot of the standard deviation of energy density
between the two cases. We calculated the standard devia-
tion� of the energy density at each time stage to study how
energy fluctuations change during the evolution. In Fig. 4

FIG. 3 (color online). (a) and (b) show plots of profiles of l at � ¼ 0:5 and 1.5 fm, respectively, showing expansion of bubbles.
(c) and (d) show the plots of the phase of l at � ¼ 0:5 and 3.2 fm. (e) and (f) show the surface plots of energy density (in GeV=fm3) at
� ¼ 0:75 and 2.6 fm showing very different energetics of the walls of the true vacuum bubbles and the metastable vacuum bubbles.
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we show the plot of �=" as a function of proper time. Here
" is the average value of energy density at that time stage.
The energy density " decreases due to longitudinal expan-
sion; hence, we plot this ratio to get an idea of the relative
importance of energy density fluctuations. For comparison,
we reproduce such a plot from Ref. [1] for the b1 ¼ 0 case
in Fig. 4(b). We note that fluctuations have an overall
tendency to decrease in Fig. 4(b) while there seems no
such decrease in Fig. 4(a) for the case with quark effects.
Note also the presence of a peak for small times near
� ’ 3 fm in the b1 > 0 case. There is no such sharp peak
for the b1 ¼ 0 case. The remaining features of the plot can
be interpreted as follows. The initial rapid drop in �=" is
due to a large increase in " during the heating stage up to
� ¼ 1 fm followed by a rise due to increased energy
density fluctuations during the stage when the bubbles
coalesce and the bubble walls decay, as expected. The

peak in the plot near � ¼ 10 fm when T drops below Tc

should correspond to the decay of domain walls and may
provide a signal for the formation and subsequent decay of
such objects in RHICE. We have plotted error bars in
Fig. 4(a); these are very small, about three orders of
magnitude smaller than the values of �=". The same holds
for all the plots [for Fig. 4(b) and in the figures below];
hence, we do not show error bars for other plots.
The small peak at short times for the b1 > 0 case seems

to arise from the difference between the collisions of
metastable vacuum bubbles and true vacuum bubbles and
hence seems of qualitative importance. We have checked
for various situations, different number of bubbles, etc.,
and this peak is always present. Figure 5 shows different
cases for a number of bubbles ranging from four to ten, and
we see the presence of this peak in all these cases. We
mention here that a significantly large peak for the ten-
bubble case in Fig. 5(f) (near � ¼ 10 fm) is due to the
collapse of a closed wall at that time (as we will see later in
the Sec. VIC below). The closed wall is more likely to
form with a larger number of bubbles. As the wall collap-
ses, it concentrates a large amount of energy in a localized
region and leads to a large fluctuation in energy density.
We note that the error bars in Fig. 4(a) (which are very

small) represent uncertainty in the value of �=� for a given
event (meaning the given realization of the bubble configu-
rations) at specific stages. Even though this is small, it is
important to know how much uncertainty is there due to
different random realizations of the same event (meaning
the same number of bubbles, which will presumably corre-
spond to considering the same types of eventswith centrality,
energy, etc.). For this purpose, we have carried out simula-
tions of different random realizations of the five-bubble case

FIG. 4 (color online). (a) and (b) show plots of the ratio of
standard deviation of energy density � and the average energy
density " as a function of proper time for the b1 ¼ 0:005 case
and the b1 ¼ 0 case, respectively. Error bars in (a) are very
small, about three orders of magnitude smaller than the values of
�=". The same holds for all the plots [for (b) and in the figures
below]; hence, we do not show error bars for other plots.

FIG. 5 (color online). Plots of the ratio �=" as a function of proper time for the b1 ¼ 0:005 case for a different number of
bubbles. (a)–(f) show curves for number of bubbles ¼ 4, 5, 5 (different realization), 7, 8, and 10, respectively. Note the presence of a
small peak for short times in all these cases. Also note that there is no overall decrease for long times as was seen in Fig. 4(b) for the
b1 ¼ 0 case.
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[such as those shown in Figs. 5(b) and 5(c)]. These different
realizations are shown in Fig. 6. These different realizations
of five-bubble configurations and the resulting differences in
plots of �=� between these plots represent event-by-event
fluctuations in these plots. We note that these variations are
large from one event to another (such as a peak at the last
stages), though all these plots appear to consistently show
more fluctuations [compared to Fig. 4(b)].

B. Wall velocity

An important difference we note is in the wall velocity.
We have estimated wall velocities for the domain walls
separating the two degenerate metastable Z(3) vacua, and
the metastable and the true vacuum. We find that the
typical velocity of the domain walls separating the two
(degenerate) metastable vacua is 0.7–0.8, similar to that

obtained in Ref. [1] for the b1 ¼ 0 case. This is certainly
expected. However, the velocity of the domain wall sepa-
rating the true vacuum and the metastable vacuum is found
to be much larger in many cases, close to 1. Very accurate
wall velocity estimates are not possible due to uncertainties
in identifying wall location (with dynamically evolving
wall profile). We show in Figs. 7 and 8 two different cases
of five-bubble nucleations (with different locations and
phases inside the bubbles). Contour plots of energy density
are shown in Figs. 7(a) and 7(b) at � ¼ 7:2 and 7.8 fm (the
temperature at these stages is 208 and 201 MeV, respec-
tively). The portion of the domain wall near x ¼ 14 fm,
y ¼ 12 fm in Fig. 7(a) is seen to move towards the left in
Fig. 7(b) with v ’ 1. This is confirmed by the profile plot
of l0 � l in Figs. 7(c) and 7(d) at the same stages, � ¼ 7:2
and 7.8 fm, respectively.

FIG. 6 (color online). Plots of the ratio �=" for different realizations of the five-bubble case, as in Figs. 5(b) and 5(c). These different
realizations show how this plot of �=" can vary from one event to another, even if the number of bubbles remains the same.

FIG. 7 (color online). Contour plot of energy density at (a) � ¼ 7:2 fm and (b) at � ¼ 7:8 fm. Wall portion near x ¼ 14 fm, y ¼
12 fm in (a) is seen to move towards the left in (b) with large velocity. (c) and (d) show the profile plots of l0 � l at these stages
confirming the motion of the domain wall.
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Figure 8 shows another case of five-bubble nucleation.
Figures 8(a) and 8(b) show the contour plots of energy
density at � ¼ 9:6 and 10.9 fm. The temperature at these
stages is T ¼ 188 and 180 MeV (note, this is slightly
below Tc). The location of the wall in Fig. 8(a) is near x ¼
9 fm, y ¼ 8 fm, and this is seen to move towards the lower
right corner. This wall motion is confirmed by the profile
plots of l0 � l in Figs. 8(c) and 8(d).

We again emphasize that it is very difficult to give an
error estimate for the bubble wall velocity primarily due to
its fluctuating width and shape. An estimate of the uncer-
tainty in velocity is already mentioned above with velocity
being 0.7–0.8. Similar uncertainty applies to the case of
velocity being close to 1 also. As can be seen from the
contour plots and from the surface plots, the wall repre-
sents a broad profile and highly fluctuating shape. Even the
profile is different at different points. Note that these walls
cannot be traced by following a zero of the field (as in the
case of the real scalar field). The location of the wall here
(where l remains nonzero across the wall) cannot be deter-
mined accurately.

C. Rapid collapse and reexpansion

Perhaps the most dramatic difference between the
present case with b1 � 0 and the previous case [1] of
b1 ¼ 0 is seen in Figs. 9 and 10. This shows the case of
nucleation of ten bubbles in a region of 22 fm� 22 fm.

Though both of these numbers are somewhat large for
RHICE, at least the size may not be too unrealistic for
later stages of plasma evolution. Figure 9 shows a time
sequence of the contour plot of energy density at � ¼ 6:44,
8.20, 9.94, 11.34, 12.74, and 14.5 fm. The temperature at
these stage is T ¼ 215:0, 198.4, 186.0, 178.0, 171.2,
and 164.1 MeV, respectively. Note that T is below Tc in
Fig. 9(d), and remains so for Figs. 9(e) and 9(f). A closed
domain wall is seen y ¼ 5–11 fm. The collapse velocity
again is seen to be close to v ’ 1. Interesting dynamics is
seen for later plots when an expanding front is seen from
the point of collapse. It rapidly expands again with v ’ 1
all the way until the last stages in Fig. 9(f). The presence of
such an energetic expanding front is confirmed by the
surface plots of energy density at the same stages as shown
in Fig. 10. Due to the very large velocity and sharp profile
of the expanding front, it may well represent a shock front
in the plasma. We emphasize that the reexpansion shown
here represents an expanding energy front. This has noth-
ing to do with bubble collapse or expansion. The collapsing
structure here [in Figs. 9(a)–9(c)] represents a collapsing
closed Z(3) domain wall which itself was formed by the
coalescence of several bubbles. This closed Z(3) domain
wall completely collapses and disappears by Fig. 9(c). As
there is a huge energy concentration at the point of collapse,
this leads to an expanding energy front [Figs. 9(d)–9(f)]
which is also circular, but it is not a wall structure.

FIG. 8 (color online). A different realization of five-bubble nucleation. Contour plot of energy density at (a) � ¼ 9:6 fm and (b) at
� ¼ 10:9 fm. Wall portion near x ¼ 9 fm, y ¼ 8 fm in (a) is seen to move towards the lower right in (b) with large velocity. (c) and
(d) show the profile plots of l0 � l at these stages confirming the motion of the domain wall.
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VII. POSSIBLE EXPERIMENTAL SIGNATURES OF
Z(3) WALLS AND STRINGS WITH EXPLICIT

SYMMETRY BREAKING

The Z(3) wall network and associated strings exist only
during the QGP phase, melting away when the temperature
drops below Tc. However, they may leave their signatures

in the distribution of final particles due to a large concen-
tration of energy density in the extended regions, and due
to nontrivial scatterings of quarks and antiquarks with
these objects. The extended regions of high energy density
resulting from the domain walls and strings are clearly
seen in our simulations, and some extended structures/hot
spots also survive after the temperature drops below the

FIG. 10 (color online). Surface plots of energy density for various stages shown in Fig. 10.

FIG. 9 (color online). A case of ten bubbles in a 22 fm� 22 fm region. This figure shows a time sequence of the contour plot of
energy density at � ¼ 6:44, 8.20, 9.94, 11.34, 12.74, and 14.5 fm. The temperatures at these stages are T ¼ 215:0, 198.4, 186.0, 178.0,
171.2, and 164.1 MeV, respectively. Contour plots show rapid collapse of a domain wall (towards the lower left) and subsequent rapid
expansion of a circular front.
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transition temperature Tc. This is just as was seen in the
b1 ¼ 0 case in Ref. [1]. We again mention that even the
hot spot resulting from the collapse of closed domain walls
in our simulations will be stretched in the longitudinal
direction into an extended linear structure (resulting from
the collapse of a cylindrical wall). These may be observ-
able in the analysis of particle multiplicities. This is impor-
tant especially in respect to the ridge phenomenon seen in
RHIC [34]. In view of lasting extended energy density
fluctuations from Z(3) walls, it is of interest to check if
these structures can account for the ridge phenomenon.

Our results show an interesting pattern of the evolution
of the fluctuations in the energy density: these fluctuations
do not decrease with time, which was the case for the b1 ¼
0 case studied in Ref. [1]. Especially important may be the
presence of a small additional peak of short times for the
b1 > 0 case. Fluctuations near the transition stage may
leave direct imprints on particle distributions. However,
dileptons or direct photons should be sensitive to these
fluctuations, and these may give a time history of evolution
of such energy density fluctuations during the early stages.
In such a case, the existence of a small peak for the b1 > 0
case may be observable.

A dramatic difference between the cases of b1 ¼ 0 and
b1 � 0 is seen in Figs. 9 and 10. Collapse of a closed wall is
expected and was seen for the b1 ¼ 0 case also, though the
wall speed here ismuch higher, close to 1. In general we have
seen here that walls separating true vacuum frommetastable
vacuumhave speedsmuchhigher than those seen for the case
of b1 ¼ 0. What is qualitatively new in the present case is a
rapidly expanding circular front after the collapse of thewall.
This front continues its speed and shape even when tempera-
ture drops below Tc. The possibility of such expanding
circular (cylindrical with longitudinal expansion) energetic
fronts should have important implications on particle mo-
menta, especially on various flow coefficients.

Another important difference due to b1 > 0 is expected in
investigating the interactions of quarks and antiquarks with
domain walls. Earlier we argued [1] that collapsing Z(3)
walls would lead to a concentration of quarks (due to small
nonzero chemical potential in RHICE) in small regions [3].
This will lead to an enhancement of baryons, especially at
highPT [20] due toPT enhancement of quarks/antiquarks as
they undergo repeated reflections from a collapsing wall.
(There is also a possibility of spontaneous CP violation in
the scattering of quarks and antiquarks from Z(3) walls, see
Ref. [35].) However, with b1 > 0 there may also be a
possibility that a Z(3) wall may actually expand (the one
enclosing the true vacuum and with sufficiently large size).
In that case it will have the opposite effect, and the baryon
number will be more diffused. Even the enhancement of PT

may happen for some domain walls (those which enclose
metastable vacuum) while the expanding closed walls
(enclosing the true vacuum) should lead to the redshift of
the momenta for the enclosed quarks. All these issues need

to be explored with more elaborate simulations. In this
context, the difference in the wall velocity between different
types of Z(3) walls is of importance. While studying the
effects of quark reflections from these walls and the asso-
ciated modification of PT spectrum, wall velocity is of
crucial importance, and the presence of different types of
collapsing Z(3) walls may lead to bunches of hadrons with
different patterns of modified PT spectra.

VIII. CONCLUSIONS

We studied the effects of explicit symmetry breaking
arising from quark effects on the formation and evolution
of Z(3) interfaces and associated strings. Explicit symmetry
breaking makes Z(3) vacua nondegenerate with two vacua
l ¼ z, z2 remaining degenerate with each other but having
higher energy than the true l ¼ 1 vacuum. Thus, l ¼ z, z2

vacua become metastable. We used an effective potential for
the Polyakov loop expectation value lðxÞ from Refs. [9,10]
with incorporation of explicit symmetry breaking in terms of
a linear term in l, and we studied the dynamics of the C-D
phase transition in the temperature/time range when the first
order transition of this model proceeds via bubble nuclea-
tion. This allows for only relatively small explicit symmetry
breaking (characterized by the strength b1 of the linear term
in l). We again emphasize that though our study is in the
context of a first order transition, certain aspects of our
results are expected to be valid even when the transition is
a crossover. This is because our focus is primarily on the
formation of topological objects whose formation (via
Kibble mechanism) only depends on the formation of a
domain structure and not crucially on the dynamics of the
phase transition. Though our statements about the energetics
of bubble walls, etc., clearly apply only for a first order
transition. These results will not be relevant for ultrarelativ-
istic heavy-ion collisions which relate to rather small values
of chemical potentials where the transition is expected to be
a crossover. Our results with detailed dynamics of first order
transition will be relevant for lower energy collisions which
explore relatively high chemical potential regime of the
QCD phase diagram. We also point out that the relevance
of quarks for phase transition is not only for discussing
metastability of different Z(3) vacua. We focused on
confinement-deconfinement transition. However, for chiral
phase transition the effects of quarks will also relate to the
universal scaling behavior in the chiral limit, which may still
be relevant for physical light quark masses. These issues can
be studied by carrying out simulations like in the present
paper for chiral models with Polyakov loop coupling.
An important result we discussed in this paper relates to

the expected relative importance of the metastable Z(3)
vacua. Due to the higher energy of these vacua, one would
expect that bubbles with these vacua should form with rela-
tively lower probability (even with the small values of b1 we
used). However, we find interesting results due to nontrivial
interplay of the preexponential factor and the exponential
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term in the nucleation rate for the bubbles. While the expo-
nential term leads to a decrease in the rate for metastable
vacua due to larger action, the preexponential factor leads to
an increase in the rate for larger action. For a suitable range of
temperatures, which for our choice of parameter values lies
between T ¼ 200 MeV to T ¼ 225 MeV, the metastable
vacuum bubbles have the same or larger nucleation rate
compared to the true vacuum bubbles. As the metastable
vacuum bubbles also have larger sizes, it means that a larger
fraction of QGP phase may get converted to the metastable
Z(3) vacua than to the true Z(3) vacuum. The dynamics of
these domains being so different, its effects on the evolution
of plasma and various signals may be important.
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