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Analogue Aharonov-Bohm effect in a Lorentz-violating background
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In this paper, we consider the acoustic black hole metrics obtained from a relativistic fluid under the
influence of constant background that violates the Lorentz symmetry to study the analogue of the Aharonov-
Bohm (AB) effect. We show that the scattering of planar waves by a draining bathtub vortex leads to a
modified AB effect and due to the Lorentz symmetry breaking, the phase shift persists even in the limit
where the parameters associated with the circulation and draining vanish. In this limit, the Lorentz-violating
background forms a conical defect, which is also responsible for the appearance of the analogue AB effect.
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L. INTRODUCTION

The Aharonov-Bohm (AB) effect [1] is one of the most
extensively studied problems in planar physics. This effect
is essentially the scattering of charged particles by a flux
tube and has been experimentally confirmed [2]. In the
quantum field theory the effect is simulated by a non-
relativistic field theory describing spin zero particles inter-
acting through a Chern-Simons field [3]. It was found to
have analogues in gravitation [4], fluid dynamics [5], op-
tics [6] and Bose-Einstein condensates [7].

It was shown in Ref. [8] that scattering by a standard
vortex leads to an analogue of the AB effect, determined by
a single dimensionless circulation parameter a. Recently, it
was shown in Ref. [9] that the scattering of planar waves by
a draining bathtub vortex describes a modified AB effect
which depends on two dimensionless parameters associ-
ated with the circulation @ and draining b rates. The effect
is inherently asymmetric even in the low-frequency limit
and leads to novel interference patterns.

The purpose of this paper is to investigate the effect of
the Lorentz symmetry breaking on the scattering by a
draining bathtub vortex which provides a simple analogue
for the AB effect in quantum mechanics. Thus, in this work
we investigate how the AB effect due to a vortex flow is
modified by the Lorentz symmetry breaking. As our results
show, we find that there appears small Lorentz violation
correction to the scattering amplitude, which modifies
qualitative and quantitative aspects of the AB effect.

The noncommutative AB effect has been studied in
the context of quantum mechanical [10,11] and in the
quantum field theory approach [12]. In Ref. [10] the non-
commutative AB effect has been shown to be in contrast
with the commutative situation. The cross section for the
scattering of scalar particles by a thin solenoid does not
vanish even when the magnetic field assumes certain dis-
crete values.
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In the present calculations, we apply the acoustic black
hole metrics obtained from a relativistic fluid plus a term
(““a background field”) that violates the Lorentz symmetry
[13,14] and we obtain a result similar to the noncommuta-
tive AB effect [10]. A relativistic version of acoustic black
holes from the noncommutative Abelian Higgs model has
been also presented in Ref. [15] (see also Ref. [16]). It was
found in Ref. [14] that for suitable values of the Lorentz-
violating parameter a wider or narrower spectrum of parti-
cle wave function can be scattered with increased amplitude
by the acoustic black hole. This increases the superreso-
nance phenomenon previously studied in Ref. [17]. Thus,
the presence of the Lorentz-violating parameter modifies
the quantity of removed energy of the acoustic black hole
(see Refs. [18-20] for some reviews).

In our study we shall focus on the differential cross
section due to the scattering of planar waves by a draining
bathtub vortex that leads to a modified AB effect in a
Lorentz-violating medium. We anticipate that we have
obtained a cross section similar to that obtained in
Ref. [10] for noncommutative AB effect. The result
implies that due to the Lorentz symmetry breaking pattern
fringes can still persist even in the limit where the parame-
ters associated with the circulation a and draining b go to
zero. In this limit, the Lorentz-violating background forms
a conical defect, which is also responsible for the appear-
ance of the analogue AB effect.

The paper is organized as follows. In Sec. II we apply
the black hole metrics obtained in the extended Abelian
Higgs model with the Lorentz-violating term [13,14]. We
then apply these metrics to a Klein-Gordon-like equation
describing sound waves to study the scattering of planar
waves by a draining bathtub vortex that leads to a modified
AB effect embedded into two types of a Lorentz-violating
medium. In Sec. III we make our final conclusions.

II. THE LORENTZ-VIOLATING MODEL

In this section we shall apply the acoustic black hole
metrics obtained in the extension of the Abelian Higgs model
with a modified scalar sector via scalar Lorentz-violating
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term [13,21]. The Lagrangian of the Lorentz-violating
Abelian Higgs model is

1
—ZFWFW +|D,p1* + m*|$|* — blol|*

+k*'D,¢*D, ¢, (1

[ =

where F,, = d,A, —9d,A,, D,¢p = 9d,¢ — ieA, ¢ and
k*” is a constant tensor implementing the Lorentz symmetry
breaking—a Lorentz-violating background. The tensor coef-
ficient is a 4 X 4 matrix, given by

B a a «
a B a «

ky, = « a B (v, v=0,1,2,3), 2
a a a B

with & and S being real parameters. In a previous study [13]
following this theory we have found three- and two-
dimensional acoustic metric describing acoustic black holes.
In the following we shall focus on the planar acoustic black
hole metrics to address the issue of analogue Aharonov-
Bohm effect. We shall work by restricting the full set of
parameters to the cases 8 # 0, a =0 and 8 =0, a # 0.
We decide for doing this, because these two choices have
shown to be rich enough to develop our study, whereas
considering the full set of parameters turns the analysis
very hard and not satisfactorily illuminating.

Let us briefly review the steps to find acoustic metrics
from quantum field theory. Firstly, we decompose the
scalar field as ¢ = /p(x, 1) exp(iS(x, 1)) into the original
Lagrangian to find

1
L=—--F
4
+ eszMA“ + m?p — bp?
+ k*p(9,859,S —2eA,9,S + eA,A,)

+%(aﬂa# +kEY,9,)/p. 3)

wF*" + pd, SoHS —2epA, 0*S

Secondly, linearizing the equations of motion around the
background (pg, Sy), with p = po + p; and S = Sy + &
we find the equation of motion for a linear acoustic distur-
bance ¢ given by a Klein-Gordon equation in a curved
space

1
VA
where g,, just represents the acoustic metrics given
explicitly in the examples below.

9,(J=88""3,)¢ =0, “4)

A. The case 8 # 0 and @ = 0

The acoustic line element in polar coordinates on the
plane with Lorentz symmetry breaking, up to an irrelevant
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position-independent factor, in the “nonrelativistic” limit
(v* < ?) is given by [13]

2 _ N 2
ds? = — %dﬂ — 2v,dr + vyrd)d
+
+ g(dr2 + r*d¢?), &)

where B8+ = 1 = B, ¢ is the sound velocity in the fluid and
v is the fluid velocity. We consider the flow with the
velocity potential (r, ) = Alnr + B¢ whose velocity
profile in polar coordinates on the plane is given by

P+ —d. (6)

Let us now consider the transformations of the time and the
azimuthal angle coordinates as follows:

B, Ard
dr — di + BrAdr (7)
(27 = p_AY)
BB_Adr
dp=d¢p + ——————. 8
In these new coordinates the metric becomes
B B_ B_(A? + B2
ds? = &[—’é—(l _B-AtE) ( o ))dT2
BL B r
B_A%\-1 2B_B
+ (1 - —Bz 5 ) dr? — '~8 dedr + rzdgoz:l.
cor B.ic
)

The radius of the ergosphere is given by gg(r,) =0,
whereas the horizon is given by the coordinate singularity
g, (r;) =0, that is

s
7+

31214
rh=ﬁ* lal (10)
C

r, =
We can observe from Eq. (9) that for A > 0 we are dealing
with a past event horizon, i.e., acoustic white hole, and
for A <0 we are dealing with a future acoustic horizon,
1.e., acoustic black hole. The metric can be now written in
the form

8w=% () (_:_E)*l 0 ,
-£2 0 1

(1)

with inverse g#”
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| -Frem 0 —EEf(
g’“’=% 0 (1—@) 0 ,

o [1-5]r»!
(12)

2
where f(r) =1 — —h

We shall now c0n51der the Klein-Gordon equation for a
linear acoustic disturbance (¢, r, ¢) in the background

metric (12), i.e.,
1
—a
V78
We can make a separation of variables into the equation
above as follows:

bt r, @)

The radial function R(r) satisfies the linear second-order
differential equation

p(V=gg""a,) ¢ = 0. (13)

= R(r)e'@=md), (14)

TR
f(r’) d s )—]R(r) ~ 0, (15)

We now introduce the tortoise coordinate »* by using the
following equation:

2 3 A2
- T _ B-A
f(r)—l—p—l— e (16)
which gives the solution
+ V’é_lAl \/_IAl 17
2¢ \/_IAI ' a7

1/2
Observe that in this new coordinate the horizon rh — BZ1Al Al

maps to r* — —oo while r — oo corresponds to r* — +oo
Now, we consider a new radial function G(r*) = r'/2R(r)
and the modified radial equation obtained from (15) is

2GG) [(Br _ BVBmy
% ! [(31_72 CT e ) - V(r):lG(r /=0
(18)
where V(r) is the potential given by
5B_A?
V()—M< -1+ fzrz ) (19)

a form that resembles that given in Ref. [9]. In the asymp-
totic region (r* — ), we find for Eq. (18) the simple
solution
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B‘; w.  (20)
Notice that the first term in Eq. (20) corresponds to ingoing
wave and the second term to the reflected wave, so that R
is the reflection coefficient, given by

G(r*) =C, el + R, e o, &=

:1/2 —1)m
R, - D" 1)
2w
Now, near the horizon region (r* — —o0), we have
G(}"*) — Tmei(c?)fmﬁ,.,)r*’ (22)

where Q) = QOy/yB- and Qy = Bc/A? is the angular
velocity of the acoustic black hole and 7 is the trans-
mission coefficient.

1. Analogue Aharonov-Bohm effect

Let us now consider the analogue Aharonov-Bohm
effect by considering the scattering of a monochromatic
planar wave of frequency w given in the form

pirn) =@ 3 R (r)elm¢/f (23)

m=—o00

such that far from the vortex, the function ¢ can be written
in terms of the sum of a plane wave and a scattered wave,
ie.,

Y11, @) ~ e N + fo (e’ /),

where e =3Y>___i"J, (wr)e™® and J,(wr) is a
Bessel function of the first kind. The scattering amplitude
fo(®) is given in the partial-wave form

(24)

fold) = i E (e¥%n — 1)e™?, (25)
with the phase shift given by
. C
2i6,, — ; —1)m . 2
e i(—1) . (26)

In order to compute the phase shift, at some level of
approximation, let us first rewrite Eq. (18) in terms of a

new function X(r) = f(r)'/2G(r*), that is
d?X(r) N ( 3r

i \finr f(r)42 )
+[( ['51_72 o B ) - vo] Jﬁ((’r )

Now performing a power series in 1/r, this equation can be
written as

(27)

PX(r) [ G2 — 1)

»? 28
dr? [w 4r? 28

U(r)]X(r) —0,
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where m2 = m? + 2am — 2b%,a = ®B/*B, b = &B2A
and
_ (a®> = b*)m* — 4b%am + 2b* + 3b*
- &4
b*(2a> — b*)m? — 6b*am + 3b* + 4b°
+
6)4,.6
+ O(@%r?), (29)

U(r)

a and b being parameters that describe the coupling to
circulation and draining, respectively. Now applying the
approximation formula

T - v © ~
Sy = 5 m = i) + 7 fo A (GHPUGdr,  (30)

and using |m| > va®? + b?, we obtain [9]
_am m  3m(a®+b?)  Sam(a’®+b*) m
2 |ml 8|ml 8m? |m|”

(3D

am =

Note that the above result for the mode m = 0 is not valid
but in the limits m — = oo the first term in (31) implies that
the phase shifts tend to nonzero constants, which naturally
leads to an AB effect [22]. Furthermore, the isotropic mode
m = 0, that we can obtain from Eq. (18)

Goeo(r*) = r'2eb™ 2 (0rf'/?), (32)
and the phase shift is imaginary

1
8m=0 = El’in (33)

Because a and b are proportional to @ and B., we
can conclude from Egs. (31) and (33) that the AB
effect is dominant in the scattering of low-frequency
waves, wvVvA? + B> < 1 or high-frequency waves,
wB.vVA? + B2 < 1 in the absence or presence of a
“strong” Lorentz-violating background with B, =0,
respectively.

Thus, by using Egs. (31) and (33), to lowest order in a
and b, we can compute the differential scattering cross
section (with units of length) that is given by
da—ab o

__a [acos(¢/2) — bsin(¢p/2)]?
db |fu(P)I* = % Sn?(d/2) .

(34)

For b = 0 (the nondraining limit), we have the vortex
result of Fetter [22]

(1 _ ﬂ)1/2,n.2a2

da—vortex _ 77612 _
= e D =

W % cot’(¢/2),

(35)

which also resembles the exact Aharonov-Bohm effect [1]
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dosg 1 sin’(ma)  (1—p)/? sin’(ma)
d¢ 2masin*(¢p/2) 27(1+ Bwsin®(¢/2)
for small angle or small coupling limits. Particularly, for
small Lorentz symmetry breaking parameter 8 we find
dosg (1 —3B/2) sin*(wa)
d¢ 2w sin?(¢/2)

In addition, for small B8 and small angle ¢, Eq. (35)
becomes

(36)

(37)

2

[5-3+ &+ 0]

doyorex _ (1- 35/2)77'2612
do 27w

(38)

These results show that our setup presents corrections
which modify the qualitative and quantitative aspects of
the AB effect.

B. The case § =0 and a # 0

In the present subsection we repeat the previous analysis
for 8 =0 and a # 0. As in the earlier case we take the
acoustic line element with Lorentz symmetry breaking
obtained in Ref. [13] in the nonrelativistic limit, up to first
order in a, given by

2 2\ —1
ds? = —&(1 - r—;)drz + &‘1(1 - r—’;) dr?
r r
2a(a'?cry, + B)
r

2B
— —rdedT + [1 + ]rzdgoz,
cr

(39)

where @ = 1 + a. The radius of the ergosphere (r,) and
the horizon (r;,) now reads

2
r,=a4lr? + B r =—|A| 40)
e G b Gl2e

Now, the radial function R(r), as in the previous case,
satisfies the linear second-order differential equation

[ - 20mant) _ano)_ry1RC)
+ A0 4 TR0 =0 @)

where n(r) =[1+ —2“(5‘1/2;"“3)]*' and l?(r)=3;7’r(zr)+
all —%zzrz]. Again, we introduce the tortoise coordinate
r* through Eq. (16) and after introducing a new radial
function, G(r*) = r'/2R(r), the modified radial equation
(41) becomes

d*G(r*) N I:wz _ 2Bmwn(r) mzn(r)Bz]f(r)G(r*)
dr*? cr? crt aD(r)
—V(r)G(r*) =0, (42)
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where

f(r) (4m277(r)f (r) 5A°

V(r) = W D(r) 1+ dczrz). (43)

1. Analogue Aharonov-Bohm effect

As in the previous case, in order to compute the phase shift,
at some level of approximation, let us first rewrite Eq. (42) in
terms of a new function X(r) = f(r)'/2G(r"), that is

d*X(r) [ 3r2 r
a7 Lor T T
_ 2Bmon(r) m?n(r)B? 1
* <w2 cr? cArt ) aD(r)f(r)
V0T
o0 @

Now, by power expanding in powers of 1/r, Eq. (44)
becomes

2>’ 4m? — 1
d gr)+[a~)2_(m2 ) 4 !
dr 4r or

4aa@'?m(a + b)a’
2

- U(r) — V(r)]x(r) =, (45)

where we define the parameters > = m?/&@ + 2am — 2b?,
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a= &B/a'?, b=aA/a?, &= w/a and the
functions as
_ (a®> = b*)m* — 4b%am + 2b* + 3b*
U(r) = Py
b*(2a*> — b*)m*> — 6b*am + 3b* + 4b°
+ &')4’.6
+ 065 Y), (46)
and
2 2 2 3b2
V(r) =2aa*(a + b)[a& c?):; - YZ)C;,A
N a’[b? + m*(1 + a*a) — 2mal]
aa’r
4 ma® — m2ata)b?
L na (n;c;sﬂmaa) ]+ a7

As in the previous case, by applying again the approximation
formula

O =5 =) + 7 [*HUa(@nFLUG) + Virar,

(48)
we readily obtain
|
5 = _\/5<£T +ala+ b))ﬂ N 7(3a2&? — b2(a@ — 4)a'’?) + 16aa@*?(a® + ab)
|m| 8|ml|
3 am(5a2@? — b*(3a — 8)a*?) m  8atal(a® + a*b) — 6ma*b aa® m
8m? |m| 12m? |m|
N aad'?[(42 — 12&)a + 3) — 6wb*a]l m N a*a@'?(42 — Ra)a +3) m
12m? |m| 12m? |m|
32[a(24b% + 3) + 3b(8b2 + 1
- a@Tla@abT+ 3 £ 3@ DI m | 7 ey, (49)
12m m| 2 |m|

Thus, to lowest order in a, the differential scattering cross
section with b = 0 and for small « is

d O yortex

W = |fw(¢)|2

e L . 2
Z (e—2za+m')tm _ 1)elm¢ . (50)

m=-—0o0

1
2T ®

where d = a\/E(g + @) and A =1—a /2. For small
angles ¢ # 0, we have

do—vortex_(l +a)[<16—4772)l2/3+4_3ﬂ.2

d¢ 27w P? 3

4 , 1 722
Y )
57T\ 3780))°

2w 117 3172 ¢?
+(5+ /\2]+0 a3 A3
<3¢2 180 7560) (¢°,4% 4%
(51)

+ less singular terms.

The dominant term in the differential scattering cross
section is 1/¢?
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do-vorlex _ (1 + a’) [(16 - 4772)\2/3>&2 n E)@]
d¢ 27w b? 3¢p2

+ less singular terms

_(+a [(16 - 2772a2/3) ma’ (1 N 4_a)

27w P? 4 T
)
+ r& az:l + less singular terms. (52)

Now, if the a = 0, the differential cross section at small
angles is dominated by

dFvorex _ 2
d¢

Note that, contrarily to the usual Aharonov-Bohm effect, in
the case with Lorentz symmetry breaking the differential
scattering cross section is different from zero when a = 0.
Our results are qualitatively in agreement with that
obtained in Ref. [10], for the AB effect in the context
of noncommutative quantum mechanics. This correction
vanishes in the limit « — 0 so that no singularities are
generated. This correction («?) due to effect of Lorentz
symmetry breaking may be relevant at high energies. Our
result shows that pattern fringes can appear even when
a = 0, unlike the usual case.

One can understand this effect as follows. In the limit
of circulation ¢ = @B/a&"/? and draining b = @A/a'/?
vanishes then for nonzero @ = w/a and finite @ = 1 +
a, we automatically have A = B = r, = r, = 0 such that

6w—77;ﬁ2 + less singular terms.  (53)
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the metric (39) simply becomes the metric of a conical
defect

ads® = —a*drm* + dr* + r*ade?, 54)

with angle deficit & = 277(1 — \/&). Thus, even though
there is no vortex in the above limit, the Lorentz-violating
background forms a conical defect, which is responsible
for the appearance of the analogue AB effect in an even
more faithful way.

III. CONCLUSIONS

In this paper we have considered the implications of a
Lorentz-violating background on the analogue Aharonov-
Bohm effect. We have used the acoustic metric obtained in
an extended Abelian Higgs model with a Lorentz-violating
term [13]. The results have shown that unlike the usual
Aharonov-Bohm effect, its analogue has a major distinct
feature, that is, the fact of the differential scattering cross
section being different from zero even if the parameters
that controls the circulation and draining become zero.
Another interesting phenomenon that appeared in this
setup is that the scattering of low- or high-frequency waves
is directly affected by the parameter that controls the
Lorentz symmetry breaking.
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