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Most calculations in cosmological perturbation theory, including those dealing with the inflationary
generation of perturbations, their time evolution, and their observational consequences, decompose those
perturbations into plane waves (Fourier modes). However, for some calculations, particularly those
involving observations performed on a spherical sky, a decomposition into waves of fixed total angular
momentum (TAM) may be more appropriate. Here we introduce TAM waves—solutions of fixed total
angular momentum to the Helmholtz equation—for three-dimensional scalar, vector, and tensor fields.
The vector TAM waves of given total angular momentum can be decomposed further into a set of three
basis functions of fixed orbital angular momentum, a set of fixed helicity, or a basis consisting of a
longitudinal (L) and two transverse (£ and B) TAM waves. The symmetric traceless rank-2 tensor TAM
waves can be similarly decomposed into a basis of fixed orbital angular momentum or fixed helicity, or
a basis that consists of a longitudinal (L), two vector (VE and VB, of opposite parity), and two tensor
(TE and TB, of opposite parity) waves. We show how all of the vector and tensor TAM waves can be
obtained by applying derivative operators to scalar TAM waves. This operator approach then allows one to
decompose a vector field into three covariant scalar fields for the L, E, and B components and symmetric-
traceless-tensor fields into five covariant scalar fields for the L, VE, VB, TE, and TB components.
We provide projections of the vector and tensor TAM waves onto vector and tensor spherical harmonics.
We provide calculational detail to facilitate the assimilation of this formalism into cosmological
calculations. As an example, we calculate the power spectra of the deflection angle for gravitational
lensing by density perturbations and by gravitational waves. We comment on an alternative approach to
cosmic microwave background fluctuations based on TAM waves. An accompanying paper will work out
three-point functions in terms of TAM waves and their relation to the usual Fourier-space bispectra.

Our work may have applications elsewhere in field theory and in general relativity.
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I. INTRODUCTION

Much of modern cosmology involves the study of the
origin and evolution of scalar, vector, and tensor fields.
Examples of scalar fields include the inflaton [1] and the
quintessence field [2]. Perturbations in the inflaton are
considered as seeds for primordial perturbations to the
curvature, and there is active investigation of the effects
of quintessence perturbations on the evolution of density
perturbations at late times. Magnetic fields provide an
example of vector fields in cosmology [3.4], and vector
fields have appeared elsewhere as well [5]. The most gen-
eral perturbation to the spacetime metric involves a rank-2
tensor field [6], the six components of which, as is well
known, can be decomposed into a trace, a longitudinal
mode, two vector modes, and two transverse-traceless
modes, the latter of which propagate in general relativity
as gravitational waves. A stochastic background of cosmo-
logical gravitational waves may have been produced during
inflation [7] and are now being actively sought through the
curl component (B mode) they induce in the anisotropy of
the cosmic microwave background (CMB) polarization [8].

The vast majority of the literature on such fields and
perturbations proceeds by decomposing the perturbations
into Fourier modes (or plane waves) e’* X, each of which
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then evolves independently to first order in perturbation
theory. A primordial random field, such as that produced
by inflation, is then assembled by adding all such plane
waves with the Fourier amplitude for each wave vector k
selected from a Gaussian distribution with a variance given
by the power spectrum P(k).

However, observations of the Universe are performed on
a spherical sky. It may thus be advantageous, in some
cases, to consider decomposition of the scalar/vector/
tensor fields under consideration into a basis that reflects
the rotational symmetry of the spherical sky. With this
motivation in mind, we introduce here total-angular-
momentum (TAM) waves for scalar, vector, and tensor
fields. We provide a complete orthonormal set of basis
functions for scalar, vector, and tensor fields on three-
dimensional Euclidean space, of fixed orbital angular mo-
mentum. These basis functions are eigenfunctions of the
Laplacian operator. There are three vector TAM waves for
each total angular momentum, and we decompose these
three into a basis of fixed orbital angular momentum
(OAM), a basis of fixed helicity, and a basis that separates
the longitudinal (L) and two transverse modes, E and B, of
opposite parity. There are similarly five sets of TAM basis
functions for traceless rank-2 symmetric tensors, and we
provide similar decompositions into three sets of bases: an
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OAM basis, a helicity basis, and a basis that decomposes
into a longitudinal (L) TAM wave, two vector waves, VE
and VB, of opposite parity, and two transverse waves, TE
and TB, of opposite parity. A random field can then be
assembled by adding all such TAM waves, with the am-
plitude for each TAM wave of wavenumber k selected
from a Gaussian distribution with variance P(k), as will be
detailed below.

The L/E/B basis for vectors, and the L/VE/VB/
TE/TB basis for traceless symmetric rank-2 tensors,
are first derived from the OAM basis. The helicity
bases are then simply related to these L/E/B and
L/VE/VB/TE/TB bases. We then present an alternative
derivation of these TAM-wave bases by introducing sets
of vector and traceless-tensor differential operators that,
when applied to the scalar TAM waves, yield the L/E/B
and L/VE/VB/TE/TB TAM waves. This operator appro-
ach then allows one to write an arbitrary vector field V,(x)
in terms of three covariant scalar functions VX(x), VE(x),
and V3(x) and an arbitrary tensor field A,;,(x) in terms
of five covariant scalar functions hl(x), hVE(x), hV8(x),
h"E(x), hTB(x). The operator approach also allows one to
obtain sets of vector and tensor basis functions from any
other set of scalar basis functions.

We also provide the projections of the TAM vector and
tensor waves onto vector and tensor spherical harmonics.
This is equivalent, as will be seen below, to providing the 1,
6, and $ components of the TAM vector and tensor waves.
The utility of TAM waves, as well as these projections, is
illustrated with a rederivation of the power spectra for weak
lensing by density perturbations and gravitational waves.

The bases we provide here for three-dimensional fields
are to be contrasted with earlier work [8], developed for
CMB polarization and weak-lensing shear, on bases for
tensor fields on the two-sphere S2, and with bases for vector
fields (the weak-lensing deflection angle) [9]; we will show
below, though, how the é—q@ components of the three-
dimensional TAM waves map onto the familiar vector/tensor
spherical harmonics. References [10-12] present the E/B
modes of three-dimensional vector and tensor harmonics
in open and closed Friedmann-Robertson-Walker space.
The TAM-wave basis for scalar fields has already been
employed in cosmology [13—17] (sometimes referred to as
a “‘spherical-wave” or “Fourier-Bessel” expansion). The
vector TAM waves are familiar from electromagnetic theory
[18,19]. Some steps along these lines for tensor fields were
taken in Ref. [20], although they retained plane waves for
the spatial dependence. There are some resemblances to
Ref. [21], who were considering classical cosmological tests.
References [22,23] have taken significant steps in the direc-
tion we pursue here for the description of weak lensing by
density perturbations, and there are some analogues to this
work in the gravitational-wave literature (see, e.g., Ref. [24]).

Below we begin in Sec. II with a brief discussion of our
notation. Section III presents TAM waves for scalar fields
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beginning, by way of introduction, with a review in
Sec. IIIA of the Fourier expansion of scalar fields.
Section IV discusses vector fields, beginning in IVA with
plane waves and moving on in IV B to TAM waves with
vector fields. There the TAM waves of fixed total angular
momentum are decomposed into OAM, L/E/B, and he-
licity bases. We introduce in Sec. IV B 3 a set of derivative
operators that, when applied to the scalar TAM waves,
provide TAM vector waves in the L/E/B basis. We also
show here how this operator approach can be used to find
scalar functions associated with the L, E, and B compo-
nents. The rest of Sec. IV discusses the projection of the
TAM vector waves onto vector spherical harmonics
(Sec. IV B 5), results that are useful, e.g., for observational
quantities like the lensing deflection field that are repre-
sented as vectors on the two-sphere; the transformation
between vector plane waves and vector TAM waves
(Sec. IV B 6); and the expansion of vector fields in terms
of TAM waves and the relation between the TAM-wave
power spectra and the more familiar plane-wave power
spectra (Sec. IVB 7). Section V provides a discussion of
tensor TAM waves with an organization that parallels
precisely that for vector waves in Sec. IV. Section VI
presents, as an example of the utility of the TAM-wave
formalism, a calculation of the power spectra for the deflec-
tion angle from gravitational lensing by density (scalar)
perturbations and gravitational waves (transverse-traceless
tensor perturbations). Section VII discusses the prospects for
writing the Boltzmann equations for the evolution of CMB
fluctuations using the TAM-wave formalism. Section VIII
provides closing remarks. Appendixes A and B provide
calculational details, and Appendix C provides a proof that
the functions obtained by the action of irreducible-tensor
operators on TAM waves are TAM waves of the same total-
angular-momentum quantum numbers JM.

II. NOTATION

Throughout this paper we use the symbol W*(x) to
denote solutions to the Helmholtz equation,

(V2 + )Pk (x) = 0, (1)

where x is the spatial position, and k is the magnitude of
the wave vector. In order to reduce clutter, we will often
suppress the k superscript. We will be dealing with solu-
tions \1}6 M)(X) that are eigenstates of total angular momen-

tum and its z component labeled by eigenvalues J and M,
respectively. We will also obtain scalar, vector, and tensor
solutions to the Helmholtz equation, and we will denote
those solutions (actually, the components of those solu-
tions) by W47y (x), WY (sana(x), and W, (X) (Where we
have suppressed the k superscript, as we will do frequently
throughout), respectively. The number of indices in the
subscript, outside the parentheses, indicates whether the
quantity is a scalar, vector, or tensor. As we will see,
the vector and tensor eigenfunctions of fixed JM can be
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decomposed into states of fixed orbital angular momentum,
fixed helicity, or a longitudinal/transverse decomposition.
These will be labeled by a superscript. For example, the
vector eigenstate of total angular momentum JM for
wave vector k with orbital angular momentum [/ will be

\I'é JM)a(x), and the vector TAM waves in the transverse/

longitudinal basis will be referred to by W M)a(x) fora =
L, E, B, and in the helicity basis by W JM)a(X) for A =0,
*1. Again, the k superscript will often be suppressed. We
often refer to V,, as a ““vector,” although strictly speaking,
it is the dual vector associated with the vector V%; there
should never be any confusion given that the dual vector
has a lowered index and the vector a raised index. The
indices are raised and lowered with a metric g,;,, and the
antisymmetric tensor is €,;,.. Since we are dealing with flat
three-dimensional space, the metric may be taken to be a
Kronecker delta with Cartesian coordinates, in which case
the raising and lowering of indices is trivial. However, we
will at times work in spherical coordinates r, , ¢ in which
case g, 1s not trivial. In some places we will deal with
functions on the two-sphere S2. and in these cases we
denote the metric and antisymmetric tensor for the two-
sphere by g4p and €,p, respectively, with capital indices.
We will also, by way of introduction, deal with
plane-wave solutions to the Helmholtz equation. We
will label the scalar, vector, and tensor solutions by
Wk(x), WE(x), and WX (x), respectively. An additional
superscript will denote the decomposition into OAM,
helicity, or longitudinal/transverse eigenstates.' For refer-
ence, we list in Table I the symbols used in this paper.

III. SCALAR FIELDS

A. Plane waves

We begin with scalar fields to provide a simple introduc-
tion. Our aim is to find solutions ¢(x) to the scalar
Helmholtz equation, (V2 + k?)¢(x) = 0. The most general
solution can be written in terms of plane waves ¥*(x) =
e™®* eigenfunctions of the momentum operator —iV. The
set of solutions for all k constitute a complete orthonormal
basis for scalar functions ¢(x), normalized so that

[ LV W )] = 7)ok — k), ()

where 8,(k — k') is a Dirac delta function. The most
general scalar function can then be expanded,
&’k
= k) Pk
P00 = [ g5 BV

3)
where (k) = f Prd)[T*x)]

"Note that there is no such superscript for scalar waves, as the
OAM and TAM waves coincide for scalar fields, since they have
no spin.
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The power spectrum P(k) for a scalar field is then defined by
(Pk)d* (k) = (2m)36p(k — K')P(k), @)

where the angle brackets denote an expectation value over

all realizations of the random field.

B. Total-angular-momentum waves

Our aim here, though, is to find solutions that are eigen-
functions of angular momentum. This is easily done with
the plane-wave expansion,

ek X = 247” ]l(kr)Ylm)(k)Y(lm)(n) 5)

Im

where j,(x) is a spherical Bessel function, and Y{;,,) () are
(scalar) spherical harmonics.”> We then find that if we
choose TAM basis functions,

\P?lm)(x) = ji(kr)Y ) (), (6)

where r = |x| and i = x/r, then an arbitrary scalar func-
tion can be expanded as

k*dk
d(x) = & () (KA, (X), (7
%I(Z )3 (Im) (Im)
with
buml0) = [ x4, (0T G0
f Pk GK)Y;,, (K). (8)
Here we have used the relations,

f K2k (kr)jy(kr') = -2 8 p(r — 1),
2r

o o )
ZY(lm)(n)Y(lm)(n ) = 8p(h — &)
Im
The orthonormality relation for the basis functions is
167 [ @, (001,00
2 3
= BB - L sk~ 1), (10)
where §;; is the Kronecker delta. The basis functions also
satisfy,
k*dk
) s[4t O [t W, (X)] = 8 p(x — X)),
(11)
which demonstrates that the (lm)(x) constitute

a complete basis for scalar functions on R3?. The

*We choose the spherical Bessel function of the first kind
Ji(kr) rather than the second kind n;(kr), so that the TAM waves
are regular at the origin. There may be cases, for example in
application of this formalism to emission or scattering of gravi-
tational radiation, in which the second function n;(kr) may need
to be introduced.
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TABLE I. A list of mathematical symbols used. The number in the right-most column indicates the equation in or near which the
symbol is first defined or used.

X=x,Yy, 2z r=]|x|, and fi A point in R3, its norm, and a unit vector in its direction
Kk, k,, and k = |K]| Fourier wave vector, its components, and its magnitude
k, 0, etc. and k,, 0,, etc. Unit vectors in the k, 6, etc. directions and their components

V,V, Covariant derivative wrt x and its components
*and t As superscripts represent complex conjugation and hermitian conjugate
X) Average over all realizations of random variable X “)
Splk — k) The one-dimensional Dirac delta function 9)
Spk — k') The three-dimensional Dirac delta function 2)
ab,c,... Three-dimensional tensor indices
A BC, ... Two-dimensional tensor indices
&, Polarization vector
0 Kronecker delta
gup and €, Metric and antisymmetric tensor in R
gap and €,p Metric an antisymmetric tensor on S? (89)
e, Polarization tensors 67)
&, (k) Polarization tensor for tensor plane wave (96)
fip(K) Fourier transform of &, (x) (67)
hy(k) Amplitudes for tensor plane-wave components (67)
L and L, Orbital-angular-momentum operator and its components
S Spin operator
Jand J, Total-angular-momentum operator and its components
J and M Quantum numbers for total angular momentum and its z component
[l and m Quantum numbers for orbital angular momentum and its z component
L L, L . .
(ml my ms ) Wigner-3;j symbol (A7)
L L L . .
{ml my m ]» Wigner-6; symbol (B4)
(lymy Lymy|TM) Clebsch-Gordan coefficient (20)
V,(x) Vector field (15)
R (X) Tensor field (67)
Ve(k) Fourier coefficients for vector field (15)
Ve(x) Scalar fields for « = L, E, B components of vector field (64)
he(x) Scalar fields for « = L, VE, VB, TE, TB components of traceless tensor field (114)
P(k) Power spectrum for density perturbations %)
P, (k), Pr(k) Power spectra for longitudinal and transverse modes of vector field 17)
P (k),P_(k) Power spectra for left- and right-circularly polarized vector fields (18)
P, (k) Power spectrum for transverse-traceless mode of tensor field (68)
Wk(x) Solutions to the Helmholtz equation for wave number k& (D
d(x) Scalar functions 3)
d(k) The Fourier transform of ¢(x) 3)
& (1m) (k) TAM-wave transform of ¢(x) 8)
£(x) Scalar for longitudinal component of A, (67)
w,(x) Transverse-vector field for vector component of h,, (67)
hIT(x) Transverse-traceless part of &, (67)
Pk (x) Scalar plane-wave mode 2)
Pk (x) Vector plane-wave mode for polarization @ = L, 1, 2 (13)
A (x) Circularly polarized vector plane-wave mode for helicity A = *1 (18)
Jji(x) and n;(x) Spherical Bessel functions of the first and second kind 9)
Y1y () Scalar spherical harmonic 9)
en Spherical basis for vector (19)
A Spherical basis for tensor (70)
Y(l]M)a(ﬁ) Vector spherical harmonic of OAM [, for [ =J —1,J,J + 1 (20)
Y(L; M)a(ﬁ) Vector spherical harmonic in the longitudinal/transverse basis for « = L, E, B 44)
Y, ("JM)H(ﬁ) Vector spherical harmonic of helicity A = 0, =1 51
Y(l JM)ab(ﬁ) Tensor spherical harmonic of OAM [, for [ =J —2,...,J +2 (71)
Y&M)ab(ﬁ) Tensor spherical harmonic for « = L, VE, VB, TE, TB (92)
Y ("JM)ab(ﬁ) Tensor spherical harmonic of helicity A = 0, *1, *2 (99)
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W) (X) Scalar TAM wave (©6)
\II(JM)a(x) Vector TAM wave of OAM [, for [=J —1,J,J + 1 (20)
W(JM)a(x) Vector TAM wave in the longitudinal/transverse basis for « = L, E, B (35)
\If (X) Vector TAM wave of helicity A = 0, *1 (36)
V V( Ty V()‘JM) Vector TAM-wave coefficients (54)
\II(JM)H,,(X) Tensor TAM wave of OAM [, for [=J —2,...,J +2 (71)
‘l’(JM)ab(x) Tensor TAM wave for « = L, VE, VB, TE, TB (85)
‘I’(JM)ab(x) Tensor TAM wave of helicity A = 0, =1, =2 (87)

( M) h( ) h()‘jM) Tensor TAM-wave expansion coefficients (102)
Aé M) A( vy AE\JM), Plane-wave expansion coefficients for vectors 47)
Bf M) Bf‘JM), B()‘jM), Plane-wave expansion coefficients for tensors (96)
D,, M,, and K, Differential operators 30)
Ny, M, and K, Operators normal (N,) tangential (M | ,, K,,) to S? 39)
TS, Differential operators generating ‘I’( Tanap from AT (82)
we, Differential operators generating Y (Mab from Y, (90)
T(fd, T{a, T Transformation matrices between different vector bases (37)
v, U4, U ¥ Transformation matrices between different tensor bases (88)
A, Lensing deflection field (118)
I, Projection tensor (38)
n and nq Conformal time and its value today (118)
() and Qi) Projected lensing potentials (119)
©umy and Q) Lensing-potential spherical-harmonic coefficients (120)
C%? and C$% Lensing angular power spectra (120)
5% (k) Density-perturbation transfer function (122)

a(n) and D,(n) Scale factor and density-perturbation growth factor (122)

77 1n y-p g
(I)( Jﬁ,,) Primordial amplitude for TAM wave of density perturbation (122)
Fe OV (k) Lensing transfer function for density perturbations and gravitational waves 124)
CEE and CEB Lensing angular power spectra (126)
T(k, m) Time evolution for gravitational wave (127)
f (kr) Radial eigenfunctions for gravitational-wave transfer functions (133)
O(x,q;n) Radiation perturbation (144)
@5‘/ M Expansion coefficients for radiation perturbation (144)
E;‘/ M(x, q) TAM eigenfunctions of x and § (144)
q Direction of photon momentum (144)
0., mth component of irreducible-tensor operator of rank / (C2)
(0 Vector operator for « = L, E, B 57)
’Df7 - Wigner rotation matrix (C4)
R An O(3) rotation (C2)
products of TAM-wave coefficients have expectation — ylk(x)=(] / KV, Uk (x)=ik,e™x,
values,

1Lk _ k
(277)3 Vet (x)= (VX2¥*(x)),
<¢(lm)(k)¢z<l/m/)(kl)> = 5D(k k/)gll' mm'P(k) (12) | X |
— 1 b vbch/k (X) — l[k X Z]a ik-x
A a c S 4
IV. VECTOR FIELDS |k x| Ik 2]
2,k _ bayrl.k
A. Plane waves Vot (x)= 6 bcv e (x)
We now generalize to vector fields. Again we begin b

v g ds. Ag gin oy L (V,V,— 2., V)2 K (x)

eviewing plane-wave vector solutions to the Helmholtz k| k X 7| a
equation. Three solutions to the vector Helmholtz equa- ik X (kx2)]
tion, (V2 + k*)¥,(x) =0 can be obtained, for each =— T T, kx (13)

A ’
Fourier wave vector k, as klk X 2]
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where Z is a unit vector in the z direction, and €, is the
totally antisymmetric tensor. Here PLk(x) is a longitudi-
nal vector field, and W5¥(x) and ¥2¥(x) are the two linear
polarizations for the transverse part of the vector field.
We could have written Eq. (13) more simply as X¥(x) =
i8X(k)e™ >, with 8L = k, and £.? two other unit vectors
orthogonal to k, and to each other. We have written in
Eq. (13) one choice for these polarization vectors explicitly
in terms of a fixed unit vector Z to motivate a choice of
polarization vectors for the TAM waves later.

These mode functions are normalized so that they con-
stitute a complete orthonormal set,

f BxWeka()WEH )] = 2w 8p(k — k)8ap  (14)

where «, B8 ={L, 1,2}. The three mode functions are,
furthermore, orthogonal at each point. An arbitrary vector
field V,(x) can then be expanded as
&k
2m)’
+ V2(k)PEK(x)], (15)

Va(x) = [VEI) Wk (x) + V! (k) We* (%)

in terms of Fourier expansion coefficients,

VL (k) = [ PrV [V (x)]
__ f d3x[\lfk(x)]*%V“Va(x),

(k) = f PV (X))

_ f d3x[‘I'k(X)]*|k—>1<2|6abc2"vaC(X),
P2(k) = f & xVa(x)[W2* (x)]"
o LS ) P LA AR ST

(16)

We obtain the last equality in each line by integrating
by parts.

The statistics of the vector field are given in terms of
power spectra P; (k) and Pp(k) for the longitudinal and
transverse components, respectively, that satisfy

(VER)V (k) = 2m)*8p(k — K)PL (),
(VI(K)V*(K)) = 27)*6p(k — k) Pr(k), (17)
(V2(K)V*(K)) = 2m)*6p(k — k') Pr(k).
The decomposition of the transverse component into the
two modes V¢ (a = 1, 2) is not rotationally invariant—the
decomposition would be different if we had chosen a

different direction for Z—so the power spectra for the
two must be the same. However, we can alternatively

PHYSICAL REVIEW D 86, 125013 (2012)

decompose the transverse-vector modes into plane waves
of right and left circular polarization, or positive and
negative helicity,

1
2

Since W2X(x) = —(i/k)e,p. VPP E<(x), these modes are
invariant under rotations about the k direction and thus in
some sense more ‘‘physical” than the 1 and 2 linear polar-
izations. It is possible (although it would require parity
breaking) that P, (k) and P_(k) could differ. In the absence
of parity breaking P (k) = P_(k) = Py(k).

Vik(x) = = (W) £ Vi) a8

B. TAM waves

The aim now is to find vector-valued functions V,,(x) that
satisfy the vector Helmholtz equation, (V> +k*)V,(x)=0,
for definite wave number magnitude k, and that trans-
form under spatial rotation as representations of order J.
In other words, we seek eigenfunctions of total angular
momentum J =L + S, where L, = —i€,, x’V¢ is the
orbital angular momentum and S is the S =1 spin
associated with the vector space spanned by a set of
basis vectors at each spatial point. This differs from
the case of scalar fields where, with spin § = 0, total-
angular-momentum eigenstates coincide with orbital-
angular-momentum states.

Our strategy will be to first construct vector-valued
eigenfunctions of total angular momentum that are also
eigenfunctions of orbital angular momentum . We will
then construct linear combinations of states of definite total
angular momentum JM that are curl-free (the longitudinal
component) and divergence-free (the two transverse com-
ponents). We will then decompose the TAM waves also
into helicity eigenstates.

1. The orbital-angular-momentum basis

From the usual set of Cartesian basis unit vectors e, =
o4, for w = x, y, z, one can construct a spherical basis e/
form=+1,0, —1, through3

e =

e, eX = TF(el +iel)/\2. (19)
These constitute a complex but global basis, so these unit
vectors commute with differential operators. Under spatial
rotations, they transform as an /=1 representation.
We know for the spatial part of the eigenfunction that the
conventional scalar-valued spherical harmonics Y, (fi)
form a representation of order [/ of the spatial rotation
group. Vector-valued eigenfunctions of total angular mo-
mentum are therefore constructed via the usual scheme for
adding two angular momenta [19],

*Barred indices like /i are reserved for the order-1 spherical
basis.
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\I,lk

(JM)a(X) = .]l(kr)y(l]M)u(ﬁ)

= D (Amlm|IMYj(kr)Y g (R)egi,  (20)

where (I;m;lym,|JM) are Clebsch-Gordan coefficients.
Here,/=0,1,2,... . M=—-J,—J+1,...,J—1,J,and
Il=J—-1,J,J+ l The TAM waves \I’(JM) (x) are also
eigenfunctions of orbital angular momentum squared
L2 = L°L, with eigenvalue /(I + 1). The angular parts
Y(’ JM)u(ﬁ) (three-dimensional vector spherical harmonics
of given total and orbital angular momentum) are
normalized to

J R Q01 Y, 8) = B3 @)

There are three eigenfunctions for given total angular
momentum JM distinguished by their orbital angular
momentum /. The TAM waves are normalized so that

fd3x[4mj‘lffjkM) x)] 477'1]/\1’{/;,1,)“()()
27)3
= 811’5JJ’8MM’( ) Splk — k). (22)
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We also have that

Kdk [4arilWhka (x) T[4 WK (x)]
JM[ (2 )3 ) (UM)a

UM
= dp(x — x'), (23)

which demonstrates that the \Ifé M)

plete basis for vector functions on R*. To show this, we use
the definition in Eq. (20) to rewrite the left-hand side as

(x) constitute a com-

k*dk
JMZ @my?

- [; [ kzdka(kr)jz(kr')]Z[Y(lm?) ()], (R).

JMI

(47T .]/ kr)]l(kr/)[Y]M)(n/)]*Y(lJM)a(ﬁ)

(24)

The k integral is
2 291 ; 1 /
2 [Rakjwnitir) = S optr =) @3)
T r

and the sum then becomes

S Yy @Y @) =33 (Lindm|IMY U I/ |TMOLY (1 ()™ T 1) (B)

JMI JMI mm m! !

JMI min m! !

Imm m'm’

3 Z<1mlm|JM><1m’lm’|JM>[Y(,m)( A Y gy (R) 8
Z Z [Y(lm)(ﬁ/)]$Y(lm’) (ﬁ)aﬁlm’amm’

= D [Y ) @)Yy (B) = 5 (R — ), (26)

Im

from which Eq. (23) follows. Note that this also demon-
strates that the Y, (’ jM)a(ﬁ) constitute a complete basis for
three-dimensional vectors on the two-sphere.

2. The longitudinal/transverse basis

The next step will be to construct linear combinations
of these OAM waves that are longitudinal and transverse.
To do so, we must calculate the divergence and curl
of \I’é JkM) (x). The result for the divergence, detailed in
Appendix A, is

_Vﬁ(kr)jJ(kr)Y(/M)(ﬁ), I=J—1,

=7

_szjtr (kr)j,;(kr)Y pp(B), 1=J+ L.
(27)

=

rV“\IffJM)a(x) =

Since the parity of a given OAM state is (—1)/, and the
basis vectors in Eq. (20) of odd parity, we choose

transverse-vector fields of parity (—1)’ and (—1)’*! to
be, respectively,4

(JM)a(x) z\If{JM)a(x), and

J+1 NIVES
(JM)a( X) = 2J+1 (JM)a( X) — 2J+1 (JM)a :

(28)

The basis functions for the longitudinal field may then be
taken to be

“The parity of (—1)’ for the vector B mode and (—1)’*! for
the vector E mode differ by —1 from the parities of the E/B
tensor spherical harmonics. However, the expansion coefficients
for the vector E and B modes have, as we will see below, parities
(—1)’*1 and (—1)’, as do the tensor-spherical-harmonic expan-
sion coefficients. The reason traces back to the transformation
property of the vector field under a parity inversion.
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’ ’J +1
(JM)a(x) [ 2J+1 \P(JJA/})a(X) 2J+1 \P(]JJZFV})a ]

(29)

The prefactors have been chosen so that the three sets of
eigenfunctions are normalized as in Eq. (22). We thus have
a complete orthonormal set of basis functions, of fixed total
angular momentum, for the transverse and longitudinal
components of a vector field.

3. The longitudinal/transverse basis in terms
of derivative operators

There is, however, an alternative and useful route
to these longitudinal and transverse basis functions.
In Appendix C it is proved that if an operator O is
an irreducible tensor under rotations, then JZCOY( M) =
J(J + 1)OY ;py) and J, OY ;) = MOY ;). We can there-
fore construct vector TAM waves by applying appropri-
ately defined vector operators to scalar TAM waves.

Consider three vector operators

S
Il
N
g
i

—iL, M, = e, D'K°. (30)

These are irreducible-vector operators, and they all
commute with V2. They therefore yield, when acting on
scalar TAM waves, TAM vector waves of total angular
momentum JM that are also solutions of the vector
Helmbholtz equation. These three sets of vector ﬁelds

must be linear combinations of \I’( JM)(X) forl=J—1,
J, J+1 or \IIZM)(X) for « = L, E, B. Since the three

operators satisfy

DK, = KD, = 0,
MeD, =2,

DM, = 0,
KM, = MK, = 0,

(3D

it follows that D, generates the longitudinal vector

field D \I’fJM)(x) o« ‘I’(jM)a(x), while K, and M, generate

divergence-free vector fields. Since K, is axial-vector-like
|

K
Bmode: ¥8 = (x) = —2X_¥
(M T+ 1)

M,

)

E mode: VE

(JM)( ) ahcv \PgM)L(X) =¥

(JM) (x) =

PHYSICAL REVIEW D 86, 125013 (2012)

and M, vector-like, parity considerations tell us that K,

generates the B mode, Ka\I’{(JM)(X) \I}fn]\(/[)a(x)’ while M,
generates the E mode, Ma\IffJ 2y (X) \Iffjjlf,l)u(x).

The operators D,, K,, and M, are also operators in the
Hilbert space of vector-valued fields, so we can calculate
their Hermitian conjugates to be

(Da)‘r = Da’ (Ka)+ = _Ka)

(32)
M)t =-Mm,+2D,.

Thus, when acting on W¥ the three operators have

(M)’
norms

(D)tD, =1, (KHTK, = L°L
MtTM, = L°L, = J(J + 1).

=JJ+ 1), 3

These results enable us to normalize the vector TAM waves
and to reproduce the longitudinal/transverse basis. This
operator approach has the advantage that many calcula-
tions involving vector or higher-spin TAM waves can be
reduced to the algebra of operators that act on scalar
spherical waves. The following properties of the three
operators will be useful in calculations:

[Da’ Db] = 0’ [Ka’ Db] = 6abch’
[Mar Db] = 8ab — Dan’ [Ka’ Kb] = eachCJ (34)
[Ka’ Mh] = eabcMc’ [Ma’ Mb] = _eachC'

We can gain insight into the operators D, K, and M, from
the far-field limit kr — oo, where D, is approximated by an
ordinary vector in the radial direction, and K, and M,
asymptote to two orthogonal vectors in the plane perpen-
dicular to the radial direction, when they act on a scalar
TAM wave. The factor of i in the definition of D, is chosen
sothat D, = — Iga in this limit. The sign convention for the
E/B vector TAM waves is chosen so that if we rotate the
E mode by +90° about the direction of wave propagation
we obtain a B mode.

To summarize, the decomposition into longitudinal and
transverse modes is

J
(UM)a (X)’

abcvb (JM)C(X)

(AN I\
_’[(2J+1) \P(’M)“(X)_<2J+1> Vi )]

longitudinal mode: W(;, . (X) = Dy Wy (x) = z[(

J \V2 J+1\V QI
1) e+ () Wi e] 69
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4. The helicity basis

We can define another basis, denoted by the helicity
A =0, =1, by

%) =—2=[V,,, (x) =W, (x)]
Vi) \/‘ (M) (M) 6

(JM)a(X) (JM)u (x).

These are eigenstates of the helicity operator H = S - p,
where (S,),c = i€, is the spin operator and p, =
—iV,/k the normalized momentum operator, with eigen-
values A.

We may summarize the transformation between
the three bases—labeled by [ =J, J — 1, J + 1 for the
orbital-angular-momentum basis, a« =B, E, L for
the longitudinal/transverse basis, and A =1, 0, —1 for
the helicity basis—by the transformation matrices,

10 0
T/ =il 0 N —ywE |,
0 Vb &S
i 10
N
o=|o o 1] (37)
—i 1
sz 5V

J+1 _ J

2 2027+1) 2027+1)
J J+1
2J+1 27+1

—i J+1 _ J
2 2027+1) \/2(21+1)

J_.
Ty, =1

=)

5. Projection onto vector spherical harmonics

Here we have constructed three different bases for three-
dimensional vectors on R*. We now show how the angular
components project onto the more familiar vector spherical
harmonics Y(b; e (M) and Yg wa (D), for two-dimensional
vectors that live on the two-sphere. These vector spherical
harmonics are given by

—-r
YE () = ———=V Y (),
(UM)a J(J T 1) Lat (M)
) - RES)
Y(I;M)a(n) = 6abcﬁbch(JM)(n):

JIT+ 1)
both of which have 7 Y GMya (h) =

V., =I1,2V, is the gradient operator in the A-¢ space,
and I1,, = g,, — 71,7, projects onto that space. In addi-
tion, we can define a third vector spherical harmonic
Ypa(®) = —A,Y(u)(B) to account for the component
of a three-dimensional vector in the normal direction.
This set of three vector spherical harmonics pro-
vides a complete set of orthonormal basis functions for
three-dimensional vectors that live on the two-sphere.

J UM)a (). Here

PHYSICAL REVIEW D 86, 125013 (2012)

We can obtain these vector spherical harmonics using an
operator approach that parallels that which we developed
for TAM waves. Define three dimensionless irreducible-
vector operators,

N,=—h,  K,=—iL, M, = € N°K".

(39)

These are analogues of the three operators D, K,,, and M,,
we defined to derive vector TAM waves, but they act on the
Hilbert space of all functions of f; i.e., they do not act on
the radial coordinate r. This new set of operators satisfies
precisely the same algebra as the set {D,, K,, M,}. They
are orthogonal to each other,

N,K* = K,N* =0, N,M{ =0, (40)
M, ,N* =2, KM =M, ,K* =0,
and they are normalized to
(N)tNe = N,N* =
(K,)'k* = —-K,K* = L%, (41)
(M )tMY = —M M =12

As operators in the Hilbert space, their Hermitian conju-

gates are
(Na)T = Na’ (I(a)‘r = _Ka’ (42)
(MJ_a)T = _MJ_a + 2Na'

Furthermore, they satisfy the algebraic relations,

[NarNb]:O [MJ.arNb]z(gab_NaNb),
[MJ_a’ MJ_b] = _eachcJ [Ka! Kb] = EachC’ (43)
[Kw Nh] = 6achc’ [Ku’ MJ_h] = Gubch_'

The two operators K, and M, generate the two
transverse-vector spherical harmonics YgM)a(ﬁ) and

Y(‘jM)a(ﬁ), in terms of E/B modes, while N, generates
the longitudinal vector spherical harmonic Y(LJM)a(ﬁ) in
the normal direction. In summary,

N 1
Y{'}M)a(n) = ml{ Y(JM)(U) (,M)a(n)
N 1
Y. B) = D) M | Y (yu(B)
J+ 1 (&) — Y (g
20+ 1 Yiomna 21 1Yo
Yiuna®) = NoY () (B)
J+1
J—1 I ()
2J + 1Y<JM>a( o)+ \/21 1Y (®)
(44)
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normalized so that

,/dQA[YJM)(n)] (J’M’)a() 0y Omum Sap (45)

for @, B ={E, B, L}. Note that although the relations
between the OAM and E/B/L vector-spherical-harmonic
bases in Eq. (44) resemble those between the OAM and
E/B/L bases for TAM waves in Egs. (35) and (37), there
are subtle, and important, sign differences. The minus sign
in the definition of N, is chosen to match D, = —lga.
The sign convention for E/B vector spherical harmonics
is chosen so that a rotation of the £ mode by +90° about
the outward normal direction (i.e., the direction of i)
yields the B mode.

Finally, we can write the £/B/L TAM waves in terms of
the E/B/L spherical harmonics:

Wi () = j, (k) YE, ) (R),
\I’fjfw)a(x) —zl:jj(k ) +JJ(kr):| (JM)H( i)

k
/—J+ JJ( V) (JM)a( ),
—ivJ(J + I)JJ,(C—I;)Y(EJM)Q(ﬁ)

— iy (kr) Y}, (). (46)

Wf]ﬁfl)a (X) =

Although the mode functions are orthonormal, we now see
that they are not orthogonal at each point. Although the L
and B modes are everywhere perpendicular and the £ and
B modes everywhere perpendicular, the L and E vector
TAM waves are not always perpendicular. The B mode has
components only in the 6-¢ plane; i.e., n“‘I’fJM)a(x) =0
The E and L modes most generally have components in the
tangential plane and along the normal n. In the far-field
limit kr — oo, however, the three modes are asymptotically
perpendicular to each other.

6. The plane wave expansion for vector fields
We now determine the transformation between the vec-
tor plane-wave basis and the vector TAM -wave bases. We
start with the OAM basis. Since the ¥** = (x) constitute a

complete basis, we may write,

&,(k)elkx = Z4m’AfJM)(k)\I’(JM)a(X)
1M

= > 4mi'Al) (K)ji (k)Y (B). (47)
UM

(UM)a

Here &, is a (unit) polarization vector for the wave. The
coefﬁc1ents A JM)(k) may be obtained by writing ¢’* X in
the usual scalar plane-wave expansion,

Ea(K)e™™* = 4l j(kr) Y7, (K)Y () (B)E,(K).  (48)

Im

PHYSICAL REVIEW D 86, 125013 (2012)

We then use orthonormality of the Y(l . M)a(ﬁ) to infer that

Al (k) =

We can similarly expand in terms of L, E, B modes, or
helicity modes, as

8KV, (K). (49)

g k)e™* = % N amilAg, (k)WL (x),
| a=LEBJM 5 (50)
&,(k)ekx = 24771 A(JM)(k)‘I’(JM)a( X),
A=—101JM
in terms of expansion coefficients
(k) = &)Y, (K),
(JM) (/M) 51)

(JM)(k) = s“(k)Y()‘J’ﬁw)u(k).

Here, the spin-1 vector spherical harmonics are YA~T1 =

UM)a ~—
2*1/2[Y5M)a * i¥f,,)- These are related to the usual

spin-1 spherical harmonics , Y, () [25,26] by

LA =0 %1
(52)

4 (K)Y Y an oK) = _,Y 5 (K)S 01,

Here, &4 (k), for A = 0, =1, are the polarization vectors for
a vector plane wave with wave vector k and helicity A. This
equation defines our phase convention for £,. In terms of
basis vectors in spherical coordinates, these are defined as

! i¢").  (53)

A

&y = n‘, g4, = (

-I- |

7. Expansion of vector fields and power spectra
An arbitrary vector field V,(x) can be expanded in the
OAM basis by

k*dk

=3 S [V i v, )
JM [=]—-1,J,J+1 (2 )

(54)
in terms of expansion coefficients,
Vi () = f PxVOR AT, T, (55)

As we show in Ref. [27], these can also be written as
vector-spherical-harmonic transforms,

Vi k) = [ PRV (K)Y (0, (K), (56)

of the vector Fourier coefficients. Analogous relations hold
for the L/E/B and helicity bases as well.

For the L/E/B basis, we may use the operator approach
discussed above to rewrite the expansion coefficients in
terms of scalar TAM waves by integrating by parts:
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Ve, () = [ PRV AT, )T

x)]* (57)

= [@xvetaniogvl,,

= [ @1 v W, (T

where O = {D,, K,, M,}, and the Hermitian conjugates
of each operator are as given in Eq. (32). Explicit expres-
sions for the expansion coefficients are

Vi k) = f Px[Ami W, (0D, V(x),  (58)
VB, () = f P4V, T (K )V, (59)

V() = [ @xlamio vl (0 (M, + 2D)V(x),

(60)
Likewise the coefficients for the helicity basis are

Vim® = V<LJM>(")’ 6D

A==*1(7) — E — B
V(JM) (k) = \/—E[V(JM)(k) F zV(JM)].

In other words, the expansion coefficients for vector TAM

waves are the same as the coefficients of the scalar TAM

waves for the following three scalar functions:

VL(x) = D,Va(x) = éva Ve(x) = év V), (62)

VE(x) = =K, V(x) = €uex"VV(x) = [x X V] V(x),

(63)
VE(x) = (=M, + 2D,)V*(x)

= k abcvaCV“(X) +2- V 2Vx) (64)

- %[{v X (x X V)} +2V] - V(x).

These scalars may be useful to calculate the theoretical
expectation for TAM-wave coefficients.

Suppose now that V,(x) is written in terms of its longi-
tudinal and transverse parts and that these have power
spectra P; (k) and Py (k), as defined in Sec. IVA. It follows
then that

<[ _]M)(k)]* (JIMI)(kI)>

27)3
= PT(k)SH/(SMMﬁaB%SD(k — k), (65

for {«, B} = {E, B}. Similarly,

(277)3

WV RTVE i (k) = PL(KYS 1S ygpgr =5 Bk — K),

(66)

PHYSICAL REVIEW D 86, 125013 (2012)

for the longitudinal modes. The projections of a linearly-
polarized transverse-vector plane wave onto the E and B
vector TAM waves have equal amplitudes. Therefore, the
power spectra for the E and B modes must always be the
same for a realization of a statistically homogeneous ran-
dom field.

V. SYMMETRIC TENSOR FIELDS

A. Introduction and plane waves

We now consider solutions to the Helmholtz equation,
(V2 + k?)h,,(x) =0, for a symmetric tensor field
hap(X) = higp)(X) = [h,p(X) + hp,(x)]/2. The most gen-
eral such tensor field can be decomposed into a trace
component /(x), a longitudinal component £(x), two vec-
tor components w, (with V4w, = 0), and two transverse-
traceless tensor components hTT (which satisfy V¢hIT =0
and h*, = 0), as

1
hap = hgap + (V V, - gabv )f + Vigwy) + b}

(67)

Our goal is to derive rank-2 tensor solutions to the
Helmbholtz equation, of definite total angular momentum,
for these different components.

We begin, though, by reviewing the Fourier decomposi-
tion of the rank-2 tensor field. Each Fourier component of the
tensor field can be expanded as 7, (k) = Zssj;b(f()hx(k)
in terms of six polarization states &9,(k), where s =
{0, z, x, y, +, X}, for the trace, longitudinal, two vector, and
two transverse-traceless polarizations, respectively, with
amplitudes #,(k) [28]. The polarization tensors satisfy
g'es, =28,y. The trace polarlzatlon tensor is &, o
84p, and the longitudinal is &2, o (k“k> — k*8,,/3)k 2.
The two vector-mode polarization tensors satisfy gni o
kiawy; where wy” are two orthogonal (w*“wy = 0) and
transverse (k“wy” = 0) vectors. The two transverse-
traceless polarization states have k% |, = 0.

The two vector (spin-1) modes x, y can alternatively
be written in terms of a helicity basis by defining two
helicity-1 polarization tensors &} = (¥, = ie’,)/+/2.
Similarly, the two transverse- traceless (spin-2) modes +,
X can alternatively be written in terms of a helicity
basis by defining two helicity-2 polarization tensors

632 = (s, * isy)/V2.

In general relativity, power spectra P;(k) for gravita-
tional waves (transverse-traceless tensor fields) h,, are
defined, for example, by

(hy () (K)) = 8oy (28 (K — k’)Ph(k), (68)

for s, s’ = {+, X}, so that

(hap(K)AP(K)) = 2m)* Py (k)8 S p(k — K'). (69)
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B. TAM waves

Our aim now is to find tensor-valued functions 7, (x),
solutions to the tensor Helmholtz equation for wave num-
ber k, that transform under spatial rotation as representa-
tions of order J. These will be eigenfunctions of total
angular momentum J = L + S. Here the spin can be either
S = 0 for the trace of &, or S = 2 for the tracefree part.
The expansion of the trace is simply in terms of scalar
TAM waves. We will therefore focus our attention in the
following on tracefree rank-2 tensors. Therefore, S is now
the S = 2 spin associated with the vector space spanned by
a set of basis tensors at each spatial point.

We start by constructing a rank-2 spherical basis 77,
for m = *2, *1, 0, that transforms under rotations as a
representation of order 2 by taking direct products of the
order-1 spherical basis,’

D (Limy liny|27)e

mymy

my iy

a' €y’

A (70)
Using orthonormality of Clebsch-Gordan coefficients,
these are normalized to (/™))" = 8, 5 .

1. The orbital-angular-momentum basis

We begin by expanding the five components of the rank-
2 traceless tensor in terms of five tensor TAM waves of
definite orbital-angular-momentum-squared L? for each
total angular momentum JM, as

Tkt —1
V2= Vs (x),

T—1 _\rkJ
v2(2j+1)\P(JM)b(X)’

T+D0IF3) g/ 1
Vear—nern ¥ Ump

T12_arkd
2027+ l)\I’(JM)b(X)’

(x),

1 Lk
; Ve \II(JM)ab

(x) = —

J+2pkJ+1
L 2]+3qI(JM)b

PHYSICAL REVIEW D 86, 125013 (2012)
= jikr)Y (0 (B)
= Qimnlm|lIM)jy(kr)Y 1) ()1,

I=J-2J-1J,J+1,J+2 71)

an equation that also defines the OAM tensor spherical
harmonics Y, (I’J%)ab(ﬁ). These OAM tensor spherical har-
monics of fixed orbital angular momentum satisfy the

orthonormality relation,

A ! K (A
fd2 “b(n)Y(ZJ/M/)ab*(ﬂ) = 61187y Opm-
The demonstration that the \Ifé’JkM)a
basis for traceless symmetric tensors on R3, and that
Y(l IM)a b(ﬁ) constitute a complete basis for three-dimensional

Lk
\P(JM)ah

(x)

ny!

M) (72)

»(X) constitute a complete

traceless tensors on S?, are straightforward and similar to the
analogous proofs for vector harmonics presented in
Sec. IVB 1.

2. The longitudinal/vector/transverse-traceless basis

We now proceed to write the five traceless tensor
harmonics for each JM in terms of a longitudinal (L)
component, two vector components (VE and VB), and
two transverse-traceless components (7E and 7B). In
Appendix B we derive the divergence of the tensor spheri-
cal waves of fixed orbital angular momentum in terms of
vector spherical waves to be

I=J-2

l=J—-1
e ™

[=J+1,

I=J+2

Note that the divergence of a tensor of fixed total angular momentum JM yields a vector of the same JM, since we have

acted with V, an irreducible-vector operator.

The transverse-traceless modes. We can, from these results, immediately construct two linear combinations of

‘I’f}lM)a ,(x), of different parity, with vanishing divergence,
J+DT+2) /2, 3(J—-1)(J+2)\1/2 JUJ-1) 1/2
Wi = ) - (DY ) w0
unas(X) 227 = 1)(2J + 1) ntyas(X) (27 = 1)(2J +3) nyas(X) 2(2J + 1)(2J +3) utyap(X)
J+2\1/2_ J—1\1/2
i) = (21 n 1) Yian () = (2_]—+]) Wty X)- (74)

These two spherical waves form a basis for the transverse-traceless (TT) part of the tensor. We label them E and B

according to their parity, (—1)7 or (—1)’*!, respectively.

>Tilded indices like 77 are reserved for the order-2 spherical basis.
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The vector modes. The divergence of the vector component of the rank-2 tensor yields a divergence-free vector field.

Recalling that the vector harmonics i\If(J na(X) = \Iffj Ma

tensor field by taking the other orthogonal linear combination of ¥/~ 1

mode should have a divergence that is proportional to V£,

(UM)a

(x) are divergence-free, we can construct one vector mode of the

(x) and P/ H)a ,(X). Likewise, the other vector

(JM)ab UM

(x), but it should also be orthogonal to the transverse-traceless

modes we already obtained. After some algebra, we find the two vector modes of the tensor to be

1 J+2\1/2
\P(VJII;VI)ab( ) = (2] + 1) lI,(J\Illll)ab(x) (2] + 1) \P(JJ-;dl)ab(X)’
VE _ 20 -1 +1) )1/2 Jos < )1/2 B 2J(J +2) 12 s
Yo (x) ((21 - 1D@J+1) Viiyar®) * (27— 1D(Q2J +3) Unyas () ((21 +1)(2J + 3)) Vo )
(75)

These form a basis for the vector part of the tensor field.
The divergences of these basis functions are,

vmp(\ﬁ@ab(x) J_ (JM)b(X)

(76)
vaq’(v]ﬁ/l)ab(x) \/— W (X)-
It then follows that the vector TAM waves of the tensor
field can be obtained from the transverse-vector spherical
waves through,

(JM)ab(X) \/—(v \II(JM)b(X) + vb (jM)a (X)):
(77
‘I’E’ffmab(x) = \/_(V ‘If(jM)b(x) + Vb\I’fiM)a(x)).

The longitudinal mode. The last orthogonal linear com-
bination of the orbital-angular-momentum states,

_ 3(0-1)J /2
\I’(LJM)ab(X) = (2(2] NGV 1)) ab(x)
JUJ+1) 1/2
i (W) W aap ()

\If{;ﬁ)ab(x), (78)

3J+ 1T +2) \1/2
(2(2] +1)(2J + 3))

decries the longitudinal component. To check, we find its
divergence to be

p
V“‘I’fmmb(x) \[ Wl (X). (79)

It implies that the longitudinal mode is the only one that
has nonvanishing double divergence,

2
il V“ AV \I’L Lata (x) = \/;I/(JM) (x), (80)

in terms of the scalar spherical wave W ;. Using this
result, it further follows that,

3 1
(JM)ah(X) \/;(vavb - ggabvz)qf(JM)(X)- (81)

3. The longitudinal/vector/transverse-traceless basis
in terms of derivative operators

As seen in Sec. IV B 3, the L, B, and E vector waves can
be written by applying the vector operators D,, K,, and
M, respectively, to scalar TAM waves. Likewise, we have
just seen in Eq. (81) that the TAM wave for the longitudinal
component of the tensor field can be written by applying
a derivative operator V,V, — (1/3)g,,V? to the scalar
spherical wave. We have also seen in Eq. (77) that TAM
waves for the vector components of the tensor field
can be written by taking a symmetrized gradient of the
transverse-vector spherical harmonics; i.e., by applying the
operators V(,K;) and V(, My, to scalar spherical waves.
We now present an operator approach so that we have
a complete treatment of symmetric traceless tensors in
terms of tensor differential operators, including the two
transverse-traceless tensor modes.

Using the three vector operators D,, K,, and M, we
have proposed as basic building blocks, we construct five
tensor operators

1
—D,D, + 3 8ab

oy = DKy, Ty = DMy,
TTB = K(aMb) + M(aKh) + 2D(a[(b),
TTE = M( M,y — K Ky + 2D(,M}).

L _—
Tab_

(82)

These are irreducible tensors since they are symmetric and
traceless, and they commute with V2. Therefore, when acting
on scalar TAM waves ‘If( M) they generate symmetric tensor
TAM waves that solve the tensor Helmholtz equation and
have the same total angular momentum JM. We have seen
that TL, generates longitudinal mode, and 77 and TVE
generate B and E vector modes, respectively. It is straight-
forward to show that D*TTE = DATTE = (), so they gener-

ate transverse-traceless tensor modes. The parity-odd 778
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TBk
(JM)ab(X)

the parity-even TTF generates the E mode,

TEApk
T, ‘I’( M)
independent tensor modes, because they are orthogonal

according to

generates the B mode V¥ o TTBpk ,(x), while

G %
TE,

W (X) &

(x). The five operators generate five linearly

(Te)tred =0, if @ # &,
for @, o’ = L, VB, VE, TB, TE.

(83)

To normalize the tensor spherical waves, we calculate the
norms of those five tensor operators to be
|

PHYSICAL REVIEW D 86, 125013 (2012)

2
(Télb)-r TL,(lb = 5 bl

JUJ +1)

iz = e <TI0 g
2(J +2)!

TTE TTTE,ab — TTB 'I'TTB,ab — .

(17) (17) P

To summarize, the decomposition of the traceless
symmetric rank-2 tensor into longitudinal, vector, and
transverse tensor modes is

3(J-1)J

/-2 (X)

3
longitudinal: W, (x) = ‘/; ThW ) (x) = (

227 - 1)2J + 1)

(JM)ab

)

JUJ+1) 3 3J+ DH(J +2)
+ ’\I]J + J+2
((21 - D2J + 3)) unan(™) (2(2] +1(2J + 3)) Untyan %)
vector Bmode: WVB (x) = 2 B 0 (X) (J l)zqrf L (x) + (f+2 )zqﬂﬂ (x)
(JM)ab J( J+1) ab (M) 27+1 (JM)ab 2J+1 (IM)ab 2/
[ 2 20-DU+ D\,
VE =_— | = TVE = J=2
vector Emode: W/, () JU+ l)T“b W) (X) ((2] “D ¥ 1)) Wiatas(X)
3 2J(J +2)
+ \I/J+2 )
((2] — DRI+ 3)) FiomnanX) = ((21 NI+ 3)) uar®)
B d \pTB — _ (‘] 2) Bl J+2 /-1 J—1 /1
transverse tensor B mode: W{7}, , (x) = 2T+ 2)] TTEW 1) (x) (21+1) UatranX) — <2J+1) Uitras ),
,(J 2)! +DU+2) \io
TE — TE — T2
transverse tensor E mode: ‘I’(JM)ab( X) = U+ 2)'Tab W (x) (2(2] ST+ 1)) ‘I’(JM)ab(x)
(30U -DU+2) JJ —1) e
((2] - DI+ 3)) Yina®) + (2(21 +1)2J + 3)) Vi ®)- 85

The normalizations are chosen such that

167 ] PV (W (x)
27r)3
= 501,3511/5MM/ ( ) 5D(k kl), (86)

where{a, B8} = {L, VB, VE, TB, TE}. Again, the five modes
are orthogonal as tensor wave functions in the Hilbert space,
but their tensor values at any given point are not necessarily
orthogonal, as we will see below. This orthogonality does
hold asymptotically in the far-field limit kr — oo.

4. Summary and helicity basis

So far we have constructed two sets of TAM-wave bases
for symmetric traceless tensors. The OAM basis
W(jsnap(X)s Where I =J =2, J—1,J,J+1,J +2 for
each JM, are eigenstates of the square of orbital angular
momentum L2. We have also defined a second basis
‘If(“JM)ab(x) in terms of a longitudinal mode & = L, two

vector modes o« = VE, VB, and two transverse-traceless
tensor modes o« = TE, TB, for each JM. We can further-
more construct a helicity basis W} ,(x), denoted by

helicity A = =2, *£1, 0, through

(UM)a

(JM)ab(X) \/_(\I,(Tﬁvl)ab(x) \P(lefld)ab(x))’
Vi) = J5 (VL 00 = W, 000, 8
qI?JM)ab(X) = (JM)ah(X)‘

These are eigenstates of the helicity operator H = S - p,
but for the tensor field, (S,)up.cd = i€uec8ba T i8ac€peds
and p, = —(i/k)V,.

The orbital basis ‘I’fJM)ab(x), forl=J-2,J—1,J,
J +2, J+ 2, the longitudinal/vector/transverse-traceless
basis 6M) ,(x), for @« = L, VE, VB, TE, TB, and the
helicity basis ‘I’(JM)ab(x), forA=0, +1, —1, +2,
related by unitary transformations,

—2, are
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J(J+1)
Va-D@i3) 0

PHYSICAL REVIEW D 86, 125013 (2012)

3(J+1)(J+2) \
V2(21+1)(2J+3)

30—-1)J
/Vz(zj—l)(zjﬂ) 0
20-DU+1) 3 _ [ 200+
V(21—1)(2J+1) 0 \/(21—1)(21+3) 0 V(21+1)(2J+3)
J = J—1 /J+2
Va 0 27+1 0 27+1 0 ’
T+DU+2) _ [30=DU+2) JU—1)
I e ES)) 0 Va3 0 P ESY )
J+2 _ [u=1
\ 0 27+1 201 0 )
/1 0 0 0 0
0 /N2 1/52 0 0
ul,=10 —i/s2 1/42 0 0 | (88)
0 0 0 i/N2  1/\2
0 0 0 —i/N2 1/\2
30—1J JU+1D) EEED)
/V2(2J—1)(2J+1) 0 VD@3 0 V2 D@+3) \
(J-DU+1D s J—1 3 - [J+2 _ J(J+2)
Yor-D@i+n ’\/2(21+1) \/2(21—1)(2J+3) l\/2(21+1) V<21+1)(21+3)
J = =DU+1) | J-1 3 e[ J+2 _ JU+2)
U Vor-D@i+n ’\/2(21+1) \/2(21—1)(21+3) l\/2(21+1) V(21+1)(2J+3)
1\/(J+l)(1+2) i‘/ J12 _ [30-DU+2) —i\/ J—1 1\/ JU—1)
2\N@I—D)@I+1) 2027+1) 2027-1)(27+3) 227+ 2N @I+D@2I+3)
1 J+D(J+2) 3J-1DJ+2)

1 JUJ—-1)
i\/(21+1)(21+3) )

_[x2
2V Q- D@I+ D) ’\/2(21+1)

5. Projection onto tensor spherical harmonics

We now describe the projection of three-dimensional
traceless tensor TAM waves onto the two-sphere. We will
begin by reviewing the projection onto the familiar E/B
tensor spherical harmonics [8] in the é—(ﬁ space perpen-
dicular to i. We will then generalize these two basis tensor
spherical harmonics to include three more that will con-
stitute a complete orthonormal basis for three-dimensional
traceless tensors that live on the two-sphere, parametrized

by n.
The usual E/B tensor spherical harmonics are
defined by
2
YE o p(0) =
an(®) \/J(J T - DU +2)
1 ~
X (V4 + 5 249V Yo B),
Ve rs®) = :
(TM)AB 2J(J + (I = DU +2)
X (EBCVCVA + GACVCVB)Y(JM)(ﬁ), (89)

where here {4, B} = {6, ¢}, and V, is a covariant deriva-
tive on the two-sphere, with metric g,z = diag(1, sin’6)
and antisymmetric tensor €,p.

The operator approach developed in Sec. IVBS5
for vector spherical harmonics can be generalized to

2(2J-1)(2J+3)

R

- =1
’\/2(2J+1)

tensor spherical harmonics. Recall that the operators
{N, K, M ,} satisfy the same algebra as the operators
{D,, K,, M,} do. Therefore, following the same line of
reasoning we construct five tensor operators,

Wi, = —N,N, + %gub,

Wiy = NuKy), WYE = N My,
WIB = KMy + My Ky + 2N K,
WiE =My M1y — KoKy + 2N M1y,

(90)

for tensor spherical harmonics. These symmetric and trace-
less operators conserve total angular momentum, since
they are irreducible tensors. The last two operators are
perpendicular to the radial direction, A9W!E = AeWIB =
0, so they must generate the £/B tensor spherical harmon-
iCS, ﬁaWZhEY(JM)(ﬁ) < Y(’I}I]?W)ab(ﬁ) and 7n“ WZEY(JM)(ﬁ) &
Y(Tlﬁ,f)a , (M), respectively. Here Y, (Tﬁl)ab(ﬁ) and Y(Tﬁma L ()

correspond to the E/B tensor harmonics Y(EJM)AB(ﬁ),

Y 5M) ,z(M), but under a three-dimensional orthonormal
basis, denoted by lower-case indices a, b, .. .. In addition,

the WYE and WYE, when acting on ordinary spherical
harmonics Y|, (fi), generate VE/V B tensor spherical har-
monics Y(‘;%ab(ﬁ) and Y(‘ﬁ,,)a , (M), respectively, with com-
ponents in both the tangential plane and normal. Similarly,
WL, generates the longitudinal tensor spherical harmonics
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Yt UM)a ,(1). For the tensor spherical harmonics, the terms ““longitudinal,” ““vector,” and “transverse,” refer to the nature of
the tensor components with respect to the normal 71,. To be more specific, we define

N 3 . R 2 R . ’ 2 .
Y(LJM)ab(n) = ‘/;W(I;bY(JM)(n)r Y(‘ﬁ,,)ab(n) = - —J(J T I)WX;,EY(JM)(D), Y(‘ﬁ,l)ab(n) = - 4J(J T 1)WX£Y(JM)(H),

J -2 . J—2)! R
YJM)ab( ) == 2(.] T 2)!W11TI£EY(/M)(H)’ (JM)ab( ) = 2(] T 2)!W11T£Y(/M)(n)' oD
In terms of the OAM tensor spherical harmonics Y, ! Ma b(ﬁ), for l =J,J = 1, J = 2, the longitudinal/vector/transverse-
traceless basis Y&M)ab(ﬁ), a =L, VE, VB, TE, TB, are found to be

o . 3J(J — 1) JU+1)
longitudinal: Y{;,, , () = _(2(2J D+ 1)> Y + ((2J TGV 3)) Y (B)

30+ DU +2) V.
- (2(2] F 12T + 3)) Yt (@),

20 = I+ 1) 3
((2] “ D+ 1)) Yintian®) + ((2] D+ 3))

2J(J +2) S
! <(2J +1)(2J + 3)) Y ihas®),

vector E mode: Y(‘;EM)ub(ﬁ) =— 'y

(IM)ab (i)

R J—1 J+2 .
vector B mode: Y(‘;l]f/,)ab(n) <2J - 1) YJM)ab( n) — (2] - 1) Y(Jﬁ,})ab(n),

J+DU+2) y 3(J -1 +2)
(2(2J - D2J+ 1)) @) - ((21 - 1QJ + 3)) Va0 ®)

YJZ

transverse tensor E mode: Y(T]ﬁ,l)ab(ﬁ) = — b

_ ( JJ 1) > Y42 (),
2027 + 1)(2J + 3)) ~ UMab
transverse tensor Bmode: Y2 (fi) = J+2 YJ 1 (f) + — 1 %YJ o (f). 92)
T (IM)ab 2] +1 (UM)ab 2] +1 (UM)ab

These are normalized to
J R T Y1000 8) = 8108 93)

for a, B = {L, VE, VB, TE, TB}. Note again that although the transformations between the OAM and L/VE/VE/TB/TE
bases for the tensor spherical harmonics resemble those for the transformations between the analogous bases for TAM
waves, there are important sign differences.

In terms of the tensor spherical harmonics, the TAM waves ‘I’f}j‘l)a b(x) can be written,
V3IJ+ DT =D +2)j,(kr)

‘I’fjﬁmb(x) (Jj(kl”) +3g,(kr)Y (0 B) = V3T + D) f (k)Y (B) — > k)2 Y(hnan (),
\I}é{JX/IE)ab( X) = \/m J(kr)YJM)ab(n) (Jy(kr) +2g,(kr) + 2f!(kr))Y(JM)ab(n)
—JU-DJ + 2)(fj(k )+2](Jk(k)rz))YJM)ab( ),
\Pflﬁf)ah( X)=— LA 1)(;_ DU=2) J(Jk(k)rz) Y@ =V — DU +2) (f](k r)+ ZJ(Jk(k)rz)) Y (B)
1 kr
2( jitkr) + g (kr) +4f ,(kr) + 61(1( )2))YJM)ab( ),
Wi 00 = =i 160 =2 ) - T E DR
W (%) = —ifT— DU D) ’("’) YVE ()~ l( (k) + 27 Jl(ck’))y s (), (94)
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Here we have introduced radial profiles,

iy O3

x2

g/(x) = —j,x) —2f,(0) + (- DU +2)

The components proportional to the transverse Y, (Tjﬁl)ab(ﬁ)
and Y[7, ,(A) harmonics are projections onto the
2-sphere. These are the components of principal interest
for angular measurements on the sky. Equation (94) shows
that the different tensor TAM waves are not everywhere
orthogonal, even though they are orthonormal, although
they do become asymptotically orthogonal in the kr > 1
limit. Both the VB and TB tensor TAM waves have pro-
jections onto the VB and TB tensor spherical harmonics.
The L, VE, and TE TAM waves have projections onto the
L, VE, and TE tensor spherical harmonics. The phases in
our definitions of the tensor spherical harmonics are chosen
so that a rotation of a TE (VB) mode by 45° (90°) about i
produces a TB (VB) mode.

6. Plane-wave expansion for traceless tensor fields

We now determine the transformation between the ten-
sor plane-wave basis and the tensor TAM-wave bases. We
start with the OAM basis. The ‘I’éfM)ab constitute a com-
plete basis, and we can write

Eap(K)e™X = amilBl, (K)W(S, . (x)
M (96)

> 4ai'Bl,, (k)i (k)Y (00).
UM

Here &,,(k) is a normalized polarization tensor for the

plane wave. We use orthonormality of the Y(l JM)a(ﬁ) to

obtain the expansion coefficients,

Bl (k) = 8 ()Yl o (K). (97)
We can similarly expand in terms of \Ifl(‘)%ab, for a =L,
VE, VB, TE, TB modes, or helicity modes, as
Eap(K)e®X =% 4mi' By, (K)WY, (),
' a IM X . (98)
(KX =3 > 4mi' By, (K)WG, ()
A=0,£1,22JM
where the expansion coefficients are
a ) — aab ax N
B(JM)(k) - & (k)Y(JM)ab(k)’ (99)

B(AJM)(R) = é“b(k)Y{‘J’%ab(R).

Here, the spin-2 tensor spherical harmonics are

A=%2 _ 5—1/2[yTE yTB
defined as Y(j /= =2 /[Y(JM)abilY(JM)abl
271/2[YVE

Y/\:tl —
(JM)ab
jYVB A=0 _ yL
(JM)abilY(JM)ab]’ and Y0 0 = Y. These
are related to the spin-2 spherical harmonics Y JM)(ﬁ)

[25,26] by

PHYSICAL REVIEW D 86, 125013 (2012)

8 R)Y {apan (&) = 1Y ()80,

for A, A" =0, £1, £2. (100)

Here, 84°(k), for A =0, =1, *2, are the polarization
tensors for a tensor plane wave with wave vector k and
helicity A. This equation defines our phase convention for
840, In terms of basis vectors in spherical coordinates,
these are defined as

1
~ab __ ~a Ab Ab A Aab — _aa A
87_#1_—2[8511” ten ] 84, =—8%81,
. B ) (101)
ab _sap
80 == §<§80b n'n ),

where £§ and &%, are defined in Eq. (53).

7. Expansion of tensor fields and power spectra

An arbitrary symmetric traceless tensor field 4,;,(x) can
be expanded in the orbital-angular-momentum basis by

hab(x) = Z Z

K2dk -
[ By (OATIWEE (),

IM I=J,J*1,J+2 Qm)?
(102)
with expansion coefficients,
higan (k) = / Bxh (O[4mit Wi, (0T (103)

These can also be written as tensor-spherical-harmonic
transforms [27],

Lk ;. Ta * [,
Ty = [ ERTP0YG,, (K)

of the tensor Fourier amplitudes. Again, similar relations

hold for the L/VE/VB/TE/TB and helicity bases as well.
The expansion coefficients for the L/VE/VB/TE/TB

basis can also be rewritten, by integrating by parts, as

(104)

w0 = [ BTG, (0T

- f Pxh ()[4 T W, ()T (105)

= [ @xUTg) et oY Wy (0T,

where T, are the operators defined in Eq. (82). Their
Hermitian conjugates are given by

1
(T(I;b)‘[- = _Dan + ggab’

(TYE)Y = =MDy, + 2D,Dy, (106)
(T;/Zf})T = _K(an)r
(TIT = M(My) — KoKy — 4M( Dy
- 2D(a]wb) +8D,D,, (107)
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(T = MK}y + KM}y — 2D, Ky — 4K(,Dp).  (108)

We can thus write the expansion coefficients for tensor
TAM waves as coefficients of the scalar TAM wave for the
following scalar functions:

) = [ =DuDy + 500 1)
1

1
2 [vavb - ggabvz]hab(x), (109)
VEer — _ A1 g | R
]’l (X)—_p EeaCVKdvb—i_EEbCVKdva
+ 2VaVb:|h“b(X), (110)
hYP(x) = — iK@Vb)h””(X), (111)

1 1
hTE(X) = [ﬁ{_ E(eacdchdEhefver

+ ebcdchdeaefver) + 2each"KdVb
+ ZGdechdva + Vaebch”Kd + Vbeacdchd

- 8Vavb}— K(aKb)]hab(X) (112)

1
hTB(X) = — 5 é[Eacdchde + EhcdchdKa
+ K€, VK, + K,€,.VK, + 2V, K,

+ 4K,V Th (x). (113)

Here, K, = €,,.x"V©.

If h,,(x) is written in terms of longitudinal/vector/
transverse-traceless parts, and if these have power spectra
P, (k), Py(k), and P;(k), then

a s« (277)3
X 8p(k = K),
a, B=TE, TB. (114)
a B (277)3
X 8p(k — k),
a, B=VE,VB. (115)
B3 (277)3
[y R By (K)) = PL(k)BJJ"SMM"Sa,BT
X 6plk — k). (116)

For both the vector and transverse-traceless modes, the E
modes and B modes have the same power spectra, a con-
sequence of statistical homogeneity.

PHYSICAL REVIEW D 86, 125013 (2012)

VI. CALCULATION OF LENSING
POWER SPECTRA

In this section we provide as an example of the TAM-
wave formalism the calculation of lensing power spectra
by density perturbations and by gravitational waves. We
will reproduce results from previous work [29-33], which
were obtained with the Fourier expansion. For clarity,
we only take into account the weak-lensing contribution
from the deflectors (density perturbations or gravitational
waves) along the line of sight. However, the measured
weak-lensing signal also contains other contributions. In
particular, metric shear, gravitational-wave effects at the
source location [29], and tidal alignment dominate the
power spectrum for lensing by gravitational waves [34].

Our aim here will be to calculate the lensing deflection
field,

11
Ay(R) = o [ i dn/[ﬁbheb
No — M Jn

1 .
- _(77/ - n)ncndvehcd] ’
2 (n'.(n0=n")h)

(117)

where 11, = g,, — 7, A, is the projection tensor onto the
tangential plane. Thus, the deflection field has no radial
component and can be viewed as a two-dimensional vector
field on the two-sphere. Here, h,;(7, X) is a (rank-2) tensor
metric perturbation evaluated at conformal time 7.
The deflection field A,(fi) on the two-sphere can be
decomposed into gradient and curl components,
A, () = M ,e(h) + K, Q(R), (118)
where M , and K, are the two transverse-vector operators
in Eq. (39), and ¢(f) and Qi) are projected lensing
potentials. Here we will calculate the contribution A ,(fi)
that arises from (a) a scalar TAM wave of angular momen-
tum JM; (b) an E mode transverse-traceless TAM wave of
JM; and (c) a B mode transverse-traceless TAM wave of
JM. We will then be able to reproduce the power spectra
C¥% and C?Q for density perturbations and gravitational
waves that have been obtained earlier by considering indi-
vidual Fourier modes. These power spectra are defined by,

<§D(JM)9D?]/M/)> = 8]]’8MM’C¢¢’

<Q(JM)QZ<]’M/)> = 8]]’5MM’C?Q’

(119)

where ¢ ;) and ) ;) are spherical-harmonic coefficients
for (i) and Q(f1), respectively. The deflection field can be
expanded in terms of vector spherical waves by,

Aa(ﬁ) = Z VJ(J + 1){¢(JM)Y5M)a(ﬁ)
JM

+ Q) Y2y, ()} (120)
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A. Scalar metric perturbation

Suppose we have a single TAM wave for a density
perturbation. This is described by a metric perturbation,

hab(n/» (770 - n’)ﬁ)

9 D(n) R
=4me%)Jng¢ﬁ%wﬁm«mrﬂﬂnMw,(UD
where D,(n) is a linear-theory growth factor, a(n) is the

kp
(M)

Newtonian potential for wave number &k and total angular
momentum JM. We then have

scale factor, and @ is the primordial amplitude of the

1 o
- 5(770 - nl)nbncvahbc

— =200 = ) 0 AT, Wy (o = i)
il = )T (R 2L k(= i,

10 a(n’)
(122)
Using Eq. (46), which provides the projection of \I’f}ﬁd)(x)

onto the plane normal to 7, we find that this single k/M
mode of the scalar field gives rise to a deflection field,

A R) = VIU + DO, PRy, B),  (123)
with
) = 21 [ dy —
5 o (mo— m(ng—7)
X 21 gy = ). (129
a(n’)

We thus see that a given TAM wave of JM gives rise only to
spherical harmonics in the deflection field of the same JM.

|
\/%J.J—z(kr)ya,})b(ﬁ),

1. .
Vz(éH])JJ* 1 (kr)Y(JJM)b(n),

~ 1 _ . [ U+DQRIFI) vI-1
na\P(JM)ab(X) = 1 JJ(kr)( ‘\/6(2J71)(21+1)Y(JM)b
_‘\lz(éj;-gl)jJ+l(kr)Y{jM)b(ﬁ)’

L _\/%J'Hz(kr)Y{ﬁ,,l)b(ﬁ),

It then follows that,

A, (x) = w/Wm_l(m) i)V ) = i S EDI D )

which lies entirely in the plane normal to i, and

PHYSICAL REVIEW D 86, 125013 (2012)

The absence of a curl (B) mode is a consequence of the fact

that the longitudinal TAM wave \P(LJM)Q(X) has no projec-
tion onto Y SM)(ﬁ) [cf. Eq. (46)]. We can equivalently con-
clude that this particular kJ/M TAM mode of the potential ®

gives rise to a spherical-harmonic coefficient afJM)(k) =

k.p
(I)(JM)

from the complete random field is then given by summing,

Ff(k). The E mode deflection-angle power spectrum

2
CEE = J(J + 1)Ce* = f RdkPo(OIF, (P (125)
o

over all kK modes with this JM, in agreement with results
obtained by summing over Fourier waves, rather than TAM
waves.

B. Tensor metric perturbations

The TAM formalism will have more power, however, for
tensor metric perturbations. So consider now a TAM wave,

hap (', (o = )R) = hiyy, Tk 7)YPE L, (1o — 1)),
(126)

of a transverse-traceless metric perturbation. Here,
we will take X to be either E or B (although we could
have alternatively considered A = =2 modes in the
helicity basis), T(k, ') gives the time evolution of
modes of wave number k, and hf}}lf/l) is the primordial
amplitude of the mode. From Eq. (118), we will need to

calculate the tangential projections of ﬁ“‘l’fﬁ,’)ab(x) and
ﬁ“ﬁtvh‘lfﬁ%ac(x). Using the transformation in Eq. (88)
between the OAM and L/VE/VB/TE/TB bases and the
relations, Eq. (94), between the tensor TAM waves and the

tensor spherical harmonics, one can show that

I=J-2,
I=J—1,
m)+Jm%%%&#ﬁ%gm) 1=, (127)
=17+ 1,
I=17+2.
(128)
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(x) = \/(J D + D +2),
—1)22J + 1)

+ JJ+z(k’"))YJJ;,,l),,(ﬁ)

J— DI+ DH(J+2 kr JJ = DU +2) jy(kr) 0y
_ \/( 2>E2H>1<) ) Js ;ii ) Vil (@) - ! <2(2J><+ ; ) Js zii )Y(JJMl)h(n) (129)

This vector has components both in the normal direction and in the tangent space. The projection onto the tangent space is

M, WE, (x) = /wkl [ i (kr) +Jf(k’)] YE 0 (8). (130)

The first term in Eq. (118) contributes

JU -1 +2)

N H\I[‘E
227 +3)*27 + 1)

(JM)ab

(y—alkr) + j (k) Y[, (8) _\/ (s (kr)

J—1DH{J +2) T(k, m')
AGO gy — iy JUZOUE Dy (7 ko= 7)), (13D
o 2 Vi w7 g — kg — 7 0 77
where the radial functions are
ij;(kr), for X = B,
¥ (kr) ={ B (132)
]J(kr)-i-]’T, for X = E.

We now turn to the second term in Eq. (118), that proportional to A7,V h 4. Using Vi, = (gu, — Aghp)/r = Tl /7,
we can write

ﬁ ﬁ \Y% hcd \ (I’l ndhcd) (veﬁc)ﬁdhcd i (v nd)hcd \% (l’l ndhcd) 2(veﬁc)ﬁdhcd
2

= V. (i Aghcq) — m

l_lecA hcd (133)

Given that 1T, IT¢,. = II ., we see that the second term here is similar to what we calculated before. It thus contributes,

o CEITEEI , TGk, )
AGVH) ) = hf,;;)\/ YE (@) f dn —n)7<<no T i =) (34

to the deflection field. Now consider the first term in Eq. (134). We have already seen for the B mode that n”\I’B M ab(x)
i i h(x) 0, and this term does not contribute to the curl (B mode) Using

is perpendicular to 7%. Thus, A*A°>WE
\/2/—+1Y(JM)(ﬁ)r l=J—-1,

(UM)a
Eq. (130) and
ﬁ“Y(IJM)u(ﬁ) =40, =1, (135)

“’2‘/_'_ Y(JM)(n) l— J + l

~anb (J +2)! j,kr) .
AR FVM (Jkr)z Y (). (136)

When we now take the gradient —M |, = rII,,V? of this in the tangential plane, the operator acts only on the spherical
harmonic. Using M1 .Y (i) = VI + DY, . we find,

hei ’(J—l)(J-f-Z) JUJ+1) .
I, Vi d\P(TJﬁ/I)cd( X) = - ) 12(ny — ,)3 Ji(k(ng — /))Y(IiM)a(n)' (137)

We thus find that this term contributes

we find
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LI =-DU+2) o7 (' = )Tk ')
ATVEI (@) = 54| —S——I0 + DY, @) | dn’ Jilk(no = ). (138)
2 2 (Ma n (Mo — MkA(ng — 1) J1 ko
In summary, a single B-or E-mode TAM wave contributes a deflection field,
ASV(@R) = hiy I+ DFFYX (YY) (R), (139)
for X = {E, B}, with
J-1DNU+2) 1 n T(k, m")
FSVB(k if¢ f d '— k 140
and
’ =D +2 T k, k !
FGWE(k )( )/‘ / ( 77)/ 2{[ /(k( _ /)) +]J( (7’0 ’7))]
2J(J +1 Mo ') k(no — n')
+1 - -7
JU+1) = Jj(k(ﬂo ))}. (141)
2 mo—m kg —
|
The power spectra are then obtained from Ox, q:n) = Z @)Z:/JM (W)EZ’/JM (x, §), (143)

2 P,k

for X = E, B, by summing over all X modes with this JM.

VII. BOLTZMANN EQUATIONS
FOR CMB FLUCTUATIONS

TAM waves can also be used to provide an alternative
set of Boltzmann equations to calculate CMB power spec-
tra. Our discussion here is preliminary; we leave the full
calculation to future work [35]. There is some overlap,
although not complete, with what we discuss here and
work in Ref. [17], and also in Ref. [36].

The radiation perturbation @(x, q; n) is most generally a
function of position x, the photon direction ¢, and confor-
mal time 7. This perturbation satisfies a Boltzmann equa-
tion, a partial differential equation in time, space, and in
photon direction q. In the standard treatment [37], one
considers a single Fourier mode ®(x, ) = ®y e of
wave vector k of the gravitational potential (or of the
gravitational-wave field). The spatial dependence of
O(x, §; 7) must also then be = ¢’**, The ¢ dependence
is, however, then expanded in spherical harmonics. Since
the end result, the power spectrum Cj, is a rotational
invariant, one generally then chooses k || Z so that the
spherical-harmonic expansion for the § dependence of
0 (q; ) becomes in practice an expansion in Legendre
polynomials P(cosf,) = ¥(;0)(q).

Alternatively, though, the gravitational potential can be
expanded ®(x, 1) = 74P (MW, (%) in terms of

Wi (%) = J,(kx)Y (g4 (%) (or for ten-
sor perturbations, in terms of tensor TAM waves). The
most general radiation perturbation associated with this
scalar perturbation can then be expanded in terms of states
of TAM JM,

scalar TAM waves

kJM, Il

where the total-angular-momentum eigenfunctions (which
are also eigenfunctions, of quantum numbers / and I, of x
and q angular momentum, respectively) are

ENM(x, q) = > (Iml'm’' |TM) 1 (kx) Y 1 R)Y (1) (@)

mm'

(144)

It now follows that the angular dependence of the
observed radiation from a spherical wave with quantum
numbers kJM will be proportional to Y|, (q). We take the
observer to be at the origin. We then note that the radial
eigenfunctions j;(kr) all vanish at the origin unless
[ = 0. Thus,

OF =0,4:n) = > 0, =M (x =0,9)
w

= M) ELM(x =0, §)
= OLM(00IM|IM)Y 00)(R),jo(0)Y (y41) (@).
(145)

In the TAM approach, therefore, calculation of the CMB
temperature fluctuation boils down to calculation of
©5/™(n). The Boltzmann equation for this particular
coefficient, however, will be coupled to those for all
@Z,J M We thus trade the infinite tower of equations for
the / =0, 1,2,... coefficients ®,(k) for each wave number
k for an infinite tower I,I'=0,1,2,... for the coefficients
®Z,J M for a particular J. The advantage, though, is that
each TAM wave of JM contributes only to C;. Thus, the
power spectrum C; can be evaluated for a single J. There
may also be conceptual advantages to this approach, even

if there are no immediate numerical advantages.
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VIII. CONCLUSIONS

In this paper we have obtained complete sets of basis
functions, specified by their total angular momentum JM,
for scalar, vector, and tensor fields on R3. We have written
three such sets of basis functions, one in terms of orbital-
angular-momentum states, one in terms of an L/E/B or
L/VE/VB/TE/TB decomposition of the vector and ten-
sor fields, and a third in terms of states of definite helicity.
In the process, we have also shown how all five compo-
nents of a rank-2 traceless symmetric tensor field, includ-
ing the transverse-traceless components, can be written in
terms of derivative operators acting on scalar fields, a result
that may be useful for basis functions beyond those, based
on spherical coordinates, that we have derived here.

We have shown how the projections of these three-
dimensional vector and tensor fields onto the two-sphere
yield the familiar E/B vector and tensor spherical harmon-
ics. We found that an £ mode on the two-sphere may arise
from either a longitudinal vector or tensor mode or from E
mode vector or tensor TAM waves. Conversely a B mode
on the two-sphere is seen to arise from a projection of
a vector or tensor B mode. We also generalized the two
usual E/B tensor spherical harmonics to account for the
three other possible polarizations of a traceless three-
dimensional tensor field. We showed how the five TAM
waves project onto these five tensor spherical harmonics.

A realization of a random scalar, vector, or tensor field is
usually described as a collection of plane waves with ampli-
tudes selected from some distribution. We have shown,
however, that a random field can also be realized as a collec-
tion of TAM waves, and we have shown how the power
spectra for these TAM-wave amplitudes are related to the
power spectra for the more familiar plane-wave amplitudes.
The advantage of TAM waves over the simpler but more
naive outer product of the tensor spherical harmonics with
radial wave functions is that such basis functions are not
necessarily eigenfunctions of the Laplacian. They therefore
do not follow a simple evolution during the linear regime at
late times, and they are not normal modes during inflation.

The utility of TAM waves in cosmology is apparent
given that most observations are performed on a spherical
sky. Many calculations of cosmological observables,
which are usually performed by considering the projection
of a single Fourier mode onto a spherical sky, can be
performed alternatively by considering a single TAM
wave. The angular dependence of any observable on a
TAM wave of total angular momentum JM must then be
a scalar, vector, or tensor harmonic (depending on the
observable) of that same JM. We showed, as one example,
how the calculation of power spectra for the lensing-
deflection field for gravitational lensing by density pertur-
bations and gravitational waves is carried out in the TAM
formalism, and we made preliminary remarks on the pos-
sible utility of the TAM formalism in numerical evaluation
of CMB power spectra. The full power of the TAM

PHYSICAL REVIEW D 86, 125013 (2012)

formalism will be manifested most clearly, though, in the
calculation of higher-order correlations (e.g., angular bis-
pectra) in models with non-Gaussianity, particularly those
involving vector and/or tensor fields. The basic idea here is
that the Wigner-Eckart theorem guarantees that angular
correlations of three TAM waves must be proportional to
a Clebsch-Gordan coefficient, along with some prefactor
that will depend on the tensorial nature of the waves. This
will be presented in Ref. [27].

The development of the TAM-wave formalism requires
considerable technical detail. However, once completed,
understood, and mastered, it may facilitate the calculation
of many cosmological observables.
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APPENDIX A: DIVERGENCE OF THE
VECTOR HARMONICS

1. Gradient of scalar TAM waves
First, we calculate the gradient,

vﬂq’fJM)(X) =V, j;(kr)Y ;5 (D),

of scalar TAM waves. Our derivation is based on
the Fourier transform. From Rayleigh’s formula [Eq. (5)],
we find the Fourier transform of scalar harmonics

J1(kr)Y gy (R) as

f dxjy(kr)Y gy (f)e 4

(AD)

. Onlg — k) X
- 2#(—0’%1&,1”)((1), (A2)
and rewrite the gradient as an inverse Fourier transform:
v, )=, [£9
u\P(jM)(X) — Va (277_3)

2

=S [ o itansnta -]

<[ [ 48,0 @Y, @ |¥om @)

(A3)

oplg — .
X [27T2(_l-)1 D(Z] k) Y(JM)(Q):Ielq.X

The radial integral trivially reads
[ b ikansota ~ 0 = kitkn,  ad

and the angular integral can be written as a Gaunt integral
by decomposing
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4T . o
?Zy(ln'q)(n)(_l)mea "

Then,
24848 ~ s A~ AT o . R A . R
a4, @G, (@) = 52D [ d4Y 1) @Y () @)Y, (@)
Z( [yim g 327+ DRI+ D1 g l) 1 J 1
4 \0 0 o\ M -m
Z( Mo A PRI+DRI+D T oy 1 LT
4ar \o 0 ON-m m —-M)
Here,
L1 ! 1
(ml n ;)Eﬁ“1>""2+”’3<hmllzmz|lgm3>,
1 2 —ns3 3

is the Wigner-3j symbol. Combining all, we find the gradient of the scalar TAM wave to be

I 1 11
VoW, x) = kY i~ f“,,(kr)Z( DMe (20 + 1)1 + 1 )(0 J)(_m N _JM>Y(,,,,>(ﬁ)

0 0

Im

21 +1
_kle J+1 k) l

[/ [1+1,
— J—1 J+1
k[ 27+ 1 omna ¥ g VX :|

where we have used that the relevant Clebsch-Gordan coefficient is nonzero only for

<lOlO|J0>Ze_’”<1 — mim|JM)Y ) ()

I+1 _7_
20+ 1 [=J—-1

—,/TIH, I=J+1

(1010]J0) =

2. Divergence of vector TAM waves

We can now derive the divergence, given in Eq. (27), of the vector TAM waves. We start with

P (x) = rV“[ j,(kr)Z<1mzm|JM>Y(,m)(ﬁ)e;ﬁ] = 3 (Unlm|IMyref 9 (k)Y (R),

and then from Eq. (A8), we have

aphk —
VW (x) = krz<1m1m|JM>e HzH (e 2z+ \Ifg;ml)a }

The sum can be simplified as
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D (lmlmlIMyef Wit (x) = jpy (kr) Y (Linlm|IMYel Y (1, L= 1 m! [ Im)Y ey ) (B) el

m,m m,m m',m!

= i1 (k1) Y. D (Umlm|IMXL 1= 1y m! | Im)Y (e gy (R)(—= 1) 8 5,

= i1 (kr) Y. D (=) Umdm|IMX1, 1% 1; = imm! | Im)Y g1 ) (R)
= i1 (k)Y N QT + D21+ 1) (—1)mrM b
[=1 oy m m —M
1 I+1 1 .
X ( —m m' _m>Y(lil,m’)(n)
. 11 J
. _1\m—1+M+m
= jieskn 3 SVRTEDRE D) (L)
1 1 1+1 .
X(m " _m/)Y(ltl,m’)(n)
. —_— 1 1 J\1 1 1=l .
=_Jlt1(kr)z. 2J +1 2l+1|:'§1(7’71 m _M)(I’Fl m _m/ )]Y(Zil‘m/)(n)

. 8, 121 B3t .
—],tl(kr)z V2J + 120 + I%Y(,ﬂ,mr)(n)
m'

. 21+ 1 .
= —j1(kr) —31,111Y(111,M)(n),

2J + 1
(A12)
from which follows Eq. (27).
APPENDIX B: DIVERGENCE OF TENSOR HARMONICS

In this Appendix we return to the use of our usual index notation for vectors and tensors so that vectors and tensors can
be distinguished by the number of indices. The divergence of the tensor TAM waves is

1 | P S\ 4 -~ L
2V Y ®) = Z(ZnﬁlmlJM)%(V“ Jik)Y )y (R0)ig, = 3 imlml M)W (x)15, (B1)

From Eq. (A8), we calculate

Wl 1y = 3 > LRl [Im) W ) (O Ly Ly [200)e™ (€ ;)
m'm mmy
= 3 S0, — i, V|2 Ul Iy ) (X)€" ®2)
my m'm

We first work out the sums over m, 1, and #. We trade Clebsch-Gordan coefficients for Wigner-3j symbols,

> (=) Qidm|IM)1, —m, 1iny |2m) 1wl m'|Im)

mmim

— Z (— 1)+ Mt mn [SOT 4 1) (2] + 1)(% L )( 1_ _1 2~ )( { l/l l

mm -M —m m, — aom o
= (—)MHHLY5020 4+ 1)(27 + 1) Z (= 1)HFmt1+im+2+m 1 2 1 rro1 1 2 7
min i m, —m —m —m om' ml\m m -M
1 J 1 7 J
:_1M+J+1521+12]+1{ } ’ .
SR C TR )
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where we have used the definition,
Ly L, Ly|(Ly L,
L L L |\M M,

L; - Z (= 1)l th+latm Fmytm; Ly b &
M3 mymyms Ml
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my  —m;j

l L, I ) [ L
% 1 2 13 1 2 3 (B4)
—my My, m3 J\my —my; Ms
for the Wigner-6j symbol. We are then left with
1 rJg 1 J -
— M50+ 1)(2J + 1 W (X)es?
mzzm; W50+ 1) )[l ) 1]("—12 iy _M) (%)
, 17 J 7
= — (=151 + 1) ;o1 Z Ay 'm!|[TIMYW () (X) eq?
mym’
T+l A
= —(—1)/*5021+1) ;a1 \I'(JM)a(x). (BS)
We evaluate the 6j-symbols explicitly and find
1 1 I—-1J B 1 1+1 J
VW (6) = —\/g(—l)”l({l , l}ﬁqf{m;)b(x) + {1 ; l}m\Péfﬁll)b(x)>
= _
T, 00, 1=1-2
N (), 1=J-1,
= | [U+rD@ei+3 - J2J—1) -
+ 6227—)1()(zj++)1)\1’(]11\41)b(x) + 6(2J(+1)(2J+3)\P(ij)b(x)’ I=J, (B6)
2(5731)‘1’(11114)17(")’ I=J+1
VBBV, 0, I=J+2

Note that we automatically obtain eigenfunctions of total
angular momentum as a consequence of acting with V, an
irreducible-vector operator, on a tensor eigenfunction of
total angular momentum.

APPENDIX C: IRREDUCIBLE TENSORS

In this Appendix, we show that irreducible-tensor op-
erators, when acting on a wave function, conserve the total
angular momentum, even though the spin might change. To
be more precise, let us consider the spherical harmonics
Y(jp) (), which are eigenfunctions of orbital angular mo-
mentum L? and L, for given JM; i.e.,

LZY(JM) == J(J + 1)Y(JM)’ LzY(JM) = MY(JM). (Cl)
Assume we have a group of irreducible-tensor operators
O, form=—1I,—1+1,...,1— 1,1, that transform as a
representation of order / under rotations. There are 2/ + 1
such operators, and Cf)fnY( Jm) 18 a spin-/ object, a tensor
wave function of higher rank. There will be spin operators
S,, for a = x, y, z, that act on such spin-/ objects. The total
angular momentum J, = L, + §, is then defined as the

sum of the orbital angular momentum and the spin. We
would like to prove that

FOLY = JU + DOLY .

(C2)
J, @fn Y(JM) = M@fn Y(JM)-

Consider a rotation R = ¢'9"/« acting on the Hilbert
space of spin-I/ wave functions, where ©“ parametrize
rotation angles. The orbital angular momentum L, gener-
ates rotations of configuration space, and the spin S, gen-
erates rotations of the internal tensor space; i.e., mixing of
the tensor components. Using the fact that L, and S,
commute, we have

ey ey ‘@b —i0c ‘&d
ez@) Ja @f'nY(J )= el@ L,L(ezG) Sy (Ozln)e i0 L“€l® LdY(J )

First we note that spin operators rotate O, contravariantly
by acting on the tensor index m (if the tensor basis trans-
forms covariantly),

050l = ¥ 0}, D, (R),

my

(C4)
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where we have introduced the Wigner D rotation matrices
D!, m,(R). Meanwhile, the orbital angular momentum
rotates Y(;,) covariantly,

ei@"L“ Y(]M) = ZY(JM])DJMIM(R) (CS)
M,

Finally, (95,,, being irreducible-tensor operators, are rotated
by the orbital-angular-momentum operators according to,

H a —_7 b
'L, ¢~1®"Ls = Z(f)iﬂzl)ﬁnzml(’R).

nmy

(Co)

From the above three equations, plus the unitarity of
Wigner D-matrices,

> Db (R)D, 0 (R) = 8,0, (C7)
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we find

e OLY 1y = z@fn Y(JMI)D;/IIM(R)' (C8)
M,

The derivation holds for any rotation R, so we conclude
that spin-/ objects O, Yy transform as a representation of
order J under rotations, and hence must be eigenfunctions
of total angular momentum, as described in Eq. (C2).

The proof is easily generalized if the Y, are replaced
by spherical harmonics of higher spin. Then the orbital
angular momentum L, is replaced by total angular mo-
mentum, while J, will be the new total angular momentum
which is obtained by adding the additional spin carried by
irreducible-tensor operators O.,,.

[1] A.H. Guth and S.Y. Pi, Phys. Rev. Lett. 49, 1110 (1982);
A.A. Starobinsky, Phys. Lett. 117B, 175 (1982); J. M.
Bardeen, P.J. Steinhardt, and M. S. Turner, Phys. Rev. D
28, 679 (1983).

[2] B. Ratra and P.J.E. Peebles, Phys. Rev. D 37, 3406
(1988); C. Wetterich, Astron. Astrophys. 301, 321
(1995); K. Coble, S. Dodelson, and J.A. Frieman,
Phys. Rev. D 55, 1851 (1997); M.S. Turner and M.J.
White, Phys. Rev. D 56, R4439 (1997); R.R. Caldwell,
R. Dave, and P.J. Steinhardt, Phys. Rev. Lett. 80, 1582
(1998).

[3] M.S. Turner and L. M. Widrow, Phys. Rev. D 37, 2743
(1988); B. Ratra, Astrophys. J. 391, L1 (1992); A. Kandus,
K.E. Kunze, and C. G. Tsagas, Phys. Rep. 505, 1 (2011).

[4] R.R. Caldwell, L. Motta, and M. Kamionkowski, Phys.
Rev. D 84, 123525 (2011); L. Motta and R.R. Caldwell,
Phys. Rev. D 85, 103532 (2012).

[5] K. Dimopoulos, M. Karciauskas, D.H. Lyth, and Y.
Rodriguez, J. Cosmol. Astropart. Phys. 05 (2009) 013;
A. Golovnev and V. Vanchurin, Phys. Rev. D 79, 103524
(2009); N. Bartolo, E. Dimastrogiovanni, S. Matarrese,
and A. Riotto, J. Cosmol. Astropart. Phys. 11 (2009) 028;
A. Lewis, Phys. Rev. D 70, 043518 (2004).

[6] J.M. Bardeen, Phys. Rev. D 22, 1882 (1980); H. Kodama
and M. Sasaki, Prog. Theor. Phys. Suppl. 78, 1 (1984);
V.F. Mukhanov, H. A. Feldman, and R. H. Brandenberger,
Phys. Rep. 215, 203 (1992); A.R. Liddle and D. H. Lyth,
Phys. Rep. 231, 1 (1993); K. A. Malik and D. Wands,
Phys. Rep. 475, 1 (2009); C. G. Tsagas, A. Challinor, and
R. Maartens, Phys. Rep. 465, 61 (2008).

[7] V.A. Rubakov, M. V. Sazhin, and A.V. Veryaskin, Phys.
Lett. 115B, 189 (1982); R. Fabbri and M. d. Pollock, Phys.
Lett. 125B, 445 (1983); L. F. Abbott and M. B. Wise, Nucl.
Phys. B244, 541 (1984); A. A. Starobinsky, Sov. Astron.
Lett. 11, 133 (1985).

[8] M. Kamionkowski, A. Kosowsky, and A. Stebbins, Phys.
Rev. D 55, 7368 (1997); Phys. Rev. Lett. 78, 2058 (1997);

M. Zaldarriaga and U. Seljak, Phys. Rev. D 55, 1830
(1997); U. Seljak and M. Zaldarriaga, Phys. Rev. Lett.
78, 2054 (1997); A. Stebbins, arXiv:astro-ph/9609149; M.
Kamionkowski, A. Babul, C. M. Cress, and A. Refregier,
Mon. Not. R. Astron. Soc. 301, 1064 (1998).

[9] W. Hu, Phys. Rev. D 62, 043007 (2000).

[10] K. Tomita, RRK Report No. 82-3.

[11] M. Bucher and J. D. Cohn, Phys. Rev. D 55, 7461 (1997).

[12] A. Challinor, Classical Quantum Gravity 17, 871 (2000).

[13] K.B. Fisher, O. Lahav, Y. Hoffman, D. Lynden-Bell, and
S. Zaroubi, Mon. Not. R. Astron. Soc. 272, 885 (1995).

[14] A.F. Heavens and A.N. Taylor, Mon. Not. R. Astron. Soc.
275, 483 (1995).

[15] A. Rassat and A. Refregier, Astron. Astrophys. 540, A115
(2012).

[16] B. Leistedt, A. Rassat, A. Refregier, and J.L. Starck,
Astron. Astrophys. 540, A60 (2012).

[17] L.R. Abramo, P.H. Reimberg, and H.S. Xavier, Phys.
Rev. D 82, 043510 (2010).

[18] J.D. Jackson, Classical Electrodynamics (Wiley,
New York, 1999), 3rd ed.; P. M. Morse and H. Feshbach,
Methods of Theoretical Physics (McGraw-Hill, New York,
1953).

[19] D.A. Varshalovich, A.N. Moskalev, and V.K.
Khersonskii, Quantum Theory of Angular Momentum
(World Scientific, Singapore, 1988).

[20] W. Hu and M.J. White, Phys. Rev. D 56, 596 (1997); W.
Hu, U. Seljak, M. J. White, and M. Zaldarriaga, Phys. Rev.
D 57, 3290 (1998).

[21] E. Di Dio and R. Durrer, Phys. Rev. D 86, 023510
(2012).

[22] A. Heavens, Mon. Not. R. Astron. Soc. 343, 1327
(2003).

[23] P.G. Castro, A.F. Heavens, and T. D. Kitching, Phys. Rev.
D 72, 023516 (2005).

[24] K.S. Thorne, Rev. Mod. Phys. 52, 299 (1980).

[25] E. Newman and R. Penrose, J. Math. Phys. (N.Y.) 7, 863
(1966).

125013-26


http://dx.doi.org/10.1103/PhysRevLett.49.1110
http://dx.doi.org/10.1016/0370-2693(82)90541-X
http://dx.doi.org/10.1103/PhysRevD.28.679
http://dx.doi.org/10.1103/PhysRevD.28.679
http://dx.doi.org/10.1103/PhysRevD.37.3406
http://dx.doi.org/10.1103/PhysRevD.37.3406
http://dx.doi.org/10.1103/PhysRevD.55.1851
http://dx.doi.org/10.1103/PhysRevD.56.R4439
http://dx.doi.org/10.1103/PhysRevLett.80.1582
http://dx.doi.org/10.1103/PhysRevLett.80.1582
http://dx.doi.org/10.1103/PhysRevD.37.2743
http://dx.doi.org/10.1103/PhysRevD.37.2743
http://dx.doi.org/10.1086/186384
http://dx.doi.org/10.1016/j.physrep.2011.03.001
http://dx.doi.org/10.1103/PhysRevD.84.123525
http://dx.doi.org/10.1103/PhysRevD.84.123525
http://dx.doi.org/10.1103/PhysRevD.85.103532
http://dx.doi.org/10.1088/1475-7516/2009/05/013
http://dx.doi.org/10.1103/PhysRevD.79.103524
http://dx.doi.org/10.1103/PhysRevD.79.103524
http://dx.doi.org/10.1088/1475-7516/2009/11/028
http://dx.doi.org/10.1103/PhysRevD.70.043518
http://dx.doi.org/10.1103/PhysRevD.22.1882
http://dx.doi.org/10.1143/PTPS.78.1
http://dx.doi.org/10.1016/0370-1573(92)90044-Z
http://dx.doi.org/10.1016/0370-1573(93)90114-S
http://dx.doi.org/10.1016/j.physrep.2009.03.001
http://dx.doi.org/10.1016/j.physrep.2008.03.003
http://dx.doi.org/10.1016/0370-2693(82)90641-4
http://dx.doi.org/10.1016/0370-2693(82)90641-4
http://dx.doi.org/10.1016/0370-2693(83)91322-9
http://dx.doi.org/10.1016/0370-2693(83)91322-9
http://dx.doi.org/10.1016/0550-3213(84)90329-8
http://dx.doi.org/10.1016/0550-3213(84)90329-8
http://dx.doi.org/10.1103/PhysRevD.55.7368
http://dx.doi.org/10.1103/PhysRevD.55.7368
http://dx.doi.org/10.1103/PhysRevLett.78.2058
http://dx.doi.org/10.1103/PhysRevD.55.1830
http://dx.doi.org/10.1103/PhysRevD.55.1830
http://dx.doi.org/10.1103/PhysRevLett.78.2054
http://dx.doi.org/10.1103/PhysRevLett.78.2054
http://arXiv.org/abs/astro-ph/9609149
http://dx.doi.org/10.1046/j.1365-8711.1998.02054.x
http://dx.doi.org/10.1103/PhysRevD.62.043007
http://dx.doi.org/10.1103/PhysRevD.55.7461
http://dx.doi.org/10.1088/0264-9381/17/4/309
http://dx.doi.org/10.1051/0004-6361/201118638
http://dx.doi.org/10.1051/0004-6361/201118638
http://dx.doi.org/10.1051/0004-6361/201118463
http://dx.doi.org/10.1103/PhysRevD.82.043510
http://dx.doi.org/10.1103/PhysRevD.82.043510
http://dx.doi.org/10.1103/PhysRevD.56.596
http://dx.doi.org/10.1103/PhysRevD.57.3290
http://dx.doi.org/10.1103/PhysRevD.57.3290
http://dx.doi.org/10.1103/PhysRevD.86.023510
http://dx.doi.org/10.1103/PhysRevD.86.023510
http://dx.doi.org/10.1046/j.1365-8711.2003.06780.x
http://dx.doi.org/10.1046/j.1365-8711.2003.06780.x
http://dx.doi.org/10.1103/PhysRevD.72.023516
http://dx.doi.org/10.1103/PhysRevD.72.023516
http://dx.doi.org/10.1103/RevModPhys.52.299
http://dx.doi.org/10.1063/1.1931221
http://dx.doi.org/10.1063/1.1931221

TOTAL ANGULAR MOMENTUM WAVES FOR SCALAR, ...

[26]
(27]
(28]
[29]
(30]
(31]
(32]

(33]

J.N. Goldberg, A.J. Macfarlane, E.T. Newman, F.
Rohrlich, and E.C.G. Sudarshan, J. Math. Phys. (N.Y.)
8, 2155 (1967).

L. Dai, D. Jeong, and M. Kamionkowski (to be published).
D. Jeong and M. Kamionkowski, Phys. Rev. Lett. 108,
251301 (2012).

S. Dodelson, E. Rozo, and A. Stebbins, Phys. Rev. Lett.
91, 021301 (2003).

A. Cooray, M. Kamionkowski, and R. R. Caldwell, Phys.
Rev. D 71, 123527 (2005).

C. Li and A. Cooray, Phys. Rev. D 74, 023521
(2000).

L. G. Book, M. Kamionkowski, and T. Souradeep, Phys.
Rev. D 85, 023010 (2012).

T. Namikawa, D. Yamauchi, and A. Taruya, J. Cosmol.
Astropart. Phys. 01 (2012) 007.

F. Schmidt and D. Jeong, Phys. Rev. D 86, 083513
(2012).

(35]
(36]

[37]

125013-27

PHYSICAL REVIEW D 86, 125013 (2012)

S.K. Lee, L. Dai, D. Jeong, and M. Kamionkowski (to be
published).

M. Aich and T. Souradeep, Phys. Rev. D 81, 083008
(2010).

R. A. Sunyaev and Y. B. Zeldovich, Astrophys. Space Sci.
7.3 (1970); P.J.E. Peebles and J. T. Yu, Astrophys. J. 162,
815 (1970); J.R. Bond and G. Efstathiou, Astrophys. J.
285, L45 (1984); Mon. Not. R. Astron. Soc. 226, 655
(1987); M.L. Wilson and J. Silk, Astrophys. J. 243, 14
(1981); N. Vittorio and J. Silk, Astrophys. J. 285, L39
(1984); W. Hu and N. Sugiyama, Astrophys. J. 444, 489
(1995); U. Seljak and M. Zaldarriaga, Astrophys. J. 469,
437 (1996); G. Jungman, M. Kamionkowski, A.
Kosowsky, and D.N. Spergel, Phys. Rev. D 54, 1332
(1996); C.-P. Ma and E. Bertschinger, Astrophys. J. 455,
7 (1995); M. Zaldarriaga and D.D. Harari, Phys. Rev. D
52, 3276 (1995); A.G. Polnarev, Sov. Astron. 29, 607
(1985).


http://dx.doi.org/10.1063/1.1705135
http://dx.doi.org/10.1063/1.1705135
http://dx.doi.org/10.1103/PhysRevLett.108.251301
http://dx.doi.org/10.1103/PhysRevLett.108.251301
http://dx.doi.org/10.1103/PhysRevLett.91.021301
http://dx.doi.org/10.1103/PhysRevLett.91.021301
http://dx.doi.org/10.1103/PhysRevD.71.123527
http://dx.doi.org/10.1103/PhysRevD.71.123527
http://dx.doi.org/10.1103/PhysRevD.74.023521
http://dx.doi.org/10.1103/PhysRevD.74.023521
http://dx.doi.org/10.1103/PhysRevD.85.023010
http://dx.doi.org/10.1103/PhysRevD.85.023010
http://dx.doi.org/10.1088/1475-7516/2012/01/007
http://dx.doi.org/10.1088/1475-7516/2012/01/007
http://dx.doi.org/10.1103/PhysRevD.86.083513
http://dx.doi.org/10.1103/PhysRevD.86.083513
http://dx.doi.org/10.1103/PhysRevD.81.083008
http://dx.doi.org/10.1103/PhysRevD.81.083008
http://dx.doi.org/10.1007/BF00653471
http://dx.doi.org/10.1007/BF00653471
http://dx.doi.org/10.1086/150713
http://dx.doi.org/10.1086/150713
http://dx.doi.org/10.1086/184362
http://dx.doi.org/10.1086/184362
http://dx.doi.org/10.1086/158561
http://dx.doi.org/10.1086/158561
http://dx.doi.org/10.1086/184361
http://dx.doi.org/10.1086/184361
http://dx.doi.org/10.1086/175624
http://dx.doi.org/10.1086/175624
http://dx.doi.org/10.1086/177793
http://dx.doi.org/10.1086/177793
http://dx.doi.org/10.1103/PhysRevD.54.1332
http://dx.doi.org/10.1103/PhysRevD.54.1332
http://dx.doi.org/10.1086/176550
http://dx.doi.org/10.1086/176550
http://dx.doi.org/10.1103/PhysRevD.52.3276
http://dx.doi.org/10.1103/PhysRevD.52.3276

