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Chern-Simons spinor electrodynamics in the light-cone gauge
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The one-loop quantum corrections of Chern-Simons spinor electrodynamics in the light-cone gauge has
been investigated. We have calculated the vacuum polarization tensor, fermionic self-energy, and on-shell
vertex correction with a hybrid regularization consisting of a higher covariant derivative regularization
and dimensional continuation. The Mandelstam-Leibbrandt prescription is used to handle the spurious
light-cone singularity in the gauge field propagator. We then perform the finite renormalization to define
the quantum theory. The generation of the parity-even Maxwell term and the arising of anomalous
magnetic moment from quantum corrections are reproduced as in the case of a covariant gauge choice.
The Ward identities in the light-cone gauge are verified to satisfy explicitly. Further, we have found the
light-cone vector dependent sector of local quantum effective action for the fermion is explicitly gauge
invariant, and hence the Lorentz covariance of S-matrix elements of the theory can be achieved.
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I. INTRODUCTION

The first step in calculating quantum correction of a gauge
theory by perturbation theory is choosing a gauge condition
to eliminate the nonphysical degrees of freedom caused by
gauge symmetry. This process is called gauge fixing. Despite
that physically measurable results should be independent of
gauge choice, but with different gauge-fixing, the quantum
theory presents distinct features in both calculation tech-
niques and the resultant quantum corrections. The usually
preferred choice is a Lorentz covariant gauge condition like
d,A* = 0, since the Lorentz covariance can be preserved in
the entire calculation process, and further, the propagator of
gauge field has a nice analytical structure.

Nevertheless, in certain circumstances, a noncovariant
gauge choice turns out to be more convenient than a
covariant one, since this kind of gauge choice can some-
how approach to physical degrees of freedom straightfor-
wardly at the classical level. Especially, a noncovariant
gauge fixing in a non-Abelian gauge theory can make ghost
fields decouple from the physical sector in the classical
stage, and avoid the notorious Gribov’s ambiguity haunted
the gauge-fixing procedure [1,2].

However, a noncovariant gauge fixing brings about a
spurious singularity in the gauge field propagator [1,2].
This hinders the loop integration in perturbation theory
from being performed straightforwardly as in the covariant
case. Therefore, a prescription of handling the spurious
singularity must be defined so that the denominator of the
integrand in a loop integration is quadratic in the loop
momentum [1,2]. A number of prescriptions had been pro-
posed [1,2]. Up to now it seems that the most convenient and
universal prescription is the n), prescription suggested by
Mandelstam [3] and Leibbrandt [4], which is now termed as
the Mandelstam-Leibbrandt (ML) prescription [1]. It has
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been tested that the ML prescription can give consistent
results for any noncovariant gauge choices at one-loop level
for gauge theories in both four and three dimensions [2];
although, its applicability in evaluating two-loop and higher
order quantum corrections needs to be verified explicitly.

The study on the pure non-Abelian Chern-Simons (CS)
gauge theory in the light-cone gauge at one-loop with the
ML-prescription was pioneered by Martin and Leibbrandt
[5]. A consistent result with the covariant gauge fixing had
been achieved: the celebrated finite quantum correction
k-shift [6-8] of the gauge coupling is reproduced, and the
nonlocal gauge dependent terms are unobservable.
Consequently, the topological feature of the theory is
preserved. Hence the applicability of the ML-prescription
to three-dimensional gauge theory with parity violation
had been verified at one-loop order [5].

In this article we shall investigate three-dimensional
Chern-Simons spinor electrodynamics [9,10] in the light-
cone gauge, i.e., U(1) CS gauge theory coupled with
fermions. This model has some distinct features from the
pure non-Abelian CS gauge theory, and it is worthy to
observe its quantum corrections in the light-cone gauge
with the ML prescription. First, it is not a topological field
theory since the coupling of gauge field with fermion
requires an explicit involvement of the space-time metric,
and the theory has local dynamical degrees of freedom.
Second, from the one-loop result of four-dimensional
gauge theory in the light-cone gauge calculated with the
ML-prescription, the light-cone vector dependent part in
the local quantum effective action for fermions should take
a specific gauge-invariant form [1], determined by the
Ward-Takahashi identities in the light-cone gauge, so that
the covariance of S-matrix elements of theory can be
recovered. It is interesting to check explicitly whether
such a result arises in a three-dimensional gauge theory
in the light-cone gauge. Third, in contrast to the pure
non-Abelian CS gauge theory, which has only one
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dimensionless parameter—the gauge coupling, CS spinor
electrodynamics has a parameter with mass dimension—
the mass of the fermion. This will make both the tensor
structure and form factors of quantum corrections of the
theory much more involved.

Furthermore, it has been shown that in the covariant
gauge-fixing, CS spinor electrodynamics presents some
remarkable quantum effects including the generation of
Maxwell (or parity-even) term and the arising of anoma-
lous magnetic moment of the fermion [9]. It is significant
to observe these radiative corrections in the light-cone
gauge with the ML prescription, since this can not only
reveal quantum features of Chern-Simons-matter theory,
but also confirm and consolidate the validity of the ML
prescription in evaluating quantum corrections of three-
dimensional gauge theories in the light-cone gauge.

In Sec. II, we introduce the classical CS spinor electro-
dynamics with the light-cone gauge-fixing. For later per-
turbative calculation, we choose a hybrid regularization
scheme to derive the Feynmann rules. The hybrid regulari-
zation is a combination of higher covariant derivative
regularization and dimensional continuation with the
Maxwell term as the higher derivative term. Section III
contains a calculation on two-point functions at one-loop
including the vacuum polarization tensor I ,,(p) and the
fermionic self-energy 2(p). We use the ML prescription to
handle the spurious singularity of the gauge field propa-
gator. In Sec. IV we display a detailed evaluation of one-
loop quantum vertex on the mass-shell of the fermion.
Because it requires two light-cone vectors n,, and n}, to
implement the ML prescription, the calculation on the
form factors of on-shell vertex correction is much more
tedious than the case of covariant gauge-fixing. In Sec. V
we perform renormalization on the quantum corrections
found in previous two sections, and reveal quantum effects
and the structure of local quantum effective action of the
theory. The calculation techniques and integration formu-
las are given in detail in Appendices A and B. In
Appendix C we derive the Ward identities of CS spinor
electrodynamics in the light-cone gauge. In particular, we
show the explicit restriction of the Ward identity on the
general form of two-point function of gauge field, and the
relation between the gauge field-fermion-fermion vertex
correction and the fermionic self-energy.

II. CHERN-SIMONS SPINOR
ELECTRODYNAMICS IN THE
LIGHT-CONE GAUGE

The Lagrangian density of CS spinor electrodynamics in
the light-cone gauge is

1 _
L= e A,d,4, + Bld + eh = m)y

1
- E(H”A#)z, (D
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where (n,,) = (ng, ny, n,) is the light-cone vector, which
by definition satisfies n> = 0, and further & — 0. The y
matrices in the Lagrangian density (1) are chosen as
follows:

Y0 = oy, Y =ios, ¥y =io,. )

Consequently, the algebra formed by the y matrices is

{Yw 7o} = 280
(gu») = diag(l, —1, —1).
3)

Yu¥v = 8uv ~ i€uupY’,

(Y Vol = —2i€,,, 7",

The gauge-fixing term —1/(2£)(n*A ,)? in the Lagrangian
density (1) comes from the light-cone gauge condition
n#A, =0, n?=0 with £—0 in the gauge field
propagator.

To investigate the perturbative quantum corrections of
CS spinor dynamics, we must choose a regularization
scheme to deal with the ultraviolet divergence in loop
integration. Usually, the most convenient method is
dimensional regularization. However, due to the particular
feature of CS term (its kinetic operator €“"#d, being a
first-order nonpositive definite differential operator), we
must first implement a higher covariant derivative regu-
larization scheme. The simplest gauge invariant higher
covariant derivative term is the Maxwell term,

1
.EA:——F

ap FurE™ “

where F,, = d,A, — d,A, and A is the regulator.

To apply dimensional regularization, we should use the
’t Hooft-Veltman prescription to define the dimensional
continuation of €,,, tensor and the y matrices [11,12].
The regularized d-dimensional space is divided into a
direct sum of the original three-dimensional space and a
(d — 3)-dimensional space, d being a complex number
[5,7]. However, for the Abelian CS theory, the € tensor
appears only in the gauge field propagator, and especially,
in this work we consider only the perturbative theory at
one-loop level. Hence the 't Hooft-Veltman recipe makes
no difference with the usual naive dimensional continu-
ation, and the inconsistency found in Ref. [13] will not
arise. The explicit calculations carried out later will con-
firms this argument.

As a hybrid combination of the dimensional continu-
ation and the higher covariant derivative regularization, the
order of removing the regulators after the renormalization
is first taking the limit d — 3 and then A — oo.

The regularized Lagrangian density £ + L, leads to
the following tree-level Feynman rules:
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(i) Photon propagator [5]:

. ~(0) —
lG,uV(p; n) - n-p 6,u7/pnp' (7)
. iA :
lGﬁg)u(p, n,A) ZW[ZAGMVPPP
p-\p (i1) Fermionic propagator:
A )pend pt
- p 61/0{ - pl/e o p n . . m
n-p PuEvab pap iSO (p) = g ®)

2
p
- ng,u,l/ + E(pu,nv + anM):I
(iii)) Gauge field-fermion-fermion vertex:

iA
= i P—p-
(p? _Az)n.p[lAGMVPn " P8uv —iel"g))(p, q. 1) = —iey,2m)I8D(p + q + 1)
+(puny, +pong)l (5) )

where the following one of Martin’s identities has

been used [5.14], In the following sections we shall calculate one-loop

quantum corrections of the theory and show quantum fea-

1 1 tures of CS spinor electrodynamics in the light-cone gauge.

- p=_ p
€pvplt 2€uvpP

n-p 4 III. ONE-LOOP VACUUM POLARIZATION
1 w, TENSOR AND FERMIONIC SELF-ENERGY
_f(p,u,é-vaﬁ_pvep,aﬂ)p n-.
p*(n-p) A. Vacuum polarization tensor
(6) Since the characteristic of the light-cone gauge fixing
involves only the U(1) CS gauge field propagator, the
As A — oo at tree-level, the propagator (5)  vacuum polarization tensor is identical to that in the usual
reduces to covariant gauge,
|

, [ d% Tily,(K+ p+m)y,(K+m)]
em? (kK —m?)[(k + p)* — m?]

_ o dk —ime,,,p? + 2k, k, + k,p, + k,p, — gLk (k+ p)—m?]

(2m) (k2 = m?)[(k + p)* — m?] ’

i (p?) = =

(10)

where we have used y-matrix algebra listed in (3). The parity-odd part is finite, and one can take the limit d — 3 before
performing the loop integration. The parity-even part contains the superficially linear and logarithmic divergent terms,
which can be evaluated by the dimensional regularization. Using the formula listed in Appendix B, we obtain (after taking
the limit d — 3)

L(p) = i€, P o (p?) + (P78 — Pup)ILe(p?)

B GOt L] e e G B ] A

In Eq. (11) p = |p|, and I1,(p?) and I1.(p?) represent the parity odd- and even form factors of the vacuum polarization
tensor,

2

) -SR]

—piem) NP T )= am)

e m
M, (p) =™ 2
o(P) 4 p n[ 47 m 4 p?

B. Self-energy of fermion

Compared with the case of the covariant Landau gauge [9], the fermionic self-energy has some distinct features due to
the presence of the spurious light-cone gauge singularity 1/(n - k) in the propagator of U(1) CS gauge field:
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d‘k { v+ p+ myrA
Qm) [(k + p)* — m*](k* — A*)n
_ d’k { Ay + p+m)y, iN e Pn,y,(K+ p+m)y,
Qm)l [(k+ p)* —m*J(,k* =A%) [(k+ p)* — m?*)(k* — A*)n - k
N A+ p+m+ KK+ p + m)ﬂ]}
[(k+ p)? —m?]k> —A>)n-k |

The spurious light-cone gauge singularity 1/(n - k) in the integrand brings difficulty in evaluating the loop integration.
We use the ML prescription in Minkowskian space to handle the singularity [3,4]:

—iSD(p,m, n, A, d) = e

k[iAew,pn” —n-kg,, + (k,n, + kvnﬂ)]}

(13)

i ok i n” -k >0 (n,) = (10, m)

— lim : = €>0, n=(n,) = (ngn),

n-k e0mn-k)(n*-k)+ie 0 nok2 + (n-k)* + i€’ # 0 (14)
= (nZ) = (nO’ _n)’ ny > 0.

Obviously, n* is also a light-cone vector since n*> =

We first expand the numerator of each term in the integrand using the y-matrix algebra (3), and then separate the
integrands into the parts with and without the light-cone pole,

d% 2A2+ A[(d—2)f— (4 —d)p — (d —2)m]

B e e (- VR
s — d?k 2A*(n-p — mp) + 2A[k- (k+ p)f + n - p]é]
EnLA YO [(k+ p)? — m2)(k2 — AD)n - k

The loop integration will become much easier to carry out if the large-A limit can be taken before the integration.
However, this operation is only feasible if the integration is finite before and after taking the large-A limit. Therefore, we
first successively use the identity [7]

1 _ 1 _ 2k - p + p?
(k+p?—m> K—m* & —m’)(k+p)?—m’]

(16)

to reduce the superficial UV divergent degree of the integrand until the large- A limit can be safely taken. For example, a
term in Syp can be calculated as follows:

; di Ak,
A*oo.[ Qm)?® (k2 = A)[(k + p)* — m*]

i dk Ak, [ 1 2k - p + p? ]
A= ) Qm)d (K> — AP LE> —m? (K — m?)[(k + p)*> — m?]
i d'k Ak, 2k-p+p2[ 1 2k p + p? ]
A= ) 2m)d (K2 =A%) (K> —m?) Lk —m? (K — m?)[(k + p)* — m?]
~ im d‘k { 2Ak - pk, Ak, Qk-p+pP) [ 1 2k-p+ p? ]}
A= ) Qm)d l(k* — A?)(k* — m?)? (K> — AD) (K2 — m?)? Lk —m?> (kK2 — m?)[(k + p)> — m?]
i Bk 2Ak - pk,
Ao ) 27 (12 = AD)(K2 — m2)?

= —lim - Ap f @k K
Ao 3 “ (2 )3 (kZ _ AZ)(kZ _ m2)2
1 AQA? —3A’m + m?)
[ 12 (A? —m?)? ]
In above calculation we have used the even and odd property of the integrands. Other terms in 3\p can be evaluated in a
similar way. For the terms in 3p we first use the ML prescription shown in (14) to deal with the spurious light-cone pole.

Then we choose a convenient Lorentz frame for the light-cone vector n,, to perform the loop integration in a noncovariant
way, and finally express the results in terms of a Lorentz invariant functions with the light-cone vector n,, and its conjugate

(17)

|
=

=
=
g

i
Tenl
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ny,. The explicit calculation techniques are shown in Appendix A. Consequently, we obtain the fermionic self-energy at
one-loop order,

—iSD(p,m,n) = Anm {[liin%[—iE(l)(p, m,n, A, d)]}

_ie 2 5 (n-pt* —
_E[A+§m (= m)+ —

(n*-pf _ m*  m(n-p— mnf)<1 20" - p)(n - p))l/z]
n n-p n-p m%(n* - n) '

(18)
IV. VERTEX CORRECTION ON MASS SHELL AT ONE-LOOP

In the following we consider the one-loop quantum correction for the vertex ¢ — ¢y — A on the mass-shell of the
fermion. That is,

—ia(p)T (', p.m, mu(p) = lim ﬁ(p/){eZ f Sk y,k+ '+ my, K+ p+my” 1

@aP [+ pV = mPllk+ pP — m?] K= A2

iA? A
X [—k €Pn, — Ag”? + ﬂ(k,,np + kpn,,)]}u(p)

-
= —ill + T + Tiag), (19)
where the Dirac spinor u(p) is a solution of the Dirac equation and i(p) is its conjugate,
(p—mu(p) =0,  a(p)(p—m)=0. (20)

The three parts in (19) are listed as follows:

. T . n)_ d*k [_](71/ + 2(k + pl)v]’ylj,[_’}/vlé + Z(k + p)y]
M= fim A [ G s e ek P

Jutp 1)

&k 1
Q@m)* (n- k(K = Ak + p')> = m*][(k + p)* — m’]

X[AK+ P +m)y, K+ p+mE+ KK+ P +m)y, K+ p+ m)rf]}u(p)

—il“[z]# = [11_1"130 L_t(p/){A€2

— lim a( ,){A2 Lk 1
oo P ) Qa0 = Mk + PP — mP Lk + p) — m?]
X[@n-(k+ p) = Kh)y, (k* + 2k p) + (k* + 2k p)y,Q2n - (k+ p) — nflf)]}u(p); (22)
, RN &k 1
e = fim Wi [ e T e
X [—Ky? + 20k + )Yy, [—y"K + 20k + p)”]}u(p). (23)

In writing down I3 e Iy > and I «» We have used the mass shell condition shown in Eq. (20),

a(p)y,(K+ p' +m) = a(p[—Ky, + 2k +p",]  (p+K+my,ulp)=[~y,K+2k+ p),Julp). (24

In the following we calculate 17, Iz, and I'3,:

® '
I'17,. can be reduced to the following form with the y-matrix algebra (3) and the mass shell condition given in
Eq. (20),
—ilf, = lim u(p/){—Aezf s ! [k%y, — 2Kk, + 4k - (p' + p)y
A @m) (2 = A2k + p? = Tk + p)? = m?] " 70 T g
+4mk, — 4k(p), + pu) +4p" - py, Ju(p). (25)

We can take the large-A limit before evaluating the integration for the term with the numerator 4p’- py,,
which vanishes after taking the large-A limit. As for other terms, we must first make the decomposition (16)
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successively until it is feasible to take the large-A limit. It can be easily seen that the terms whose numerator linear in
k,, vanishes:

&k Ak

lim K
A= ) 2m) (K = A?)[(k + p')* = m*[(k + p)* = m?]
 lim dk Ak, [ _ 2k-p'+p” ][1_ 2k - p + p? ]
e ) QAP (= ADIE—m22L (k+ p)2— m? (k+ p)? — m?
, d*k Ak,
= lim

[_ 2k-p'+p? _ 2k-ptp? . Qk-p'+p?)2k-p+p?) ]
) @ W= AR =L G = G = e Y = T+ Y = ]
= 0. (26)

As for the first two terms whose numerators are quadratic in kw we have from the decomposition (16),

i / Pk Ak,k, . &k Ak, k,
v ) @ (@ =Rk + pP = wP T+ pP = m?] A=) @aF (2 = AHE — m?p?
2k - p' 2k - p
X - - .
[1 (k+p)—m> (k+p)?— mz:l @7)

Hence only the first term survives after the large-A limit. Thus, we obtain

—iI‘[l]M = lim [—A€2

A—o0

Bk vk — 26k,
Q) (k* — A*)(k* — mz)z]

: 3 _ 2 + 3 )
lim[—12 LARA A m)]=—iyﬂ. (28)

1 &k k2
= 1im|:—§A627M ]

@m’ (@ = AW — P

3¢ Vugy (A% — m?)?

A—o

(i) T
To evaluate I',,,, we first separate it into the sectors with and without the spurious light-cone singularity (n - k)71,
and impose the mass shell conditions p> = p* = m?. Then I'yy, takes the following form:

. Pk 2y 2y 2n - ply
—iC =1 =( A 2 [ M + M + M
Ty = Jim a(p ){ e li@ = A)E 2k p) | (IR — AN+ 2k-p)  n- k(K — ADGE + 2k - p)
2n - py, Ky, Y otk ]}
+ - - : 2
n k(2 — AD(E+2k-p) n k(2 — A+ 2k-p)) n- k(& — ADE + 2k - p) u(p) 29

Note that the mass shell condition p’> = p> = m? should not be imposed on some terms until the integrations have been
performed in order to avoid the artificial infrared divergence caused by implementing the mass shell condition. Using the
formula listed in Appendix B, we obtain

, L Loy, —ihn,
_lr[z],u = ;162')/M - %182%. (30)

(iii) '3y,
We first use the y-matrix algebra, €,,,y” = i/2[y,, ¥,], to rewrite I';3), and take the large-A limit on those
feasible terms to simplify I'3;,. Then there appears
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Bk 4k
K ]u(p)

Q2m)® (K> — A?)[(k + p')? — m*][(k + p)* — m?]
&Pk 2k%n,, ] )
@) n- kG — Ak + p)? — m? ][k + p)? — m? 117
3 ﬁ(p’)ezf dk 4p ok + plutk) — 2mfhy, + v bK) — 2(n - phy, +n-p'y, k)

(2m) n- k(2 + 2k - p)(K2 + 2k - p)
_ L_t(p/)l:4l€2 d3k evp)Ln/\(kap + kVpp + pvpp)‘yl.l,] ( )

Qm)? n-k(k*>+ 2k - p")(k* + 2k - p)

= ~ilViu * Vou + Veu + Vel €y

_ir[3]M = 1{1_120 I/_t(p/)l:A2€2

+ Jim ﬁ(p’)l:—/\262

u(p)

Using the decomposition (16), taking the large-A limit and then putting them on the mass shell, we can calculate V),
and V(y),, as follows:
&k 4k
—iV. = i =( /! [ AZ 2 M :|
R R N N7y [y ey [ i | e

_ , [ &k k, 2k-p' + p” 2k - p + p? k- p' + p?)(2k- p + p?)
= i(p')y—4e 3772 _ 22[_ N2 _ 2 pp—i N2 — ;2 2 — 2]}u(p)
Qm) (kK —m*)*L (k+p')—m* (k+p)>—m> [(k+p')> —m*][(k+ p)* —m?]
i >k k
= 77(n! —4 2 M ]
WP 4 | G Tk @+ 2k ) ) P
i€t Pt 1+q/(2m)]
= In 32
M(P)47T p Tm) (p), (32)
v . f d’k 2A%e?n K
— =— lim
Con T I ) @ (@ = A Rk + ) = mZ Tk + p) = n?] | ey
=2e2n Pk K2 [_ 2k-p'+ p” B 2k-p+ p? N Qk-p'+ p?)Q2k-p+ p?) ]
QmP (k)2 —m??L  (k+p)2—m?* (k+p)*—m? [(k+p')* —m*|(k+ p)*—m*]]| p=pr—p2
3 2
=2¢’n, dk k =—2¢’n,8"1,,

Qm)? (- (K + 2k p)) (K2 + 2k p)
__ie? 1 4m*—qg* 1+q/2m) 1 L (n-(p'+p)_\D(p)/*=D(p)"/?
a 877”“[n~(p’+p) g T-g/em ( p+n~p)+n~n*< m 2) n-(p'=p) ]

(33)

In above equations, g, = pl, — p, and D(p) = m?n - n* — 2(n* - p)(n - p). In addition, we have used the integral
formula (A16) of I, worked out in Appendix A.
To show the explicit symmetry of V(3),, and V), in p}, and p,,, we express

1 1
in evaluating V(3),, and V(4),,, where P, = 1/2(p), + p,). Then
1 &k K — ki
= - N 4(p!, + +2q,
~Viu = —etlp )[ (Pl + Py) [ Qm)? (I + 2k - p) (K2 + 2k - p) Q)P n- k(K2 + 2k - p)(I2 + 2k - p)
d’k +
o [ER vt M Juto (35)

Q2m)? n - k(k*> + 2k - p')(k* + 2k - p)

d*k k, +1/2(p}, + p,)
Qm)3 n- k(> + 2k - p')(k* + 2k - p)

Vi = ap)| ~4iey, e 0, Jutw 36)

Using the integral formulas (A5) and (A26) for I, and 1,,, we have
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: L[ 1 1. 14+ ¢q/2m)
—iVia), = —lez{ﬁ(ph + pﬂ)g ln% +4E[n - qq, — 2m2nﬂ —n-(p' + p)my, + mh(p), + p,)]
+ 2B g, 000" — W) + 2mlh, — f,) 2 -, ], (37)
. 1 «
_lV(4)M = _462')//LEVP)‘nyq‘D[<E1 + EIz)(p/)\ + p)\) + E3nA], (38)

where 15, E}, and E3 are the Lorentz scalar functions constructed from p,, p’M, n,,and n), and are symmetric in p, and
p.» and their explicit forms are given in (A5), (A32), and (A34).

The one-loop quantum vertex function I’ 2) on mass shell of the fermion in the light-cone gauge can be obtained by
summing up I'yy,, Iy, and I3y,
V. RENORMALIZATION AND STRUCTURE OF LOCAL QUANTUM EFFECTIVE ACTION

A. Finite renormalization of gauge field propagator and generation of Maxwell term

Equation (11) shows that the vacuum polarization tensor II ,,(p) is finite. The finite renormalization on the propagator
of the U(1) CS gauge field can still be performed according to the standard procedure. The inverse of CS gauge field
propagator up to one-loop level is

LG (p)] ™ =[G (p)]" = ill,,,(p) = i[emizﬂ(l —I,(p) + (P*8 s — Pup)Le(p) + én#m]- (39)

Hence
. . 1 = 1L,(p) [ i i
1 — 0 N
iG y — —1 — €up p_i( €vap — Pr€ua ) n'B
I I - PP L T ey e Pl
~ 1L(p) ¢ .(p) 1 (pun, + pon )]
=M (p)°*" 1 =Mu(p) (n-p) " *"  77H
1 1-11,(p) : 1 IL.(p)
= 6Vnp ° +l[ V__( nv+ g )] :
nep N =TGP - PP L5 p e T P =T, ()P — PP
1 1 . 1
= n-p e,uupnp 1+ H](P) + ll:g,uv - n(p,u,nv + PV",L)]Hz(P)y (40)
|
where the Martin identity (6) is employed and iGSlR( p)=2;! [iGEPV( )]
2112
p*1E(p) 1 1
I(p) = —y(p) = —7=, = P~
v T TL) @ wep e T ()
I1.(p) 1
I = : . + [ - — + ]H ,
2([’) [1 — HO(P)]2 — pzl—[g(p) H 8uv n-p (p;LnV pvn,u) ZR(P)
We choose the renormalization condition that at p = 0, (45)
I,z (0) = 0, (42)  where at one-loop level,

and define the wave function renormalization constant of [T .(p)=1I,(p) — I1,(0)=I1,(0) — I1,(p)
the CS gauge field in the usual way,

1 =e_2|:1_@1n71+p/(2m)]‘
N Z7 =1+ I1,(0) = 1 — T1,(0). (43) 4wl p 1-p/Cm) [
This gives I, (p)=11.(p)
2
Zi=1+ L (44) ze_Ql[m_z_ﬂGer_z)lnin/(zm)] (46)
™ drmlLp®> p\4 p*) 1—-p/2m)]
Consequently, the one-loop renormalized propagator of the
U(1) CS gauge field (i.e., up to the order e?) is Equation (46) shows
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er 1

———%*0. 47

47 3m “7)
This fact means that the parity-even Maxwell term in the
CS spinor electrodynamics is generated by quantum
correction, which is a general feature of the CS gauge
theory coupled with fermions [9].

I1,£(0) =

B. Renormalization of fermionic propagator

Equation (18) shows that the self-energy is composed of
the light-cone vector dependent part EEII)) and the indepen-

1.
dent one E(D).

SO(p,m,n, A) = 3 (p,m, A) + ) (p, m, n),

) (48)

S pm A =S [-A=Zm+ 2= m) |

’ P =" p)f | mf
S0 (p, m, n) = e_{ (n-p) i (n* - p) +n'p

2 n*-n
Lm0 207 p)n- p)\l/2
2n p( m*(n* - n) )

xww—m+w—mw} (49)

We impose the following mass-shell renormalization
condition on the light-cone vector independent part

2(I)R (p):

d
2or(P) p=m, =0, ﬁE(I)R(P)U:mR =0. (50)

Then X (p, m, A) has the following expansion around
= mg,

2o(p,m A) = dm —(Z,! = D( — mg) + Z, ' Zr(p),

(5D

where Z, is the wave function constant of the fermion.
Equations (48) and (51) yield that the renormalized
fermionic mass, the wave function renormalization con-

stant of the fermion and the light-cone vector independent
part of one-loop fermionic self-energy are as follows:

e2 2
+
2 (A 3 m)

E(I)R =0.

mr=m— 6m =

(52)

s

Zy=1+——-,

41 3

The light-vector dependent sector 3 p)(p, m, n) is finite.

We shall show that combined with the light-cone vector

dependent sector in the vertex correction, it contributes to a

gauge invariant quantum effective action specific to the
light-cone gauge.

PHYSICAL REVIEW D 86, 125012 (2012)

C. Finitely renormalized on-shell vertex correction and
arising of anomalous magnetic moment of fermion

Collecting the results shown in Egs. (19), (28), (30)-(33),
(37), and (38), we see that the the on-shell vertex correction
at one-loop is finite, and consists of the light-cone vector

independent sector FEI)) and the dependent sector r .

D)p~
T L M]

Or 47 3 q T q/2m
1.1+ q/(2m)
— l —_ = p 53
"T—g/2m '€ R4 } ©3)
(1) o e }{ l’l - ﬂn;

Or " g n* ‘n

+ nonpolynomial terms in p,, and p),. (54)

In writing down Eq. (53), we have used the three-

dimensional analogue of the Gordon identity,

i€0pq"y")u(p).
(35)

To perform the finite renormalization on the vertex
correction, we choose the renormalized light-cone vector

a(p")(p) + ppulp) = a(p)2my, —

independent sector FEI]))R to satisfy

E]]))’f(p P)l pP=p*=m?q,=0 — =0, (56)

and define the vertex renormalization constant Z; as follows:

(Z7' = Dy, + Z0 TR, p). - (57)

FEII))M (P, p) =
Then from Egs. (53), (56), and (57) we obtain the vertex
renormalization constant at one-loop level:

s s
— =, Zi=1+—- 58
41 3 : (58)

Zil=1=- 473

Itis equal to Z,, the wave function renormalization constant
of the fermion, which is a direct consequence of the Ward
identity (C14) or (C16).

According to Eq. (57), the light-cone vector independent
radiative corrections of the vertex at one-loop is

(DR _ (1)
L' p) ==y, + ZiLy), (' p) + v,] (59)
= YMFl(qZ) + ie,uquy’YpFZ(qz);
where
e? 2m . 1+ q/(2m)
Fi(¢*) = —[—2 + = ln—],
=5 1—q/@2m) (60)

1 1+q/Cm)
e = = I oy

Equation (60) shows that at the renormalization point
g*> = 0, the form factor F,(g?) does not vanish,
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1

This actually gives rise to the analogue of Schwinger’s
result for the anomalous magnetic moment of the fermion
in the CS spinor electrodynamics. The term with tensor
structure €,,,,4"7y, and the form factor F,(g?) leads to an
interaction Hamiltonian at a higher order when the fermi-
ons are in a slowly varying U(1) CS gauge field (since
qu — 0),
2

MG = = e, )y, B0 A ()

P -
= L e b ) (62
T m

This result coincides with that obtained in the covariant
gauge [9].

D. Contribution to local quantum effective action
from light-cone vector dependent terms

We now turn to the light-cone vector dependent terms
appearing in the fermionic self-energy and in the on-shell
vertex correction. Equations (49) and (54) lead to the
following light-cone vector dependent local fermionic
quantum effective action at one-loop order:

(1) _ e 1 LT 0 *
D) — gm[“ﬁ(ﬂ n, ot — fny, 0k )

=y n, A" — fnj, AM) Y]
2 1
20 n-nt

iy (f*n,D* — fin, D*)p,  (63)

b is
invariant under the U(1) gauge transformation listed in
Eq. (C2). It should be emphasized that this is precisely analo-
gous to the result of a four-dimensional non-Abelian gauge
theory coupled with fermions in the light-cone gauge [1].

The nonpolynomial terms in the external momenta given
in Egs. (49) and (54) will contribute to the nonlocal sector
of the light-cone vector dependent quantum effective ac-
tion for the fermion. Unfortunately, unlike the pure non-
Abelian CS gauge theory in the light-cone gauge, which
has no dimensional parameter [2,5], we are unable to
extract out the explicit form of the nonlocal light-cone
vector dependent quantum effective action due to the com-
plications of those nonpolynomial terms.

where D, = 9, — ieA,, is the covariant derivative. r

VI. SUMMARY AND CONCLUSION

A complete investigation in the perturbation theory of
Chern-Simons spinor electrodynamics in the light-cone
gauge (n-A =0, n> =0) at one-loop order has been
made. We have calculated the vacuum polarization tensor,
fermionic self-energy and on-shell vertex correction, and
further performed the one-loop renormalization to define

PHYSICAL REVIEW D 86, 125012 (2012)

the quantum theory. The peculiar features of quantum
corrections of Chern-Simons spinor electrodynamics in
the light-cone gauge have been revealed. Two typical
quantum effects in CS spinor electrodynamics, the genera-
tion of the parity-even Maxwell term and the arising of
anomalous magnetic moment of the fermion from quantum
corrections, have been reproduced as in the case of the
covariant gauge fixing. We have also shown that as a
consequence of the Ward identities in the light-cone gauge,
the wave function renormalization constant of the fermion
is equal to the vertex renormalization constant. Further, we
have displayed the structure of local quantum effective
action for the fermion, and found that its light-cone vector
dependent sector is explicit gauge invariant. Especially, it
takes exactly the same form as that in a four-dimensional
gauge theory coupled with fermions in the light-cone
gauge. This result is a natural consequence of the Ward
identities for the CS spinor electrodynamics in the light-
cone gauge. Therefore, the Lorentz covariance of S-matrix
elements will be achieved.

The result summarized above has not only verified the
applicability of the ML prescription to three-dimensional
gauge theory in the presence of fermions, but it has also
shown the gauge independence of the Chern-Simons type
of gauge theory in evaluating gauge invariant physical
observables.
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APPENDIX A: FEYNMAN INTEGRAL WITH
SPURIOUS LIGHT-CONE GAUGE SINGULARITY
IN LEIBBRANDT-MANDELSTAM PRESCRIPTION

In this appendix we show how the Feynman integrals
containing the spurious light-cone pole in three dimensions
are evaluated with the ML prescription. Actually, only the
following five types of integrals containing the pole are
needed for evaluating the fermionic self-energy and on-
shell vertex correction:

g [k 1 .
e f(w n Kk + p)? — m2]’

. &Sk 1
Uy = 5
2 Qm)? n - k(2 + 2k - p')(k2 + 2k - p)
dik k

I, =1 # ;

tu dlir%[ Q) (n - k)(K* + 2k - p)
PR dik k,k, '
w3 ) 0 kI + 2k p) (R + 2k p)’

L, = limj d'k K
a3 ) @ on - k(K2 + 2k - p)(K2 + 2k - p)

(AD)
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We adopt the procedure illustrated in Ref. [1] rather than the exponential parametrization used in three-dimensional
noncovariant gauge theory [2,5,14]. For the convenience of calculation, we choose the Lorentz frame such that

n = (ng, 0, ny), n* = (ng, 0, —ny), ny > 0. (A2)

The superficially covariant three-vector notation will be restored at the end of calculation. Since the light-gauge vectors n,,
and nj, satisfy n? = n*? = 0, there exist

n,

ny, = *ny, K = =1, ny=n3=-n-n"
o 20 p)in - p) )
n-p)n-p
— p3 = (po + kp2)(po — kp2) = ?(”opo + nypa)(ngpo — napa) = B T—
0

P}

(1) Evaluation of I,

A’k n* -k

Qm)* [(n - k)(n* - k) + iell(k + p)* — m?]
1 A’k ko + Kk,
no J 2m)?* (G — K[k + py* — m?]

1 1 1 0 0 )
- / dx—— f dk, f dk, f dko[(ko + xky)
ng Jo (277') — 0 —o0 —0o0

1
. [(ko + pox)* = (ky + p2x)* = (ky + p1)°x + (p§ — p)x(1 — x) — mzx]z:l

i pot+kpy 1 fld 1
= — x
8w ng  mJo T [1—(pj— p(1 —x)/m*]"?

~se (-]
41 no(py — Kkp2) m?

__iom [1_(1_2("““1’)01'17))”2]' (Ad)

_En-p m2(n* - n)

iIl =

(i1) Calculation of 1,

I f d*k 1
l ==
2 Qm)? n - k(k® + 2k - p')(K2 + 2k - p)

=[ I’k n* -k

a (277')3 [(n*'k)(n-k)+ie](k2+2k.p/)(k2+2k.p)
1 1 00 o - : .

" 2 dky | dky | dko | dx | dy2ylky + Kk
me s ) [t [ ko [ [ avari + k)

1
. [{[(k2 + 2k px + (K + 2k p)(1 = D)y + (k§ — k)1 — )P

1
i {{(k* + 2k - p)x + (k* + 2k - p")(1 — x)]y + (k§ — k3)(1 — y)}3]

i [1 n-(p'+ p) 1
=_—— x
16 Jo " n-(p+qgxn-(p' — qx) [m> — ¢*x(1 — x)]'/?

_Lfld[ ! 1
167 Jo “Ln- (p + gx) [m* — ¢>x(1 —x) —2n* - (p + gx)n - (p + qx)/(n* - n)]'/?
1 1

T (p' = gx) [m* = ¢*x(1 — x) = 20" - (p' — gx)n - (p' — gqx)/(n* - n)]l/z]’ (AS)

which shows that I, is symmetric in p, and p),.
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(i) Calculating I,
According to the Lorentz covariance, I}, has the following tensor structure,
s d'k k, . . R
w= 1111_12 am (n- e + 2k p) = iK\p, +iKyn, K, + iKsny, (A6)

I

where the undetermined coefficients K, K,, and K are the functions of Lorentz scalars constructed from p,,, n,,, and n},.
Then making the projections of /;, on p,, n,, and n},, respectively, we have

dk w4
X=1,p*=iKim?+iKyn-p+iKsn*-p=1 A7
1up? = iKym* + iKon - p + iKsn dlil%f(%r)d (n- k)(k2+2k P’ 7
Y=1I1 n*=iKn- +iKn~n*—limf d'k (A8)

=1, in-p 3 =3 ) (2m)? k2+2k P

dek n* -k

Z =1, 0" =iKn*-p+ikKyn-n*=1 A9
1unt iK\n* - p + iKyn - n* 1m/(27r)d (n-k)(k* + 2k - p)’ )

It is straightforward to evaluate X, Y, and Z using the ML prescription and taking into account the mass shell condition
p* = m?. Note that in the regularized d dimensions, k, = (ko, k1, k;) and k| has d — 2 components. Then,

d‘k 1 dk 1 i
Y=1 =lm | —— ———5=-—m, A10
dli%/ el +2k-p dB) CmiiR—m2 an (A10)
[ dk k-p _ d‘k (n* - kk-p
= lim = lim -
d—3 (277)‘1 (n ck)(k* 4+ 2k-p)  a=3) Q@) [(n* - k)(n- k) + ie€](k*> + 2k - p)
= d—2
i }}3% Y (27r)d [ dk, / dk, [ 442k |
kopo — kapy —ki1py
(ko + xks) 2 2 2 2 2 2.2
[(ko + pox)* = (ky + pox)* = (kp + pr)°x + (pg — p3)x(1 — x) — m*x]
i m(py+ Kkp,) fl [ Py — P ]1/2 i1 [ s D(p)*? ]
=_! MPo™ BPy) |- |- =L - P All
dar ngy 0 dx m2 ( )C) 677- n-p m (I’l* . n)3/2 ’ ( )
7 = lim n* -k — lim d%k (n* - k)?
d—3 (27T)d (n-k)K>+2k-p) a=3J) Qo) [(n* - k)n-k) + ie](k* + 2k - p)

i (po + kpy)? i I:n*'p_lmn*-n

_ x B D(p)*?
87 m fo T NP3 — p)/m’ T2 dm” >”2]

1
n-p 3 (m-p? 3mn-pin-n
(A12)

where D(p) = m*n* - n — 2(n* - p)(n - p). Solving the system of algebraic equations for K;, K,, and Kj listed in
(A7)—(A9), we have

11 1 m D(p)l/z]

=—_—W" -nX—n"-pY—n-pZ 1l———F—— Al3
' 47 D(p) P p2) = 4 n- p[ m(n - n*)'/? (A13)

7 ® 1 2 D 1/2 %, .
Ky=—2 " Py (m )[—m+ () (1+(" 2p)(”*p)):|, (Al4)

n“-n n-n 127\n-p (n* - n)'/2 m’n - n

Y n-p 1 D(p)'?

K; = -——K =— — AlS
T nent nent 4ar (n - n*)3/? (AL5)

(iv) Evaluating 1,,,
1,,, is invariant under the exchanges u <> v and p, < p/,, respectively. Therefore, the general tensor structure of
1,,, should be the following form:
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f k,k,
d—»3 Qm)? n - k(k* + 2k - p")(k* + 2k - p)
= iCi(pup, + pupy) +iC(pyp, + pup)) +iCsny(p, + p,) + ny(pl, + p,)]
+ iCyln,(p), + p,) + n,(pl, + p )]+ iCsnyn, + iCenyn, + iCy(njyn, + nyn,) +iCgsg,,, (Al6)

where C; (i = 1,2, - - -, 8) are functions of the Lorentz scalars constructed from p,, p),, n,, and n},, and are symmetric in
p}, and p,,. Then contracting I, with the vector n”, and using Eq. (B8), we obtain

(n' +
G =G, Cy=—Cyn-(p'+p)—Cn-n/, C5=_L*p)cs»
1 1 1. 1+4¢/2m) n (A7)
q/\zm *
C - — — 1 1 + C * .
TR p>[16w " g/ O )]
Further, 7,,,n*n" and Eq. (B8) determine that C3 = 0. Hence
1 1 1. 1+4g/2m)

C,=0C,=- In Cs =0. Al8
S n-(p’+p)[167rq l—q/(2m)] ’ (A1®)

Consequently, /,,, becomes

k,k,
= lim f
a—3) Qm) n- k(k* + 2k - p')(k* + 2k - p)
= lCl(p,u + p,u,)(pv + pl/) + lC4[n,u(p/I/ + pl/) + ny(pfu, + p,u,)] + iC6n,unV + C7(n;n,, + ni”,u)
—[iCyn - (p' + p) +iCon - n*]g,,. (A19)

To evaluate the scalar coefficients C;, Ca, Cg, and C, we consider 1 /w( p'’Y = pY),

1,,(p"” — p”) = pj(=2iC4n - p — iCn - n*) + p,(2iCyn - p' + iCyn - n*)
+ n,liCen - (p' — p) +iCyn™ - (p' — p)] + niCon - (p' — p)

= lim f kuk - (p' = p)
-3 ) Qm) n- k(k* + 2k - p')(k* + 2k - p)
1 d% k d% k

- 7[1' I ~ lim I ] (A20)
20 ) @ n k(2 + 2k - p) des ) @md n - k(E + 2k - p)

Using the results (A6) and (Al5) of I;,,, we obtain the following algebraic equations:

1 m T D(p)'/?
2C + C = — 1—- R A21
an-p' e n " 87 pL m(n - n*)1/2 (A21)
1 m T D(p’)'/2 T
2Cn - p + C = — 1—- R A22
ancp e " 87 p'L m(n - n*)1/2 (A22)
1 D(p")'/? — D(p)'/?
Con-(p — p) = — , A23
7n (P P) = (I’l . l’l*)l/z ( )
Cen - (p' — p) + Cyn™ - (p' — p) = Kxr(p) — Kx(p'), (A24)

which yield
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c— 1 m L 1 D(p")'/? — D(p)'/*
Yo16m (nep)n-p) 167 (n-n)2 n-(p' = p)
o1 m? ( o )_ 1 1 m? [D(p')l/Z_D(p)l/Z]
° 24 (n-p"Yn-p)\n-p' n-p) 24w (n*-n)"2n-(p'—p)Ln-p)? (n-p)?
1 1 1 n*-p n*-p
_ D2 P p 1/2]
T P e ] e ey e

L 1 n*-(p' — p) INV 1/27.
+ 87 (n* - n)3/2 [n-(p/ — [7)]2 [D(p )! D(p)'/?];

c,=— L 1 _Dp)-Dp)" (A25)
87 (n-n*Y?  n-(p'—p)
Then 1, is given by Egs. (A18), (A19), and (A25).
(v) Calculation of I,
We calculate I,,, in a similar way as evaluating I, ,,, whose tensor structure takes the following form:
[ &k k,,
L) @m)d (- kR + 2k - p)(R2 + 2k - p')

I,

= iEl(p;L + pM) + iEyn, + iEsn, (A26)

where E;, i = 1, 2, 3 are functions of the Lorentz scalars constructed from p,,, p’M, n,,and n;, and are symmetric in p,
and p',. Projecting I,, on n#, (p'* — p#), and (p'* + p*), respectively, and using the mass-shell condition, p* = p"* =
m?, we have

&k 1

U=n*l,, =En-(p'+p)+n-nEy= , A27
n=ly, in-(p p) +n-n"E; (2m) (k2+2k'p)(k2+2k'p') ( )

d*k k-(p'— p)
Qm)? (n- k(K> + 2k - p)(K* + 2k - p')

V=(p*—p")L, =En-(p'—p)+ En"-(p'—p)=

1 &’k 1 1 &’k 1

2 )P 0K+ 2k-p) 2] @A (- OGE + 2k pl)’ (A28)
: &k k-(p' + p)
= — 2 _ 2 . ® _
W= (p" + p)ly, = B\ = ) + Exn - (p' & p) + Egn” - (p' 4 p) = | s oo P2+ 2k )
(A29)

The scalar function U can be calculated straightforwardly and is given in Eq. (B7). Further, the scalar function V is
obtained from /; as follows:

V=3l - L)) (A30)

Finally, the scalar function W can be evaluated from /; and g#”1,,, by the following algebraic operations:

dk k-(p'+ p)
Qm)? (n- k)(k* + 2k - p)(k* + 2k - p)
_ 1 A’k 1 n l A’k 1
2 QP -k +2k-p) 2 Q2w (n-k)(k*+ 2k- p')
d’k k?

1 1
- == +=L(p') — g""l,,. A31
@GP R+ 2k pie + 2k ) 2w F () =8 (A1)
Thus E,, E,, and E5 can be determined by solving the system of algebraic equations (A27)—(A29),

1
E, =20 p'n*p—n-pn*- phU = n*-nln-(p'+ p)V—n-(p' = p)WI, (A32)
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E, = %{[n “(p'+ pn* - (p' + p) — @m?* — g*)n* - n]V +n* - (p' — p)lAm* — g )U —n- (p' + pW1I},  (A33)

Ey = om0 = p)an = U = [n- (o + pIFV + 0+ () + phn- (= p)W) (A34)
where the denominator N reads
N=2n-(p'+p)n-p'n*-p—n-pn*-p)—n-n"n-(p'— p)dm* — ¢?). (A35)
I, is thus fixed from Egs. (A26)—(A35).

APPENDIX B: INTEGRATION FORMULA

We list in this appendix the integration formulas needed for evaluating the vacuum polarization tensor, fermionic self-
energy, and on-shell vertex correction. In the following, ¢, = pj, — pu. g =lql, n=(n,) = (nyn),

= (1) = (np, —n):

Bk 1 i1 1+ p/Cm)
Q) (& — )k + p) —n?] 87 p “[1 = p/<2m>]’ B
_ k, i pu 1+ p/Cm)
i | o @ =k £ =] T6m p T plam) ®2
. dk k, k, i m(. P2\, 1+ p/(2m)

513%/ Qm? & = md[(k+ p)* — m2] 1677’"{[1 i E(l W) = p/(2m>]g'”

3p 1+ p/Cm) pupy
+_1+ (4m 1)1n1_p/(2m)] ! } (B3)

. Ak, _ [ [k 2Akepky
A Qm)? (K — A2)[(k + p)? — m?] B Al—r»r:o_ Qm)? (K* — A*)(k* — mz)z]

o [ i ARAP—3A’m + m) i

B /P—I»Igo_ 1Pk (A2 — m?)? ] Tontm B4)
[ &k A [ &k A [ &k A
AITZJ Q) = Ak + p) —m?] AILOJ 2m} (@ = AN —pd) A, f 27 1@ — AN —md)
I
- L (BS)
, A2 B &k A2 FE 1
AITQJ 2P I = Ak + p)? = nt? Ali‘;[ anr @ =A@ =m?) P ) @np =)
3 . 2\2 .

d’k 2k - p + p?) LA, (B6)

Qm) (@ = m?Pk + pP —m?] 47

&k 1
m)? (K> + 2k - p)(K?

' +
_ i1 +q/Qm) (B7)
pr=pr=m> 8mq 1— q/(2m)

dk k, i Putpu 1141 + q/(2m) (BS)
Qa)? (2 + 2k - p'Y(K*> + 2k - p) | pr—prep l6r ¢ 1—q/2m)’
3 Ak . n
fim [ 2 S (BY)

A= ) 2m)3 n - k(k*> — A?)[(k + p)? — m?] " dmn-n
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d*k AK? [ &’k 2AK*k - p

. . i n*-p
lim = lim| — - —— ,
Ao ) Q) k(2 — AD[(k + p2 — m2] Ao Q) 1 k(2 — AD(E — m2)2] 2mnn

(B10)

&k 1 _ i om _(, _2n-p)n"- p\/2
Qm)? (n-k)(K +2k-p) 4w n‘p[l (1 m2(n - n*) ) ]

APPENDIX C: WARD IDENTITIES IN THE LIGHT-CONE GAUGE

(B11)

The generating functional of the CS spinor electrodynamics in the light-cone gauge is
1 - -
Z[J, n, 7] = N fDMMZDA exp[i/d3x(£ + 0y + Yy + JMA”)], (C1)

where the Lagrangian density L is given in Eq. (1), and 7, 0, and J,, are the auxiliary external sources for ¢, Y, and A e
respectively. Note that 77 and 7 are the Grassmann variables. Z[J, n, 7] is invariant under the following gauge trans-
formation:

P'(x) = P9y (x), P'(x) = e i), Al (x) = A,(x) + 9,0(x). (C2)
That is,

1 - -
62 = 5 [D¢D¢DA{exp[i[d3x(L A, S JMA“)]
X i’[d3y<—én”A,,n“8#0 —ieOnY + ieOyn + J“a“@)} = 0. (C3)

Replacing A, (x), ¢(x), and (x) by the functional derivatives 8Z/8J*(x), 6Z/8%(x), and 8Z/8n(x), respectively, we
obtain the identity,

1 o 0
—ntnto) ———— — iem —0,J" ]z=0. C4
[ on 5y — €70 s + en(n) 52 = 0,760 )
The corresponding Ward identity for the generating functional W = —ilnZ of the connected Green functions can be
straightforwardly derived due to the linearity of the the functional derivative operator in (C4),
L o
—n'ntdy——i + —9,J" W =0. C5
[ on 5y — €M) s + e 52 = 0,001 | (©3)

Acting 8/[i6J,(y)] on the identity (C5) and then setting the external sources J,,, 17, and 7 equal to zero, we obtain the
Ward identity for the two-point function of gauge field,

[1 nrn# 9y 5—2
& A i8I (x)is I (y)

In momentum space it reads as

+i0%,69 (x — y)]W|,H=,,:,-,:0 =0, nnt PG, (x — y)] = =69 (x — ).  (C6)

nG,(p) = —i€ L (€7)
n-p
Equation (C7) implies that the tensor structure of two-point function of the U(1) CS gauge field is
. 1 DPuPv
lG,uV(p) = A(PZ, n- p)é,u,vpnp + B(P, n: p)[g,uv - ﬂ(p,unv + pvn,u,):l + f(nlup)z (C8)

Further, acting 6/i67(y) and 6/i6m(z) on the identity successively, and then letting all the external sources equal to
zero, we can obtain the Ward identity relating the three-point function (A, () (y)(z))c and two-point function
()P ()

1 53 52 52
n#n”o¥ -8 —y)—— 4+ eO(x — 7]W pepei=g = 0,
(¢ 755 smmaomonm ~ 07 o * O~ ) g P

én“n”a’ﬁ(AM(x)w(y)fﬂ(z»c — eV (x = YY) P (@) + edV(x — P (P (x) = 0,

(C9)

where the subscript C denotes the connected part of the three-point function (A, (x)#(y)(z)). We further make one-
particle-irreducible decomposition on the connected three-point function (A, (x)dr(y):,lz(z))c, and then Eq. (C9) becomes
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1
En“n”ai f PPy P[iG ) (x — XNES(y — Y)ES(z — T (X, Y, 2)
— e8P (x — Y)iS(x — 2)] + e8¥(x — 2)[iS(y — x)] = 0. (C10)

Inserting (C6) and cutting-off the external legs, we obtain the identity between the gauge field-fermion-fermion vertex
function and two-point function of the fermion,

i03,T#(x, y,2) = [iS(z = 0] 7189 (x = y) = [iS(x = »)] 7189 (x — 2), (C11)
which is identical to the case in covariant gauge. In momentum space it reads
g“Tulp' p. =(p' + p) =571 (p) = S~ (p), (C12)

where ¢, = p!, — p,,. Further, using the fact that the perturbative quantum correction is the quantum fluctuation around a
classical background,

L,(pp)=v,+Ap.p., S p)=p—m—Z2(p) (C13)
we finally obtain the identity relating the vertex correction and fermionic self-energy:
g“A,(p', p) = (p"* — pM)A,(p', p) = —[2(p) — 2(p)] (C14)

It is equivalent to

. . d
A,(p) = pilfllmf\#(l?', p) = _8’72(1?), (C15)
which implies
r = 9 g1 16
,L(P) = _apjs (P)‘ (Cl6)

The identity (C15) or (C16) leads to Z; = Z, as in the case of a covariant gauge.
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