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We consider the OðNÞ linear � model and introduce an auxiliary field to eliminate the scalar self-

interaction. Using a suitable limiting process this model can be continuously transformed into the

nonlinear version of the OðNÞ model. We demonstrate that up to two-loop order in the Cornwall-

Jackiw-Tomboulis formalism, the effective potential of the model with auxiliary field is identical to the

one of the standard OðNÞ linear � model if the auxiliary field is eliminated using the stationary values for

the corresponding one- and two-point functions. We numerically compute the chiral condensate and the

�- and �-meson masses at nonzero temperature in the one-loop approximation of the Cornwall-Jackiw-

Tomboulis formalism. The order of the chiral phase transition depends sensitively on the choice of the

renormalization scheme. In the linear version of the model and for explicitly broken chiral symmetry, it

turns from crossover to first order as the mass of the � particle increases. In the nonlinear case, the order of

the phase transition turns out to be of first order. In the region where the parameter space of the model

allows for physical solutions, Goldstone’s theorem is always fulfilled.
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I. INTRODUCTION

Scalar models in dþ 1 space-time dimensions with or-
thogonal symmetry are widely used in many areas of phys-
ics. Some applications of these OðNÞ models are quantum
dots, high-temperature superconductivity, low-dimensional
systems, polymers, organic metals, biological molecular
arrays, and chains. In this paper, we focus on a physical
system consisting of interacting pions and � mesons at
nonzero temperature T. For three spatial dimensions,
d ¼ 3, an analytical solution to this model does not exist.
Thus, one has to use many-body approximation schemes in
order to compute quantities of interest, such as the effective
potential, the order parameter, and the masses of the parti-
cles as a function of T. As an approximation scheme never
gives the exact solution, it is of interest to compare different
schemes and assess their physical relevance.

For N ¼ 4 the OðNÞ symmetry group for the internal
degrees of freedom is locally isomorphic to the chiral
SUð2ÞR � SUð2ÞL symmetry group of quantum chromody-
namics (QCD) with Nf ¼ 2 massless quark flavors. The

phenomena of low-energy QCD are largely governed by
chiral symmetry.

In the case of zero quark masses the QCD Lagrangian is
invariant under UðNfÞR �UðNfÞL transformations, Nf

being the number of quark flavors. However, the true
symmetry of QCD is only UðNfÞV � SUðNfÞA because

of the axial anomaly which explicitly breaks Uð1ÞA due
to nontrivial topological effects [1]. For Nf nonzero but

degenerate quark masses, the SUðNfÞA symmetry is explic-

itly broken, such that QCD has only a UðNfÞV flavor

symmetry. In reality, different quark flavors have different
masses reducing the symmetry of QCD to Uð1ÞV , which

corresponds to baryon number conservation. In the vacuum,
the axial SUðNfÞA symmetry is also spontaneously broken

by a nonvanishing expectation value of the quark condensate
hq �qi � 0 [2]. According to Goldstone’s theorem, this leads
to N2

f � 1 Goldstone bosons.

The chiral symmetry is restored at a temperature T
which for dimensional reasons is expected to be of the
order of �QCD � 200 MeV. This scenario is indeed con-

firmed by lattice simulations, in which (for physical quark
masses) a crossover transition at Tc � 150 MeV has been
observed.
For vanishing quark masses, the high- and the low-

temperature phases of QCD have different symmetries,
and therefore must be separated by a phase transition.
The order of this chiral phase transition is determined
by the global symmetry of the QCD Lagrangian; for
UðNfÞV�UðNfÞA, the transition is of first order if Nf�2;

for UðNfÞV � SUðNfÞA the transition can be of second

order if Nf � 2 [3]. If the quark masses are nonzero, the

second-order phase transition becomes crossover.
The calculation of hadronic properties at nonzero tem-

perature faces serious technical difficulties. For a non-
convex effective potential standard perturbation theory
cannot be applied. Furthermore, nonzero temperature
introduces an additional scale which invalidates the usual
power counting in terms of the coupling constant [4]. A
consistent calculation to a given order in the coupling
constant then may require a resummation of whole classes
of diagrams [5].
A convenient technique to perform such a resummation

and thus arrive at a particular many-body approximation
scheme is the so-called two-particle irreducible (2PI) or
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Cornwall-Jackiw-Tomboulis (CJT) formalism [6,7], which
is a relativistic generalization of the �-functional formal-
ism [8,9]. The CJT formalism extends the concept of the
generating functional �½�� for one-particle irreducible
(1PI) Green’s functions to that for 2PI Green’s functions
�½�;G�, where � and G are the one- and two-point func-
tions. The central quantity in this formalism is the sum of
all 2PI vacuum diagrams, �2½�;G�. Any many-body ap-
proximation scheme can be derived as a particular trunca-
tion of �2½�;G�.

An advantage of the CJT formalism is that it avoids
double counting and fulfills detailed balance relations and
thus is thermodynamically consistent. Another advantage is
that the Noether currents are conserved for an arbitrary
truncation of�2, as long as the one- and two-point functions
transform as rank-1 and rank-2 tensors. A disadvantage is
thatWard-Takahashi identities for higher-order vertex func-
tions are no longer fulfilled [10] (see, however, Ref. [11]
where a solution to this problemwas discussed in the frame-
work of Abelian gauge theories). As a consequence,
Goldstone’s theorem is violated [12,13]. A strategy to restore
Goldstone’s theorem is to perform a so-called ‘‘external’’
resummation of random-phase approximation diagramswith
internal lines given by the full propagators of the approxi-
mation used in the CJT formalism [10].

In the literature different many-body approximations
have been applied to examine the thermodynamical behav-
ior of theOðNÞmodel in its linear and nonlinear versions. In
Ref. [14] optimized perturbation theory was used to com-
pute the effective potential, spectral functions, and dilepton
emission rates. The CJT formalism has been applied to
study the thermodynamics of the OðNÞ model in the so-
called ‘‘double-bubble’’ approximation [12,13,15–24], in
Ref. [25] also (the imaginary parts of) sunset-type diagrams
have been included. The 1=N expansion has also been used
several times to study various properties of theOðNÞmodel
at zero [26,27] and nonzero [28–31] temperature.

In this paper, we derive the effective potential for the
OðNÞ linear � model within the auxiliary-field method
[32–34]. The auxiliary field allows us to obtain the nonlinear
version of the � model by a well-defined limiting process
from the linear version. We demonstrate that to two-loop
order the effective potential is equivalent to the one of the
standard OðNÞ linear � model without auxiliary field, once
the one- and two-point functions involving the auxiliary field
are replaced by their stationary values.We then calculate the
masses and the condensates of theOðNÞmodel at nonzero T
in one-loop approximation. Although we restrict our treat-
ment to one-loop order, the condensate equation for the
auxiliary field introduces self-consistently computed loops
in the equations for the masses. Therefore, the one-loop
approximation with auxiliary field is qualitatively similar
to the standard double-bubble (Hartree-Fock) approxima-
tion in the treatment without auxiliary field. However, since
the equations for the masses differ quantitatively, they lead

to different results for the order parameter and the masses of
the particles as a function of T.
The order of the chiral phase transition depends sensi-

tively on the choice of renormalization scheme. In the
linear version of the model and for explicitly broken chiral
symmetry, it turns from crossover to first order as the mass
of the � particle increases. In the counterterm renormal-
ization scheme, this transition happens for smaller values
of the�meson than in the case where vacuum contributions
to tadpole diagrams are simply neglected (the so-called
trivial regularization). In the nonlinear case the phase tran-
sition is of first order. Besides, in the region where the
parameter space of the model allows for physical solutions
of the mass equations, Goldstone’s theorem is always
respected.
The manuscript is organized as follows: In Sec. II the

linear and nonlinear versions of the model are presented
and it is shown how they can be related with the help of an
auxiliary field. In Sec. III the effective potential and the
equations for the condensate and masses are derived. We
demonstrate the equivalence of the auxiliary-field method
to that of the standard approach (i.e., without auxiliary
field) when replacing the one- and two-point functions of
the auxiliary field by their stationary values. In Sec. IV the
results are presented for the linear and nonlinear versions
of the model in the case of nonvanishing and vanishing
explicit symmetry breaking. Section V concludes this
paper with a summary of our results and an outlook for
further studies. Appendix A contains an alternative proof
of the equivalence of the treatment with and without aux-
iliary field and Appendix B demonstrates details concern-
ing the renormalization of tadpole integrals.
We use units h ¼ c ¼ kB ¼ 1. The metric tensor is

g�� ¼ diagð1;�1;�1;�1Þ. Four-vectors are denoted by

capital letters, K� ¼ ðk0; ~kÞ. We use the imaginary-time
formalism to compute quantities at nonzero temperature,
i.e., the energy is k0 ¼ i!n, where !n is the Matsubara
frequency. For bosons, !n ¼ 2�nT. Energy-momentum
integrals are denoted asZ

K
fðKÞ � T

X1
n¼�1

Z d3 ~k

ð2�Þ3 fði!n; ~kÞ: (1)

II. THE OðNÞ MODEL

The generating functional of the � model with OðNÞ
symmetry at nonzero temperature T is given by

ZLð";hÞ¼N
Z
D�D�exp

�Z 1=T

0
d�
Z
V
d3 ~xL���

�
; (2)

with the Lagrangian

L��� ¼ 1

2
ð@��Þ2 �Uð�; �Þ;

Uð�; �Þ ¼ i

2
�ð�2 � �2

0Þ þ
N"

8
�2 � h�;

(3)
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where �2 ¼ �t�, �t ¼ ð�;�1; . . . ; �N�1Þ and � is an
auxiliary field serving as a Lagrange multiplier. One can
obtain the generating functional of the OðNÞ model in its
familiar form by integrating out the field �:

ZLð"; hÞ ¼ ~N
Z

D�exp

�Z 1=T

0
d�

Z
V
d3 ~xL�

�
; (4)

with the Lagrangian

L � ¼ 1

2
ð@��Þ2 � 1

2N"
ð�2 � �2

0Þ2 þ h�: (5)

As one can see, the potential of the model exhibits the
typical tilted Mexican-hat shape, with the parameter 1="
being the coupling constant, h the parameter for explicit
symmetry breaking, and �0 the vacuum expectation value
(VEV) of�. The �i fields can be identified as the pseudo-
Goldstone fluctuations.

Another way to see the equivalence to the standard form
of the OðNÞ model is to use the equation of motion for the
auxiliary field �,

	L���

	�
� @�

	L���

	@��
¼ 0 ) i� ¼ 2

N"
ð�2 � �2

0Þ: (6)

When plugging the latter into L��� one recovers, as
expected, the familiar Lagrangian L�.

The advantage of the representation (2) of the generating
functional of the linear � model is that by taking the limit
" ! 0þ, one naturally obtains the nonlinear version of
the � model with the fields constrained by the condition
�2 ¼ �2

0. In fact,

ZNLðhÞ ¼ lim
"!0þ

ZLð"; hÞ

¼ lim
"!0þ

N
Z

D�D�exp

�Z 1=T

0
d�

Z
V
d3 ~xL���

�

¼ N 0 Z D�	½�2 � �2
0�

� exp

�Z 1=T

0
d�

Z
V
d3 ~x

�
1

2
ð@��Þ2 þ h�

��
; (7)

because 	½�2 � �2
0� can be identified with

	½�2 � �2
0� � lim

"!0þ

Z
D� exp

�
�
Z 1=T

0
d�

�
Z
V
d3 ~x

�
i

2
�ð�2 � �2

0Þ þ
N"

8
�2

��
; (8)

which is the mathematically well-defined (i.e., convergent)
form of the usual representation of the functional 	 function.
Equation (8) ensures that the Mexican-hat shape was
hyphenated, should Mexican hat potentialMexican hat
potential becomes infinitely steep and, consequently, the
mass of the radial degree of freedom infinite.

Note that in someprevious studiesof theOðNÞ nonlinear�
model [28,29], the " dependence in Eq. (8) was not appro-
priately handled: there, the limit " ! 0þ was exchanged

with the functional D� integration, effectively setting
" ¼ 0 in the exponent. This, however, is incorrect, since
the additional term �"�2 is essential to establish the link
between the linear model and the nonlinear one.Without this
term, an integration over the auxiliary field does not give the
correct potential of the linear model. Thus, for a proper
construction of the nonlinear limit of the OðNÞ model the "
dependence must be included.

III. THE CJT EFFECTIVE POTENTIAL

In this work we study the thermodynamical behavior of
the OðNÞ linear � model, and in particular the temperature
dependence of the masses of the modes and of the conden-
sate. To this end one has to apply methods that go beyond
the standard loop expansion which is not applicable when
the effective potential is not convex [35], as is the case here
because of spontaneous chiral symmetry breaking. A
method that allows to compute quantities like the effective
potential, the masses, and the order parameter at nonzero
temperature is provided by the CJT formalism [6]. In order
to apply this method, we need to identify the tree-level
potential, the tree-level propagators, as well as the inter-
action vertices from the underlying Lagrangian.

A. Tree-level potential, tree-level propagators,
and vertices

In our case, the fields occurring in the Lagrangian are �,
� � ð�1; . . . ; �N�1Þt, as well as the auxiliary field �. In
general, the fields � and � attain nonvanishing vacuum
expectation values. In order to take this fact into account,
we perform a shift � ! �þ � and � ! �0 þ �, respec-
tively. This leaves the kinetic terms in the Lagrangian (3)
unchanged, while the potential becomes

Uð�þ�;�; �þ �0Þ
¼ i

2
ð�0 þ �Þð�2 þ �2 þ 2��þ�2 � v2

0Þ

þ N"

8
ð�0 þ �Þ2 � hð�þ �Þ: (9)

In order to derive the Lagrangian from which we can read
off the tree-level potential, the tree-level propagators, and
the interaction vertices, we use the fact that linear terms in
the fields vanish on account of the famous tadpole cancel-
lation which utilizes the definition of the vacuum expecta-
tion values via the conditions

dU

d�
� 0;

dU

d�0

� 0: (10)

The resulting expression for the Lagrangian reads

L���¼1

2
ð@��Þ2þ1

2
ð@��Þ2� i�0

2
�2� i�0

2
��1

2

N"

4
�2

� i���� i

2
�ð�2þ�Þ�Uð�;�0Þ;22; (11)
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where the tree-level potential is

Uð�;�0Þ ¼ i

2
�0ð�2 � �2

0Þ þ
N"

8
�2
0 � h�: (12)

There is a bilinear mixing term, i���, which renders the
mass matrix nondiagonal in the fields � and �.

We can think of two ways to treat this mixing term:
(1) We keep this term and allow for a nondiagonal

propagator which mutually transforms the fields �
and � into each other.

(2) We perform a shift,

� ! �� 4
i�

N"
�; (13)

which eliminates the bilinear term.
In the following, we discuss the construction of the CJT

effective potential only for case (ii). The discussion of case
(i) will be delegated to Appendix A where we explicitly
demonstrate that to two-loop order, the effective potential
and the equations for the condensates and the masses are
the same as for case (ii) when quantities involving the
auxiliary field are replaced by their stationary values.

After the shift (13), the resulting expression for the
Lagrangian reads

�L��� ¼ 1

2
ð@��Þ2 þ 1

2
ð@��Þ2 � 1

2

�
i�0 þ 4�2

N"

�
�2

� 1

2
ði�0Þ� � 1

2

N"

4
�2 � i

2
�ð�2 þ �Þ

� 2�

N"
�ð�2 þ �Þ �Uð�;�0Þ:222: (14)

From this expression, we can immediately read off the
inverse tree-level propagator matrix,

�D�1ðK;�;�0Þ¼

�D�1
� 0 0 ���
0 �D�1

� ðK;�;�0Þ 0 ���
0 0 �D�1

� ðK;�0Þ
..
. ..

. . .
.

0
BBBBBB@

1
CCCCCCA

¼

N"
4 0 0 ���
0 �K2þ i�0þ 4�2

N" 0 ���
0 0 �K2þ i�0

..

. ..
. . .

.

0
BBBBBBB@

1
CCCCCCCA:

(15)

The shift (13) has the following consequences:
(a) The Jacobian associated with the transformation is

unity, thus the functional integration in Eq. (7)
remains unaffected.

(b) It generates a term in the � mass, which diverges in
the limit " ! 0þ, see Eq. (15). This is expected,
since the � particle becomes infinitely heavy in the
nonlinear version of the OðNÞ model.

Finally, we identify the tree-level vertices from the
Lagrangian (11): there are two three-point vertices con-
necting the auxiliary field� to either two� or two� fields,
respectively. [These are the same vertices that also appear
in case (i), see Appendix A.] Furthermore, there is a three-
point vertex with three� fields, and one with one � and two
� fields. These vertices are proportional to �. [These ver-
tices arise from the shift (13); they do not appear in case (i),
see Appendix A.]

B. CJT effective potential

The effective potential assumes the form

Veffð�;�0; GÞ ¼ Uð�;�0Þ þ 1

2

Z
K
½lnG�1

� ðKÞ þ lnG�1
� ðKÞ þ ðN � 1Þ lnG�1

� ðKÞ� þ 1

2

Z
K
½ �D�1

� G�ðKÞ
þ �D�1

� ðK;�;�0ÞG�ðKÞ þ ðN � 1Þ �D�1
� ðK;�0ÞG�ðKÞ � ðN þ 1Þ� þ V2ð�;GÞ: (16)

The term V2ð�;GÞ represents the sum of all two-particle
irreducible diagrams constructed from the three-point ver-
tices in Eq. (14). By definition, these diagrams consist of
at least two loops. The one- and two-point functions are
determined by the stationary conditions for the effective
potential

	Veff

	�
¼ 0;

	Veff

	�0

¼ 0;
	Veff

	GiðKÞ ¼ 0;

i ¼ �;�;�1; . . . ; �N�1: (17)

This leads to the following equations for the condensates:

h ¼ i�0�þ 4�

N"

Z
K
G�ðKÞ þ 	V2ð�;GÞ

	�
; (18)

i�0 ¼ 2

N"

�
�2 � �2

0 þ
Z
K
G�ðKÞ þ ðN � 1Þ

Z
K
G�ðKÞ

�
:

(19)

For the two-point functions we obtain from Eq. (17) the
Dyson equations

G�1
� ðKÞ ¼ �D�1

� þ��ðKÞ;
G�1

� ðKÞ ¼ �D�1
� ðK;�;�0Þ þ��ðKÞ;

G�1
� ðKÞ ¼ �D�1

� ðK;�0Þ þ��ðKÞ;
(20)

where the self-energies are
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�iðKÞ¼2
	V2ð�;GÞ
	GiðKÞ ; i¼�;�;�1; . . . ;�N�1: (21)

In the following two subsections, we give the explicit
expressions for the condensate and mass equations in
one- and two-loop approximation, respectively.

C. One-loop approximation

In one-loop approximation, V2 � 0. Equation (19)
remains the same while Eq. (18) simplifies to

h¼ i�0�þ4�

N"

Z
K
G�ðKÞ

¼ 2�

N"

�
�2��2

0þ3
Z
K
G�ðKÞþðN�1Þ

Z
K
G�ðKÞ

�
;

(22)

where for the second equality we have used Eq. (19) to
replace i�0. For V2 ¼ 0, all self-energies are zero, cf.
Eq. (21), i.e., the full inverse two-point functions are
identical to the inverse tree-level propagators. From
Eq. (20) one immediately sees that the two-point functions
for � meson and pion can be written in the form

GiðKÞ¼ ½ �D�1
i ðK;�;�Þ��1¼ð�K2þM2

i Þ�1; i¼�;�;

(23)

with the (squared) masses

M2
�¼ i�0þ4�2

N"

� 2

N"

�
3�2��2

0þ
Z
K
G�ðKÞþðN�1Þ

Z
K
G�ðKÞ

�
;

(24)

M2
�¼ i�0

� 2

N"

�
�2��2

0þ
Z
K
G�ðKÞþðN�1Þ

Z
K
G�ðKÞ

�
:

(25)

For the second equalities we have used the condensate
equation (19) to replace i�0. Note that this introduces
self-consistently computed tadpole integrals into the equa-
tions for the masses.

Neglecting terms which are subleading in 1=N—an
approximation commonly referred to as the large-N (or
Hartree) limit—Eqs. (22), (24), and (25) reduce to

h ¼ �M2
� þOðN�1Þ; (26)

M2
� ¼ M2

� þ 4�2

N"
; (27)

M2
� ¼ 2

N"

�
�2 � �2

0 þ N
Z
k
G�ðkÞ

�
þOðN�1Þ: (28)

Note that the condensate and the VEV are � ffiffiffiffi
N

p
, i.e.,

�2 � �2
0 � N.

D. Two-loop approximation

To two-loop order there are the four sunset-type diagrams
shown in Fig. 1 constructed from the three-point vertices
between three � fields, one �, and two � fields, as well as
between one � field with either two � or two � fields,
respectively. There are no double-bubble–type diagrams,
due to the absence of four-point vertices. In two-loop
approximation,

V2ð�;GÞ ¼ 1

4

Z
K

Z
P
G�ðK þ PÞ½G�ðKÞG�ðPÞ

þ ðN � 1ÞG�ðKÞG�ðPÞ�
�
�
2�

N"

�
2 Z

K

Z
P
G�ðK þ PÞ½3G�ðKÞG�ðPÞ

þ ðN � 1ÞG�ðKÞG�ðPÞ�: (29)

The overall sign follows from the fact that the effective
potential has the same sign as the free energy. The combi-
natorial factors in front of the individual terms follow as
usual from counting the possibilities of connecting lines
between the vertices, with an overall factor of 1=2 because
there are two vertices.
The condensate equation (19) for the auxiliary field

again remains unchanged while Eq. (18) becomes

FIG. 1. Two-particle irreducible diagrams constructed from
the three-point vertices in Eq. (14). The full line represents the
� field, the dashed line represents the � field, and the zigzag line
represents the � field.
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h¼ i�0�þ4�

N"

Z
K
G�ðKÞ�2�

�
2

N"

�
2Z

K

Z
P
G�ðKþPÞ½3G�ðKÞG�ðPÞþðN�1ÞG�ðKÞG�ðPÞ�

¼ 2�

N"

�
�2��2

0þ3
Z
K
G�ðKÞþðN�1Þ

Z
K
G�ðKÞ� 4

N"

Z
K

Z
P
G�ðKþPÞ½3G�ðKÞG�ðPÞþðN�1ÞG�ðKÞG�ðPÞ�

�
;

(30)

where in the second equality we have used Eq. (19) to replace i�0. This is identical with the condensate equation in the
two-loop approximation for the usual OðNÞ linear � model without auxiliary field, see Sec. III E.

From Eq. (21) we derive the self-energies as

��¼1

2

Z
P
½G�ðPÞG�ðK�PÞþðN�1ÞG�ðPÞG�ðK�PÞ�; (31)

��ðKÞ ¼
Z
P
G�ðPÞG�ðK � PÞ � 2

�
2�

N"

�
2 Z

P
½9G�ðPÞG�ðK � PÞ þ ðN � 1ÞG�ðPÞG�ðK � PÞ�; (32)

��ðKÞ¼
Z
P
G�ðPÞG�ðK�PÞ�4

�
2�

N"

�
2Z

P
G�ðPÞG�ðK�PÞ: (33)

Then, the Dyson equations (20) for the full two-point functions read

G�1
� ðKÞ ¼ �D�1

� þ��ðKÞ ¼ N"

4
þ 1

2

Z
P
½G�ðPÞG�ðK � PÞ þ ðN � 1ÞG�ðPÞG�ðK � PÞ�; (34)

G�1
� ðKÞ ¼ �D�1

� ðK;�;�0Þ þ��ðKÞ ¼ �K2 þ i�0 þ 4�2

N"
þ��ðKÞ

¼ �K2 þ 2

N"

�
3�2 � �2

0 þ
Z
K
G�ðKÞ þ ðN � 1Þ

Z
K
G�ðKÞ

�

þ
Z
P
G�ðPÞG�ðK � PÞ � 2

�
2�

N"

�
2 Z

P
½9G�ðPÞG�ðK � PÞ

þ ðN � 1ÞG�ðPÞG�ðK � PÞ�; (35)

G�1
� ðKÞ ¼ �D�1

� ðK;�0Þ þ��ðKÞ ¼ �K2 þ i�0 þ��ðKÞ
¼ �K2 þ 2

N"

�
�2 � �2

0 þ
Z
K
G�ðKÞ þ ðN � 1Þ

Z
K
G�ðKÞ

�

þ
Z
P
G�ðPÞG�ðK � PÞ � 4

�
2�

N"

�
2 Z

P
G�ðPÞG�ðK � PÞ: (36)

Here, we have also made use of Eq. (19) for the auxiliary
field.

E. Recovering the standard two-loop approximation

In this subsection, we demonstrate that to two-loop
order, the results are the same as for a direct application
of the CJT formalism to the original Lagrangian (5) of the
OðNÞ linear � model (a case that we term ‘‘standard two-
loop approximation’’) if we eliminate the � field using the
stationary values for the condensate �0 and the full propa-
gator G�. The effective potential for the original OðNÞ
linear � model reads

Vl�m
eff ð�;GÞ¼ 1

2N"
ð�2��2

0Þ2�h�þ1

2

X
i¼�;�

Z
K
½lnG�1

i ðKÞ

þD�1
i ðK;�ÞGiðKÞ�1�þVl�m

2 ð�;GÞ; (37)

where the inverse tree-level propagators are

D�1
� ðK;�Þ ¼ �K2 þ 2

N"
ð3�2 � �2

0Þ;

D�1
� ðK;�Þ ¼ �K2 þ 2

N"
ð�2 � �2

0Þ;
(38)

and to two-loop order,
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Vl�m
2 ð�;GÞ ¼ 3

2N"

�Z
K
G�ðKÞ

�
2 þ ðN þ 1ÞN � 1

2N"

�Z
K
G�ðKÞ

�
2 þ N � 1

N"

Z
K
G�ðKÞ

Z
P
G�ðPÞ

�
�
2�

N"

�
2 Z

K

Z
P
G�ðK þ PÞ½3G�ðKÞG�ðPÞ þ ðN � 1ÞG�ðKÞG�ðPÞ�: (39)

The first line is the contribution from double-bubble diagrams arising from the four-point vertices with four � fields or two
� and two � fields in the Lagrangian (5). The second line corresponds to the sunset diagrams shown in the second row of
Fig. 1. These are the same in the linear �model with or without auxiliary field. Note that the sunset contribution differs in
sign from the double-bubble contribution (this sign was missed in Ref. [25]). The equation arising from the stationarity
condition (17) for Vl�m

eff reads

h¼ 2�

N"

�
�2��2

0þ3
Z
K
G�ðKÞþðN�1Þ

Z
K
G�ðKÞ� 4

N"

Z
K

Z
P
G�ðKþPÞ½3G�ðKÞG�ðPÞþðN�1ÞG�ðKÞG�ðPÞ�

�
:

(40)

This is identical with Eq. (30), i.e., with the equation obtained via the auxiliary-field formalism, once the auxiliary field is
eliminated with the help of Eq. (19).

The self-energies for � meson and pion read

�l�m
� ðKÞ¼ 2

N"

�
3
Z
K
G�ðKÞþðN�1Þ

Z
K
G�ðKÞ

�
�2

�
2�

N"

�
2Z

P
½9G�ðPÞG�ðK�PÞþðN�1ÞG�ðPÞG�ðK�PÞ�; (41)

�l�m
� ðKÞ ¼ 2

N"

�Z
K
G�ðKÞ þ ðN þ 1Þ

Z
K
G�ðKÞ

�
� 4

�
2�

N"

�
2 Z

P
G�ðPÞG�ðK � PÞ: (42)

Therefore, the Dyson equations for the full two-point functions read

G�1
� ðKÞ¼D�1

� ðK;�Þþ�l�m
� ðKÞ

¼�K2þ 2

N"
ð3�2��2

0Þþ
2

N"

�
3
Z
K
G�ðKÞþðN�1Þ

Z
K
G�ðKÞ

�

�2

�
2�

N"

�
2Z

P
½9G�ðPÞG�ðK�PÞþðN�1ÞG�ðPÞG�ðK�PÞ�; (43)

G�1
� ðKÞ ¼ D�1

� ðK;�Þ þ�l�m
� ðKÞ

¼ �K2 þ 2

N"
ð�2 � �2

0Þ þ
2

N"

�Z
K
G�ðKÞ þ ðN þ 1Þ

Z
K
G�ðKÞ

�
� 4

�
2�

N"

�
2 Z

P
G�ðPÞG�ðK � PÞ: (44)

These equations are identical with the Dyson equations
(35) and (36) if we replace the propagator G� of the
auxiliary field in those equations using the Dyson equation
(34). In order to see this, we formally write

G�ðKÞ ¼ ½G�1
� ðKÞ��1 ¼ ½ �D�1

� þ��ðKÞ��1

¼ �D�

X1
n¼0

½� �D���ðKÞ�n: (45)

If we insert this into the respective terms in Eqs. (35) and
(36), we observe that the terms for n � 1 generate contri-
butions which are at least of second order in loops [because
��ðKÞ is already a one-loop term]. However, to two-loop
order in the effective potential, it is sufficient to consider
the 1PI self-energies to one-loop order only. Therefore, we
may neglect all contributions in Eq. (45) except for the
n ¼ 0 (tree-level) term. Then, we may replace

Z
P
GiðPÞG�ðK�PÞ!

Z
P
GiðPÞ �D�¼ 4

N"

Z
P
GiðPÞ; i¼�;�;

(46)

in Eqs. (35) and (36), i.e., they become simple tadpole
contributions to the self-energies. Combining these with the
other tadpole contributions, we observe that indeed, Eqs. (35)
and (36) become identical with Eqs. (43) and (44).
Finally, we also show that the effective potential (29) in

two-loop approximation for V2ð�;GÞ, Eq. (29), becomes
identical with the effective potential for the standard linear
� model, Eq. (39), if we replace the expectation value and
the full two-point function for the auxiliary field by their
stationary values. To this end, it is advantageous to consider
the tree-level, the one-loop, and the two-loop contributions
in Eq. (16) separately. The tree-level potential at the sta-
tionary value for �0 reads
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Uð�;�0Þ ¼ 1

2
ð�2 � �2

0Þ
2

N"

�
�2 � �2

0 þ
Z
K
G�ðKÞ þ ðN � 1Þ

Z
K
G�ðKÞ

�

� N"

8

�
2

N"

�
2
�
�2 � �2

0 þ
Z
K
G�ðKÞ þ ðN � 1Þ

Z
K
G�ðKÞ

�
2 � h�

¼ 1

2N"

�
�2 � �2

0 �
�Z

K
G�ðKÞ�2 � 2ðN � 1Þ

Z
K
G�ðKÞ

Z
P
G�ðPÞ � ðN � 1Þ2

�Z
K
G�ðKÞ

�
2
�
� h�: (47)

For the one-loop contribution, we expand the logarithm of the inverse two-point function for the auxiliary field using the
Dyson equation (34) and employ the expansion (45),

lnG�1
� ðKÞ þ �D�1

� G�ðKÞ � 1 ¼ ln �D�1
� þ ln½1þ �D���ðKÞ� þ �D�1

� ½ �D�1
� þ��ðKÞ��1 � 1

¼ ln
N"

4
þ �D���ðKÞ �

X1
n¼2

1

n
½� �D���ðKÞ�n þ 1� �D���ðKÞ þ X1

n¼2

½� �D���ðKÞ�n � 1

¼ ln
N"

4
þ X1

n¼2

½� �D���ðKÞ�n
�
1� 1

n

�
: (48)

We observe that the terms linear in��ðKÞ aswell as the unit
terms cancel. In the final result, the first term is a (negli-
gible) constant. The remaining series starts with a termwith
two powers of��ðKÞ. Since��ðKÞ is (at least) of one-loop
order, when integrating over K, this term is (at least) of
three-loop order in the effective potential. [In fact, since

�D� ¼ 4=ðN"Þ ¼ const, one readily convinces oneself that
the n ¼ 2 term in the series corresponds to the well-known
basketball diagram.] To two-loop order in the effective
potential, we may therefore neglect the series in Eq. (48).
Using Eq. (19), the remaining one-loop terms in the

effective potential (16) read

1

2

Z
K
½lnG�1

� ðKÞþðN�1ÞlnG�1
� ðKÞþ �D�1

� ðK;�;�0ÞG�ðKÞþðN�1Þ �D�1
� ðK;�0ÞG�ðKÞ�N�

¼1

2

Z
K

�
lnG�1

� ðKÞþðN�1ÞlnG�1
� ðKÞþ

�
�K2þ 2

N"
ð3�2��2

0Þ
�
G�ðKÞþðN�1Þ

�
�K2þ 2

N"
ð�2��2

0Þ
�
G�ðKÞ�N

�

þ 1

N"

�Z
K
G�ðKÞþðN�1Þ

Z
K
G�ðKÞ

�
2
; (49)

where the last term arises from the tadpole contributions to Eq. (19). Multiplying them with full two-point functions
G�ðKÞ, G�ðKÞ, and integrating over K, they lead to the double-bubble-type terms shown in the last line. Note that the
coefficients of the full two-point functions in the second line are just the inverse tree-level propagators in the standard
linear � model, cf. Eq. (38).

Finally, we consider the two-loop contribution (29). To two-loop order, it is justified to replace G�ðK þ PÞ ! �D� �
4=ðN"Þ, and we obtain

V2ð�;GÞ ’ 1

N"

��Z
K
G�ðKÞ

�
2 þ ðN � 1Þ

�Z
K
G�ðKÞ

�
2
�

�
�
2�

N"

�
2 Z

K

Z
P
G�ðK þ PÞ½3G�ðKÞG�ðPÞ þ ðN � 1ÞG�ðKÞG�ðPÞ�: (50)

Adding Eqs. (47)–(49), we indeed obtain the effective
potential (39) of the standard linear � model.

IV. RESULTS

In this section, we show numerical solutions for the one-
loop approximation, Eqs. (22), (24), and (25), for N ¼ 4,
corresponding to a system of three pions and their chiral
partner, the� particle.We compare this to results for the one-
loop approximation in the large-N limit, Eqs. (26)–(28). We
discuss the results for the linear and the nonlinear � model,
with and without explicitly broken chiral symmetry.

Furthermore,we investigate the counterterm renormalization

(CTR) method discussed in Appendix B and the so-called

trivial regularization (TR) where the vacuum contribution of

the tadpole integral is set to zero. This is strictly speaking not

an entirely consistent procedure because these ‘‘vacuum’’

contributions actually have an implicit temperature depen-

dence: they depend on the self-consistently computed parti-

cle masses which are functions of temperature. On the other

hand, the CTR method does not have this shortcoming

because the counter terms used to eliminate the divergences

are (infinite) constants independent of temperature.
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In the TR method the parameters are determined by
solving Eqs. (22), (24), and (25), in the vacuum,

h¼m2
�f�;

1

"
¼m2

��m2
�

f2�
; �2

0¼f2��2"m2
�: (51)

Similarly, in the CTR method the parameters are obtained
from the solutions of the renormalized equations (B18)–
(B20) at T ¼ 0,

h ¼ f�

�
m2

� þ 1

16�2"

�
m2

� ln
m2

�

�2
�m2

� þ�2

��
;

1

"
¼ m2

� �m2
�

f2�
;

�2
0 ¼ f2� � 2"m2

� þ 1

16�2

�
m2

� ln
m2

�

�2
�m2

� þ�2

þ 3

�
m2

� ln
m2

�

�2
�m2

� þ�2

��
: (52)

Note that in the chiral limit, h ! 0þ, where m� ! 0, the
first equation requires to choose the renormalization scale
� ¼ m�.

A. Linear model with explicitly broken symmetry

In Fig. 2 we show the masses of the pion and the �
meson, as well as the condensate as a function of tempera-
ture for different values of the vacuum � mass m�. One
observes that the condensate decreases as a function of
temperature, which is a consequence of the restoration of
chiral symmetry. Depending on the value of m�, chiral
symmetry restoration may proceed via a phase transition.
In the CTR scheme, the phase transition is of second order
for m� ’ 500 MeV, and of first order for larger values of
m�. For smaller values, however, the transition is only
crossover. In the chirally restored phase, the condensate
is always nonzero because of the small explicit breaking of
chiral symmetry due to nonvanishing quark masses (which

gives rise to a nonzero pion mass m� ¼ 139:5 MeV).
Since the results for the TR method are qualitatively simi-
lar, we do not show them explicitly, but we remark that the
second-order transition occurs for larger values of the
vacuum � mass, m� ’ 700 MeV. Note that a crossover
transition is also found in lattice QCD calculations. This,
however, does not imply that the mass of the � meson as
the chiral partner of the pion must be small. In fact, the
identification of the chiral partner of the pion is a long-
debated issue, see Ref. [36] and references therein.
Figure 3 shows the effect of different regularization

respectively renormalization schemes, as well as different
approximation schemes on the behavior of the masses and
the condensate as functions of temperature. We keep the
vacuum mass of the � meson fixed to m� ¼ 550 MeV. In
the CTR scheme, the system exhibits a first-order phase
transition. When using the TR method, however, one
observes a crossover transition. In the large-N limit with
CTR, the chiral transition is always crossover, independent
of the mass of the � meson. In Fig. 3, the crossover
transition is observed to be smoother for the large-N
approximation with CTR than for the other cases. In fact,
with this renormalization scheme, the smoothness is pro-
portional to m�. We shall see in the next section that the
transition disappears as we approach the nonlinear limit
m� ! 1. This, however, does not happen for the TR
method.

B. Nonlinear model with explicitly broken symmetry

In the nonlinear model the results are obtained by solving
(the properly renormalized) Eqs. (22), (24), and (25) in the
limit " ! 0þ. Because of the relation 1=" ¼ ðm2

� �m2
�Þ=

f2�, Eqs. (51) and (52), the nonlinear limit is equivalent to
sendingm� to infinity. In this case, when the TR method is
used, the phase transition is of first order, with a rather large
discontinuity in the condensate at a critical temperature of
Tc ’ 178:6 MeV, see Fig. 4. The condensate is very small
above Tc, but still nonzero because of explicit symmetry
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FIG. 2. The pion mass, the sigma mass, and the condensate as a function of T in the Oð4Þ linear model in case of explicitly broken
symmetry using the CTR scheme for different values of m�.
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breaking. The first-order nature of the transition is in line
with the expectation from the linear case, where the tran-
sition becomes first order when the � mass is sufficiently
large. Below Tc the �mass is infinitely heavy and there are
only pionic excitations. Above Tc the masses of � meson
and pion become degenerate.

In the large-N limit of the one-loop approximation and
with the TR method, the phase transition is crossover with
Tc ’ 185 MeV, see Fig. 5. In this case the � field remains
infinitely heavy also above Tc. This is the main difference
to the previous case, where the � meson becomes degen-
erate with the pion above Tc. It is at first sight surprising
that this small difference can cause such a drastic change in
the order of the phase transition. The explanation lies in a
comparison of the equations in the one-loop approximation
(22), (24), and (25) with those in the large-N limit,
Eqs. (26)–(28). Since the � meson is infinitely heavy
below Tc, there is no contribution from this mode to these

equations. However, above Tc, thermal fluctuations of the
� meson can contribute in the one-loop approximation,
while they remain absent in the large-N limit of the one-
loop approximation. This is sufficient to drive the transi-
tion to first order in the one-loop approximation.
In the one-loop approximation and using the CTR

scheme, the parameter space of the model does not give
physically meaningful solutions in the nonlinear case
m� ! 1. In this case, � ! 0 and M�, M� ! 1 for all
values of T. On the other hand, the large-N limit of the one-
loop approximation allows for a solution, however, the
transition disappears completely, the condensate and the
masses retain their constant tree-level values for all T > 0:
� ¼ f�, M� ¼ m�, M� ¼ m�, see Fig. 5.

C. Linear model in the chiral limit

The chiral limit is obtained by taking h ! 0þ.
Combining Eqs. (22) and (25) we see that
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FIG. 4. The pion mass and the condensate as a function of T in theOð4Þ nonlinear model in case of explicitly broken symmetry using
the TR scheme for m� ! 1 (in practice m� ¼ 250 GeV is used). The solid line shows the physical case which corresponds to the
global minimum of the effective potential. The dashed and dotted lines show to the unstable or metastable solution of the gap equations
which corresponds to the local minimum (dashed) or maximum (dotted) of the effective potential.
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FIG. 3. The pion mass, the sigma mass, and the condensate as a function of T in the Oð4Þ linear model in case of explicitly broken
symmetry for m� ¼ 550 MeV and different renormalization schemes.
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�

�
M2

� þ 4

N"

Z
K
G�ðKÞ

�
¼ h ! 0þ; (53)

which can only be fulfilled if the � tadpole exactly cancels
M2

�. This, however, is only possible if the pion becomes
tachyonic,M2

� < 0, since the thermal as well as the (finite)
vacuum contribution to the tadpole are always positive
(semi)definite. As a consequence, we can only show results
in the large-N limit, since there this problem is absent,
cf. Eq. (26).

In Fig. 6 we show the behavior of the masses and the
condensate as functions of temperature for various values
of the vacuum � mass in the large-N limit in the CTR
scheme (the results for the TR method are qualitatively
similar, therefore we do not show them explicitly). The
results of Fig. 6 are in agreement with universality class
arguments which predict a second-order phase transition.
In the phase where chiral symmetry is spontaneously bro-
ken the pions are massless in accordance with Goldstone’s
theorem. Above the critical temperature the chiral partners
become degenerate in mass. The condensate as a function

of temperature is independent of the value of m�. This can
be seen as follows. We subtract Eq. (28) at T ¼ 0 (where
� ¼ f�) from the same equation at an arbitrary tempera-
ture T � Tc, where Tc is the phase transition temperature.
Since in the phase of broken chiral symmetry we always
have M� � 0, the result is

0 ¼ �2ðTÞ � f2� þ N
T2

12
; (54)

where the thermal contribution to the tadpole integral could
be determined analytically at all temperatures T � Tc

because M� ¼ 0. The term �2
0, as well as the vacuum

contributions to the tadpole integrals cancel when taking
the difference. The critical temperature Tc can be easily
deduced from Eq. (54) noting that �ðTcÞ ¼ 0. The result

is Tc ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
12=N

p
f� ¼ ffiffiffi

3
p

f�.

D. Nonlinear model in the chiral limit

In the chiral limit of the nonlinear OðNÞ model both
parameters " and h must be sent to zero. In the one-loop
approximation and in the TR method, pions respect
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FIG. 5. The pion mass and the condensate as a function of T in theOð4Þ nonlinear model in case of explicitly broken symmetry using
the LN approximation in the TR scheme (full) and CTR scheme (dashed) for m� ! 1.
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FIG. 6. The pion mass, the sigma mass, and the condensate as a function of T in the large-N limit of the one-loop approximation of
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Goldstone’s theorem by remaining massless in the phase of
spontaneously broken chiral symmetry, see Fig. 7. In this
phase, the � field is effectively frozen out due to its infinite
mass. There is a first-order phase transition at a critical

temperature Tc ¼
ffiffiffi
3

p
f�. At this temperature, the conden-

sate drops to zero discontinuously, while the pionmass starts
to increase continuously from zero above this temperature.
In the restored phase, the � meson becomes degenerate in
mass with the pions. This is the reason why Tc assumes the
same value as in the large-N limit of the linear model.When
inspecting Eqs. (24) and (25), we observe that they become
identical with Eqs. (27) and (28) for M� ¼ M� ¼ 0 in the
chiral limit and above Tc (where � ¼ 0). Therefore, we
obtain the same equation (54) that determines the value of
Tc as in the linear case in the large-N limit.

However, in the one-loop approximation in the CTR
scheme no physical solutions can be obtained: the conden-
sate goes to zero, � ! 0, and the masses of � meson and
pion go to infinity, M�, M� ! 1. This situation is similar
to the nonlinear case with explicit symmetry breaking.

In the large-N limit, the phase transition is of second

order with a critical temperatureTc ¼
ffiffiffi
3

p
f�, both in the TR

method and in the CTR scheme, see Fig. 8. Below Tc the �
mass is infinite, while the pions are massless, respecting
Goldstone’s theorem. Above the critical temperature the
masses of the chiral partners become degenerate, M� ¼
M� > 0 in the TR scheme, andM� ¼ M� ¼ 0 in the CTR
scheme. At first sight, it is surprising that the � field
becomes massless above Tc. This behavior can be traced
to our choice of the renormalization scale� ¼ m� ! 1. In
fact, this is similar to what was observed in Ref. [13]
(cf. Fig. 3 of that work), when increasing the renormaliza-
tion scale in the large-N limit in the CTR scheme.

V. CONCLUSIONS

In this work we have investigated the linear and the
nonlinear OðNÞ model at nonzero temperature. An auxil-
iary field has been used to derive the effective potential.
This method allowed us to establish a simple and
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FIG. 7. The pion mass and the condensate as a function of T in the Oð4Þ nonlinear model in the chiral limit using the TR scheme for
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mathematically rigorous relation between the linear and
nonlinear versions of the model. This also leads to differ-
ences when comparing our results with previous treatments
of the OðNÞ model, see below. The equations for the
temperature-dependent masses and the condensate were
derived using the CJT formalism. We explicitly showed
that up to two-loop order, the auxiliary-field method is
equivalent to the standard OðNÞ linear � model once the
one- and two-point functions involving the auxiliary field
are replaced by their stationary values. In order to regular-
ize the divergent vacuum terms we applied the CTR
scheme as well as the so-called TR method where diver-
gent terms are simply ignored.

Table I shows a compilation of the results for the various
scenarios studied in this paper. The first row summarizes the
results for the linear case, while the second summarizes
those for the nonlinear case. In the first four columns we
show the results for the one-loop approximation, the first
two for the CTR scheme, and the next two for the TR
method, for the case of explicit chiral symmetry breaking
and in the chiral limit. The last four columns show the
corresponding results for the large-N limit of the one-loop
approximation. In the cases indicated with a	, wewere not
able to find physically acceptable solutions due to tachyonic
pion propagation. In all other cases, we indicated the nature
of the phase transition and, if independent of the � mass,

the critical temperature. As one observes,Tc¼
ffiffiffiffiffiffiffiffiffiffiffiffi
12=N

p
f��ffiffiffi

3
p

f� in the chiral limit for all scenarios, independent
of the details (linear vs nonlinear, or CTR vs TR, or one-
loop approximation vs large-N limit). In the cases where
the order of the transition depends on the � mass, we
indicated the value of m� where the transition is of second
order; it is crossover for smaller and of first order for larger
values of m�.

We now compare our results to previous work. In
Ref. [13], the OðNÞ model for N ¼ 4 was studied in the
CJT formalism without using the auxiliary-field method.
Although not studied in that work, we repeated the respec-
tive calculations varying the � mass. We find that in the
Hartree-Fock approximation (erroneously named ‘‘Hartree
approximation’’ in that paper) and in the case of explicitly
broken chiral symmetry, the phase transition changes from
crossover to first order for m� ’ 940 MeV in the TR

method and for m� ’ 680 MeV in the CTR scheme. This
is consistent with our results obtained with the auxiliary-
field method, although the critical values for m� are some-
what larger for the method of Ref. [13]. In the chiral limit,
the method of Ref. [13] yields a first-order phase transition
for all m� values. Furthermore, Goldstone’s theorem is not
fulfilled due to a nonvanishing pion mass in the phase of
broken chiral symmetry. In the large-N limit, the results of
Ref. [13] coincide with ours since the effective potentials
are identical.
The auxiliary-field method has been applied previously

to examine properties of theOðNÞmodel to leading [28,29]
and next-to-leading order in the 1=N expansion [30,31]. To
leading order in 1=N the� and� fields have the same mass
irrespective of whether chiral symmetry is explicitly or
only spontaneously broken. Thus, in the chiral limit there
are four instead of three massless bosons. The phase tran-

sition is of second order with a critical temperature of Tc ¼ffiffiffiffiffiffiffiffiffiffiffiffi
12=N

p
f�. In the case of explicitly broken symmetry there

is a crossover phase transition and four massive particles.
The key difference in our study to the aforementioned
Refs. [28,29] is the correct treatment of the limiting pro-
cess regarding the constraint imposed by the nonlinearity:
the � mass is therefore infinite in the phase of broken
symmetry. To next-to-leading order including renormaliza-
tion [30] the results change as follows: in the chiral limit
there are three Goldstone bosons since the � field becomes
massive. The phase transition is of second (or higher)
order. In the weak-coupling limit the critical temperature

is Tc ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12=ðN þ 2Þp

f� and above the critical temperature
the masses of the chiral partners become degenerate.
A natural next step is the extension to nonzero chemical

potentials [31]. A further interesting study would be the
inclusion of additional scalar singlet states [37]. Finally,
the application of the auxiliary-field method should also be
instructive for more complicated systems incorporating
additional vector and axial vector mesonic degrees of
freedom [38].
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TABLE I. The symbol	 indicates that no reasonable result can be obtained due to tachyonic pion propagation. In those cases the phase

transition becomes crossover for smaller sigma masses and of first order for sigma masses higher than the shown values. m�¼m
phys
�

corresponds to the physical case of nonzero quark masses, m
phys
� ¼ 139:5 MeV.
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m� ¼ mphys
� m� ! 0þ m� ¼ mphys

� m� ! 0þ m� ¼ mphys
� m� ! 0þ m� ¼ mphys

� m� ! 0þ

Lin second order at

m� ’ 500 MeV
	 second order

at m� ’ 750 MeV
	 crossover second order

Tc ¼
ffiffiffiffi
12
N

q
f�

crossover second order

Tc ¼
ffiffiffiffi
12
N

q
f�

Nonlinear 	 	 first order first order

Tc ¼
ffiffiffiffi
12
N

q
f�

no transition second order

Tc ¼
ffiffiffiffi
12
N

q
f�
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N

q
f�
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APPENDIX A: CJT EFFECTIVE POTENTIAL
WITH NONDIAGONAL PROPAGATOR

In this appendix, we discuss the CJT effective potential
for the case where we do not perform a shift of the � field
[denoted as case (i) in Sec. III]. Due to the appearance of
nondiagonal propagators which mix the� and� fields, this
is more complicated than the case discussed in the main
part of the paper.

1. Tree-level propagators, and vertices

The starting point is the Lagrangian (11), with the tree-
level potential (12). From this, we immediately deduce the
tree-level propagator matrix as

D�1ðK;�;�0Þ

¼

D�1
�� D�1

��ð�Þ 0 ���
D�1

��ð�Þ D�1
��ðK;�0Þ 0 ���

0 0 D�1
��ðK;�0Þ

..

. ..
. . .

.

0
BBBBBB@

1
CCCCCCA

¼

N"
4 i� 0 ���
i� �K2þ i�0 0 ���
0 0 �K2þ i�0

..

. ..
. . .

.

0
BBBBBB@

1
CCCCCCA: (A1)

Note the following relations between the inverse tree-level
propagators in the shifted Eq. (15) and unshifted Eq. (A1)
cases: �D�1

� � D�1
�� and �D�1

� ðK;�0Þ � D�1
��ðK;�0Þ, while

�D�1
� ðK;�;�0Þ ¼ D�1

��ðK;�0Þ þ 4�2=ðN"Þ.
The Lagrangian (11) contains only two three-point tree-

level vertices, where one� field interacts with either two �
or two � fields, respectively. These are the same vertices
that also appear in case (ii), see Sec. III A.

2. CJT effective potential

The CJT effective potential assumes the form

Veffð�;�0; GÞ ¼ Uð�;�0Þ þ 1

2

Z
K
Tr½lnG�1ðKÞ

þD�1ðK;�;�0ÞGðKÞ � 1� þ V2ðGÞ;
(A2)

where the two-point function GðKÞ is an ðN þ 1Þ�
ðN þ 1Þ—matrix, just like the inverse tree-level propagator
D�1ðK;�;�0Þ in Eq. (A1). The term V2ðGÞ represents the
sum of all two-particle irreducible diagrams constructed

from GðKÞ and the two different three-point vertices in
Eq. (11) (which do not depend on the one-point functions
� and �0).
The stationary conditions for the effective potential are

given by

	Veff

	�
¼0;

	Veff

	�0

¼0;
	Veff

	GijðKÞ¼0;

i;j¼�;�;�1; . . . ;�N�1:
(A3)

This leads to the following equations for the two condensates
� and �0:

h ¼ i�0�þ i

2

Z
K
½G��ðKÞ þG��ðKÞ�; (A4)

i�0¼ 2

N"

�
�2��2

0þ
Z
K
G��ðKÞþðN�1Þ

Z
K
G��ðKÞ

�
:

(A5)

The equation for � is now different from case (ii), see
Eq. (18), but the equation for �0 remains the same, cf.
Eq. (19). The two-point function has the matrix elements

G�1
ji ðKÞ ¼ D�1

ji ðK;�;�0Þ þ�jiðKÞ; (A6)

where the 1PI self-energy is

�jiðKÞ¼2
	V2ðGÞ
	GijðKÞ ; i;j¼�;�;�1; . . . ;�N�1: (A7)

It is instructive to formally invert the full inverse two-
point function G�1 in order to obtain the full two-point
functionG. From the Dyson equation (A6) we observe that
G�1 has a similar matrix structure as the inverse tree-level
propagator (A1). We assume that inverting G�1 preserves
this structure, i.e.,

G ¼
G�� G�� 0 � � �
G�� G�� 0 � � �
0 0 G��

..

. ..
. . .

.

0
BBBB@

1
CCCCA: (A8)

Obviously, G�� ¼ ðG�1
��Þ�1. However, inverting the 2� 2

matrix corresponding to the �� � sector is more compli-
cated. From the condition

1 0

0 1

 !
¼ G�1

�� G�1
��

G�1
�� G�1

��

 !
G�� G��

G�� G��

 !
(A9)

we obtain
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G�� ¼
�
G�1

�� �G�1
��

1

G�1
��

G�1
��

��1
;

G�� ¼
�
G�1

�� �G�1
��

1

G�1
��

G�1
��

��1
;

G�� ¼ � 1

G�1
��

G�1
��G�� ¼

�
G�1

�� �G�1
��

1

G�1
��

G�1
��

��1
;

G�� ¼ � 1

G�1
��

G�1
��G�� ¼

�
G�1

�� �G�1
��

1

G�1
��

G�1
��

��1
:

(A10)

The second equalities in the last two equations follow
by inserting the explicit expressions for G�� and G��

from the first two equations. If we assume that ��� ¼
���, then Eq. (A6) implies that G�1

�� ¼ G�1
�� at the

stationary point of Veff . Since G�1
�� and G�1

�� are purely
numbers, from the last two equations (A10) we then
obtain G�� ¼ G��. On the other hand, if we assume
the latter, then from Eq. (A10), we conclude that
G�1

�� ¼ G�1
��, from which we immediately conclude via

Eq. (A6) that ��� ¼ ���. In the following, we will
therefore make frequent use of the symmetry property
G�� ¼ G��.

With the explicit form (A10), we can rewrite the one-
loop terms in the effective potential (A2). For the first term
we obtain

TrlnG�1� ln detG�1

¼ ln det
G�1

�� G�1
��

G�1
�� G�1

��

 !
þðN�1Þ lnG�1

��

¼ ln½G�1
��G

�1
���G�1

��G
�1
���þðN�1Þ lnG�1

��

¼ lnG�1
��þ ln

�
G�1

��� 1

G�1
��

G�1
��G

�1
��

�
þðN�1Þ lnG�1

��

¼ lnG�1
��þ ln½G����1þðN�1Þ lnG�1

��; (A11)

where the last equality follows from comparison with the
second equation (A10). Note that ½G����1 ¼ G�1

�� �
G�1

��G
�1
��=G

�1
�� � G�1

��. To make the notation unambigu-
ous, we put brackets around G�� before inversion. For
the second one-loop term we compute with the help of
Eqs. (A1) and (A8)

Tr ½D�1G� ¼ D�1
��G�� þD�1

��G�� þD�1
��G��

þD�1
��G�� þ ðN � 1ÞD�1

� G��: (A12)

Inserting Eqs. (A11) and (A12) into Eq. (A2), we obtain

Veffð�;�0; GÞ ¼ Uð�;�0Þ þ 1

2

Z
K
½lnG�1

��ðKÞ þ ln½G��ðKÞ��1 þ ðN � 1Þ lnG�1
��ðKÞ�

þ 1

2

Z
K
½D�1

��G��ðKÞ þD�1
��ð�ÞG��ðKÞ þD�1

��ð�ÞG��ðKÞ þD�1
��ðK;�0ÞG��ðKÞ

þ ðN � 1ÞD�1
��ðK;�0ÞG��ðKÞ � ðN þ 1Þ� þ V2ðGÞ: (A13)

3. One-loop approximation

In one-loop approximation, V2ðGÞ � 0, Eqs. (A4) and (A5) for the condensates � and �0 remain unchanged. For
vanishing V2ðGÞ the 1PI self-energy is equal to zero, �jiðKÞ ¼ 0, and

G�1
ji ðKÞ¼D�1

ji ðK;�;�0Þ; i;j¼�;�;�1;...;�N�1: (A14)

The full two-point functions (A10) then become

G��ðKÞ ¼
�
D�1

��ðK;�0Þ �D�1
��ð�ÞD�1

��ð�Þ
D�1

��

��1 ¼
�
�K2 þ i�0 þ 4�2

N"

��1
;

G��ðKÞ ¼
�
D�1

�� �D�1
��ð�ÞD�1

��ð�Þ
D�1

��ðK;�0Þ
��1 ¼

�
N"

4
þ �2

�K2 þ i�0

��1 ¼ 4

N"

�
1� 4�2

N"
G��ðKÞ

�
;

G��ðKÞ ¼ � 4i�

N"
G��ðKÞ � G��ðKÞ;

(A15)

where the symmetry of the mixed two-point function, G�� ¼ G�� is automatic. The two-point function for the pion
simply reads

G��ðKÞ ¼ ð�K2 þ i�0Þ�1: (A16)

The � and pion two-point functions can be written in the form

G��ðKÞ ¼ ð�K2 þM2
�Þ�1; G��ðKÞ ¼ ð�K2 þM2

�Þ�1; (A17)
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with the same mass parameters as in Eqs. (24) and (25),
since the condensate equation (A5) for�0 is identical to the
one in the shifted case, Eq. (19).

Substituting i�0 by Eq. (A5), the condensate equation
(A4) becomes

h¼ i�0�þ4�

N"

Z
K
G��ðKÞ

¼ 2�

N"

�
�2��2

0þ3
Z
K
G��ðKÞþðN�1Þ

Z
K
G��ðKÞ

�
;

(A18)

where we have used Eq. (A15) to rewrite G�� and G��

in terms of G��. Since G� ¼ G�� and G� ¼ G��, this
equation is identical with the condensate equation for � in
the shifted case, Eq. (22). We have therefore proved that
the equations for M� and M� and the condensate equation
for � are identical to the corresponding equations in the
shifted case (ii).

4. Two-loop approximation

In case (i), to two-loop order there are only the three
diagrams of sunset topology shown in Fig. 9, resulting in

V2ðGÞ ¼ 1

4

Z
K

Z
P
fG��ðK þ PÞ½G��ðKÞG��ðPÞ

þ ðN � 1ÞG��ðKÞG��ðPÞ�
þ 2G��ðK þ PÞG��ðKÞG��ðPÞg: (A19)

Due to the absence of a four-point vertex, there is no two-
loop diagram of double-bubble topology. Comparing
**Fig. 9 to Fig. 1, we notice that there is an additional
diagram due to the presence of nondiagonal propagators,
but that the last two diagrams in Fig. 1 are absent, since
there is no vertex proportional to �.

The equations for the two condensates � and �0 are
again given by Eqs. (A4) and (A5). From Eq. (A7) we
immediately derive the self-energies

���ðKÞ¼1

2

Z
P
½G��ðPÞG��ðK�PÞ

þðN�1ÞG��ðPÞG��ðK�PÞ�;
���ðKÞ¼

Z
P
G��ðPÞG��ðK�PÞ;

���ðKÞ¼
Z
P
G��ðPÞG��ðK�PÞ;

���ðKÞ¼
Z
P
½G��ðPÞG��ðK�PÞ

þG��ðPÞG��ðK�PÞ�;
���ðKÞ¼

Z
P
G��ðPÞG��ðK�PÞ:

(A20)

Since G�� ¼ G�� at the stationary point, we confirm that
��� ¼ ���.

Replacing�0 by Eq. (A5) the equation for the condensate
� reads

h ¼ 2�

N"

�
�2 � �2

0 þ
Z
K
G��ðKÞ þ ðN � 1Þ

Z
K
G��ðKÞ

�

þ i

2

Z
K
½G��ðKÞ þG��ðKÞ�: (A21)

After substituting �0 by Eq. (A5) the Dyson equations for
the full two-point functions are given by

G�1
��ðKÞ ¼ D�1

�� þ���ðKÞ
¼ N"

4
þ 1

2

Z
P
½G��ðPÞG��ðK � PÞ

þ ðN � 1ÞG��ðPÞG��ðK � PÞ�; (A22)

G�1
��ðKÞ ¼ D�1

��ð�Þ þ���ðKÞ
¼ i�þ

Z
P
G��ðPÞG��ðK � PÞ; (A23)

G�1
��ðKÞ ¼ D�1

��ð�Þ þ���ðKÞ
¼ i�þ

Z
P
G��ðPÞG��ðK � PÞ; (A24)

G�1
��ðKÞ¼D�1

��ðK;�0Þþ���ðKÞ
¼�K2þi�0þ

Z
P
½G��ðPÞG��ðK�PÞ

þG��ðPÞG��ðK�PÞ�
¼�K2þ 2

N"

�
�2��2

0þ
Z
K
G��ðKÞ

þðN�1Þ
Z
K
G��ðKÞ

�
þ
Z
P
½G��ðPÞG��ðK�PÞ

þG��ðPÞG��ðK�PÞ�; (A25)

FIG. 9. Two-particle irreducible diagrams constructed from
the three-point vertices in Eq. (11). The full line represents the
� field, the dashed line represents the � field, and the zigzag line
represents the � field. The nondiagonal propagators G�� and
G�� are denoted by part full and part zigzagged lines.
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G�1
��ðKÞ ¼ D�1

��ðK;�0Þ þ���ðKÞ
¼ �K2 þ i�0 þ

Z
P
G��ðPÞG��ðK � PÞ

¼ �K2 þ 2

N"

�
�2 � �2

0 þ
Z
K
G��ðKÞ

þ ðN � 1Þ
Z
K
G��ðKÞ

�

þ
Z
P
G��ðPÞG��ðK � PÞ: (A26)

5. Recovering the standard two-loop approximation

In this subsection, we show that up to two-loop order,
the condensate and mass equations, the full propagators,

as well as the effective potential become identical with
the corresponding quantities for the standard linear �
model, once we eliminate the � field using the conden-
sate equation (A5), as well as the corresponding propa-
gators at their stationary values, cf. Eqs. (A22)–(A24).
Similar considerations were discussed, although at a
different level of approximation than the one presented
in this work, in Sec. 6 of Ref. [34].
We first consider Eq. (A21). The �0 field has already

been substituted, and we just have to replace G�� and G��

by their stationary values. To this end, we use G�� ¼ G��

and the third Eq. (A10), where we substitute G�1
�� and G�1

��

from Eqs. (A22) and (A24). Then, expanding to two-loop

order (i.e., retaining only terms of first order in the self-

energies ��� and ���),

1

2
½G��ðKÞ þG��ðKÞ� ¼ G��ðKÞ ¼ �½D�1

�� þ���ðKÞ��1½D�1
��ð�Þ þ���ðKÞ�G��ðKÞ

’ �D��½D�1
��ð�Þ þ���ðKÞ �D�����ðKÞD�1

��ð�Þ�G��ðKÞ
¼ � 4i�

N"
G��ðKÞ � 4

N"

Z
P
G��ðPÞG��ðK � PÞ þ i�

2

�
4

N"

�
2 Z

P
½G��ðPÞG��ðK � PÞ

þ ðN � 1ÞG��ðPÞG��ðK � PÞ�: (A27)

To two-loop order, we may then replace G��ðPÞ under the integral by the first-order contribution �4i�=ðN"ÞG��ðPÞ.
Inserting everything into Eq. (A21), we obtain Eq. (30).

Let us now consider the full propagators G�� and G��. Since we are working at two-loop order in the effective
potential, it is sufficient to compute these propagators to one-loop order, i.e., by considering terms up to linear order
in the self-energies �ijðKÞ. Thus, using the stationary values (A22)–(A25) we may expand the (inverse of the) second

Eq. (A10) as

½G��ðKÞ��1 ¼ G�1
��ðKÞ �G�1

��ðKÞ 1

G�1
��ðKÞG

�1
��ðKÞ

¼ D�1
��ðK;�0Þ þ���ðKÞ � ½D�1

��ð�Þ þ���ðKÞ�½D�1
�� þ���ðKÞ��1½D�1

��ð�Þ þ���ðKÞ�
’ D�1

��ðK;�0Þ �D��D
�2
��ð�Þ þ���ðKÞ þD2

��D
�2
��ð�Þ���ðKÞ � 2D��D

�1
��ð�Þ���ðKÞ; (A28)

where we have used D�1
��ð�Þ ¼ D�1

��ð�Þ and ���ðKÞ ¼ ���ðKÞ. The first two terms are identical with the tree-level
propagator in the shifted case,

D�1
��ðK;�0Þ �D��D

�2
��ð�Þ ¼ �K2 þ i�0 þ 4�2

N"
� �D�1

� ðK;�;�0Þ; (A29)

cf. Eq. (15). Inserting Eq. (A5), this can be written as

�D�1
� ðK;�;�0Þ ¼ �K2 þ 2

N"

�
3�2 � �2

0 þ
Z
K
G��ðKÞ þ ðN � 1Þ

Z
K
G��ðKÞ

�
: (A30)

To one-loop order, i.e., employing the one-loop results (A15) for the propagators involving the � field, the remaining terms
in Eq. (A28) can be written as
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���ðKÞ þD2
��D

�2
��ð�Þ���ðKÞ � 2D��D

�1
��ð�Þ���ðKÞ

¼
Z
P

�
G��ðPÞG��ðK � PÞ þG��ðPÞG��ðK � PÞ � 1

2

�
4�

N"

�
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� 2i
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P

�
4
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G��ðPÞ

�
1� 4�2

N"
G��ðK � PÞ

�
�
�
4�

N"

�
2
G��ðPÞG��ðK � PÞ � 1

2

�
4�
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�
2½G��ðPÞG��ðK � PÞ

þ ðN � 1ÞG��ðPÞG��ðK � PÞ� � 2

�
4�

N"

�
2
G��ðPÞG��ðK � PÞ

�

¼ 4

N"

Z
P
G��ðPÞ � 2

�
2�

N"

�
2 Z

P
½9G��ðPÞG��ðK � PÞ þ ðN � 1ÞG��ðPÞG��ðK � PÞ�: (A31)

Summing Eqs. (A30) and (A31), we see that ½G��ðKÞ��1 becomes identical to the full inverse � propagator in the standard
OðNÞ linear � model, cf. Eq. (43). For the inverse pion propagator (A26), we simply have to insert the one-loop result
(A15) for G��ðK � PÞ in the last term,

G�1
��ðKÞ ¼ �K2 þ 2

N"

�
�2 � �2

0 þ
Z
K
G��ðKÞ þ ðN � 1Þ

Z
K
G��ðKÞ

�
þ
Z
P
G��ðPÞG��ðK � PÞ

’ �K2 þ 2

N"

�
�2 � �2

0 þ
Z
K
G��ðKÞ þ ðN � 1Þ

Z
K
G��ðKÞ þ 2

Z
P
G��ðPÞ

�
1� 4�2

N"
G��ðK � PÞ

��

¼ �K2 þ 2

N"

�
�2 � �2

0 þ
Z
K
G��ðKÞ þ ðN þ 1Þ

Z
K
G��ðKÞ � 8�2

N"

Z
P
G��ðPÞG��ðK � PÞ

�
: (A32)

This is identical with the inverse pion propagator (44) in
the standard linear � model.

Finally, we show that the two-loop effective potential
(A13) becomes identical with the one for the standard
linear � model, Eq. (39), if we replace the expectation
value and the full two-point function for the auxiliary field
by their stationary values. We again consider the tree-level,
the one-loop, and the two-loop contributions in Eq. (16)
separately. Since the condensate equation for �0 is the
same in both cases, cf. Eqs. (19) and (A5), the tree-level
potential at the stationary value for �0 is given by the same
expression as in the shifted case (ii), cf. Eq. (47).

For the one-loop terms, we first prove that up to two-
loop order, the following identity holds:

lnG�1
�� þD�1

��G�� þD�1
��G�� þD�1

��G�� þD�1
��G��

’ 1þ
�
D�1

�� �D�1
��

1

D�1
��

D�1
��

�
G�� þ const; (A33)

where the last term is a(n irrelevant) constant. Inserting the
formal solutions (A10) forG�� andG��, the left-hand side
of Eq. (A33) can be written as

lnðD�1
�� þ���Þ þ

�
D�1

�� �D�1
��G

�1
��

1

G�1
��

�
G��

þ
�
D�1

�� �D�1
��G

�1
��

1

G�1
��

�
G��: (A34)

Up to two-loop order, it is sufficient to expand the first term
up to first order in ���,

lnðD�1
�� þ���Þ ’ lnD�1

�� þD�����: (A35)

Since lnD�1
�� ¼ lnN"=4 is an irrelevant constant, we only

need to retain the second term. Using the Dyson equation
(A24)wemay then rewrite the left-hand side of Eq. (A33) as

D����� þ
�
D�1

�� � ðG�1
�� ����ÞG�1

��

1

G�1
��

�
G��
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�� þ���Þ 1
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��

�
G��
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�� ���� �G�1
��G

�1
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1
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��

þ���G
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1
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��
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�
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�� �D�1
��ðD�1
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� 1

D�1
��

ð1�D�����Þ
�
G��; (A36)

where we have used Eq. (A22) and again expanded up to
first order in ���. The first and the third term in the first
parentheses yield ½G����1, cf. the first Eq. (A10). To two-
loop order, the terms in brackets may be expanded to first
order in the self-energies �ij. We then obtain

D�����þ1�
�
�������

G�1
��

G�1
��

�
G��

þ
�
D�1

���D�1
��D

�1
��

D�1
��

�D�1
��

D�1
��

���þD�1
��D

�1
��D

2
�����

�
G��:

(A37)
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The second term and the two first terms in the second set of
parentheses already yield the right-hand side of Eq. (A33).
We thus have to show that the remaining terms cancel up to
the order we are computing.

Let us first look at the second term in the first, and the
third term in the second parentheses,

���

G�1
��

G�1
��

G���D�1
��

D�1
��

���G��¼���

�
G�1

��

G�1
��

�D�1
��

D�1
��

�
G��;

(A38)

where we have used Eq. (A10) to replace G��=G
�1
�� by

G��=G
�1
��. To two-loop order, we may now safely approxi-

mateG�1
��=G

�1
�� byD

�1
��=D

�1
��, andwe see that the expression

(A38) vanishes. The remaining terms in Eq. (A37), whichwe
have to consider are

ðD�� �G�� þD�1
��D

�1
��D

2
��G��Þ���: (39)

To two-loop order, we may replace

D�1
��D

�1
��

D�1
��

’ G�1
��G

�1
��

G�1
��

� G�1
�� � ½G����1; (A40)

where we have used the (inverse of the) second Eq. (A10).
Inserting this into Eq. (39), we obtain

ðD�� �G�� þD�1
��D

�1
��D

2
��G��Þ���

’ ðD�� �G�� þD��fG�1
�� � ½G����1gG��Þ���

¼
�
�G�� þG�1

��

D�1
��

G��

�
���

’
�
�G�� þG�1

��

G�1
��

G��

�
���; (A41)

where we have again made use of D�1
�� ’ G�1

�� (which is
correct up to the order we are computing). The right-hand
side of this equation vanishes on account of the first two
Eqs. (A10).We have thus proved the validity of Eq. (A33) up
to two-loop order.

All one-loop terms in Eq. (A13) can now be written as
1

2
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K
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2
: (A42)

Finally, we consider V2ðGÞ, cf. Eq. (A19), for the stationary values of the two-point functions involving the� field. To two-
loop order, it is sufficient to replace all these functions by the corresponding expressions given in Eq. (A15), resulting in

V2ðGÞ’ 1

N"

�Z
K
G��ðKÞ

�
2þN�1

N"

�Z
K
G��ðKÞ

�
2�

�
2�

N"

�
2Z

K

Z
P
G�ðKþPÞ½3G�ðKÞG�ðPÞþðN�1ÞG�ðKÞG�ðPÞ�:

(A43)

Adding Eqs. (47), (A42), and (A43), we see that the
effective potential becomes identical to the one in the
standard linear � model, Eq. (39).

APPENDIX B: RENORMALIZATION

In this appendix, we demonstrate how to renormalize
our linear � model within the auxiliary-field method in
one-loop approximation. There is a rich literature on this
subject: the renormalization of scalar field theories within
�-derivable approximation schemes was for the first time
demonstrated in Refs. [39,40], where it was applied to a
massive scalar field at nonzero temperature using the real-
time formalism. In Ref. [41] the renormalization within

�-derivable approximations was applied to treat both
massive and massless scalar fields at nonzero temperature
within the imaginary-time formalism. In Ref. [42] an iter-
ative approach was used to illustrate the various classes of
divergences of theOðNÞmodel in the 1=N expansion. Then
the divergent terms were absorbed by a renormalization
procedure which is based on imposing appropriate renor-
malization conditions on n-point functions constructed
from the CJT functional. This scheme was applied to
pion and kaon condensation in Ref. [43]. In Refs. [32,33]
the OðNÞ model was renormalized using the 1=N expan-
sion within the auxiliary-field method. Here, we follow
Ref. [44] where a one-step approach to renormalization of
�-derivable approximations was introduced, and to lowest
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order shown to be equivalent to the renormalization
scheme of the above works. A similar one-step approach
was applied in Ref. [34] for the renormalization of the
OðNÞ model using the 1=N expansion both with and
without the auxiliary-field method. While the one-step
approach of Ref. [34] has only been shown to be applicable
to the lowest order of approximation to the CJT functional,
the renormalization schemes of Refs. [39–41] can be
applied to any order of approximation.

In order to renormalize Eqs. (22), (24), and (25), to one-
loop order it is sufficient to add the following five counter
terms to the tree-level potential Uð�;�0Þ:
1

2
	Z1i�0�

2�1

2
	Z2i�0�

2
0þ

N"

8
	Z3�

2þ	Z4

2
�2þ	Z5

4
�4;

(B1)

such that

Uð�;�0Þ ! UCTð�;�0Þ
¼ i

2
Z1�0�

2 � i

2
Z2�0�

2
0 þ

N"

8
Z3�

2 þ 	Z4

2
�2

þ 	Z5

4
�4; (B2)

where Zi ¼ 1þ 	Zii ¼ 1, 2, 3. Equations (22) and (25)
then read

h ¼ �

�
Z1i�0 þ 	Z4 þ 	Z5�

2 þ 4

N"

Z
K
G�ðKÞ

�
; (B3)

M2
�¼ i�0¼ 2

Z3N"

�
Z1�

2�Z2�
2
0þ

Z
K
G�ðKÞ

þðN�1Þ
Z
K
G�ðKÞ

�
: (B4)

Using a cutoff �CO for the four-dimensional momentum
integration (and neglecting terms of order �2=�2

CO, where

� is the renormalization scale) the tadpole integrals can be
written as [44]

Z
K
GiðKÞ ¼ �2 þ TdM

2
i þ Ti

F; (B5)

where �CO ¼ 4��,

Td ¼ � 1

16�2
ln
16�2�2

�2e
;

and

Ti
F¼

Z d3 ~k
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1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

~k2þM2
i
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exp

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~k2þM2

i

q
=T

�
�1

��1

þ 1

16�2

�
M2

i ln
M2

i

�2
�M2

i þ�2

�
; i¼�;�: (B6)

Inserting Eq. (B5) into Eq. (B4), we obtain
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���

¼ 2
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Z3

� 1

�
�2 �

�
Z2

Z3

� 1

�
�2
0

þ 1

Z3

�
N�2 þ 2Td

"

�
N þ 2

N
�2 � �2

0 þ T�
F þ ðN � 1ÞT�

F

��
þ
�
1

Z3

� 1

�
½T�

F þ ðN � 1ÞT�
F �
�
; (B7)

where we assume the following equations for the renor-
malized masses which appear in the coefficients of Td:

M2
� ¼ 2

N"
½�2 � �2

0 þ T�
F þ ðN � 1ÞT�

F �; (B8)

M2
� ¼ M2

� þ 4�2

N"
: (B9)

Note that this is in fact a limitation of the ‘‘on-step’’
approach to renormalization for it requires an a priori
knowledge of the renormalized form of the equation in
order to obtain it (this is probably one of the reasons why it
is not known so far how to extend this approach to higher
orders). The first line in Eq. (B7) is the expected, finite
result for the pion mass (squared). The renormalization
constants have to be chosen such that the second and third
lines vanish. Cancellation of the temperature-dependent

subdivergence [the terms proportional to T�
FþðN�1ÞT�

F ]
requires

Z3 ¼ 1þ 2Td

"
()	Z3 ¼ 2Td

"
: (B10)

Cancellation of the �-dependent overall divergence gives

Z1

Z3

� 1 ¼ � 2Td

"Z3

N þ 2

N
()Z1 ¼ 1� 4Td

N"
()	Z1

¼ � 4Td

N"
; (B11)

where we have used the result (B10) for Z3. Finally,
cancellation of the constant overall divergence yields
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N�2

Z3

¼ �2
0

�
Z2

Z3

� 1þ 2Td

"Z3

�
()Z2 ¼ 1þ N�2

�2
0

()	Z2

¼ N�2

�2
0

; (B12)

where we have again used Eq. (B10). Finally, turning to
Eq. (B3), we can use M2

� ¼ i�0 and Eq. (B5) to write

h¼�

�
Z1M

2
�þ	Z4þ	Z5�

2þ 4

N"
ð�2þTdM

2
�þT�

F Þ
�
:

(B13)

Using the result (B11) for Z1, we obtain

h ¼ �

�
M2

� þ 4

N"
T�
F þ 	Z4 þ 4�2

N"
þ 	Z5�

2

þ 4Td

N"
ðM2

� �M2
�Þ
�
: (B14)

The first two terms represent the expected, finite result.
The counter terms 	Z4;5 have to be chosen such that the
remaining (infinite) terms cancel. Using the fact that

M2
� ¼ M2

� þ 4�2

N"
; (B15)

we see that this is achieved by the choice

	Z4 ¼ � 4�2

N"
; (B16)

	Z5 ¼ � 16Td

N2"2
: (B17)

This completes the renormalization of the linear � model
in one-loop approximation within the auxiliary-field
method.
Thus, to one-loop order the renormalized equations for

the condensate and for the masses read

h ¼ 2�

N"
½�2 � �2

0 þ 3T�
F þ ðN � 1ÞT�

F �; (B18)

M2
� ¼ 2

N"
½�2 � �2

0 þ T�
F þ ðN � 1ÞT�

F �; (B19)

M2
� ¼ 2

N"
½3�2 � �2

0 þ T�
F þ ðN � 1ÞT�

F �: (B20)

where Ti
F is given by Eq. (B6).
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