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We study the thermodynamics of the two flavor massless Schwinger model on a torus at a finite

chemical potential. We show that the physics only depends on the isospin chemical potential, and there are

marked deviations from a free fermion theory. We argue that spatial inhomogeneities can develop in the

system at very low temperatures.
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I. INTRODUCTION

A study of QCD in the presence of a finite chemical
potential is important for our understanding of quark mat-
ter at finite density [1]. Lattice QCD provides a nonpertur-
bative approach to this problem, and there has been
extensive work performed on this topic [2,3]. The fermion
determinant in a fixed gauge field background is complex
(it can be made real by summing over a gauge field and its
complex conjugate, but the result is not necessarily posi-
tive) and therefore suffers from the so-called ‘‘sign prob-
lem.’’ QCD wth a finite isospin chemical potential does not
suffer from the sign problem, and the physics of this model
has been explored [4,5].

The Schwinger model (QED in two dimensions) has
played the role of a very useful toy model for QCD in
four dimensions. Generalized Thirring models have been
studied in detail at finite temperature and finite chemical
potential [6,7]. One main result that applies to the
Schwinger model is the independence on the chemical
potential. This can be seen as a consequence of the integral
over toron fields [8,9] in the path integral formalism. The
issue at hand is imposing Gauss’s law in the path integral
formalism [10]. Imposing Gauss’s law in the Hamiltonian
formalism results in the condition that the timelike com-
ponent of the electromagnetic potential vanishes at spatial
infinity [11]. This amounts to setting the toron field in one
direction on the torus to zero in the path integral [12].
This would allow for states with net total charge to be
present but would break the Uð1Þ global symmetry asso-
ciated with the Polyakov loop in the timelike direction,
placing the theory in a deconfined phase. We will study
the two flavor massless Schwinger model on a finite torus
in the presence of a chemical potential. We will integrate
over the toron fields. As expected, the theory will be
independent of the chemical potential that couples to
the total charge but will depend on the isospin chemical
potential.

We start with a definition of the model on a finite torus
and state the result for the fermion determinant in a fixed
gauge field background using the zeta-function

regularization [13]. We will address the integration of the
fermion determinant over the toron fields and show that the
result is independent of the chemical potential that couples
to the total charge. We will proceed to address the physics
of the isospin chemical potential.

II. THE GRAND CANONICAL
PARTITION FUNCTION

A. Model basics

Let l be the circumference of the spatial circle and let �
be the inverse temperature. We will use l to set all scales
in the theory and define � ¼ l

� as the dimensionless tem-

perature. The physical gauge coupling is set to e
l where e is

dimensionless.
The Hodge decomposition of the Uð1Þ gauge field on a

l� � torus is

A1ðx1; x2Þ ¼ 2�h1
l

þ @1�ðx1; x2Þ � @2�ðx1; x2Þ � 2�k

l�
x2

A2ðx1; x2Þ ¼ 2�h2
�

þ @2�ðx1; x2Þ þ @1�ðx1; x2Þ; (1)

where � 1
2 � h� < 1

2 are the toron fields and �ðx1; x2Þ
generates gauge transformations. The electric field
density is

Eðx1; x2Þ ¼ 2�k

l�
þ @2�ðx1; x2Þ; (2)

where �ðx1; x2Þ is a periodic function on the torus with no
zero momentum mode, and k is the integer-valued topo-
logical charge. The gauge action is

Sg ¼ 2�2�k2

e2
þ l2

2e2

Z
d2xð@2�Þ2: (3)

The determinant of a massless Dirac fermion is zero
unless k ¼ 0, and the determinant for k ¼ 0 using zeta-
function regularization is [7,13]*rajamani.narayanan@fiu.edu
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Zfð�;h�;�i;qiÞ ¼ e
q2
i

2�

R
d2x�@2� 1

�4ð�Þ
� X1

n1;n2¼�1
e���ðn1þqih2�i

�i
� Þ2

� e���ðn2þqih2�i
�i
� Þ2e2�iqih1ðn1�n2Þ; (4)

where qi is the integer-valued charge of the fermion and
2��i

l is the chemical potential. The Dedekind eta function,

�ð�Þ is given by

�ð�Þ ¼ e���
12

Y1
n¼1

ð1� e�2��nÞ: (5)

There is an infinite normalization factor that has been
removed by the zeta-function regularization from the
above formula. This factor does depend on � but only in
a trivial manner, to shift the zero point energy.

We define the Fourier components of �ðx1; x2Þ
according to

�ðx1; x2Þ ¼ e

4�2�
3
2

X01
k1;k2¼�1

e
2�i
� ðk1� x1þk2x2Þ ~�ðk1; k2Þ; (6)

with ~�ð�k1;�k2Þ ¼ ~��ðk1; k2Þ, and the prime over sum
implies that k1 ¼ k2 ¼ 0 is excluded. Then

l2

2e2

Z
d2xð@2�Þ2 ¼ 1

2

X01
k1;k2¼�1

j�ðk1; k2Þj2
�
k22 þ

1

�2
k21

�
2

(7)

and

q2i
2�

Z
d2x�ð@2�Þ¼ e2q2i

8�3�2
X01

k1;k2¼�1
j�ðk1;k2Þj2

�
k22þ

1

�2
k21

�
:

(8)

B. Bosonic and toronic partition functions

We will consider the two flavor Schwinger
model with q1 ¼ q2 ¼ 1. We write the partition func-
tion as

Zð�1; �2; �; eÞ ¼ Zbð�; eÞZtð�1; mu2; �Þ; (9)

where the first factor is the bosonic (�) partition
function and the second factor is the toronic (h�)

partition function.
Since the total action (gauge and fermionic contri-

bution) is a quadratic function in �, the bosonic
partition function is

Zbð�;eÞ¼
Y01

k1;k2¼�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

ðk22þ 1
�2
k21Þ

�
k22þ 1

�2

h
k21þ e2

2�3

i�
vuut :

(10)

Starting from (4) and after a little bit of algebra,
the toronic partition function can be reduced
to

Ztð�1; �2; �Þ ¼ ��4ð�Þ X1
m1;m2;m3¼�1

Z 1
2

�1
2

dh2e
���½ðm2�m1þ2m3þ2h2�i

�1þ�2
� Þ2þðm1�i

�1��2
� Þ2þm2

2�: (11)

Consider the integral

Z3

�
k;
�1 þ�2

�

�
¼ X1

m3¼�1

Z 1
2

�1
2

dh2e
���ðkþ2m3þ2h2�i

�1þ�2
� Þ2 :

(12)

Viewing z ¼ h2 � i �1þ�2

2� as a complex variable, we see
that the integrand is analytic in z and periodic under z !
zþ 1. Therefore, the integral is independent of �1þ�2

� . We
explicitly see that the partition function does not depend on
the chemical potential that couples to the total charge. Note
that the integrand is positive definite if we set ð�1 þ�2Þ ¼
0, but this is not the case for a general (�1 þ�2). One will
encounter a sign problem if one tries to compute the
integral numerically with (�1 þ�2) not equal to zero.
The integral is the same for all even k and the same for
all odd k. We can write the reduced integral as

Zk
3ð�Þ ¼

X1
m3¼�1

Z 1
2

�1
2

dh2e
���ðkþ2m3þ2h2Þ2 ;

k ¼ 0; 1: (13)

Setting the dimensionless isospin chemical potential
equal to

�I ¼ 2�ð�1 ��2Þ; (14)

we have

Ztð�I; �Þ ¼ ��4ð�Þe�2
I

4��

X1
m1;m2¼�1

cosðm1�IÞe���ðm2
1þm2

2Þ

� Zmodðm2�m1;2Þ
3 ð�Þ: (15)

Let

Z0
2ð�Þ ¼

X1
m2¼�1

½e���ð2m2Þ2Z0
3ð�Þ þ e���ð2m2þ1Þ2Z1

3ð�Þ�;

Z1
2ð�Þ ¼

X1
m2¼�1

½e���ð2m2þ1Þ2Z0
3ð�Þ þ e���ð2m2Þ2Z1

3ð�Þ�:

(16)
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The final expression for the toronic partition function is

Ztð�I; �Þ ¼ ��4ð�Þe�2
I

4��

X1
k¼0

X1
m1¼�1

cosðð2m1 þ kÞ�IÞ

� e���ð2m1þkÞ2Zk
2ð�Þ: (17)

C. Thermodynamic observables

The only contribution to the isospin number comes from
the toronic partition function and is

NI ¼ �
@ lnZð�I; �; eÞ

@�I

¼ �I

2�
� fð�I; �Þ; (18)

where

fð�I; �Þ ¼ �

P
1
k¼0

P1
m1¼�1ð2m1 þ kÞ sinðð2m1 þ kÞ�IÞe���ð2m1þkÞ2Zk

2ð�ÞP
1
k¼0

P1
m1¼�1 cosðð2m1 þ kÞ�IÞe���ð2m1þkÞ2Zk

2ð�Þ
: (19)

The dimensionless energy is

Eð�;NI; eÞ ¼ �@ lnZð�I; �; eÞ
@ 1

�

���������I
�

¼ Ebð�; eÞ þ Etð�;NIÞ (20)

and the contributions from the bosonic partition function and the toronic partition function are written separately. The
result from the toronic partition function is

Etð�;NIÞ � Etð0; 0Þ
�

¼ 1

3
ð�2 þ 1Þ � X1

n¼1

8n�2

e2�n� � 1
þ N2

I � f2ð�I; �Þ þ gð�I; �Þ; (21)

where

gð�; �Þ ¼ �2
P

1
k¼0

P1
m1¼�1 cosðð2m1 þ kÞ�IÞ d

dð��Þ ½e���ð2m1þkÞ2Zk
2ð�Þ�P

1
k¼0

P1
m1¼�1 cosðð2m1 þ kÞ�IÞe���ð2m1þkÞ2Zk

2ð�Þ
: (22)

The result from the bosonic partition function is

Ebð�; eÞ � Ebð0; eÞ ¼ �� effiffiffiffiffiffiffi
2�

p
�
tanh

effiffiffiffiffiffiffi
2�

p
�
� 1

�

� 4�
X1
k1¼1

k1

�
tanh

�k1
�

� 1

�
: (23)

D. Free fermions

In order to understand the results for the two flavor
massless Schwinger model, it is useful to recall that the
partition function for free fermions in one dimension is
given by

lnZf ¼ 2l

�

Z 1

0
dp½�pþ lnð1þ e��ðp��fÞÞ

þ lnð1þ e��ðpþ�fÞÞ�; (24)

where �f is the chemical potential for free fermions which

we set to �I

2l in order to be consistent with the two flavor

notation in (14). The free fermion isospin number is given by

Nf ¼ �
@ lnZf

@�I

���������
¼ �I

2�
: (25)

After subtracting the zero point energy, the dimensionless
energy of free fermions at low temperatures is given by

Efð�;NfÞ � Efð0; 0Þ
�

¼ N2
f þ

1

3
�2 þ � � � : (26)

The first term is the Fermi energy that grows quadratically
with the isospinnumber, and second term is the leading- order
low temperature correction that is positive and quadratic in
the temperature.

III. RESULTS AND DISCUSSION

We proceed to compare the results for the two flavor
Schwinger model with that for free fermions. The result for
the isospin number in (18) is plotted in Fig. 1 for several
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FIG. 1 (color online). Plot of NIð�I; �Þ versus �I [cf. (18)] for
several different values of �.
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different values of temperature. The linear behavior in (25)
expected of two flavors of free fermions in (25) is the first
term in (18), and this is achieved only in the high tempera-
ture limit, where the contribution from the second term
goes to zero. The first term is the naı̈ve contribution from
two flavors of free fermions. The second term is the result
of integrating the effect of boundary conditions over all
possible choices.

We can use Fig. 1 to see how the isospin chemical
potential depends on the temperature at a fixed isospin
number. The quasiperiodicity seen in the figure is a conse-
quence of fð�I þ 2�; �Þ ¼ fð�I; �Þ in (19). Furthermore,
fð�I;1Þ ¼ 0, and

�Ið1Þ
2�

¼ NI; (27)

like for free fermions. On the other hand,

lim
�!0

fð�I; �Þ ¼
8<
:

�I

2� if 0<�I < �
�I

2� � 1 if �<�I < �
: (28)

Therefore,

�Ið0Þ
�

¼ dNIe (29)

for all noninteger values of NI and dNIe is the ceiling
function. The behavior for nonzero and finite temperatures
is to interpolate between (27) and (29) as shown in Fig. 2.
The behavior is shown for values of NI in the range
0 � NI � 3 in steps of 0.1. Plots are color coded to
show periodicity of fð�I; �Þ. Since fð2n�; �Þ ¼ 0 for all
values of � > 0 and any integer n, we see that integer values
of NI are special and behave like free fermions for all
temperatures.

Since the partition function is independent of
(�1 þ�2), the net charge is zero. However, we can main-
tain the system at a nonzero isospin number, NI. Since the
system can exchange particles with the reservoir, the

expectation value of the isospin number need not be an
integer. Let us assume that we start at a high temperature
with a fixed NI assumed to take an integer value. Since the
chemical potential does not change with temperature for
this case and remains the unique value for this particular
value of NI, the system will remain homogeneous at all
temperatures. Now consider noninteger values of NI. The
system will be homogeneous at high temperatures since the
chemical potential is different for different values ofNI. As
the system is cooled and brought down to zero temperature,
different values of NI can coexist as long as the different
values all have the same ceiling value, dNIe, since they
all have the same chemical potential at zero temperature
[cf. (29)]. The system is bound to form inhomogeneities at
zero temperature.
We now proceed to use (18) and (21) to compute the

toronic contribution to the energy as a function of the
temperature at fixed isospin number. Consider the zero
temperature limit in order to extract the Fermi energy as
a function of the isospin number. Since fð2n�; 0Þ and
gð2n�; 0Þ are zero, it follows that the Fermi energy for
integer values of isospin are given by the free fermion
value. As � goes to zero, gð�; �Þ approaches a nonzero
limit as long as NI is not an integer. As a consequence, the
Fermi energy is given by

EFðNIÞ ¼ bNIc2 þ ð2bNIc þ 1ÞðNI � bNIcÞ; (30)

and it linearly interpolates between the free fermion values
at integer values of NI. We were unable to analytically
obtain an explicit expression for the linear coefficient in
(21). We numerically evaluated it and found that the sec-
ond term in (21) contributes 2�

� , and the last two terms in

(21) contribute � 3�
2� . The leading behavior of the toronic

contribution to the energy at low temperature is

Etð�;NIÞ � Etð0; 0Þ
�

¼ EFðNIÞ þ �

2�
þ � � � : (31)
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FIG. 2 (color online). Plot of �Ið�Þ versus � [cf. (18)] for
several different values of NI in steps of 0.1 starting from 0 and
ending in 3.
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FIG. 3 (color online). Plot of Erð�;NIÞ versus � [cf. (32)] for
NI ¼ 0:1, 0.2, 0.3, 0.4, 0.5. The color coding is the same as
Fig. 2.
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This is qualitatively different from the free fermion result
where the leading term is quadratic in �. The linear coef-
ficient of 1

2� in (31) gets modified to 3
2� for the total energy

when we include the leading contribution from the bosonic
partition function in (23).

The higher-order corrections in � to the energy from the
toronic partition function,

Erð�; NIÞ ¼ Etð�;NIÞ � Etð0; 0Þ
�

� EFðNIÞ � �

2�
; (32)

is plotted in Fig. 3 as a function of � for various values of
NIðNI ¼ 0:1; 0:2; 0:3; 0:4; 0:5Þ. Due to quasiperiodicity,
Erð�; 1� NIÞ ¼ Erð�; NIÞ for (0<NI � 0:5). In addition,
Erð�; NI þ 1Þ ¼ ERð�; NIÞ.
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