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We show that sine-Gordon solitons appear in the low-energy effective theory of a domain wall in a Uð1Þ
gauge theory with two charged complex scalar fields with masses if we introduce the Josephson

interaction term between the scalar fields. We identify these sine-Gordon solitons as vortices or CP1

sigma model instantons in the bulk, which are absorbed into the domain wall world volume. These

vortices can be called Josephson vortices since they appear in Josephson junctions of two superconduc-

tors. This setup gives a physical realization of a lower-dimensional analogue of Atiyah-Manton

construction of Skyrmions from instanton holonomy.
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I. INTRODUCTION

The Skyrme model was proposed to describe nucleons
as solitons (Skyrmions) in the pion effective field theory or
the chiral Lagrangian [1]. Although the nucleons are now
known as bound states of quarks, the idea of the Skyrme
model is still attractive. In fact, the Skyrme model is still
valid as the low-energy description of QCD, for instance,
in holographic QCD [2,3]. One of the difficulties of the
Skyrme model is that no Skyrme solutions are available
because of the nonintegrability of the equation of motion,
though construction of approximate solutions was proposed
[4]. Among several proposals, Atiyah and Manton gave a
particularly interesting proposal that Skyrmion solutions
can be approximated by the holonomy of Yang-Mills
instantons [5]. It has been applied, for instance, to calculate
the force between two Skyrmions from the two-instanton
holonomy [6]. While the physical meaning of this ansatz
was unclear for long time, a physical ‘‘proof’’ of the
Atiyah-Manton ansatz was presented some years ago [7].
One can consider a non-Abelian domain wall in a certain
Uð2Þ gauge theory in d ¼ 5þ 1 dimensions [8], the low-
energy effective theory of which is the chiral Lagrangian at
the leading order in its d ¼ 3þ 1-dimensional world vol-
ume. The next leading order contains the Skyrme term [7],
which implies that the domain wall world-volume theory is
the Skyrme model admitting Skyrmions within it. It was
shown that these Skyrmions are nothing but Yang-Mills
instantons in the bulk point of view. Since we perform the
integration along the codimension of the wall to obtain the
effective wall world-volume theory, it gives a physical
explanation of the Atiyah-Manton ansatz.

On the other hand, a lower-dimensional analogue of the
Atiyah-Manton ansatz was also proposed [9,10]. It was
proposed that the sine-Gordon soliton can be approxi-
mately constructed as the holonomy of a CP1 instanton
in d ¼ 2þ 0 dimensions or a lump in d ¼ 2þ 1 dimen-
sions. Since exact solutions of the sine-Gordon solitons are
available, the lower-dimensional Atiyah-Manton ansatz

can be checked analytically, unlike the original Atiyah-
Manton construction. It may help us to understand better or
to refine the original proposal by Atiyah and Manton.
In this paper, we give a physical realization of the lower-

dimensional Atiyah-Manton construction. We consider the
Uð1Þ gauge theory coupled with two charged complex
scalar fields �1 and �2 with masses in d ¼ 2þ 1 dimen-
sions, which reduces to the CP1 model in the strong gauge
coupling limit. This model can be supersymmetric by
properly adding bosonic and fermionic fields [11]. This
model is known to admit a domain wall solution [12,13].
We add a deformation term �1��2 in the original
Lagrangian which breaks supersymmetry. This term is
known as the Josephson term in the Josephson junction
of two superconductors with two condensates �1 and �2.
We show that this term induces the sine-Gordon potential
in the effective theory of the d ¼ 1þ 1-dimensional
domain wall world volume. We find that the sine-Gordon
soliton in the domain wall world volume is nothing but an
instanton or a lump in the CP1 model or a vortex in the
gauge theory in the d ¼ 2þ 1-dimensional bulk. We call
this object the Josephson vortex. This terminology is bor-
rowed from the Josephson junction.
Kinks inside a domain wall were also studied in super-

symmetric gauge theories [14–17]. In particular, our work
is closely related to a previous work [16], in which an
N ¼ 1 supersymmetry preserving deformation term of
N ¼ 2 supersymmetry was considered in d ¼ 3þ 1.
The domain wall is precisely the same as ours [12,13]
without the deformation. In that model, too, the effective
theory of the domain wall is the sine-Gordon model, and
the flux absorbed in the domain wall is a sine-Gordon
soliton. However, the crucial difference with ours is that
the minimum flux inside the domain wall is half-quantized
in that case, while it is unit quanta in our case.
In the limit that the domain wall is infinitely heavy, our

model is close to a Josephson junction of two super-
conductors of two condensations �1 and �2 sandwiching
an insulator. Vortices in the bulk are absorbed into the
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insulator, becoming Josephson vortices or fluxons; see
Ref. [18] as a review. As in our case, dynamics of
Josephson vortices can be described by the sine-Gordon
equation. Josephson vortices also appear in high-Tc super-
conductors with multilayered structures [19] and in two
coupled Bose-Einstein condensates [20].

In addition, a kink inside a domain wall appears in
several systems in condensed matter physics: a Bloch line
in a Bloch wall in magnetism [21], chiral p-wave super-
conductors, and a Mermin-Ho vortex within a domain wall
in 3He superfluid (see Fig. 16.9 of Ref. [22]). Therefore, our
method of a field theoretical approach may be applied to
these condensed matter systems.

This paper is organized as follows. After our model is
given in Sec. II, we present the main results in Sec. III; we
construct the domain wall effective theory by the moduli
approximation of Manton [23] and find it to be the sine-
Gordon model when we add the Josephson term in the
original theory. We then construct sine-Gordon kinks and
show that they carry instanton (lump) charge in the bulk.
Section IV is devoted to a summary and discussion. An
application to the Atiyah-Manton construction is briefly
discussed.

II. THE MODEL

We consider the Uð1Þ gauge theory coupled with two
charged complex scalar fields�1ðxÞ and�2ðxÞwith masses
and real scalar field �ðxÞ in d ¼ 2þ 1 dimensions. The
Lagrangian which we consider is given by

L¼� 1

4e2
F��F

��þ 1

e2
ð@��Þ2þjD��j2�V (1)

V ¼ e2

2
ð�y�� v2Þ2 þ�yð�12 �MÞ2�� �2�y�x�;

(2)

where e is the gauge coupling, complex scalar fields are
written as �T ¼ ð�1; �2Þ, and the masses are given by
M ¼ diagðm1; m2Þ with m1 >m2.

We refer to the last term in the potential

L J ¼ �2�y�x� ¼ �2�1��2 þ c:c: (3)

as the ‘‘Josephson’’ interaction term, because it appears in
the Josephson junction of two superconductors with two
condensations �1 and �2. In the limit � ¼ 0, the model
enjoys N ¼ 4 supersymmetry (with eight supercharges)
in d ¼ 2þ 1 with appropriately adding scalar fields
~� ¼ ð ~�1; ~�2Þ and fermion superpartners. In this case, the
Josephson term breaks supersymmetry explicitly. In this
paper, supersymmetry is not essential apart from technical
reasons [24].

For explicit calculation, we work in the strong gauge
coupling limit e2 ! 1 in which the model reduces to
the CP1 model with potential terms, but the results in

this paper do not rely on this limit. By rewriting

�T ¼ ð1; uÞ= ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ juj2p

with complex projective coordi-
nate u, the Lagrangian becomes

L ¼ @�u
�@�u�m2juj2
ð1þ juj2Þ2 þ �2Dx; Dx � uþ u�

1þ juj2 ;
(4)

with the massm � m1 �m2. Here,Dx is a moment map of
the isometry generated by �x. With � ¼ 0, this model is
known as the massiveCP1 model with the potential term of
the Killing vector squared corresponding to the isometry
generated by �z. It is a truncated version of a supersym-
metric sigma model with eight supercharges [11]. The
potential of this model

V ¼ m2juj2
ð1þ juj2Þ2 �

�2ðuþ u�Þ
1þ juj2 (5)

admits two discrete vacua u ¼ 0 and u ¼ 1 (for �<m).
Just for convenience, we can rewrite the Lagrangian in

Eq. (4) to another form. Introducing a three-vector of scalar
fields by nðxÞ � �y ~�� with the Pauli matrices ~�, the
Lagrangian can be rewritten in the form of theOð3Þmodel:

L ¼ 1

2
@�n � @�n�m2ð1� n2zÞ þ �2nx; n2 ¼ 1: (6)

This model is known as the Heisenberg ferromagnet with
anisotropy with two easy axes.

III. SINE-GORDON SOLITONS FROM CP1

INSTANTONS INSIDE A DOMAIN WALL

A. Domain wall solution

For a while, we consider the case � ¼ 0, and we turn on
it later. There are two discrete vacua u ¼ 0 and u ¼ 1. Let
us construct a domain wall perpendicular to the x1 axis,
interpolating these two vacua. The Bogomol’nyi comple-
tion for the domain wall can be obtained as

E ¼
Z

dx1
j@1u�muj2 �mðu�@1uþ u@1u

�Þ
ð1þ juj2Þ2

� jTwallj; (7)

where @i denotes the differentiation with respect to xi.
Here, Twall is the topological charge which characterizes
the wall:

Twall ¼ m
Z

dx1
u�@1uþ u@1u

�

ð1þ juj2Þ2 ¼ m

2

�
1� juj2
1þ juj2

�
x1¼þ1

x1¼�1
:

(8)

Among all configurations with a fixed boundary condition,
that is, with a fixed topological charge Twall, the most stable
configurations with the least energy saturate the inequality
(7) and satisfy the Bogomol’nyi-Prasad-Sommereld (BPS)
equation

@1u�mu ¼ 0; (9)
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which is obtained by j . . . j2 ¼ 0 in Eq. (7). This BPS
equation can be immediately solved as [12,13]

udw ¼ e�mðx1�XÞþi’; (10)

with the width �x1 ¼ 1=m and the tension

jTwallj ¼ m; (11)

where � denotes a domain wall and an antidomain
wall. Here, X and ’ are real constants called moduli
parameters which are Nambu-Goldstone modes associated
with broken translational and internal Uð1Þ symmetries,
respectively.

B. Low-energy effective theory on
domain wall world volume

Next, let us construct the effective field theory of the
domain wall [þ signature in Eq. (10)]. According to
Manton [23], the effective theory on the domain wall
can be obtained by promoting the moduli parameters to
fields XðxiÞ and ’ðxiÞ on the domain wall world volume xi

(i ¼ 0, 2) and by performing the integration over the
codimension x � x1:

L dw eff ¼
Z þ1

�1
dx

e2mx

ð1þ e2mxÞ2 ½ð@iXÞ
2 þ ð@i’Þ2�

¼ 1

2m
½ð@iXÞ2 þ ð@i’Þ2� �m; (12)

where the constant term recovers the domain wall tension.
This is just a free field theory, or a nonlinear sigma model
with the target space R	 S1.

Let us turn on the Josephson term (� � 0). We work
in the parameter region � 
 m. We assume that the
domain wall solution (10) is not deformed. The domain
wall effective action is deformed by

�L ¼ �2
Z þ1

�1
dx

emxþi’ þ emx�i’

1þ e2mx

¼ 2

m

Z þ1

�1
dx

emx

1þ e2mx
2 cos’ ¼ ��2

m
cos’: (13)

Finally, we thus obtain the domain wall effective theory as

L dw eff ¼ 1

2m
½ð@iXÞ2 þ ð@i’Þ2 þ 2��2 cos’�

¼ 1

2m
½ð@iXÞ2 þ ð@i’Þ2 þ ~�2 cos’�; (14)

with ~�2 � 2��2 apart from the constant term. This is the
sine-Gordon model with the additional field X.

C. The sine-Gordon soliton inside the domain wall

Next, we construct a sine-Gordon kink in the domain
wall effective theory and identify what it is in the bulk.
The Bogomol’nyi completion for the energy density

corresponding to the Lagrangian in Eq. (14) is obtained
(for X ¼ 0) as

2mE ¼ ð@2’Þ2 þ ~�2
�
sin2

’

2
� 1

�
¼
�
@2’� ~� sin

’

2

�
2 � 2 ~�@2’ sin

’

2
� ~�2

� 2mjtSGj � ~�2; (15)

with the topological charge density

tSG �
~�

m
@2’ sin

’

2
¼ � 2 ~�

m
@2

�
cos

’

2

�
: (16)

The inequality is saturated by the BPS equation

@2’� ~� sin
’

2
¼ 0: (17)

For instance, the one-kink solution can be given as

’ðx2Þ ¼ 4 arctanexp
~�

4
ðx2 � YÞ þ �

2
; (18)

with the position Y in the x2 coordinate. The topological
charge for this solution is

TSG ¼
Z

dx2tSG ¼ 4 ~�

m
: (19)

The width of the sine-Gordon kink is �x2 ¼ 1= ~� so that

we have a relation �x1=�x2 �m= ~�. The total configura-
tion is schematically drawn in Fig. 1(a). In Fig. 1(b), we
plot the spin texture of the CP1 target space for this
configuration.
What is this solution in the d ¼ 2þ 1-dimensional bulk

theory? We now show that this is a CP1 instanton (lump)
in d ¼ 2þ 1. Let us calculate the topological lump
(instanton) charge by (a ¼ 1, 2):

CP1 wall
d=2+1 bulk

CP 1 lump in d=2+1 bulk
(CP 1 instanton in d=2+0)

= sine-Gordon kink 
in d=1+1 CP1 wall w.v.

1−m

1−β

FIG. 1 (color online). A sine-Gordon soliton in the domain
wall describing the CP1 lump inside the domain wall.
(a) Schematic configuration in the entire space. (b) Points in
the CP1 target space are denoted by three-dimensional arrows.
The north and south poles are denoted by the left and right
arrows, respectively.
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Tlump ¼
Z

d2x
ið@1u�@2u� @2u

�@1uÞ
ð1þ juj2Þ2

¼
I

dxa
�iðu�@au� ð@au�ÞuÞ

2ð1þ juj2Þ
¼
I

dxa
juj2

1þ juj2 @a’

¼
Z

dx2@2’jx1¼þ1 ¼ ½’�ðx1;x2Þ¼ðþ1;þ1Þ
ðx1;x2Þ¼ðþ1;�1Þ

¼ 2�k: (20)

Here, we have used @1’ ¼ 0 at x2 ¼ �1 in the third-to-
last equality and the k winding of the phase ’ for k sine-
Gordon kinks in the last equality. This precisely shows the
coincidence between the topological charges for k lumps
and k sine-Gordon kinks.

Equivalently, this charge can be rewritten as the vortex
charge

Tvortex ¼
Z

d2xF12 ¼
I

dxaAa ¼ Tlump; (21)

with the (auxiliary) Uð1Þ gauge field

A� ¼ i

2
ð�y@��� ð@��yÞ�Þ ¼ �iðu�@�u� ð@�u�ÞuÞ

2ð1þ juj2Þ :

(22)

If we work in finite gauge coupling e instead of taking the
infinite coupling limit, lumps are replaced with vortices
with the charge in Eq. (21) counting the magnetic fluxes,
where A� is a dynamical gauge field which cannot be

written as Eq. (22).
Although the charges and the numbers of the sine-

Gordon kinks in the wall and the lumps in the bulk coin-
cide, the more detailed information, such as their shape,
can be deformed. In fact, the spin texture of the sine-
Gordon kink in the domain wall shows that the lump is
split into a pair of a vortex and an antivortex. Each of them
has a half lump charge so that they are fractional lumps,
that is, merons.

We have used the Bogomol’nyi completion to obtain the
domain wall and sine-Gordon kinks. However, the com-
posite state is not BPS anymore because the Josephson
term breaks supersymmetry. This implies the existence of
the static interaction between the domain wall and the
vortex in the bulk. Although both the sine-Gordon topo-
logical charge in Eq. (19) and the lump charge in Eq. (20)
are proportional to the soliton number, their coefficients do
not coincide. The former can be interpreted as the kink
energy on the domain wall and the latter as the vortex
energy in the bulk. We thus find that the energies of the
vortex are smaller inside the wall than in the bulk in the
small � regime (� 
 m) which we are working in.
Therefore, we conclude that there exists the attraction
between the vortex in the bulk and the domain wall and

that the vortex is absorbed into the domain wall world
volume, becoming the stable Josephson vortex.

D. Extension and related model

We can extend our model to Uð1Þ gauge theory coupled
with N (more than two) charged complex scalar fields
�iðxÞ (i ¼ 1; . . . ; N) with M ¼ diagðm1; . . . ; mNÞ with
mi > miþ1. A natural choice of Josephson terms may be
introduced between two neighboring pairs [25]:

L J ¼
XN�1

i¼1

�2
i �

i��iþ1 þ c:c: (23)

In the absence of the Josephson terms, the model reduces
to the massive CPN�1 model, admitting N � 1 parallel
domain walls [27,28]. With the Josephson terms, this
describes arrays of N Josephson junctions. Vortices
(CPN�1 instantons or lumps) in various components will
be absorbed in each domain wall, which should be studied
elsewhere.
Finally let us make comments on the previous work [16],

where a nonlinear sigmamodel on the target space ðT�ÞCP1

is considered. With the mass matrixM ¼ diagðm;�mÞ, the
model admits a domain wall whose effective theory is a free
theory, a sigma model on C� ¼ R	 S1 in d ¼ 1þ 1 as
ours. On the other hand, with the mass matrix

M ¼ m ��=
ffiffiffi
2

p

�=
ffiffiffi
2

p �m

 !
;

the model admits a domain wall whose effective theory
is the sine-Gordon model, namely, C� with a potential
V ¼ �ð�2�=mÞcos2�. In this case, one sine-Gordon kink
carries the half quantized flux of Uð1Þ gauge theory or the
half lump (instanton) charge of the CP1 model. Therefore,
after one vortex in the bulk is absorbed into the domain
wall, it splits into two sine-Gordon kinks in this case. On
the other hand, in our model, the numbers of the sine-
Gordon kinks in the domain wall and the instantons (lumps)
in the bulk correspond to each other one-to-one.

IV. SUMMARYAND DISCUSSION

We have constructed a sine-Gordon kink in the domain
wall world volume in theUð1Þ gauge theories coupled with
two complex scalar fields �1 and �2 with the Josephson
interaction term �1��2 in d ¼ 2þ 1 dimensions. We
have shown the sine-Gordon soliton in the d ¼
1þ 1-dimensional domain wall world volume is nothing
but an instanton or a lump in the CP1 model or a vortex in
the gauge theory in the d ¼ 2þ 1-dimensional bulk. This
provides a physical realization of the lower-dimensional
Atiyah-Manton construction.
It was proposed in Ref. [9] that a sine-Gordon kink ’

(in d ¼ 1þ 1) is well approximated by a holonomy of
CP1 instanton (in d ¼ 2þ 0):
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ð�1Þk exp½i’ðxÞ� ¼ exp

�Z þ1

�1
A1ðx1; x2Þdx1

�
; (24)

with the instanton (lump) number k ofCP1 instantons with
the auxiliary gauge field A1 in Eq. (22),

’ ¼ k�þ
Z þ1

�1
dx1

�iðu�@1u� ð@1u�ÞuÞ
2ð1þ juj2Þ : (25)

From Fig. 1(b), we expect that a better approximation will
be given by a pair of a meron and an antimeron rather than
a cylindrically symmetric lump solution. This deformation
may be achieved by considering caloron [29] (see also
Ref. [30]), i.e., a periodic lump solution on R	 S1 with
taking the periodicity as the wall width �x1 ¼ 1=m.
Another improvement is replacing the CP1 model with
lumps by a Uð1Þ gauge theory with two charged Higgs
fields with semilocal vortices. This may give a better
approximation because of an exponential rather than power
law asymptotic behavior, as discussed in Ref. [9].

If we extend the model to N complex scalar fields,
reducing to the massive CPN�1 model in the strong gauge
coupling limit, it admits N � 1 parallel domain walls
[27,28]. It remains as an interesting futurework how instan-
tons are absorbed into each domain wall. Another interest-
ing extension will be non-Abelian UðNCÞ gauge theories
with NFð>NCÞ flavors in the fundamental representation

(NC 	 NF matrix of scalar fields). The model reduces
to the massive Grassmannian SUðNFÞ=½SUðNCÞ 	
SUðNF � NCÞ 	Uð1Þ� sigma model in the strong gauge
coupling limit [31]. Appropriate extension of the Josephson
terms is not known. Without the Josephson terms, domain
walls in this theory were studied in Ref. [28]. The construc-
tion of the effective theory on general domainwall solutions
can be found in Ref. [32]. The fate of Grassmannian lumps
(or non-Abelian semilocal vortices [33]) should be studied
elsewhere.
Yet another interesting extension will be to study what

happens in the presence of domain wall junctions or net-
works [34,35], which are possible if we introduce complex
masses M for scalar fields, and domain walls stretched by
vortices [35,36]. The effective theories of the domain wall
network and the vortices stretched between domain walls
were constructed in Refs. [37,38], respectively. How
Josephson vortices are absorbed into these composite sol-
itons remains for a future study.
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