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The flow equations of the functional renormalization group are applied to the OðNÞ-symmetric scalar

theory, for N ¼ 1 and N ¼ 4, in four Euclidean dimensions, d ¼ 4, to determine the effective potential

and the renormalization function of the field in the broken phase. In our numerical analysis, the infrared

limit, corresponding to the vanishing of the running momentum scale in the equations, is approached to

obtain the physical values of the parameters by extrapolation. In the N ¼ 4 theory a nonperturbatively

large value of the physical renormalization of the longitudinal component of the field is observed. The

dependence of the field renormalization on the UV cutoff and on the bare coupling is also investigated.
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I. INTRODUCTION

An important technique in continuum field theory is the
functional renormalization group [1,2], which represents
a powerful method to approach both perturbative and
nonperturbative phenomena; it is based on the infinitesimal
integration of momentum modes from a path integral repre-
sentation of the theory with the help of a Wilsonian momen-
tum cutoff [3]. The resulting functional flow equations
interpolate between themicroscopic theory at short distances
and the full quantum effective theory at large distances.

In the past years various realizations of the functional
renormalization group were developed and, among the
most renowned, there are Polchinski’s and Wetterich’s
formulations (for reviews see Refs. [4,5]). At the same
time, the derivative expansion, a powerful approximation
scheme that relies on a small anomalous dimension of the
field, was introduced to reduce the full flow equation to a
small set of treatable partial differential equations [6,7].
More recently, a different approximation scheme was pre-
sented in Refs. [8–10], where the flow, rather than being
projected on the semilocal derivative expansion of the
action, is projected on the n-point 1-particle irreducible
vertices, so that the momentum dependence of the corre-
lation functions is properly taken into account.

The range of application of the functional renormaliza-
tion group is wide and it is especially suitable for the study
of phase transitions, due to its flexibility even in the
presence of strong correlations or couplings. For instance
fixed point studies of Ising-like orOðNÞ theories, including
the determination of universal critical indices, were
repeatedly carried out, using different versions of the re-
normalization group (RG) flow equation (see for instance
Ref. [11] and references therein), both to analyze the
properties of the theory and to test the accuracy of the
method through a comparison with other field-theoretical
techniques (see e.g., Refs. [12–14]).

Some attention has also been devoted to the study of the
nonperturbative features of the effective action and effec-
tive potential in the presence of spontaneous symmetry

breaking. In fact is it a well known result of quantum field
theory [15–17] that the effective potential defined through
a Legendre transformation must be convex, a property
that, in the limit of infinite volume, leads to a nonanalytic
behavior with a typical degenerate flat region of the
potential in correspondence of the classically forbidden
region between the classical minima. The convexity of
the potential can only be recovered by resorting to some
nonperturbative scheme (see e.g., Refs. [18]) and it
has already been studied by means of RG techniques
[19–28].
In this paper we analyze in detail the spontaneously

broken phase of the OðNÞ-symmetric scalar theory, for
N ¼ 1 and N ¼ 4, in four Euclidean dimensions, d ¼ 4,
going beyond the local potential approximation (LPA) and
including the effects of the field renormalization. Instead of
deriving the flow equations for the potential V and the field
renormalization Z directly from an expansion of the full
flow equation for the effective action around a constant
field configuration, we shall derive them starting from the
approach developed in Refs. [8–10] and adopting the regu-
lator for the infrared modes introduced in Refs. [29–32],
which has the specific property of optimizing the determi-
nation of the critical exponents in the LPA. This particular
choice allows us to analytically perform the integration
over the momentum variable, which simplifies the struc-
ture of coupled partial differential equations (PDEs) for V
and Z. The aim of the present analysis is to provide a better
understanding of the details of this phenomenon which, for
N ¼ 4 and d ¼ 4, could provide some indications on the
description of the broken chiral symmetry phase for a two-
flavor quark model or on the mass generation mechanism
in the standard model, although in both cases the similarity
has serious limitations. In fact, in the former case the Oð4Þ
model is in the correct universality class to describe the
universal features of the chiral phase transition, but when
the system is not close to the critical line, which is the case
considered here, then some properties of the fermionic
model could be poorly reproduced by the scalar fields.
Concerning the latter case, the coupling to gauge fields is
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turned off in the OðNÞ model and therefore the massless
Golstone bosons play an important role in the infrared
sector of the ordered phase and this could lead to a different
behavior with respect to the usual Higgs mechanism where
the Goldstone are replaced by the longitudinal degrees of
freedom of the massive gauge bosons which, due to their
mass, are less relevant for the infrared dynamics.

An attempt to use the two coupled flow equations for V
and Z in this context was already done in Ref. [24] for the
simple quantomechanical problem (d ¼ 0þ 1 dimen-
sions) and in Ref. [27] for the N ¼ 1 scalar theory in
d ¼ 4 dimensions. In both cases the proper time version
of the RG flow [33–38] (which can be regarded as an
approximation to the class of exact background field flows
[26,39–41]) was adopted in the exponential form, which is
derived by using a sharp cutoff on the proper time variable
[36,42]. In the quantomechanical case the corrections in-
duced by the inclusion of Z turned out to be in very good
agreement with the (exact) Schroedinger equation output
while, for the quantum field theory, a very large Z was
observed in the classically forbidden region. However, in
the latter case, only partial conclusions could be drawn,
because the numerical instabilities in the flow equations
made rather difficult the approach to the infrared (IR) limit,
where all quantum modes are integrated out and the full
field renormalization is obtained. On the contrary, the
approach used in this paper, based on a different approxi-
mation scheme, turns out to be numerically more stable,
thus allowing us to push the RG scale low enough to get a
better insight of the IR region.

The scheme of the paper is the following. In Sec. II the
main details of the RG flow equations and of the approxi-
mation used are recalled; the results of the numerical
analysis of the potential and the field renormalization for
the single field, N ¼ 1, and for the N ¼ 4 theory in d ¼ 4
are shown in Sec. III. The conclusions are reported in
Sec. IV.

II. RG FLOW EQUATIONS

The starting point of our analysis is the partition function
of the theory, defined as a functional of the source JðxÞ, and
also dependent on the momentum scale k,

Zk½J� ¼
Z

D’e�S��Skþ
R

x
J’; (1)

where the usual action S is modified by the k dependent
regulator, quadratic in the field ’, �Sk½’�,

�Sk½’� ¼ 1

2

Z
q
RkðqÞ’ðqÞ’ð�qÞ; (2)

with

Z
q
�

Z ddq

ð2�Þd and
Z
x
�

Z
ddx: (3)

In order to obtain a physically relevant flow, RkðqÞ must
suppress the modes with q � k while allowing to integrate
those with q � k and therefore one can choose RkðqÞ of
order k2 in the former region and RkðqÞ � 0 in the latter.
In particular at k ¼ 0 the regulator must vanish so that
Zk¼0½J� coincides with the standard partition function
Z½J�. In this framework the following flow equation is
obtained [5] (@t � k@k):

@t�k½�� ¼ 1

2

Z
q
@tRkðqÞ½�ð2Þ

k ½q;�q;�� þ RkðqÞ��1; (4)

where �k½�� is the modified effective action at scale k,
defined by

Z
x
J�� �Sk½�� � �k½�� ¼ logZk½J�; (5)

with �ðxÞ ¼ � lnZk½J�=�JðxÞ and �ð2Þ
k ½q;�q;�� is the

Fourier transform of the second functional derivative of
�k½��,

�ð2Þ
k ½x1; x2;�� � �2�k

��ðx1Þ��ðx2Þ : (6)

Note that the term

Gkðq;�Þ ¼ ½�ð2Þ
k ½q;�q;�� þ RkðqÞ��1 (7)

appearing in Eq. (4) is the full propagator of the action
modified by the regulator �Sk. Then one can take the
initial condition for the flow equation (4) at the scale k ¼
�where fluctuations are frozen by�Sk, so that �k¼�½�� �
S½�� and the full effective action �½�� of the original
theory is obtained as the solution of Eq. (4) when k ! 0,
where RkðqÞ vanishes and all fluctuations have been inte-
grated out.
The most straightforward approximation scheme to treat

the RG flow is to express the effective action �k½��
through an expansion in the derivatives of the field,

�k½�� ¼
Z
x

�
Vkð�Þ þ 1

2
Zkð�Þð@�Þ2 þOð@4Þ

�
; (8)

and to project the full equation (4) onto a set of
flow equations for the coefficients of the expansion
Vkð�Þ; Zkð�Þ; . . . . This projection requires an expansion
of the right hand side of Eq. (4) in powers of the field
derivatives or, equivalently, in powers of the momentum.
An alternative scheme has been developed in

Refs. [8–10] and, below, we shall briefly recall its essential
features (in the rest of this section we will follow the
notation adopted in Refs. [10]). This scheme consists in

an expansion in terms of the n-point functions, �ðnÞ
k , i.e., the

nth functional derivative of �k½�� with respect to the field
�. For instance the first two equations for n ¼ 0 and n ¼ 2
correspond to the two following equations, respectively for
the potential Vk defined in Eq. (8) and equal, up to a
volume factor, to �k evaluated at a constant field
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configuration �, and the 2-point function computed at
constant �:

@tVkð�Þ ¼ 1

2

Z
q
@tRkðqÞGkðq;�Þ; (9)

@t�
ð2Þ
k ðp;�Þ ¼

Z
q
@tRkðqÞGkðq;�Þ

�
�
�ð3Þ
k ðp; q;�p� q;�ÞGkðqþ p;�Þ

� �ð3Þ
k ð�p; pþ q;�q;�Þ

� 1

2
�ð4Þ
k ðp;�p; q;�q;�Þ

�
Gkðq;�Þ: (10)

It is easy to check from the functional structure of

Eq. (4) that the flow equation of �ðnÞ
k involves the s-point

functions with s 	 nþ 2. Therefore an approximation or
truncation is needed to obtain a closed set of PDEs. As
explained in Refs. [8–10] this can be realized at any fixed

n, by neglecting the internal momentum q in �ðnþ1Þ
k

and �ðnþ2Þ
k , so that they can be written in terms of �ðnÞ

k

according to the following property, valid for constant field
configurations,

�ðnþ1Þ
k ðfpig; 0; �Þ ¼ @��

ðnÞ
k ðfpig; �Þ; (11)

where the index i runs between 1 and n. In particular, for

n ¼ 2, �ð3Þ
k and �ð4Þ

k in Eq. (10) are computed at q ¼ 0 and

expressed in terms of �ð2Þ
k , according to Eq. (11). Thus, a

closed set of two equations for Vk and �ð2Þ
k is explicitly

obtained in Refs. [8–10].
Our aim is to extract the coupled flow equations of Vk

and Zk from those of Vk and �
ð2Þ
k . This is easily obtained by

performing a derivative expansion of the latter, to order

Oðp2Þ. To this purpose we restrict the form of �ð2Þ
k accord-

ing to the ansatz in Eq. (8), i.e.,

�ð2Þ
k ðp;�Þ ¼ Zkð�Þp2 þ V00

k ð�Þ þOðp4Þ; (12)

where the prime indicates the derivative with respect to the
field �. Then, the flow equation of Vk is given in Eq. (9),
while the insertion of Eq. (12) into Eq. (10) gives

p2@tZkð�Þ þOðp4Þ ¼ J3ðp;�Þ½V 000
k ð�Þ þ p2Z0

kðp;�Þ�2
� I3ð�ÞðV000

k ð�ÞÞ2

� 1

2
I2ð�Þp2Z00

k ðp;�Þ þOðp4Þ;
(13)

where we have used the notation of [10],

Inð�Þ � Jnðp ¼ 0; �Þ and

Jnðp;�Þ �
Z
q
@tRkðqÞGkðpþ q;�ÞGn�1

k ðq;�Þ;
(14)

with Gk given in Eq. (7) and �ð2Þ
k in Eq. (12). Finally, to

obtain the flow equation of Zk one has to expand the
integral J3ðp;�Þ in powers of p2 and systematically
neglect the Oðp4Þ terms in Eq. (13) and, as the terms
proportional to p0 in the right hand side vanish, one reads
the equation for Zkð�Þ from the Oðp2Þ terms. Then, the
PDEs coming from the derivative expansion to orderOðp2Þ
of the �ð2Þ

k equation derived in Refs. [8–10], contain the

same approximation made on the latter, namely the neglect

of the internal momentum q dependence of �ð3Þ
k , �ð4Þ

k .

The extension to the OðNÞ-symmetric scalar theory is
straightforward and it is also illustrated in Ref. [10].
According to the symmetry of the theory the propagator
can be written in terms of its longitudinal (L) and trans-
verse (T) components with respect to the external field

Gabðp2;�Þ ¼GTðp2;�Þ
�
�ab��a�b

2�

�
þGLðp2;�Þ�a�b

2�
;

(15)

where

� � 1

2
�a�a: (16)

If the 2-point function is parametrized as

�ð2Þ
abðp;�p; �Þ ¼ �Aðp; �Þ�ab þ�a�b�Bðp; �Þ (17)

and �A and �B are expressed in the following way (here the
dots indicate derivatives with respect to � and the script k is
omitted for simplicity)

�Aðp; �Þ ¼ ZAð�Þp2 þ _V and

�Bðp; �Þ ¼ ZBð�Þp2 þ €V;
(18)

then the following relations hold

G�1
T ðp; �Þ ¼ �Aðp; �Þ þ RkðpÞ ¼ ZTð�Þp2 þ _V þ RkðpÞ;

(19)

G�1
L ðp; �Þ ¼ �Aðp; �Þ þ 2��Bðp; �Þ þ RkðpÞ

¼ ZLð�Þp2 þ _V þ 2� €V þ RkðpÞ; (20)

with ZT and ZL defined as

ZT ¼ ZA and ZL ¼ ZA þ 2�ZB: (21)

The flow equations for V, ZA and ZB are

@tVð�Þ ¼ 1

2
fðN � 1ÞITT1 ð�Þ þ ILL1 ð�Þg; (22)
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p2@tZAð�Þ þOðp4Þ ¼ 2�fJLT3 ðp2 _ZA þ €VÞ2 þ JTL3 ðp2ZB þ €VÞ2 � ðILT3 þ ITL3 Þ €V2g � 1

2
ILL2 p2ð _ZA þ 2� €ZAÞ

� 1

2
ITT2 p2ððN � 1Þ _ZA þ 2ZBÞ þOðp4Þ; (23)

p2@tZBð�Þ þOðp4Þ ¼ JTT3 ðN � 1Þðp2ZB þ €VÞ2 � JLT3 ðp2 _ZA þ €VÞ2 � JTL3 ðp2ZB þ €VÞ2 þ JLL3 fðp2 _ZA þ 2p2ZB þ 3 €VÞ2

þ 4�ðp2 _ZB þ @� €VÞðp2 _ZA þ 2p2ZB þ 3 €VÞ þ 4�2ðp2 _ZB þ @� €VÞ2g � 1

2
ITT2 ðN � 1Þp2 _ZB

� 1

2
ILL2 p2ð5 _ZB þ 2� €ZBÞ � ððN � 1ÞITT3 � ILT3 � ITL3 Þ €V2 � ILL3 ð3 €V þ 2�@� €VÞ2

þ p2ZBðILT3 þ ITL3 Þ þOðp4Þ; (24)

with the following definitions of the integrals (n > 1 and
�, � stand either for L or T):

J��n ðp; �Þ ¼
Z
q
@tRkðqÞGn�1

� ðq; �ÞG�ðpþ q; �Þ and

I��n ð�Þ ¼ J��n ðp ¼ 0; �Þ: (25)

The only undefined ingredient in the above flow equa-
tions is the explicit form of the regulator. There are various
functional forms of RkðpÞ, tested in many specific prob-
lems and whose properties have been studied in detail.
From a practical point of view, since we are interested in
the numerical resolution of a set of PDEs, it is preferable to
take a particular regulator which allows us to solve analyti-
cally the momentum integrals. The cutoff [29–32],

RkðqÞ ¼ ðk2 � q2Þ�ðk2 � q2Þ (26)

(where� indicates the Heaviside step function) makes the
resolution of the integrals particularly simple and therefore
we use this regulator in our analysis.

Regarding this choice, some comments are in order. In
fact the flow equations contain the derivative of the regu-
lator with respect to the scale k and, as discussed above, the
flow of Zk is obtained after an expansion in powers of the
external momentum p which, again, introduces derivatives
of the regulator. The regulator in Eq. (26) has the form
x�ðxÞ so that its derivative @tRkðqÞ generates two terms:
the first one, ð@txÞ�ðxÞ, which produces relevant contribu-
tions and the second one xð@t�ðxÞÞ which produces a term
proportional to x�ðxÞ that vanishes under integration over
the momentum q, as long as no pathologies appear in the
integrand. Therefore only the first term is to be retained in
the flow equations.

Then, when deriving the PDE for Zk from the flow of the
2-point function, an expansion in the momentum p of the
integral J3ðp;�Þ, defined in Eq. (14), to order Oðp2) is
necessary and this generates new terms proportional to �
and � functions. Also, a derivative of delta function of
the form @p�

ðy�ðyÞÞ (with y ¼ k2 � ðpþ qÞ2) is gener-

ated, which, due to the particular form of the variable y,
can be replaced by @q�ðy�ðyÞÞ and the corresponding term

can be calculated by means of an integration by parts, by

recalling that the structure y�ðyÞ gives zero contribution
even when evaluated at the boundaries of the integral over
the momentum variable q. After the integration by parts,
by making explicit the dependence on the distributions,

one finds (below, l��ðpÞ and hðiÞ��ðp; qÞ, i ¼ 1, 2, 3 generi-

cally indicate regular functions appearing in the expansion
and, again, y ¼ k2 � ðpþ qÞ2),
@p�

@p�
J3ðp;�Þ

¼ l��ðpÞ þ
Z k2

0
dq2fhð1Þ��ðp; qÞ½�ðyÞ þ y�ðyÞ�g

þ
Z k2

0
dq2fhð2Þ��ðp; qÞ½�ðyÞ þ y�ðyÞ�

� ½�ðyÞ þ y�ðyÞ� þ hð3Þ��ðp; qÞ�ðyÞg (27)

and Eq. (27), evaluated at p ¼ 0, contributes to the flow
equation of Zk. The terms in Eq. (27) proportional to �ðyÞ
or �2ðyÞ give finite contributions while, by regarding the
delta function as the limit of a sequence of normal distri-
butions, we discarded all terms proportional to y�ðyÞ or
ðy�ðyÞÞ2 or y�ðyÞ�ðyÞ, and calculated the last term in
Eq. (27), where the argument of the delta function coin-
cides with the upper boundary of the integral, according toRx0
0 fðxÞ�ðx� x0Þ ¼ fðx0Þ=2.
In Sec. III we study the RG flow equation of a scalar

theory in the broken phase in d ¼ 4, concentrating on two
specific cases: theN ¼ 1 and theN ¼ 4 theory. We use the
ansatz in Eq. (8) with the following initial condition at the
ultraviolet (UV) scale k ¼ �

�k¼�ð�Þ ¼
Z
x

�
1

2
@��a@��a � 1

2
�a�a þ 	ð�a�aÞ2

�
;

(28)

where a ¼ 1 for N ¼ 1, and runs from 1 to 4 for N ¼ 4.
According to Eq. (28), at k ¼ � the field renormalization
is 1 (for the N ¼ 4 theory ZL ¼ ZT ¼ 1 which, in turn
means ZA ¼ 1, ZB ¼ 0) and the potential V� only contains
quadratic and quartic terms in the field, i.e., the only
renormalizable terms in d ¼ 4. In order to restrict our-
selves to the broken phase, the bare mass, related to the
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quadratic term of the potential in Eq. (28), must be nega-
tive. In particular, its explicit value is fixed at�1 so that, in
the following, all dimensionful variables are automatically
expressed in units of the bare mass. It must also be recalled
that the phase boundary is a function of the UV cutoff �
and of the bare coupling 	, and both parameters should not
be increased too much to avoid a transition to the disor-
dered phase.

III. FIELD RENORMALIZATION IN
THE BROKEN PHASE

For practical convenience, in the following numerical
analysis, instead of concentrating on the flow of Zkð�Þ and
Vkð�Þ, we focus on Zkð�Þ and V0

kð�Þ, i.e., on the derivative
of the potential with respect to �, which means that for the
OðNÞ theory, instead of using �, we express all variables in
terms of

� � ffiffiffiffiffiffiffiffiffiffiffiffiffi
�a�a

p ¼ ffiffiffiffiffiffi
2�

p
; (29)

and, in the following we indicate with �� the field at the
minimum of the potential in the IR limit k ¼ 0,

V0
k¼0ð ��Þ ¼ 0: (30)

The Green’s functions of the theory are obtained from the
derivatives of the effective action evaluated at the mini-
mum configuration� ¼ �� and therefore �� is crucial in the
determination of physical observables.

So, in N ¼ 1 we solve the two coupled PDEs given by
Eq. (13) and the field derivative of Eq. (9), while for the
N ¼ 4 theory we solve the set of three PDEs for ZA, ZB in
Eqs. (23) and (24) and the field derivative of Eq. (22) and in
all cases d ¼ 4. The numerical solution of our set of PDEs
is obtained with the help of the numerical algorithms group
routine [43] that integrates a system of nonlinear parabolic
partial differential equations in the ðx; tÞ two-dimensional
plane. The spatial discretization is performed using a
Chebyshev Co collocation method, and the method of lines
is employed to reduce the problem to a system of ordinary
differential equations. Typically we used Chebyshev poly-
nomials of order 3 or 4 which already provide a stable
solution. The routine contains two main parameters—the
number of mesh points on the ‘‘space’’ axis and the local
accuracy� in the ‘‘time’’ integration—that can be adjusted
to control the stability of the solution. The first parameter is
taken in such a way that the distance between two subse-
quent mesh points is �x� 10�3, 10�4 while � typically is
taken between 10�7 and 10�9. The size of the time step is
adjusted at each integration step by the routine to keep
the accuracy below �. The number of time steps required
to converge is strongly dependent on the problem consid-
ered, ranging from few hundreds up to 107 for the hardest
cases.

The resolution of the PDEs is done with the space
variable constrained between 0<�<�bound and for our

purposes �bound ¼ 4 was sufficiently large to ensure the
stability of the solution. The required initial conditions for
the PDEs at initial time k ¼ � and 0<�<�bound are
implicitly given in Eq. (28). The boundaries at � ¼ 0 in
the entire range of time integration reflect the required
symmetry of our model: V 0

kð0Þ ¼ Z0
kð0Þ ¼ 0 while at � ¼

�bound we keep free boundaries. Finally, the time integra-
tion that starts at k ¼ � should, in principle, reach k ¼ 0 or
at least should be pushed close enough to zero that the
solution has become invariant. But in the following analy-
sis, due to the not smooth behavior of the solution, which
gets worse when approaching the point k ¼ 0, the numeri-
cal integration breaks down well before k ¼ 0. Clearly this
is peculiar of the broken phase because in the symmetric
phase, where both solution for Vk and Zk are much
smoother, one can easily reach values of the scale k where
the solutions are already stable. In the broken phase the
lowest accessible value of k depends on the bare parame-
ters (larger values of � and 	 in this sense are preferable)
and also on the accuracy � in the time integration and on
�x in the ‘‘spatial’’ mesh. However the process of improv-
ing space and time accuracy has the effect of increasing the
computer time and in any case the routine seems to be
unable to converge for k below some particular value. So
the best compromise found for the minimal value of k in
the present analysis is k ¼ 0:02 at which the routine con-
verges for all the examples considered.
As a first step, we set the boundary values � ¼ 10 and

	 ¼ 0:1 in Eq. (28) and analyze the derivative of the
potential as obtained from the two coupled PDEs for
N ¼ 1 (and d ¼ 4). The results for V0

kð�Þ are shown in

Fig. 1. Curve (a) is V 0
�, while (b), (c), (d), (e) respectively

correspond to V0
k at k ¼ 0:7, 0.5, 0.3, 0.02.

Together with these RG outputs we also display in Fig. 1
the derivative of the one-loop effective potential, (f),
obtained with the same set of renormalized parameters of

0 0.4 0.8 1.2 1.6
φ

-0.6

-0.4

-0.2

0

0.2

V

a
b

c
d

e

f

FIG. 1. V0
kð�Þ for N ¼ 1 and d ¼ 4 at various k: k ¼ � (a),

0.7 (b), 0.5 (c), 0.3 (d), 0.02 (e), with � ¼ 10 and 	 ¼ 0:1. The
dotted curve ðfÞ is the one loop effective potential derivative,
V0
1lð�Þ, in terms of renormalized parameters.
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curve (e). More specifically, the one loop quantum correc-
tion to the effective potential, properly regularized by a
four-momentum cutoff �, reads (see e.g., Ref. [44])

V1lð�Þ ¼ 1

64�2

�
�4 ln

�
1þ V 00

o ð�Þ
�2

�

� ðV00
o ð�ÞÞ2 ln

�
1þ �2

V00
o ð�Þ

�
þ�2V00

o ð�Þ
�
; (31)

where the prime, again, denotes the derivative with respect
to the field and Vo is the bare potential which, in our
case, is given in Eq. (28). In the presence of a negative
square mass term and therefore of unstable modes, the
logarithms in Eq. (31) develop an imaginary part and
here we shall only consider the real part of the one loop
effective potential.

We observe that the flow equation has a different depen-
dence on the the ultraviolet cutoff � with respect to
Eq. (31). This can be directly checked by integrating
Eq. (9) in the LPA (i.e., fixing Zk ¼ 1) and also neglecting
the k dependence of Vk in the right hand side of the
equation, in order to preserve at least the leading depen-
dence on �. In this case the flow equation reads:

@kVkð�Þ ¼ k5

32�2

1

k2 þ V 00
o ð�Þ ; (32)

and its integration from k ¼ � down to k ¼ 0 gives the
following expression of the correction to the first derivative
of the bare potential:

V0
corrð�Þ ¼ V000

o

64�2

�
�2 � 2V00

o ln

�
1þ �2

V 00
o ð�Þ

�

þ �2V00
o ð�Þ

�2 þ V 00
o ð�Þ

�
(33)

to be compared with the derivative of Eq (31),

V 0
1lð�Þ ¼ V 000

o

64�2

�
2�2 � 2V 00

o ln

�
1þ �2

V 00
o ð�Þ

��
: (34)

While the logarithmic term in Eqs. (33) and (34) is the
same, the leading term proportional to �2 has different
coefficients. Equation (33) also shows an additional sub-
leading term. However, the difference between Eqs. (33)
and (34) plays no role for the renormalized quantities
because it can be totally compensated by a suitable choice
of the counterterms so that the absence of divergences (i.e.,
the cancellation of any dependence on the cutoff �)
ensures the smallness of the one loop corrections to the
classical potential. In practice this is realized by fixing the
proper mass and coupling counterterms in the one loop
effective potential, so that its second and fourth derivatives
computed at the minimum of the one loop potential, ��1l,
respectively coincide with the numerical values of the
(right limit) of the second and fourth derivative of the
RG generated potential at ��, as obtained from curve (e).
As it is evident from Fig. 1, curve (f) obtained by the above

renormalization procedure is extremely close to curve (e)
in the region above the minimum, with the small differ-
ences mainly referable to higher loop corrections and to
1=�2 terms that are neglected in our computation of the
renormalized one loop potential. Instead, as is well known,
the large difference between (e) and (f) in the region below
the minimum is due to the failure of the perturbative
expansion in recovering the convexity property of the
effective potential which corresponds to the flat region of
curve (e).
Before proceeding we also quote the perturbative cor-

rection of the field renormalization as obtained from a one
loop calculation in [16],

Z1lð�Þ ¼ 	

4�2

�
V00
o ð�Þ � V 00

o ð0Þ
V 00
o ð�Þ

�
; (35)

which has to be added to the leading term Zo ¼ 1.
Equation (35), when computed at the physical value of
the field, i.e., at the minimum of the potential ��, vanishes
in the disordered symmetric phase ( �� ¼ 0), but it has a
finite value in the broken phase, proportional to the cou-
pling 	. In particular, in our example with 	 ¼ 0:1, the one
loop correction is Z1lð ��Þ ¼ 1:69� 10�3.
Let us come back to the RG generated potential. In the

region of small � the curves b, c, d, e show the flattening
which had been already observed many times [21,23–28]:
the evolution of the potential is smooth until k reaches
the infrared threshold where k2 ’ �V00

k ð� ¼ 0Þ> 0,
i.e., the region of the unstable modes which induce strong
modifications to the propagator and therefore to the
flow. When k becomes smaller than this threshold, V0

kð�Þ
starts to develop a linear behavior in� close to� ¼ 0 (see
curve b) and, when k gets smaller, the linear region extends
to larger values of � with a slope that decreases toward
zero. On the other hand, the region with �> �� is substan-
tially k independent for k below threshold, with only very
small changes when k� 0 [see curves (c), (d), (e)]. The
region between the two regimes at small and large� shows
a sudden change of slope that becomes sharper and sharper
for lower values of k. However when the details of this
sudden change are properly enlarged, the field derivatives
of curves (b), (c), (d) still show a continuous behavior
while for the derivative of curve (e), obtained for k ¼ 0:02,
the change is so sharp that, according to the numerical
precision imposed, the routine is not able to approach zero
beyond k ¼ 0:02.
This is essentially what was expected. Indeed, it is

known that at k ¼ 0 the potential must reproduce the
features of the effective potential which is convex, with a
flat region for � �� 	 � 	 �� and with a nonanalytic
behavior, that consists in a jump of the second derivative
of the potential at �� from zero to a finite value. As a
consequence, the computation of the zero momentum
Green’s functions from the derivatives of the effective
potential is typically obtained by taking the limit of the
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derivatives from above, � ! �� with �> ��, while the
limit from below (with �< ��) is associated to tunneling
processes with infinitely large time scales. In our numerical
analysis the ‘‘flat’’ part of curve (e) obtained at k ¼ 0:02, is
practically vanishing: it differs from zero for less than
10�3. Moreover, the fact that the positive branches of (c),
(d), (e) are practically coincident, implies that these curves
provide a reasonably good estimate of �� even if the flow
has not reached the point k ¼ 0.

We are also able to check Vkð�Þ for small � and k.
In fact, in this regime the relation V0

kð�Þ ¼ �k2�
has been repeatedly derived starting from the functional
form of the flow equations in the LPA (see e.g.,
Refs. [19,20,22,25,28]). In the example displayed in
Fig. 1, the effect of Zk is included and we have no analyti-
cal solution for the coupled PDEs; however for the curves
(b), (c), (d) and (e) we find �V0

kð�Þ=ðk2�Þ ¼ 0:955ð10Þ at
� ¼ 0:1 and �V 0

kð�Þ=ðk2�Þ ¼ 0:930ð10Þ at � ¼ 0:5 and

this gives an estimate of the size of the corrections to the
above relation, which stay below 10% even for values of k
and � close to ��=2.

In the N ¼ 4 case the derivative of the potential shows
a linear behavior in the range of small � and k similarly
to the case N ¼ 1 in Fig. 1. However for continuous
symmetries in the ordered phase the presence of the
Goldstone bosons has a strong impact on the infrared
sector of the theory. In particular, according to the study
of the susceptibility of the OðNÞ-symmetric theories
(N > 1) [12,45,46], in d ¼ 4 one expects a vanishing
second derivative of the potential at � ¼ ��. This means
that the nonanalyticity developed in the N ¼ 1 potential at
k ¼ 0, discussed before, should disappear in N ¼ 4. To
analyze this point, we plot in Fig. 2 an enlarged detail of V 0

k

around ��, with N ¼ 4, d ¼ 4, for k ¼ 0:02 and k ¼ 0:01.
This computation is performed in the LPA at 	 ¼ 0:13 and
� ¼ 10, in order to get closer to k ¼ 0 and have a more
accurate check on the behavior of V 0

k. In fact, in Fig. 2 the

magnification is so large that the various mesh points can

be identified but, both at k ¼ 0:02 and 0.01, V 0
k shows a

smooth growth without apparent jumps or rapid numerical
fluctuations which were instead observed in the N ¼ 1
case. According to the numerical precision considered
we can state that the LPA solution is approaching
V00
k¼0ð ��Þ ¼ 0. The inclusion of the field renormalization

makes more difficult the approach to k ¼ 0 but there is no
qualitative modification of the picture observed in the LPA
up to k ¼ 0:02.
Let us now focus on the other variables, that is the field

renormalization Zk and ZL, ZT . The qualitative behavior of
the field renormalization is already illustrated in Ref. [27].
It is essentially perturbative when k is larger than the
mentioned threshold, with deviations of order 10�3 from
1 [see Eq. (35)]. Then, when k decreases, a bump appears
for values of � around the separation point of the two
regimes of V 0

k. When k approaches zero this bump grows,

dropping very rapidly to the standard perturbative value at
the separation point. In Fig. 3 the field renormalization in
N ¼ 1 and N ¼ 4 (and d ¼ 4) are shown. In the left panel
of Fig. 3 we collected Zkð�Þ for N ¼ 1, at k ¼ 0:5 and
k ¼ 0:02 together with ZT for N ¼ 4, at k ¼ 0:3 and k ¼
0:02. In the right panel ZL for N ¼ 4 is plotted at k ¼ 0:3
and k ¼ 0:02 with a much larger scale on the y axis
because of the very high peak of ZL.
Before going on, it must be remarked that the peak of

Zkð ��Þ for N ¼ 1 in Fig. 3 is much smaller than that
observed in Ref. [27] (whose value was around 10), where
the proper time RG flow with sharp cutoff on the proper
time variable was used. That particular version of flow
equation, due to its exponential nature, although very
rapidly converging and very accurate in computing the
critical exponents of the Ising universality class, was
criticized in Ref. [25] for not well reproducing the details
of the singularity in the second derivative of the potential in

0.25 0.252 0.254
φ

-0.0001

-5e-05

0

N=4 λ=0.13 Λ=10

k=0.02

k=0.01

V’

FIG. 2. V0
k for N ¼ 4 and d ¼ 4 at k ¼ 0:02 and k ¼ 0:01 in

LPA with 	 ¼ 0:13, � ¼ 10.
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FIG. 3. Left panel: Zk for N ¼ 1 at k ¼ 0:5, 0.02 (dot-dashed);
ZT for N ¼ 4 at k ¼ 0:3 (dashed) and k ¼ 0:02 (continuous).
Right panel: ZL for N ¼ 4 at k ¼ 0:3 (dashed) and k ¼ 0:02,
(continuous). d ¼ 4, � ¼ 10 and 	 ¼ 0:1 for all curves.
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the broken phase. According to this criticism, the large size
of the peak found in Ref. [27] could be addressed to that
version of the flow equation which artificially amplifies the
behavior of Zk close to ��. On the other hand the approach
followed in this paper is expected to be more accurate at
the quantitative level and therefore more suitable to
describe this particular feature.

Going back to the curves of the field renormalization,
beside the size of the peaks other differences are illustrated
in Fig. 4, where an enlargement of the lowest part of Fig. 3
(only those curves at k ¼ 0:02 are plotted) is shown. We
note that both Zk of the N ¼ 1 theory and the transverse
component ZT of the N ¼ 4 theory show a very sharp drop
followed by a drastic change of slope. However, by com-
paring the scale of the x axis in the left and right panel of
Fig. 4, it is evident that Zk withN ¼ 1 is much steeper than
ZT with N ¼ 4 and, in particular, the drop observed in the
N ¼ 1 case is very close (within the numerical accuracy
employed) to a discontinuous jump. Instead, the longitu-
dinal component ZL of the N ¼ 4 theory smoothly
approaches the perturbative regime for �� �� and this,
as shown below, yields a large (if compared with the
perturbative correction), finite prediction of ZLð ��Þ.

The structure of the flow equation of the field derivative is
more complicated than the equation of the potential and
even an approximate analytic solution is missing. However,
from our numerical investigation we are now able to get
some hints on the dependence of Z on various parameters
such as the running scale k or the bare coupling 	 or the UV
cutoff�. We concentrate on those values of� where Z can
be reasonably extracted, and thereforewe shall examine the
origin � ¼ 0 and the point ��. We avoid instead to analyze
the peak of Z which is often affected by large fluctuations.

We start by observing that in our computation in Fig. 4,
for N ¼ 1 the minimum is at �� ¼ 1:285 and one finds

Zk � 1:003 for �> 1:284 at k ¼ 0:02, so that a typical
perturbative value is observed at ��. Then one should
conclude that Zk¼0ð ��Þ � 1:003, unless at k ¼ 0 the sharp
drop of Zk hits ��, in which case no precise determination
of Zkð ��Þ would be possible within our numerical accuracy.
The data collected when k approaches zero do not exclude
either of these two alternatives. In the case of the N ¼ 4
theory one has �� ¼ 0:819 and ZT � 1:003 for �> 0:816
at k ¼ 0:02 similar to what happens in theN ¼ 1 case with
the difference that for N ¼ 1 the jump could reasonably
turn into a discontinuity, as already noticed, while in N ¼
4 the less steep drop reported in the left panel of Fig. 4
together with the smooth behavior of the potential around
�� observed in Fig. 2, suggest that ZT could not develop a
discontinuous gap at k ¼ 0. On the other hand, as it is
evident from the left panel of Fig. 4, the renormalization of
the longitudinal field is more regular and the large peak
decreases so smoothly that at �� one finds ZL ¼ 1:324 at
k ¼ 0:02. Then, in this case it is possible to study the
evolution of ZLð ��Þ as a function of k and eventually
extrapolate its value at k ¼ 0.
In Fig. 5 we show some values of Zkð� ¼ 0Þ,

ZLð� ¼ 0Þ ¼ ZTð� ¼ 0Þ, and of ZLð ��Þ, obtained at small
values of k. In all cases 	 ¼ 0:1, � ¼ 10 and d ¼ 4. For
the points at � ¼ 0 we found that the functional form

fðkÞ ¼ ak2 þ b (36)

provides excellent fits to the data with a ¼ �0:079,
b ¼ 1:101 for N ¼ 1 and a ¼ �0:216, b ¼ 1:094 for
N ¼ 4 and the corresponding plots are also shown in
Fig. 5. As in the case of the potential, we observe here a
quadratic dependence on the running scale k.
Let us now consider ZLð ��Þ. In this case the two

expressions

0.75 0.8 0.85
φ

1

1.1

1.2

1.3

Z

ZT
ZL

1.28 1.285 1.29
φ

1

1.1

1.2

1.3

k=0.02

k=0.02

N=4

N=1

Z

FIG. 4. Enlarged details of Fig. 3. Left panel: ZT (continuous)
and ZL (dotted) for N ¼ 4 at k ¼ 0:02. Right panel: Zk (con-
tinuous) for N ¼ 1 at k ¼ 0:02. d ¼ 4, � ¼ 10 and 	 ¼ 0:1 for
all curves.
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N=1  Z(0)
N=4 ZL(0)=ZT(0)
N=4 ZL(   )φ

FIG. 5. Zkð� ¼ 0Þ for N ¼ 1 (black circles) and ZLð� ¼ 0Þ ¼
ZTð� ¼ 0Þ for N ¼ 4 (crosses) and ZLð ��Þ for N ¼ 4 (plus) at
various values of k. In all cases d ¼ 4, � ¼ 10 and 	 ¼ 0:1. Fits
to these data are also plotted (see text).
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ZL ¼ 1:0056þ 0:0014

k2 þ 0:0040
and

ZL ¼ 1:0131þ 0:4225e�14:6466k
(37)

fit equally well with the data and we report both curves in
Fig. 5. Their extrapolation at k ¼ 0 yield two different (of
about 7%) values of ZL. However, remarkably, the fitted
points do not suggest a divergent behavior of ZLð ��Þ at
k ¼ 0, but, on the contrary, indicate finite values not very
distant from that found at k ¼ 0:02. We take this as a
general indication that for this variable no strong modifi-
cations should be expected in the range 0< k< 0:02.

In Fig. 6 we show Zkð� ¼ 0Þ and ZLð� ¼ 0Þ ¼
ZTð� ¼ 0Þ versus y ¼ 100	, at k ¼ 0:02 and � ¼ 10;
we also show Zkð� ¼ 0Þ and ZLð� ¼ 0Þ ¼ ZTð� ¼ 0Þ
versus y ¼ � at k ¼ 0:02 and 	 ¼ 0:1. Except for the
black circles, the other points show a rapid bend downward
for large y and this is due to the approaching of the critical
value of 	 or �, which signals the transition to the
symmetric phase. Apart from these points the two curves
associated to circles and squares have the form gð	Þ ¼
a	2 þ b	þ c which is a typical expansion in powers of
the coupling (for completeness we find a ¼ �1:4823,
b¼0:3855, c¼1:0700 for the squares and a ¼ �1:4245,
b ¼ 0:5214, c ¼ 1:0626 for the circles), while the points
related to the field renormalization dependence on � dis-
play a linear behavior in a large range of the UV cutoff.

Finally in Fig. 7 we show two plots of ZLð ��Þ, one versus
y ¼ � with 	 ¼ 0:1 and the other versus y ¼ 100	 with
� ¼ 10. All points are collected at k ¼ 0:02. We observe a
small dependence on the coupling with a small increase
around 	 ¼ 0:1 followed by a drop when approaching the
critical line. Instead, we find a much stronger dependence
on the cutoff with the field renormalization that reaches 3.5
for � ¼ 3. By excluding the two points at large �, which

are closer to the critical line, the other points are in good
agreement with the curve ZL ¼ 3:694� 0:0562 e0:401�,
which can obviously be expanded in a polynomial.

IV. CONCLUSIONS

In this paper, we used the functional renormalization
group to analyze the renormalization function of the scalar
field in the N ¼ 1 theory and of the longitudinal and
transverse components in the Oð4Þ-symmetric theory in
four Euclidean dimensions in the ordered phase where,
due to spontaneous symmetry breaking, a nonvanishing
vacuum expectation value �� � 0 is generated. In particu-
lar, the approximation scheme of Refs. [8–10] on the RG
flow equations with the cutoff in Eq. (26) provides a set of
numerically stable coupled PDEs for V and Z, which allow
us to approach the physical limit k ¼ 0 and to determine
the main features of the field renormalization.
We found that a large nonperturbative enhancement of Z

occurs in the range of � corresponding to the observed
flattening of the potential. This effect in Z had already been
observed in quantum mechanics [24] and its large value in
the classically forbidden region has also a direct interpre-
tation in terms of suppression factor of the tunneling
probability of a wave packet between two vacua [17,47].
However, in field theory the numerical resolution of the
equation is more problematical and a first indication of a
large field renormalization for the N ¼ 1 case was
obtained in Ref. [27]. Our analysis qualitatively confirms
those findings, but the maximum value of the peak found
here is largely reduced with respect to Ref. [27].
In particular we found that for N ¼ 1 the potential Vk

develops a nonanalytic behavior at �� in the limit k ! 0 and
Zk presents a peak followed by a sharp drop that occurs
definitely for�< �� at k ¼ 0:02 (which is the typical lower
limit reachable by our numerical routine). If this should
persist even at k ¼ 0, then Zkð ��Þ would be substantially
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1.11

Z

FIG. 6. Zkð� ¼ 0Þ for N ¼ 1 (black circles) and ZLð� ¼ 0Þ ¼
ZTð� ¼ 0Þ for N ¼ 4 (black squares) versus y ¼ 100	
at k ¼ 0:02 and � ¼ 10. Zkð� ¼ 0Þ for N ¼ 1 (stars) and
ZLð� ¼ 0Þ ¼ ZTð� ¼ 0Þ for N ¼ 4 (crosses) versus y ¼ � at
k ¼ 0:02 and 	 ¼ 0:1. All curves are for d ¼ 4. Fits to these
data are also plotted (see text).
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FIG. 7. ZLð ��Þ for for N ¼ 4 (black circles) versus y ¼ 100	 at
k ¼ 0:02 and � ¼ 10. ZLð ��Þ for N ¼ 4 (crosses) versus y ¼ �
at k ¼ 0:02 and 	 ¼ 0:1. In all cases d ¼ 4. A fit to the latter set
of data is also plotted (see text).
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perturbative; otherwise if at k ¼ 0 the drop should occur at
��, then we were not able to obtain a reasonable determi-
nation of Zkð ��Þ. The data collected close to k� 0 do not
exclude either of these two alternatives.

In theN ¼ 4 theory the numerical analysis indicates that
the potential does not develop a discontinuity in its second
derivative with respect to�, as in theN ¼ 1 case, and even
the transverse component ZT shows a less sharp plot than
Zk forN ¼ 1, suggesting in this case a continuous behavior
at �� and k� 0. At the same time the longitudinal compo-
nent ZL has a very high peak but the curve is so well

behaved that it is possible to extract ZLð ��Þ at various k
and its extrapolation down to k ¼ 0 remarkably leads to
finite values.
The dependence of Z on the UV cutoff and on the bare

coupling has also been investigated and this provides an
indication on the typical numerical range spanned by the
field renormalization, although it must be recalled that,
quantitatively, these results are affected by large uncertain-
ties because even a very small numerical error in the
estimate of �� induce large modifications in the determi-
nation of ZL.
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[27] M. Consoli and D. Zappalà, Phys. Lett. B 641, 368 (2006).
[28] J.-M. Caillol, Nucl. Phys. B855, 854 (2012).
[29] D. F. Litim, Phys. Lett. B 486, 92 (2000).
[30] D. F. Litim, Phys. Rev. D 64, 105007 (2001).
[31] D. F. Litim, Int. J. Mod. Phys. A 16, 2081 (2001).
[32] J.M. Pawlowski, Ann. Phys. (Amsterdam) 322, 2831

(2007).
[33] S. B. Liao, Phys. Rev. D 53, 2020 (1996).
[34] O. Bohr, B. J. Schaefer, and J. Wambach, Int. J. Mod.

Phys. A 16, 3823 (2001).
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