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Observations across many families of unconventional materials motivate the search for robust

mechanisms producing linear in temperature dc resistivity. Berezinskii-Kosterlitz-Thouless quantum

phase transitions are commonplace in holographic descriptions of finite density matter, separating critical

and ordered phases. We show that at a holographic Berezinskii-Kosterlitz-Thouless critical point, if the

unstable operator is coupled to the current via irrelevant operators, then a linear contribution to the

resistivity is universally obtained. We also obtain broad power law tails in the optical conductivity that

shift spectral weight from the Drude peak as well as interband energy scales. We give a partial realization

of this scenario using an Einstein-Maxwell-pseudoscalar bulk theory. The instability is a vectorial mode at

nonzero wave vector, which is communicated to the homogeneous current via irrelevant coupling to an

ionic lattice.
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I. UNCONVENTIONAL dc AND
OPTICAL CONDUCTIVITIES

It is an observed fact that several chemically diverse
families of unconventional materials exhibit a low tempera-
ture resistivity that is linear in temperature, when tuned to
what appear to be quantum critical points. Illustrative recent
experimental data can be found for cuprates, pnictides,
heavy fermions, ruthenates, and organic superconductors—
see Ref. [1] for an overview and references. While it is likely
that there may be more than one explanation for this behav-
ior, the universality of the temperature dependence of the
resistivity seen in the phase diagrams of these materials
stronglymotivates the search for robust physicalmechanisms
that can reproduce the observations.

In this paper we show, in the context of the holographic
correspondence, that the structure of superradiant instabil-
ities of extremal black hole horizons leads universally to a
linear in temperature resistivity when these systems are
tuned to the quantum critical point mediating the instabil-
ity. This mechanism will be described in some generality.
We go on to illustrate the process in a particular model that
captures additional features of several of the unconven-
tional materials of interest: the resistivity will be due to
scattering off modes that are becoming unstable, and which
are supported at nonzero momentum. One can take these
modes to model the spin density and charge density wave
instabilities appearing in the phase diagrams of Ref. [1].

That the resistivity is linear rather than, say, quadratic
in temperature is only half of the mystery. Unlike conven-
tional metals, many of the materials of interest fail
to exhibit resistivity saturation as the temperature is
increased. The resistivity increases unabated with tempera-
ture through the Mott-Ioffe-Regel limit. The materials are
consequently known as bad metals [2]. This fact becomes
particularly confusing when considered in conjunction

with the dependence of the in-plane (frequency dependent)
optical conductivity on temperature. In conventional met-
als, the optical conductivity exhibits a Drude peak that
broadens as the temperature is increased. Resistivity satu-
ration occurs when the spectral weight is smeared out over
the whole of the bandwidth and the Drude peak effectively
disappears [3]. In several classes of unconventional mate-
rials that do not exhibit saturation, the Drude peak is
accompanied by an extended tail that falls off slowly at
large frequencies up to the bandwidth scale [4]. At the
would-be saturation temperature, the Drude peak is
observed to melt into this broader feature [3,4]. The dc
resistivity, however, continues to increase linearly in tem-
perature with the same slope, irrespectively of whether or
not there is an associated Drude peak. The conundrum
is served: Does the linear in temperature resistivity origi-
nate in Drude-like (i.e., momentum-relaxing) scattering
or not?
The answer to this question is again likely to be material

dependent. The picture of resistivity saturation outline
above may not be correct. Nonetheless, the characteriza-
tion of bad metals as metals that do not exhibit a zero
frequency collective mode encourages the notion that the
resistivity might be controlled by quantum critical physics,
presumably responsible for the extended tail in the spectral
density, rather than be sensitive to the mechanism of
momentum relaxation. Such a picture is likely to have
trouble with the fact that at lower temperatures a very
sharp Drude peak is observed on top of the broader feature;
see e.g., Ref. [5] for measurements in optimally doped
YBCO. The mechanism of linear resistivity presented in
this paper will be quantum critical in nature, and we will
assume that the Drude peak has been swamped by the
critical degrees of freedom.
Figure 1 below illustrates the above discussion.
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II. EXTREMAL HORIZONS AND BEREZINSKII-
KOSTERLITZ-THOULESS TRANSITIONS

In quantum theories with a holographically dual descrip-
tion, the strongly interacting physics is described by clas-
sical gravitational dynamics in a dual spacetime with one
extra spatial dimension. The extra dimension geometri-
cally implements the renormalization group flow. In
particular, the far interior of the spacetime describes
the far IR, or lowest energy scales, of the dual quantum
system [6]. In many holographic models placed at a finite
charge density, hJti � 0, the far IR geometry is character-
ized by an emergent scaling symmetry that indicates a
power law specific heat at low temperatures, and hence
the presence of gapless degrees of freedom [6]. Working in
two spatial dimensions for concreteness, the general scale-
invariant form of the metric is [7]

ds2IR ¼ L2
IR

��dt2 þ d�2

�2
þ dx2 þ dy2

�2=z

�
: (2.1)

This spacetime admits the scaling symmetry ft; �g !
�ft; �g, ~x ! �1=z ~x. Therefore z is the dynamical critical
exponent. For simplicity we will not discuss here the more
general class of metrics describing hyperscaling violation
[8,9], although our considerations apply to those space-
times also. Holographic IR scaling spacetimes typically
arise over a finite range of parameter space and therefore
describe critical phases.

In a scaling geometry of the form (2.1), all the operators
O in the low energy theory have an energy scaling dimen-
sion �. This dimension determines the spectral weight
(imaginary part of the retarded Green’s function) in the
regime ! � T � � to be

lim
!!0

1

!
ImGR

OOð!; TÞ � T2��2�2=z: (2.2)

Here the chemical potential� has been used to indicate the
UV scale. Physics well below that scale is captured by the
low energy spacetime (2.1) and is amenable to dimensional

analysis. We also used the fact that the spectral weight is
odd in frequency for bosonic operators. In general, the
above spectral weight is evaluated at zero momentum,
k ¼ 0. A slight generalization is possible in the case of
z ¼ 1. In this case, space does not scale and so the
momentum k is dimensionless and can be nonzero. The
scaling dimension becomes momentum dependent: �ðkÞ.
According to the basic holographic dictionary [10,11],

each operatorO is dual to a field� in the IR spacetime. For
simplicity, to start with, consider the case in which � is a
scalar field with massm that is not coupled to other fields at
a linearized level. By solving the bulk wave equation in the
geometry (2.1) and reading off the scaling behavior from
the solution as � ! 0, one immediately finds

� ¼ 2þ z

2z
þ � � 2þ z

2z
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2
IRm

2 þ ð2þ zÞ2
4z2

s
: (2.3)

The parameter � introduced here will appear repeatedly
below. In the case of z ¼ 1, the mass m2 can be momen-
tum dependent. In this expression we see that if the mass
squared satisfies the generalized Breitenlohner-Freedman
bound

L2
IRm

2 >�ð2þ zÞ2
4z2

; (2.4)

then the scaling dimension � is real.
The quantity L2

IRm
2 can be tuned by varying UV

parameters. In particular, we can imagine tuning these
parameters such that the mass squared drops below the
bound (2.4), and the scaling dimension becomes complex.
It is well understood by now that this triggers an interesting
quantum phase transition in which the operator O con-
denses once the mass squared of � becomes too negative.
We will return to the nature of the transition very shortly,
but first we notice that precisely at the critical point,
where the square root in (2.3) vanishes and � ¼ 0, then
from (2.2) and (2.3) we have

eV
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Bandwidth

eV
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Bandwidth

FIG. 1 (color online). Theorist’s schematic view of the optical conductivity in bad metals at lower temperatures (left) and higher
temperatures (right). As the temperature is raised, spectral weight is shifted from the Drude peak into the broad tail and to interband
energy scales. The linear in temperature dc resistivity does not notice the melting of the Drude peak.
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lim
!!0

1

!
ImGR

OOð!Þ � 1

T
: (2.5)

This expression, which has been previously emphasized in
Refs. [12,13], will be at the heart of the linear resistivity
above a quantum critical point that we will discuss in the
following section. Previous interest in this expression is
due to the fact that it resembles the spectral weight of the
bosonic mode underlying the marginal Fermi liquid phe-
nomenology of the cuprates [14]. It is not quite the same,
however, because in general (2.5) only holds at k ¼ 0.
Even in the case of z ¼ 1, because the dimension � is k
dependent—this is why these systems were termed
semilocally critical in Ref. [15], rather than fully locally
critical—the full spectral density will have a nontrivial k
dependence, and (2.5) will only hold for one value of k at a
time. The absence of a k dependence is crucial for the
marginal Fermi liquid, as the mode is coupled to a Fermi
surface, which has spectral weight at a nonzero k ¼ kF that
is set by UV dynamics. In contrast, our framework will
operate entirely at the level of currents, which control the
holographic charge dynamics at leading classical order
in the bulk, and will not involve explicit discussion of
Fermi surfaces.

The association of complex IR scaling dimensions to
instabilities was first made in the context of holographic
superconductors [16–18]. In cases where the operator O
carries a charge, the instability can be understood as a
cousin of the superradiant instabilities of charged black
holes, driven by pair production of quanta near the horizon
and leading to a discharging of the black hole [6]. It was
later realized that the quantum phase transition mediating
this instability was of Berezinskii-Kosterlitz-Thouless
(BKT) type. For instance, when the mass squared is just
below the bound (2.4), the temperature below which the
instability occurs scales like

Tc ��e��=
ffiffiffiffiffiffiffi
��2

p
: (2.6)

Similar exponential hierarchies control quantities such as
the condensate just below the critical mass squared. Such
zero temperature BKT transitions were first discussed in
Ref. [19]. Unlike the conventional BKT transition, they can
occur in any dimension and are not tied to an interpretation
of vortex unbinding, but rather describe the merger of a UV
and IR fixed point. These transitions were subsequently
noted to be rather generic in holographic settings [20,21]
and to admit a ‘‘semiholographic’’ description [12,22], in
which the only role of holography is to provide a critical IR
sector in which the transition occurs [23]. Our discussion in
the following section will be essentially semiholographic
in nature, being independent of most details of the UV
region of the bulk geometry. In Sec. VIA of the discussion
section we will take a further step back from holography
and comment on the validity of the result we have just
described for general BKT transitions.

There are two key points we would like the reader to
take from the above. Firstly, that given a ‘‘critical phase’’
with an IR scaling symmetry described by the metric (2.1)
one can induce a quantum phase transition by tuning the
dimension of an operator to become complex. Secondly, at
the corresponding quantum critical point, the spectral den-
sity of this operator has the temperature dependence (2.5).
This last statement holds at k ¼ 0 for finite z, and at some
specific k? when z ¼ 1.

III. MECHANISM OF LINEAR RESISTIVITY

The dc conductivity is given by

� ¼ lim
!!0

1

!
ImGR

JxJxð!; TÞ: (3.1)

At a nonzero charge density hJti and if momentum is
conserved, this quantity is problematic because, in addition
to the contribution (3.1), there is a delta function in the
dissipative conductivity at ! ¼ 0. In order to relax
momentum over experimental time scales, the charge car-
riers must either be parametrically diluted or must interact
with parametrically heavier degrees of freedom [24]. The
result is the broadening of the delta function into a Drude
peak. The contribution of the Drude peak to the dc con-
ductivity is intimately connected to the mechanism by
which momentum is relaxed. For instance, umklapp scat-
tering in a Fermi liquid gives rise to the celebrated T2

dependence of the resistivity. Instead, we would like the dc
conductivity to be dominated by the universal quantum
critical dynamics underlying the spectral weight (2.5). This
can happen if the Drude peak contribution is swamped by
the zero frequency limit of an extended tail that arises from
scattering off critical modes. As we discussed in Sec. I
above, this may be the case in bad metallic regimes.
It is sometimes asserted that the presence of a Drude

peak is synonymous with a quasiparticle description of
transport. This is not quite correct. The essential require-
ment for a Drude peak is a hierarchy of time scales,
whereby the momentum relaxation time scale is much
longer than any other time scale in the system. This is
particularly clear in hydrodynamic or memory matrix
approaches, e.g., Refs. [24,25]. In the presence of such a
hierarchy, strongly correlated systems without a quasipar-
ticle description will still exhibit a Drude peak. Conversely,
the absence of a Drude peak simply requires that momen-
tum is being dumped by the charge carriers at a rate
comparable to all other interactions. In such circumstances,
the spectral weight from the delta function is transferred
into the critical tail or indeed to interband energy scales.
Strong interactions are presumably important here to main-
tain a metallic character and avoid localization [2]. In the
concrete model we consider in the following section, we
assume that such a process is occurring in our system,
without disrupting the momentum-conserving interactions
that we consider, so that in effect we can ignore the delta
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function contribution to the conductivity. More generally,
we can imagine that momentum-relaxing processes are
already part of the critical system that is undergoing the
quantum critical BKT transition.

If Jx itself were the operator undergoing the BKT tran-
sition, then combining (2.5) and (3.1) would directly give a
linear in temperature resistivity at the critical point. Such a
phase transition would correspond to the spontaneous gen-
eration of a uniform current and presumably requires
spontaneous symmetry breaking of the global Uð1Þ sym-
metry. We are not aware of holographic, or other, models
where this occurs. However, it is easy for the IR critical
behavior (2.5) to get communicated to the current operator
via operators that are irrelevant from the IR quantum
critical point of view.

The IR scaling geometry (2.1) is generically deformed
by irrelevant operators that drive a renormalization group
flow up towards the finite density UV fixed point or cutoff.
In the IR scaling regime, before these irrelevant operators
kick in, we can imagine diagonalizing the equations of
motion for a generic perturbation of the background to
obtain decoupled gauge-invariant fields �I. Near the
boundary (� ! 0) of the IR geometry, these satisfy

�Ið�Þ � cIð�1þ2=z��I þ ��IGR
I ð!; TÞÞ: (3.2)

Here GR
I ð!; TÞ is the IR Green’s function, the cI are con-

stants, and �I is the IR dimension of the operator. We have
allowed a temperature T � � that only affects the IR
spacetime. One of these dimensions �I is assumed to
undergo a BKT transition of the form described in the
previous section.

Away from the IR geometry, the irrelevant operators
will typically couple these perturbations. However, in the
regime of interest !, T � �, this coupling does not intro-
duce any additional nonanalytic temperature or frequency
dependence. In the Appendix we show that a generaliza-
tion of the usual matching procedure of e.g., Ref. [26]
implies that to leading order at low frequencies and
temperatures1

ImGR
JxJxð!; TÞ ¼ X

I

dI ImGR
I ð!;TÞ: (3.3)

Here the real coefficients dI will generically be nonzero if
the irrelevant operators mix the IR mode�I with the gauge
field Ax. This is by no means automatic; the model of the
following sections will achieve the required mixing by
combining several interesting ingredients. In more familiar
condensed matter language, we can think of the direct
coupling in (3.3) between the current and a fluctuating
order parameter as a cousin of the Aslamazov-Larkin

process [27], in this case mediated by irrelevant operators.
The key fact is that we couple the fluctuating field directly
to the current, not going via e.g., a fermionic self-energy. It
is now immediate that if one of these IR operators under-
goes a BKT transition, then the spectral weight (2.5),
plugged into the matching formula (3.3) leads to a linear
in temperature resistivity at the critical point

r ¼ 1

�
� T: (3.4)

Note that, according to (2.2) and (2.3), the contribution
from a general IR operator OI to the conductivity is

� ¼ T�1þ2�I : (3.5)

Recall that � was defined in (2.3). Assuming we are in a
stable phase, then we see that the contribution of all the
other operators with �I > 0 are subleading in the sum (3.3)
compared to the critical operator with � ¼ 0. The above
discussion is depicted in Fig. 2 below.
While (3.5) allows the critical operator to dominate

at the critical point, away from the critical point, on the
disordered side, it implies that the exponent of the resis-
tivity will be 1� 2� < 1. Here � is the exponent of the
critical operator away from the critical point. This is in
contrast to experiments in all the unconventional materials
of interest, which show that when detuned from criticality,
the exponent of the resistivity increases towards the Fermi
liquid T2 behavior [1]. To capture this behavior we would

r ~ T

Quantum 
Critical Point

v2
Critical phase

T

FIG. 2 (color online). Schematic phase diagram. The BKT
quantum phase transition occurs at the boundary of a quantum
critical phase when the scaling dimension of an operator
becomes complex, signaling a condensation instability. If the
unstable operator is coupled to the current via irrelevant opera-
tors, then above the critical point the quantum critical contribu-
tion to the resistivity is linear in temperature. Close to the critical
point, the mode becoming unstable has a strong effect on the dc
and optical conductivities.

1To be precise, as explained in the Appendix, Eq. (3.3) holds
when the �I’s are real, that is, on the stable side of the quantum
critical point. When some of the �I’s are imaginary, the general
expression has a complicated logarithmic dependence on
T and !.
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need to increase the scope of our model. The simplest way
to do this would be to combine the critical tail contribution
we are discussing with a more conventional Fermi liquid
Drude peak contribution. It may be that by coupling the
critical operator to the Fermi liquid, along the marginal
Fermi liquid lines of [12,13] or otherwise, one can remove
the T2 contribution to the resistivity in the critical region
of the phase diagram. For instance, very schematically, a
form like

�� �T�2 þ T�1þ2� (3.6)

would start to look closer to the data.
Complications with the Drude peak are removed if

one looks at the optical conductivity. The scaling argu-
ments above now imply that the dissipative conductivity
scales like

��!�1þ2�: (3.7)

This gives the marginal Fermi liquid form

�� 1

!
; (3.8)

at the critical point. This may be compatible with obser-
vations in e.g., YBCO [14] and LSCO [28]. We discuss the
optical conductivity in more detail below. It would be
interesting to measure in detail the doping dependence of
the power law tail of the optical conductivity in these
materials, to assess the plausibility of a dependence like
(3.7) close to the critical point. As we noted above, the
expressions (3.5) and (3.7) are strictly applicable only on
the � > 0 side of the quantum phase transition. It is a
feature of these models that the dc and optical conductiv-
ities have asymmetric behavior on opposite sides of the
quantum critical point.

There may seem to be a tension in the fact that Jx

does not acquire a vacuum expectation value and yet its
correlator couples at the lowest frequencies to the unstable
mode according to (3.3). We will verify explicitly in our
concrete model below that these two statements are
compatible.

The mechanism of linear in temperature resistivity we
have described is universal in the sense that it only depends
on the onset of a holographic BKT quantum phase tran-
sition at the boundary of a quantum critical phase, com-
bined with the presence of irrelevant operators that couple
the IR critical operator to the current. The mechanism is
independent of the details of the theory undergoing the
transition and also of the UV completion of the critical
theory. Beyond the tuning to the quantum critical point,
no additional specification of dimensions of operators or
dynamical critical exponents is necessary. In the remainder
of this paper we describe a specific holographic realization
of the scenario that we have just outlined.

IV. LATTICES AND FINITE WAVE VECTOR
INSTABILITIES

A concrete holographic model realizing the mechanism
outlined above can be achieved by combining three inter-
esting ingredients that have been the focus of recent
discussion:
(i) vectorial instabilities occurring at finite wave vector

k? > 0 [29–31];
(ii) a (semi)locally quantum critical sector in which all

momenta are critical [15,32,33];
(iii) a lattice that is irrelevant in the IR scaling

regime [24,34,35].
The essential idea is that the irrelevant coupling to the

latticewill communicate the finitewavevector instability to
the k ¼ 0 electrical current. The instability at k? can have
critical scaling because of the local quantum criticality.
The most important effect of a lattice is to broaden the

delta function in the conductivity [24] into a Drude peak.
Impurities will also achieve this effect [36]. Nonetheless,
many of the interesting materials are believed to be very
clean, and indeed, the Fermi liquid T2 resistivity observed
over large ranges of temperatures in these materials, away
from the critical regions, presumably originates from
umklapp scattering off the lattice rather than impurities
plus interactions [37]. As we have stressed repeatedly,
however, in this work we are not interested in the Drude
peak contribution to the conductivity. The role of the lattice
for us will be to mix modes with different wave vectors.
We will consider the following 3þ 1-dimensional bulk

model [30]:

L ¼ 1

2
R � 1� 1

2
� d’ ^ d’� Vð’Þ � 1

� 1

2
�ð’ÞF ^ �F� 1

2
#ð’ÞF ^ F; (4.1)

where F ¼ dA. This Lagrangian describes Einstein-
Maxwell theory coupled to a pseudoscalar field with both
dilatonic and axionic couplings to the field strength. The
corresponding equations of motion are given by

R�� ¼ @�’@�’þ g��V � �

�
1

4
g��F��F

�� � F��F�
�

�
;

dð� � Fþ #FÞ ¼ 0;

d � d’þ V0 � 1þ 1

2
�0F ^ �Fþ 1

2
#0F ^ F ¼ 0: (4.2)

Wewill assume that the three functions V, � and # have the
following expansions:

V ¼ �6þ 1

2
m2

s’
2 þ � � � ;

� ¼ 1� n

12
’2 þ � � � ;

# ¼ c1

2
ffiffiffi
3

p ’þ � � � :

(4.3)
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It is sufficient to know the action for the pseudoscalar to
quadratic order, as it will only appear as a perturbation of
the background. In (4.3) we have furthermore set the
asymptotic AdS4 radius to L2 ¼ 1=2. In the Lagrangian
(4.1) we already set both the Newton and Maxwell con-
stants to unity. All of these quantities can be scaled out of
the equations of motion in this model.

The key feature of the theory (4.1), to be described
immediately below, is that it can develop vectorial insta-
bilities, which involve the electric current. Closely related
to this fact is that the instabilities of interest occur at
nonzero wave vector k?, avoiding the spontaneous genera-
tion of a homogeneous current, as we would expect. By
subsequently introducing a lattice, that becomes irrelevant
in the IR and does not disrupt the critical phase, we will
communicate the effects of this instability to the spectral
weight of the current operator, leading to strong tempera-
ture and frequency dependence in the conductivity.

A. IR spectrum of excitations and instability

The equations of motion (4.2) admit the following
AdS2 � R2 black hole solution:

ds24 ¼ �fdt2 þ 1

12

�
dr2

f
þ dx2 þ dy2

�
;

A ¼ ðr� rþÞdt; ’ ¼ 0:
(4.4)

Here the emblackening factor

f ¼ r2 � r2þ: (4.5)

The horizon of the black hole (4.4) is at r ¼ rþ and the

temperature is T ¼ ffiffiffi
3

p
rþ=�. The boundary of AdS2 is at

r ! 1. This will serve as our near horizon scaling geome-
try, as per our discussion in Sec. II above, which we have
further placed at a finite temperature. That the effects of the
temperature are restricted to the IR scaling geometry
implies that T � �, the UV scale. The scaling regime
described by AdS2 � R2 has dynamical critical exponent
z ¼ 1 and an associated ground state entropy density.
This ground state entropy has tainted the reputation of
AdS2 � R2 as a ubiquitous tool in the applied holography
effort. (Semi)local quantum criticality with z ¼ 1 is in
fact compatible with a vanishing ground state entropy
density if hyperscaling is violated [38]. Holographic scal-
ing geometries with z ¼ 1 are the only currently known
holographic duals (away from the probe limit) that share at
leading bulk classical order the basic property of Fermi
liquids of having spectral weight at low energies but finite
momentum. It seems conceivable that AdS2 � R2 may
have the last laugh.

As usual, perturbations about the background can be
decomposed into transverse and longitudinal sectors that
decouple from each other. The finite wave vector instability
occurs in the transverse channel. We can write the trans-
verse perturbations around the exact solution (4.4) as

	gty ¼ htyðt; rÞ sinðkxÞ; 	gxy ¼ hxyðt; rÞ cosðkxÞ;
	Ay ¼ aðt; rÞ sinðkxÞ; 	’ ¼ wðt; rÞ cosðkxÞ: (4.6)

The equations of motion (4.2) then yield the system of
linear coupled equations

�k@thxyþk2hty�fð2@raþ@2rhtyÞ¼0;

2@taþ12kf@rhxyþ@t@rhty¼0;

�f�1@2t hxyþ12@rðf@rhxyÞþkf�1@thty¼0;

�f�1@2t aþ12@rðf@raÞ�12k2aþc1kwþ12@rhty¼0;

�f�1@2t wþ12@rðf@rwÞ�ð12k2þm2
sþnÞwþ12c1ka¼0:

(4.7)

Introducing the new field �xy through

@t�xy ¼ f@rhxy; (4.8)

the system of equations (4.6) leads to the linear system of
equations

ðh2 �M2Þv ¼ 0; (4.9)

with v ¼ ð�xy; a; wÞ and the mass matrix

M2 ¼
12k2 2k 0

144k 24þ 12k2 �c1k

0 �12c1k 12k2 þm2
s þ n

0
BB@

1
CCA: (4.10)

Note that the Maxwell field fluctuation decouples from the
remainder at zero wave number, k ¼ 0. The Laplacian
appearing in Eq. (4.9) is with respect to the two-
dimensional metric

ds22 ¼ �fdt2 þ dr2

12f
: (4.11)

The linearly coupled system of equations (4.9) can be
diagonalized to yield three independent modes

ðh2 ��2
i Þgi ¼ 0

) @2rgi þ f0

f
@rgi �

�
1

12f2
@2t þ 1

12f
�2

i

�
gi ¼ 0; (4.12)

with �2
i being the three eigenvalues of the mass matrix

(4.10). If we go to frequency space by writing giðt; rÞ ¼
e�{!tuiðrÞ, the solution with infalling boundary conditions
at the horizon [39,40] is then

uiðrÞ ¼
�
2

rþ

�
�i

�ðaiÞ�ð1þ �iÞfðrÞ�{ !
4
ffiffi
3

p
rþr�ai

� 2F1

�
ai
2
;
ai þ 1

2
; 1� �i;

r2þ
r2

�
� ð�i $ ��iÞ;

(4.13)

where ai ¼ 1
2 � { !

2
ffiffi
3

p
rþ
� �i and �i ¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1

3�
2
i

q
. By

expanding the above solution near the boundary of the
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AdS2, i.e., as r ! 1, we can read off the AdS2 retarded
Green’s functions in the usual way (e.g., Ref. [26]) to
obtain2

GR
i ð!; TÞ ¼ �

�
�

2
ffiffiffi
3

p T

�
2�i

�ð1� �iÞ�
�
1
2 � { !

2�T þ �i

�
�ð1þ �iÞ�

�
1
2 � { !

2�T � �i

� :
(4.14)

These have the expected form that is determined by the
SLð2;RÞ symmetry of AdS2. Again, see for instance
Ref. [26]. These are the IR Green’s functions that will
appear in the matching formula (3.3). The perturbation
includes the transverse current mode 	AyðxÞ, at nonzero
momentum k. Below we will couple this mode to the
homogeneous current using a lattice.

For small ! we have

GR
i ð!Þ¼�

�
�

2
ffiffiffi
3

p T

�
2�i�ð1��iÞ�ð12þ�iÞ

�ð1þ�iÞ�ð12��iÞ

þ {!
1

2

�
�

2
ffiffiffi
3

p
�
2�i

T2�i�1
�ð12þ�iÞ�ð1��iÞ
�ð12��iÞ�ð1þ�iÞ

tan��i:

(4.15)

If �i is real, then taking the imaginary part we recover the
scaling with temperature that we anticipated in (2.2) above,
using the expression (2.3) for � in terms of �. In general,
the eigenvalues of the matrix (4.10) are slightly compli-
cated functions of the wave number k, but are easily found
numerically.

To illustrate the features of the spectrum of our theory,
consider the special case where m2

s þ n ¼ 0. (We will in
fact consider a different case for the numerics below.) In
that case we have

�1 ¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4k2

p
;

�2 ¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5þ 4k2 �

ffiffiffiffiffiffi
12

p
3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12þ ð24þ c21Þk2

qs
;

�3 ¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5þ 4k2 þ

ffiffiffiffiffiffi
12

p
3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12þ ð24þ c21Þk2

qs
:

(4.16)

From the expressions above we can see that �2
2 has two

minima at

k�min ¼ � 1

2
ffiffiffiffiffiffi
12

p c1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
48þ c21

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
24þ c21

q ; (4.17)

at which

�2min ¼ 1

4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12� c21

3
� 192

24þ c21

s
: (4.18)

For c1 > 2
ffiffiffi
6

p
we see that there is a range of k for which �2

is imaginary. These are the finite wave number instabilities
that we shall use. For our purposes, it does not matter
whether or not the range of unstable momenta extends
down to k ¼ 0. What is important is that there are finite
wave number instabilities involving the Maxwell field 	Ay.

Even when the system is stable, when 0< c1 < 2
ffiffiffi
6

p
, we

see that, as opposed to the pure Einstein-Maxwell case, the
dominant mode will have �2min < 1=2. This renders the
finite wave number operators relevant in the IR. A lattice of
such operators would lead to a strong backreaction on the
IR geometry [24]. In the following subsection we will
instead introduce a lattice for the charge density Jt, that
will be seen to be irrelevant in the IR.
Within the IR geometry, neither c1 nor the unstable

range of k is tunable. The wave number k is dimensionless
in the IR because of the local criticality. However, once the
AdS2 � R2 geometry is realized as the IR of a full asymp-
totically AdS4 spacetime, then we shall see that k must

appear in the UV-dimensionless combination k=
ffiffiffiffiffi
Jt

p
, with

Jt being the total charge density in the system. By varying
the charge density, which can be thought of as a proxy for
varying the doping of an experimental system, we effec-
tively vary the momentum that appears in the scaling IR
Green’s functions. In the following subsection we shall
introduce a lattice wave number kL. By keeping the lattice
fixed and varying the charge density Jt, we will induce a
BKT quantum phase transition in modes that couple via
scattering off the lattice to the homogeneous current.
The scenario outlined in the previous paragraph, and to

be fleshed out below, does not quite give a realization of the
phase diagram of Fig. 2: the system is either stable or
unstable over some range of momentum and this fact

cannot be tuned. What we will vary by varying k=
ffiffiffiffiffi
Jt

p
is

whether the instability feeds through to the homogeneous
current, our observable of interest. To truly realize the
desired phase diagram of Fig. 2 we need to enlarge the
model to allow e.g., the parameter in the action c1 or
the radius of the IR AdS2 metric to be tunable from the
UV. We do not see an obstacle to doing this, but will
continue with our slightly simpler model in this paper.

B. Lattice

The previous subsection studied perturbations of a finite
temperature scaling solution to the theory (4.1). Following
[30] we exhibited an instability of this background, for c1
sufficiently large, over a range of momenta, kA < k < kB.
In this range the exponent �2ðkÞ in (4.16) is imaginary. At
the boundary of this range of momenta �2ðkA=BÞ ¼ 0,
leading to the universal spectral function (2.5). In this

2The case �i ¼ 0, which will be of particular interest below,
should properly be treated independently, with the solution to the
wave equation expressed in terms of a Legendre function.
Correct result are obtained by continuation of the general results
to �i ! 0. In particular, the spectra density ImGR �!=T at
�i ¼ 0.
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section we will couple this critical mode to the k ¼ 0
current by introducing a lattice that is irrelevant in the
IR. We will furthermore explain how k can be tuned to
the critical values by varying the charge doping of the
system.

The simplest and perhaps most natural lattice to consider
is an ‘‘ionic lattice’’ in which the operator that couples to
the lattice is the charge density Jt. That is, we introduce a
spatial modulation to the chemical potential

Að0Þ
t ¼ �þ Vðx; yÞ: (4.19)

Holographically this is implemented by the usual UV

boundary condition limr!1At ¼ Að0Þ
t . In a purely electric

background, we can consistently set the pseudoscalar
’ ¼ 0 in the theory (4.1). Therefore the background gen-
erated by the lattice is found by solving the Einstein-
Maxwell equations (sans pseudoscalar) subject to the
UV boundary condition. We shall do this numerically in
a perturbative approximation in the following section.
However, the essential physical features can be determined
without an explicit background solution, as we proceed
to show.

The charge density at any nonzero wave vector is an
irrelevant perturbation about the AdS2 � R2 solution (4.4)
of Einstein-Maxwell theory [24,41]. Therefore, however
strong the UV potential in (4.19), the effects of the lattice
will always be small in the far IR. The IR Green’s functions
computed in the previous section are thus unchanged. The
role of the lattice is only to mix the unstable finite wave
number modes with the homogeneous current mode,
according to our discussion in Sec. III. To isolate this effect
from Drude momentum-relaxation physics, we take the
current to propagate in the y direction, but the lattice to
oscillate only in the x direction, with wave number kL:

Vðx; yÞ ¼ VðxÞ ¼ V

�
xþ 2�

kL

�
: (4.20)

According to (3.1), to obtain the conductivity we must
calculate ImGR

JyJyð!; TÞ at k ¼ 0. We are now taking the

current to run in the y rather than x direction. This Green’s
function is holographically related to perturbations 	Ay

in the bulk. Even without a lattice, in a nonzero charge
density spacetime, 	Ay couples to 	gty. With the lattice,

inspection of the equations reveals that in the full space-
time the four modes f	Ay; 	gty; 	gxy; 	’g are coupled at

wave numbers that are integer multiplies of kL. These can
be collected into three gauge-invariant modes for each
wave number

kn ¼ nkL; (4.21)

satisfying second-order equations of motion. In the IR, the
different wave number modes decouple and obey the equa-
tions that we have solved in the previous subsection. The
upshot is that the general matching formula (3.3) becomes

ImGR
JyJyð!; TÞ ¼ X

i;n

dinImGR
i ð!; T; knÞ: (4.22)

Here the IR Green’s functions GR
i are those obtained in

(4.14) above. Their wave number dependence is through
�iðknÞ in (4.16). The mixing is illustrated in Fig. 3 below.
To tune the system across the instability identified in the

previous subsection, insofar as the conductivity is con-
cerned (see the discussion at the end of Sec. VIA), we
now need to vary kL so that one of the kn becomes equal to
the wave numbers kA or kB bounding the unstable region.
Physically it is presumably not feasible to tune kL itself, as
the material is fixed. However, in the formulas for �iðknÞ in
(4.16), a dimensionful quantity has been suppressed and
lengths have been rescaled relative to natural lengths of the
UV geometry [6]. This is possible because of the emergent
z ¼ 1 scaling, under which lengths are dimensionless.
The invariant dimensionless quantity to consider, from a
UV perspective, is the ratio of momentum to the square

root of the charge density: k=
ffiffiffiffiffi
Jt

p
[24]. The charge density

Jt corresponds to the total electric charge available for
conduction. This can be tuned experimentally by doping
the system. Doping is indeed the mechanism of tuning in
the cuprate and pnictide unconventional superconductors.
Thus, with kF fixed, doping the system will allow the
dimensionless IR wave numbers kn to be tuned through
their critical values, communicating the BKT transition of
interest into a linear in temperature resistivity (3.4).
The optical conductivities in (3.7) and (3.8) now show

that a lattice combined with local criticality and a mode on
the verge of a finite wave number instability leads to a
significant low energy spectral weight, ranging to ��
!�1 at the critical point itself. A strong optical conductivity

going like ��!�2=3 was recently obtained in an impres-
sive numerical holographic lattice computation inRef. [34].
The mechanism underlying these effects are quite different.
The lattice scatterings captured in Ref. [34] relaxed the
current, resolving the Drude peak, while ours merely mix
modes of differing transverse momenta. The tail in the
optical conductivity observed in Ref. [34] is indeed a tail

Locally 
critical IR

UV deformed by 
lattice

FIG. 3 (color online). The IR is tuned to the boundary of an
instability condensing finite wave number vectorial modes. The
lattice is imposed in the UV but irrelevant in the IR. Away from
the locally critical IR region, the lattice mixes modes of different
wave number and couples the unstable mode to the homo-
geneous electric current.
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of the Drude peak itself, and would presumably not be
there if momentumwere conserved. Our tail is an additional
feature due to scattering off IR critical modes. Remarkably

the scaling��!�2=3 agrees with a reported measurement
in BSCYCO [42]. As we noted above, a ��!�1 scaling
has been suggested for e.g., YBCO [14] and LSCO [28],
although a sophisticated scaling analysis of the data
comparable to that in BSCYCO [42] remains to be per-
formed. To substantiate these similarities, a connection to
the underlying dynamics of the material is required. It is
certainly of interest to combine these two effects of the
lattice in a single model.

V. NUMERICS: LATTICE DEFORMED
REISSNER-NORDSTRÖM BLACK HOLE

The explicit realization of the mechanism for linear
in temperature resistivity, and strong optical conductivities,
of the previous section depended on various genericity
assumptions about modes coupling to other modes. In
this section we perform a numerical analysis with a lattice
that will confirm all the assumptions made. To simplify the
analysis, we work perturbatively (to second order) in the
strength of the lattice. This allows us to use a large system
of coupled ordinary differential equations rather than
partial differential equations. The perturbative treatment
is consistent and already contains all of the physics we
wish to illustrate.

A. The background lattice perturbation

In the absence of a lattice, the full asymptotically AdS4
background of the theory (4.1) dually describing a finite
charge density, zero temperature state of matter is the
extremal Reissner-Nordström black brane [6]

ds24 ¼ �fdt2 þ f�1dr2 þ r2ðdx2 þ dy2Þ;
A ¼

�
1� rþ

r

�
dt;

f ¼ 2r2 �
�
2r2þ þ 1

2

�
rþ
r
þ r2þ

2r2
:

(5.1)

We wish to deform by introducing a chemical potential or
‘‘ionic’’ lattice. We achieve this by setting the boundary
value of the Maxwell field to be [cf. (4.20) above]

lim
r!1At ¼ 1þ � cosðkLxÞ: (5.2)

In this subsection we set up the equations describing the
effect of this deformation on the static background (5.1) to
order �2.

Choosing to work in a radial gauge where gr� ¼ 0, we

can see that the components of the metric that will be
affected by the lattice deformation are fgtt; grr; gxx; gyyg.
The nontrivial functional dependence of the metric com-
ponents will be on the radial coordinate r and the spatial

coordinate x. There is a residual gauge symmetry gener-
ated by the vector 
 ¼ 
r@r þ 
x@x with rr
xþrx
r¼0.
These perturbations of the background remain within
Einstein-Maxwell theory (that is, the pseudoscalar is not
sourced). As shown in Ref. [24], the ! ¼ 0 and finite k
perturbations of the near horizon AdS2 � R2 geometry in
Einstein-Maxwell theory are all irrelevant. This fact
strongly suggests that the AdS2 � R2 IR limit is not modi-
fied by the inclusion of a lattice. The magnitude of the
effects of the lattice are tunable at the boundary and
become small as r ! rþ in the interior. We therefore
conclude that as far as the background is concerned,
for small parameter � we can consistently treat the back-
reaction of the metric and gauge field perturbatively at
all radii.
Expanding our field components in � we can write

At ¼ 1� rþ
r
þ �að1;1Þ cosðkLxÞ

þ �2ðað2;0Þ þ að2;2Þ cosð2kLxÞÞ þOð�3Þ;
gtt ¼ �f½1þ �Qð1;1Þ

tt cosðkLxÞ
þ �2ðQð2;0Þ

tt þQð2;2Þ
tt cosð2kLxÞÞ	 þOð�3Þ;

grr ¼ f�1½1þ �Qð1;1Þ
tt cosðkLxÞ

þ �2ðQð2;0Þ
tt þQð2;2Þ

tt cosð2kLxÞÞ	 þOð�3Þ;
gii ¼ r2½1þ �Qð1;1Þ

ii cosðkLxÞ
þ �2ðQð2;0Þ

ii þQð2;2Þ
ii cosð2kLxÞÞ	 þOð�3Þ;

(5.3)

where f is as in (5.1) and the a andQ functions depend on r
only. We have used the residual gauge freedom mentioned
above to fix the functions appearing in grr in terms of the
functions appearing in gtt. From the expansion above we
have, computing the surface gravity, that the temperature
is still given by3 4�T ¼ f0jr¼rþ . Plugging the ansatz

for the perturbations (5.3) in the equations of motion we
obtain
(i) At order �: second-order differential equations for

the perturbations fQð1;1Þ
ii ; að1;1Þg and an algebraic

equation for Qð1;1Þ
tt .

(ii) At order �2: second-order equations for

fQð2;0Þ
ii ; Qð2;2Þ

ii ; að2;0Þ; að2;2Þg, a first-order equation for

Qð2;0Þ
tt and an algebraic equation for Qð2;2Þ

tt .

We will solve these equations numerically below. At this
early point we note that for our purposes we will not need

to solve for the functionsQð2;2Þ
aa , where a ¼ t, x, y, and að2;2Þ

but it should be noted that they are nontrivial by consis-
tency of the equations of motion. In order to fully define
the boundary value problem we now need to impose
boundary conditions which will give us a regular near

3We will later impose that the metric perturbations fall off at
infinity, so that the normalization of time remains the same as for
the � ¼ 0 case.
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horizon geometry and with the right sources at the bound-
ary of AdS4.

The horizon is a singular point of the equations of
motion and regularity of the solution imposes the following
near horizon expansions at r ¼ rþ:

Qði;jÞ
aa ¼ Qði;jÞ

aað0Þ þQði;jÞ
aað1Þðr� rþÞ þ � � � ; a ¼ t; x; y;

aði;jÞ ¼ aði;jÞð0Þ ðr� rþÞ þ aði;jÞð1Þ ðr� rþÞ2 þ � � � : (5.4)

Plugging the near horizon expansion (5.4) into the equa-

tions of motion, we discover that the constants aði;jÞð0Þ , Q
ð2;0Þ
ttð0Þ

and Qði;jÞ
iið0Þ are constants of integration as well as a combi-

nation of Qð1;1Þ
iið1Þ which we take to be the sum

sð1;1Þ � Qð1;1Þ
xxð1Þ þQð1;1Þ

yyð1Þ.
On the other hand, at infinity we have the following

schematic expansions:

aði;jÞ ¼ Aði;jÞ
ð0Þ þ Aði;jÞ

ð1Þ r
�1 þ � � � ;

Qð1;1Þ
xx ¼ Gð1;1Þ

xxð�1ÞrþGð1;1Þ
xxð0Þ þ � � � þGð1;1Þ

xxð3Þr
�3 þ � � � ;

Qð1;1Þ
yy ¼ Gð1;1Þ

xxð�1ÞrþGð1;1Þ
yyð0Þ þ � � � þ 5Gð1;1Þ

xxð3Þr
�3 þ � � � ;

Qð2;0Þ
ii ¼ Gð2;0Þ

iið0Þ þ � � � þGð2;0Þ
iið3Þr

�3 þ � � � ;
Qð2;0Þ

tt ¼ Gð2;0Þ
ttð0Þ þ � � � : (5.5)

In order to source the gauge field corresponding to the ionic

lattice deformation (5.2) we need to set Aði;jÞ
ð0Þ ¼ 	i1	j1�,

which uniquely fixes the sources of the gauge field. The
ionic lattice is the only deformation of the Reissner-
Nordström black holewewould like to turn on and therefore

we should also set Gð1;1Þ
xxð�1Þ ¼ Gð1;1Þ

iið0Þ ¼ Gð2;0Þ
iið0Þ ¼ Gð2;0Þ

ttð0Þ ¼ 0.

To conclude this section we note that we will have
a total of six second-order differential equations4 in

fQð1;1Þ
ii ; Qð2;0Þ

ii ; að1;1Þ; að2;0Þg and one first-order differential

equation in Qð2;0Þ
tt . We have eight constants of integration

from the horizon fQð1;1Þ
iið0Þ ; s

ð1;1Þ; Qð2;0Þ
aað0Þ; a

ð1;1Þ
ð0Þ ; að2;0Þð0Þ g and

five constants of integration from the asymptotic data

fGð1;1Þ
xxð3Þ; G

ð2;0Þ
iið3Þ ; A

ð1;1Þ
ð1Þ ; Að2;0Þ

ð1Þ g. This combination of differen-

tial order and number of constants of integration gives a
unique solution for any given temperature. We will
describe the numerical shooting method we are using in
Sec. VC.

B. The �2 corrected current-current correlator

Given the background whose construction we have just
described, we now wish to compute the retarded Green’s

functionGR
JyJyð!; TÞ at k ¼ 0 in the deformed background.

As will immediately become clear, for a source for Jy at
k ¼ 0 to induce a response also in Jy at k ¼ 0 via scatter-
ing off a finite wave number mode, it is necessary to go to
second order in the lattice strength, which is why we have
also considered the background to order �2. To compute
the Green’s function, we consider the following time
dependent perturbation:

	Ay¼e�{!t½að0;0Þy þ�að1;1Þy cosðkLxÞ
þ�2ðað2;0Þy það2;2Þy cosð2kLxÞÞ	þOð�3Þ;

	’¼e�{!t½�’ð1;1Þ sinðkLxÞþ�2’ð2;2Þ sinð2kLxÞ	þOð�3Þ;
	gty¼e�{!tr2½gð0;0Þty þ�gð1;1Þty cosðkLxÞ

þ�2ðgð2;0Þty þgð2;2Þty cosð2kLyÞÞ	þOð�3Þ;
	gxy¼e�{!tr2½�gð1;1Þxy sinðkLxÞþ�2gð2;2Þxy sinð2kLxÞ	

þOð�3Þ; (5.6)

with all the functions�ði;jÞ depending on the radius r only.
The perturbation described by (5.6) is consistent and we
chose again to work in radial gauge. We will fix the
constants of integration in this gauge and then perform a
large gauge transformation that will bring the perturbation
into a form where it will be manifest that we are only
sourcing the k ¼ 0 component of the current Jy.

Plugging the perturbation (5.6) into the equations of
motion we obtain

(i) second-order equations for faði;jÞy ; ’ði;jÞ; gði;jÞxy g;
(ii) first-order equations for fgði;jÞty g.

Regular, infalling boundary conditions at the horizon gives
the near horizon expansion

’ði;jÞ ¼f� {!
4�T

h
’ði;jÞ

ð0Þ þ’ði;jÞ
ð1Þ ðr�rþÞþ���

i
;

aði;jÞy ¼f� {!
4�T

h
aði;jÞyð0Þþaði;jÞyð1Þðr�rþÞþ���

i
;

gði;jÞxy ¼f� {!
4�T

h
gði;jÞxyð0Þþgði;jÞxyð1Þðr�rþÞþ���

i
;

gði;jÞty ¼f� {!
4�Tðr�rþÞ

h
gði;jÞtyð0Þ þgði;jÞtyð1Þðr�rþÞþ���

i
:

(5.7)

Regularity is seen to imply that all the constants of

integration are fixed in terms of f’ði;jÞ
ð0Þ ; a

ði;jÞ
yð0Þ; g

ði;jÞ
xyð0Þg. In

particular, the gði;jÞtyð0Þ are not independent.
The general asymptotic form of the solutions as r ! 1

is found to be5

4As mentioned before, we do not need to solve for the
functions Qð2;2Þ

aa and að2;2Þ.

5We chose to have m2
s ¼ �4 in the action (4.1). Reinstating

the asymptotic AdS4 radius L, this corresponds to a mass
squared m2L2 ¼ �2.
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’ði;jÞ ¼ �ði;jÞ
ð1Þ
r

þ�ði;jÞ
ð2Þ
r2

þ � � � ;

gði;jÞxy ¼ Gði;jÞ
xyð0Þ þ � � � þGði;jÞ

xyð3Þ
r3

þ � � � ;

aði;jÞy ¼ Aði;jÞ
yð0Þ þ

Aði;jÞ
yð1Þ
r

þ � � � ;
gði;jÞty ¼ Gði;jÞ

tyð0Þ þ � � � :

(5.8)

For the bulk pseudoscalar ’, the absence of a source

requires that we impose �ði;jÞ
ð1Þ ¼ 0 for a � ¼ 2 operator

or �ði;jÞ
ð2Þ ¼ 0 for a � ¼ 1 operator. We wish to source only

the homogeneous mode of the Ay component of the

Maxwell field and furthermore at leading order in � only,

giving the boundary condition Aði;jÞ
yð0Þ ¼ 	i;0	j;0.

The situation is slightly more involved with the constants

Gði;jÞ
xyð0Þ andG

ði;jÞ
tyð0Þ. The first thoughtwould be that one needs to

set all these constants equal to zero since they represent non-
normalizable modes for the bulk fields. A simple counting,
however, reveals that this would overdefine the boundary

value problem.At the horizonwe saw that gði;jÞtyð0Þ was fixed by
regularity in terms of the other integration constants.

Consequently, at the boundary, the constants Gði;jÞ
tyð0Þ will be

uniquely fixed after specifying Gði;jÞ
xyð0Þ, and demanding regu-

larity at the horizon, and will in general be nonzero.

We will instead choose the constants Gði;jÞ
tyð0Þ and Gði;jÞ

xyð0Þ
such that after a large coordinate transformation we
will only have a source for the current. More specifically
we impose

jkGði;jÞ
tyð0Þ � {!Gði;jÞ

xyð0Þ ¼ 0: (5.9)

We then perform the coordinate transformation

y ! yþ e�{!t
X
i;j

�ihði;jÞ cosðjkxÞ; (5.10)

where hði;jÞ are functions of r only. These functions are
required to satisfy the following:

(i) Near the AdS4 boundary they have the falloff

hði;jÞ 
 1

jk
Gði;jÞ

xyð0Þ þOðr�5 lnrÞ: (5.11)

(ii) Near the horizon r ¼ rþ they have the infalling
behavior

hði;jÞ ¼ f� {!
4�Tðr� rþÞ½hði;jÞð0Þ þ hði;jÞð1Þ ðr� rþÞ þ � � �	:

(5.12)

The falloff condition in the UV:
(i) Removes the non-normalizable terms from the gty

and gxy components of the metric provided we

satisfy (5.9);

(ii) It does not change the values of the vacuum
expectation values for the various fields appearing
in our ansatz;

(iii) It does not introduce new deformations coming
from the gri components.

The quantity we are interested in calculating is the
optical conductivity (3.1). After taking into account the

source of the gauge field specified by Aði;jÞ
yð0Þ ¼ 	i;0	j;0,

the retarded Green’s function is given by (up to a constant
of proportionality)

GR
JyJyð!; k ¼ 0Þ ¼ X

i¼0

�iAði;0Þ
yð1Þ : (5.13)

As we will explain in more detail in Sec. VC, for our
purposes it will be sufficient to just consider the second-
order correction in �:

GR
JyJyð!; k ¼ 0Þ ¼ Að0;0Þ

yð1Þ þ �2Að2;0Þ
yð1Þ : (5.14)

The first term Að0;0Þ
yð1Þ is the, by now well understood, current-

current correlator evaluated in the extremal electric
Reissner-Nordström background in Einstein-Maxwell
theory [40].

Our aim is therefore to solve for the function að2;0Þy and

more specificallywewould like to extract the constantAð2;0Þ
yð1Þ

from it. After staring at the equations of motion one will
notice that in order to achieve that we will not need to solve

for the functions að2;2Þy , gð2;2Þty , gð2;2Þxy and ’ð2;2Þ. The eight

functions we will be solving for are að0;0Þy , að1;1Þy , að2;0Þy ,

’ð1;1Þ, gð0;0Þty , gð1;1Þty , gð2;0Þty and gð1;1Þxy which satisfy five

second-order differential equations and three first-order
ones. In order to find a solution we have five constants

of integration from the horizon data fað0;0Þyð0Þ ; a
ð1;1Þ
yð0Þ ; a

ð2;0Þ
yð0Þ ;

’ð1;1Þ
ð0Þ ; gð1;1Þxyð0Þg and eight constants of integration from

the asymptotic boundary fAð0;0Þ
yð1Þ ; A

ð1;1Þ
yð1Þ ; A

ð2;0Þ
yð1Þ ; �

ð1;1Þ
ð1Þ ; Gð1;1Þ

xyð3Þ;
Gð0;0Þ

tyð0Þ; G
ð1;1Þ
tyð0Þ; G

ð2;0Þ
tyð0Þg. This counting reveals that we will

now have a unique solution for the perturbation once the
background and the source have been fixed, including the
frequency !.

C. Numerical results

Having set up the problem we would like to solve, we
now employ a numerical shooting method appropriate for
the case at hand. As we have outlined in Sec. VA, the first
step of the calculation is to correct the background up to
second order in �. To achieve this, we solve the equations
of motion perturbatively order by order in � which, as we
explained, boils down to solving a system of six second-
order and one first-order differential equations. The
background solution will be uniquely specified by a set

of thirteen constants c1 ¼ fQð1;1Þ
iið0Þ ; s

ð1;1Þ; Qð2;0Þ
aað0Þ; a

ð1;1Þ
ð0Þ ; að2;0Þð0Þ g

and c2 ¼ fGð1;1Þ
xxð3Þ; G

ð2;0Þ
iið3Þ ; A

ð1;1Þ
ð1Þ ; Að2;0Þ

ð1Þ g.
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In order to specify these constants, we numerically
integrate the equations of motion from a distance close
to the horizon r ¼ rþ þ � up to a finite radius in the bulk
r ¼ rm, using the near horizon expansion (5.4) as the initial
conditions at r ¼ rþ þ �. Following this procedure allows
us to express the functions and their derivatives at r ¼ rm
as a function of the constants of integration c1. We also
integrate numerically the equations from a large radius
r ¼ R down to the same point r ¼ rm using the asymptotic
expansion (5.5), this time expressing the functions and
their derivatives as a function of the constants of integra-
tion c2. In order to get a solution in the full bulk we need to
match the values of the functions and their derivatives we
have found at r ¼ rm by suitably adjusting the constants c1
and c2. A simple counting shows that this solution for the
constants c1 and c2 will be unique; i.e., the number of
equations we will have from matching the two solutions
will be thirteen.

Once we have specified the background we follow the
same procedure to solve for the perturbation we described
in Sec. VB. This time we will be using the near horizon
expansion (5.7) and the asymptotic expansion (5.8). After
matching the two solutions in the middle of the bulk, as we
did for the background solution, we will have uniquely
fixed the other thirteen constants of integration: the back-

ground constants fað0;0Þyð0Þ ; a
ð1;1Þ
yð0Þ ; a

ð2;0Þ
yð0Þ ; ’

ð1;1Þ
ð0Þ ; gð1;1Þxyð0Þg and the

fluctuation constants fAð0;0Þ
yð1Þ ; A

ð1;1Þ
yð1Þ ; A

ð2;0Þ
yð1Þ ; �

ð1;1Þ
ð1Þ ; Gð1;1Þ

xyð3Þ;
Gð0;0Þ

tyð0Þ; G
ð1;1Þ
tyð0Þ; G

ð2;0Þ
tyð0Þg. In total we will have to specify 26

constants of integration, 13 for the background and 13
for the perturbation. The constant we are ultimately inter-

ested in is Að2;0Þ
yð1Þ which will be precisely the �

2 correction of

the current-current two-point function, according to (5.14).
The �2 correction to the conductivity will then be given by

�ð2Þ ¼ Að2;0Þ
yð1Þ
{!

: (5.15)

From the spectral analysis of Sec. VIA and the matching
argument, we expect that if an IR relevant or unstable
operator mixes in the perturbation, we should see its
imprint as a strong contribution to the dc conductivity as
we lower the system’s temperature approaching extremal-
ity. To illustrate this we have fixed n ¼ 36 and c1 
 8:47
in the Lagrangian density (4.1); recall we already put
m2

s ¼ �4. This choice gives exactly one value of momen-
tum kc 
 1:27 for which the corresponding IR mode
saturates the AdS2 Breitenlohner-Freedman bound, and
no unstable modes.6 The explicit expressions for the spec-
trum around the AdS2 � R2 background solution is more
complicated than the case with n ¼ 4 that we chose for
illustrative purposes in Sec. VIA. In Fig. 4 we present the

dominant �ðkÞ for this specific case demonstrating that at
precisely kc we have a marginally stable mode with � ¼ 0.
This tuning to the boundary of instability is one way to
address the fact, discussed at the end of Sec. VIA, that the
model we are studying typically has an instability, with

the effect of dialing kL=
ffiffiffiffiffi
Jt

p
being to determine whether the

instability manifests itself in the conductivity or not.
Though we will quote values of kL in this section, as
measured in the IR theory which as z ¼ 1 and hence
dimensionless momenta, we should recall from Sec. VIA

that the invariant UV quantity is kL=
ffiffiffiffiffi
Jt

p
, that can be tuned

via doping. Ultimately one would like to extend the model
so that the system can be tuned through the instability.
Fixing a small value for ! (we take !=� ¼ 10�6) and

solving the equations of motion as we described above,
we have calculated the correction to the dc conductivity
due to lattice induced scatterings and we have plotted the
result against temperature in Fig. 5. As we have explained
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FIG. 4 (color online). Plot of the dominant exponent � as a
function of k for n ¼ 36,m2

s ¼ �4 and c1 
 8:47 illustrating the
existence of a mode with � ¼ 0 at kc 
 1:27, and no unstable
modes.
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FIG. 5 (color online). Plot of the logarithmic derivative of the
temperature dependence of the dc conductivity for n ¼ 36 and
c1 
 8:47. The top (red) curve has kL ¼ 1:5 and the bottom
(blue) curve has kL ¼ 1:27. These correspond to � ¼ 0 and
� 
 0:2, respectively. At low temperatures the expected scaling
�ð2Þ � T2��1 is recovered.

6We have checked that for these values of the coefficients,
there is also no instability localized away from the near horizon
region.
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in previous sections, the expectation is that at low
temperatures this should be dominated by a power law

�ð2Þ � T2��1. The behavior we observe for the two differ-
ent values of lattice momentumwe chose to study precisely
matches our expectations. In particular, the critical case
gives �� 1=T. We see that quite low temperatures are
necessary in this model to reach the true scaling regime.
These lower temperatures are costly to reach numerically.
Figure 5 confirms that the various genericity assumptions
we have made in the matching arguments are legitimate.
We see that in this particular realization of our scenario,
the scaling regime is reached at temperatures below
T � 10�3�.

We now turn to the correction to the optical conductivity.
For the same values of the constants n and c1 as before, we
have fixed the lattice momentum to be precisely the value
for which we have the marginally stable IR mode partic-
ipating in the perturbation. We have plotted the correction
of the optical conductivity as a function of the frequency!
in Fig. 6 for two different low values of temperature T. We
present these results in two plots. The first shows the
optical conductivity up to high frequencies. The features
one notices are an extended tail at low values of the
frequency! and a regime of negative values. The negative
regime implies that spectral weight is being transferred at
interband energy scales. We will see in the following para-
graph however that most of the spectral weight in the broad
tail at intermediate energy scales is being extracted from
the Drude peak. The second plot shows that the broad tail
exhibits a power law falloff, again in agreement with our
general expectations and matching arguments. If we fit the
power law, we do not quite find the expected �� 1=! for
this critical kL. This is because we are not at low enough
temperatures to have reached the true scaling regime, as we
saw in Fig. 5. We have checked that as the temperature
is lowered, the scaling tends towards the anticipated
�� 1=!. We can recall that the zeroth-order optical con-
ductivity (without a lattice), to which the results of Fig. 6
should be added, shows a featureless increase from zero at

low frequencies to a constant at frequencies above ! [40].
In fact, it is a general feature of known extremal holo-
graphic backgrounds that the optical conductivity vanishes
as a positive power of ! at low frequencies [43].
Additional dynamics, such as the mixing with a critical
mode we have implemented here, seems to be necessary to
obtain an extended quantum critical tail such as that
in Fig. 6. We once again emphasize that this tail is not a
Drude peak; there is still a delta function at ! ¼ 0, as we
now discuss.
Let us examine the spectral weight transfer more closely.

The conductivity sum rule implies that the integral of the
real part of the conductivity over the positive real axis
should not change upon introducing our ionic lattice.
Therefore, at each order in the � expansion we can expect
the correction to the conductivity to integrate to zero. This
integral includes the contribution from the Drude peak
delta function. The correction to the delta function can
be read off from the zero frequency limit of the real part
of the current correlator. We can write

Re�ð2Þ ¼ ��ReGð2Þ
JyJyð0Þ	ð!Þ þ ImGð2Þ

JyJyð!Þ
!

: (5.16)

The left-hand plot in Fig. 7 shows the real part of the
current correlator at zero frequency as a function of tem-
perature for two values of �. From this plot we see that
there is a delta function with negative weight in the cor-
rection to the conductivity. This in turn shows that there is
spectral weight transfer from the Drude peak to the broad
tail. The spectral weight transfer to the broad tail increases
with T in one case and decreases with T in another. The
right-hand plot in Fig. 7 shows the integrated spectral
weight

fð!Þ¼��

2
ReGð2Þð0Þþ

Z !

0þ
d!0 ImGð2Þð!0Þ

!0 ; (5.17)

plotted at the critical momentum for the two different
temperatures considered. The function asymptotes to
zero, confirming the sum rule and providing a nontrivial
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FIG. 6 (color online). The correction to the real part of the conductivity Reð�ð2ÞÞ for n ¼ 36, m2
s ¼ �4 and c1 
 8:47 at kL ¼ 1:27.

The red (lower) curve has T=� 
 0:01 and the blue (top) curve has T=� 
 0:006. The left plot shows the redistribution of spectral
weight at interband frequencies, while the right, log-log, plot shows the expected intermediate-low frequency scaling regime.
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check of our numerics. From the integrated spectral weight
we see that the weight lost from the Drude peak already
balances out the broad tail contribution, while the negative
region we noted before in Fig. 6 at higher frequencies is
then balanced out by higher energy processes, and so
seems not to be closely related to the critical power law
tail. Spectral weight redistribution from Drude peak to
broad tail is a key experimental feature in unconventional
metals, e.g., Refs. [3–5,44].

Spectral weight redistribution has recently been dis-
cussed in the context of fermionic quantum BKT transi-
tions [45,46]. There it has been suggested that the discrete
scale invariance associated with the complex scaling
dimensions in the unstable phase may be an underlying
principle of the spectral weight redistribution occurring at
Mott transitions.

In the remainder of this section we shall make some
comments about the case in which there is an actual
instability over some range of momenta. A first question
to address is whether spontaneous homogeneous currents
are generated via coupling to the lattice. According to the
analysis around the Reissner-Nordström black hole of
Donos and Gauntlett [30], the extremal near horizon ver-
sion of which we repeated in Sec. VIA, we will have
unstable modes at finite momenta. A perturbative analysis
in � reveals that these modes will be unstable around the
backgrounds we are considering here as well. It was shown
in Ref. [30] that a particular mode with wave number kc
will first become unstable as we lower the temperature.
Because of the presence of a lattice, we will now have the
mixing of all modes with wave number kc þ nkL, where kL
is the lattice wave number and n is integer. One of the fields
that will participate in the unstable perturbation will be the
gauge field. The question now is what would happen in
the case where kc ¼ mkL for m a positive integer. This is
the critical case we are most interested in. Is a spontaneous
homogeneous current generated? More generally, this
question can be asked whenever mkL lies within the range

of unstable momenta. We considered this case and explic-
itly constructed numerically the unstable mode at next to
leading order in �. Doing so revealed that the expectation
value for the homogeneous current is zero to within our
numerical accuracy. It seems that this result should be
provable from general principles.
We have also studied the behavior of the conductivity

close to the temperature where a striped phase transition
occurs, assuming that our lattice is precisely such that
kc ¼ mkL so that the unstable mode is directly communi-
cated to the current. We find that the dc conductivity

diverges asReð�ð2ÞÞ / ðT � Tð0Þ
c Þ�2, where Tð0Þ

c is specified
by the existence of a static mode around the � ¼ 0 back-
ground. The presence of a lattice will shift the critical

temperature: Tc ¼ Tð0Þ
c þ �2Tð2Þ

c þ � � � [47]. The full cor-
relator should diverge at Tc.

VI. DISCUSSION

In this discussion section we will reiterate the main
points of our paper and simultaneously contextualize our
results in terms of previous holographic and other theoreti-
cal work, highlighting potential experimental features.

A. Broader perspective on linear resistivity,
BKT and other models

In Sec. II we described quantum BKT transitions from
the standpoint of the near horizon geometry of an extremal
black brane. In particular, the scaling dimension of the
operator O took the form � ¼ ð2þ zÞ=ð2zÞ þ �, with �
the square root of a quantity that becomes negative beyond
the critical point. This type of formula is typical in holo-
graphic frameworks. The fact that 2� ¼ 1þ 2=z when
� ¼ 0 underlies the scaling of the spectral weight at the
critical point in (2.5): lim!!0ImGR

OOð!Þ=!� 1=T. In the

large N limit, in which the holographic description is
classical, this implies that the ‘‘double trace’’ operator
OO is marginal.
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FIG. 7 (color online). Spectral weight transfer. The plots have n ¼ 36, m2
s ¼ �4 and c1 
 8:47. Left, the zero frequency limit of the

real part of the Green’s function correction Gð2Þ
JyJy as a function of temperature. The bottom (red) curve has kL ¼ 1:5 and the top (blue)

curve has kL ¼ 1:27. The negative of this curve is the spectral weight extracted from the Drude peak. Right, the integrated spectral
weight defined in (5.17). The red curve has T=� 
 0:01 and the blue curve has T=� 
 0:006. Both are at the critical lattice spacing
kL ¼ 1:27. We see that the sum rule is satisfied after integrating up to a few times the UV scale �.
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A more general field theoretical description of quantum
BKT transitions [19] is as a merger and subsequent anni-
hilation of two fixed points of the renormalization group
flow. At the transition point, where the two fixed points
merge, one can expect in general that there should be a
marginal operator (that does not exponentiate—this state-
ment at the critical point is in addition to the marginal
operator that is presumably necessary to dial the dimen-
sions of operators). It seems likely therefore that OO will
be marginal in general. However, away from the large N
limit, or some other kind of generalized mean field descrip-
tion, the dimensions of operators do not add and therefore
we cannot draw any conclusions about the dimension ofO.
It follows that O will not in general have the dimension
� ¼ ð2þ zÞ=ð2zÞ at the critical point, ultimately not lead-
ing to a linear resistivity. A BKT transition in itself there-
fore does not appear to be sufficient. On the other hand, if
the operator that condenses does admit a mean field
description, then our mechanism for a linear resistivity
will automatically go through. Theories with holographic
duals are one set of concrete examples where this is the
case, even when the formula for the operator dimension is
more complicated than (2.3). Other examples were given in
Ref. [19]. Note that ‘‘mean field’’ here does not imply that
the transition is of mean field nature—it is notrather that
there exists a description in which the order parameter may
be treated as a classical variable.

Beyond BKT transitions, previously studied models
have used a conceptually similar approach of coupling
the electric current to degrees of freedom with a 1=T
spectral weight. For instance in Refs. [48,49] such degrees
of freedom resided on a density of impurities tuned to a
specific value of the impurity coupling for which the model
becomes solvable. The ‘‘Gaussianization’’ of the model at
their critical coupling is reminiscent of our observation
above that a mean field description of the unstable operator
at the BKT transition is necessary to obtain the required
temperature dependence of the spectral weight. The model
also shares the feature of our approach that the Drude
contribution to the conductivity is hoped to be subdomi-
nant relative to the quantum critical contribution.

A mean field limit was also tied to the emergence of a
linear in temperature resistivity in Kondo lattice models,
e.g., Refs. [32,50–52]. These models are not dissimilar to
those mentioned in the previous paragraph. A 1=T spectral
density of the localized spin excitations is fed into the self-
energy of the conduction fermions, leading to marginal
Fermi liquid phenomenology [14]. Holographic realiza-
tions of similar models are mentioned in Sec. VIC below;
see Ref. [52] for an extended comparison.

In short, the general strategy is to find a well-motivated
1=T spectral density and then transfer this temperature
dependence to the conductivity. The holographic BKT
transitions we have discussed provide a robust way to
this, using irrelevant operators rather than explicit fermions

to transfer the spectral weight, with the interesting behav-
ior occurring at the boundary between a critical phase and
an ordered phase.

B. Experimental signatures of the mechanism

Incorporating the effects of a Drude peak will presum-
ably be necessary to connect with key features of the phase
diagrams of unconventional materials, such as the cross-
over to Fermi liquid behavior away from the critical point.
However, it seems possible to distill at least three generic
ingredients of the scenario we have outlined that may
manifest themselves experimentally in one way or another.
Firstly one could look for evidence of BKT scaling in

quantities such as the critical temperature (2.6) or the
expectation value of the condensed operator. In general,
on the side of the critical point in the phase diagram where
an operator condenses, one expects quantities to be con-
trolled by a dynamically generated scale with an exponen-
tial dependence on the distance to the critical point [19].
A second generic feature is likely to be an asymmetry in

the optical and dc conductivities, as well as other quantities
that couple to the unstable mode, between the two sides of
the quantum critical point. On the side where an operator
condenses, at sufficiently low temperatures and frequen-
cies, one expects only logarithmic corrections to the 1=T
and 1=! scalings of the critical point itself. See the
Appendix. The other, disordered, side of the critical point
should be characterized by varying power law dependences
along the lines of Eqs. (3.6) and (3.7) above.
Thirdly, the nature of the transition, in which a scaling

dimension becomes complex as two critical points annihi-
late [19], requires the existence of a critical phase in the IR,
of which the BKT quantum critical point is a boundary.
This critical phase should manifest itself in scaling behav-
iors such as (3.7) persisting down to arbitrarily low tem-
peratures on the disordered side of the critical point. This
scaling behavior may or may not require disentangling
from other physics, such as superconductivity, present in
the phase diagram.

C. Context: Linear resistivity in holography

There exists a large body of interesting previous holo-
graphic work attempting to understand the origin of a
linear in temperature dc resistivity. These works can
broadly be classified into two classes, depending on the
fate of the translation-invariance delta function in the con-
ductivity. When the conductivity is due to probe branes
[53,54] or probe fermions [55,56], the degrees of freedom
of interest are taken to be a parametrically small part of a
bigger system. In this case the charge carriers can dump
their momentum elsewhere and it does not return on the
‘‘experimental’’ time scale. A second option, that avoids
diluting the carriers, is to explicitly break translation in-
variance via parametrically heavy degrees of freedom such
as impurities [36] or a lattice [24,34].
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For both classes of models, the dc conductivity typically
depends on parameters of the model: the dynamical critical
exponent z in Ref. [54] and the dimension of IR operators
in Refs. [24,36,55,56]. These models do not provide a
compelling motivation, at least without additional input,
for selecting the exponent that results in a linear resistivity.
An interesting example of how additional input can help is
Ref. [57], where the dimension of the impurity operator of
interest is protected by supersymmetry. It is furthermore
unclear if the probe limit is a reasonable approximation for
the real world systems of interest.

Our model has not addressed the fate of the delta func-
tion, but rather assumed that the corresponding Drude peak
is swamped by a quantum critical contribution to the dc
conductivity. We have suggested that this may be a rea-
sonable starting point to discuss some bad metallic phases
of matter. In contrast to the other models we find a linear in
temperature resistivity occurring robustly and precisely
where we would like it to: at a quantum critical point
mediating the onset of an instability. The result is universal
in the sense that it does not depend on the specific micro-
scopic realization of the BKT transition. It does require,
however, the existence of an irrelevant operator that can
communicate the instability to the current correlators. We
achieved such a coupling in Sec. IV by having a vectorial
instability at a finite wave number that was communicated
to the current via an irrelevant lattice.

D. Open questions and future directions

The essential feature of the holographic dynamics we
have discussed is the BKT quantum phase transition. The
realization of such a BKT quantum phase transition in e.g.,
some Hubbard-like lattice model as a function of doping
would of course be very exciting in bridging the gap
between extremal horizons and the chemistry of unconven-
tional materials.

Superconducting phases have been absent from our dis-
cussion thus far, and yet are a central feature of the most
interesting bad metals. It seems reasonable to hope for a
unified theory of bad metals and unconventional super-
conductivity. We can imagine two ways in which our
mechanism could interplay with a superconducting insta-
bility. The first, a variant on a fairly conventional view-
point, is simply that the superconducting instability could
be triggered by coupling to the operator that develops
the 1=T spectral weight at the critical point. A second
possibility is that the critical phase itself, out of which
the BKT transition emerges, is tightly entwined with the
existence of a superconducting instability. It is common in
holographic frameworks—see Ref. [58] for a recent
discussion—for the IR of the superconducting phase to
exhibit an emergent scaling symmetry. This could itself
be the critical phase in which the BKT transition occurs.
Such a picture would be, loosely speaking, in line with
claims that the linear in T conductivity is associated to the

existence of superconducting phases [59]. These critical
issues deserve further thought.
Clearly a pressing issue is to establish (experimentally?)

whether the picture we have outlined in Fig. 1, namely, that
in bad metals the Drude peak is swamped by an extended
‘‘critical’’ contribution, is reasonable in some circumstan-
ces. An alternative possibility is that the extended tail in
fact falls rapidly to zero at ! 
 0, so that for the strict dc
conductivity the Drude contribution always dominates.
This would incorporate naturally the fact that the dc con-
ductivity is insensitive to the melting of an explicit Drude
peak in the data. Against this scenario we can note that, at
least in the holographic models we have studied, the quan-
tum critical contribution to the conductivity does extend all
the way down to ! ¼ 0. An alternative possibility would
be to build a model in which momentum relaxational
processes were built into the critical sector that undergoes
a BKT transition. In such a model we might hope to have
our cake and eat it, simultaneously having a linear resis-
tivity and incorporating the Drude peak physics.
Drude physics could explicitly be incorporated into our

model by making the lattice potential (4.19) periodic in
both directions. One could imagine solving such a model
numerically along the lines of Horowitz et al. [34].
Because the lattice is irrelevant in the IR, the momentum
relaxation rate is very slow and hence one’s first thought is
that there will always necessarily be a well-defined Drude
peak [24]. However, sufficiently close to the BKT critical
point, there is a further long time scale in the problem, the
lifetime of the mode that is going unstable, and this may be
able to transfer spectral weight out of the Drude peak and
into the critical tail. We made some preliminary remarks
about this process in Sec. VC. A more comprehensive
holographic study of this point is desirable and has the
potential to shed light on the nature of bad metals.
The particular model of a BKT transition that we

constructed in Sec. IV relied on local (z ¼ 1) criticality
to obtain critical physics at nonzero wave number that
could then be coupled by a lattice onto the homogeneous
electrical conductivity. It would be very interesting to
see if this requirement can be relaxed by combining for
instance BKT transitions with Fermi surface physics, or
by finding a way to communicate BKT transitions to the
electrical current without going via finite wave vector
modes.
The essential role of holography in our work has been to

provide a setting where BKT transitions occur naturally
and where the interplay between instability in a strongly
correlated medium, lattices and conduction can be studied
in a theoretically controlled way. Holography is less able to
incorporate more conventional Fermi liquid physics in a
useful way. Any strategy to describe the full phase diagram
and the crossover the Fermi liquid behavior will presum-
ably have to involve a mix of distilled insights from
holography and conventional Fermi liquid computations.
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Finally, the focus throughout this paper on the linear in
temperature dc resistivity, and possible application to bad
metals, should not obscure the more general points we have
made. Two further take home messages are firstly that
strong optical and dc conductivities can be achieved by
coupling critical modes on the verge of an instability to the
electrical current via irrelevant operators. Secondly, that
(semi)local quantum criticality enables the effects of insta-
bilities at nonzero wave vector to be efficiently coupled to
e.g., the conductivity via lattice scattering.
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APPENDIX: MATCHING FOR LOW FREQUENCY
AND TEMPERATURE CORRELATORS

Consider a spacetime with an IR (finite temperature)
scaling geometry and that is deformed by irrelevant
operators to flow to an AdS4 UV fixed point. Perturb the
spacetime by a large number N of fields �I. These fields
are taken such that they are decoupled in the IR scaling
geometry but generically all couple in the full spacetime.
That is, they are coupled by the irrelevant operators
participating in the renormalization group flow described
by the full background.

Solve the equations in the IR geometry, impose infalling
boundary conditions, and then expand the solution near the
boundary of the IR region (call it � ! 0). The fact that the
fields are decoupled in the IR implies that

�Ið�Þ � cIð�1þ2=z��I þ ��IGR
I ð!; TÞÞ: (A1)

Here GR
I ð!; TÞ is the IR Green’s function, the cI are con-

stants, and �I is the IR dimension of the operator. This is
Eq. (3.2) in the main text.

Away from the IR region, to leading order at low tem-
peratures and frequencies we may set ! ¼ T ¼ 0. We
assume that the fields satisfy second-order equations in
the radial direction. These may be, for instance, gauge-
invariant combinations of the bulk fields. Therefore there
are 2N independent solutions. From their behavior near the
UV boundary these break into N non-normalizable and N
normalizable solutions. We wish to consider the response
to a single source. Therefore we consider solutions of
the form

�I ¼ A�I
nn þ B�I

n þ
XN�1

m¼1

am�
I
m: (A2)

Here �I
nn is the particular non-normalizable solution we

wish to source, �I
n is the conjugate normalizable solution

and the�I
m are the remaining normalizable solutions. A, B,

am are numerical coefficients. The UVGreen’s function we
wish to compute is

GR / B

A
: (A3)

The UVGreen’s function is now determined by a match-
ing procedure given by a generalization of e.g., Ref. [26].
This is possible at low frequencies and temperatures.
Expand the ‘‘far’’ solutions of the previous paragraph in
the regime where they overlap with the near horizon solu-
tions. One obtains

�I
nn � I��1þ2=z��I þ Iþ��I ; (A4)

�I
n � �I��1þ2=z��I þ �Iþ��I ; (A5)

�I
m � �I

m��1þ2=z��I þ �I
mþ��I : (A6)

Here the I�, �I�, �I
m� are numerical coefficients that

can be determined in principle by solving the differential
equations in the far region. They do not have any tempera-
ture or frequency dependence. Matching with the IR
data (A1) now implies

cI ¼ AIþ þ B�Iþ þX
m

am�
I
mþ; (A7)

cIGR
I ð!; TÞ ¼ AI� þ B�I� þX

m

am�
I
m�: (A8)

There is no sum over I in this equation. Taking an appro-
priate difference between these two equations gives

AvI þ BwI þX
m

amz
mI ¼ 0; (A9)

where

vI ¼ IþGR
I ð!; TÞ � I�;

wI ¼ �IþGR
I ð!; TÞ � �I�;

zmI ¼ �I
mþGR

I ð!; TÞ � �I
m�:

(A10)

The matrix zmI is an ðN � 1Þ � N matrix. It necessarily
annihilates a specific vector pI. The Green’s function we
are looking for can therefore be written

GR / B

A
/ � v � p

w � p : (A11)

In practice, we can find p by fixing one of its components
and then determining the remainder by inverting a square
submatrix of z. We see that the Green’s function is a ratio
of polynomials in GR

I ð!; TÞ.
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We now wish to take the imaginary part of the Green’s
function. For real �I, the coefficients I�, �I�, �I

m�
are real, whereas for complex �I, that is, for �I pure
imaginary, then the two coefficients appearing in each
line of (A6) are complex conjugates of each other.
The case of real �I is simplest. In this case GR

I �
maxð!; TÞ2�I , which is small for temperatures and frequen-
cies that are small compared to the UV scale. At a suffi-
ciently generic point, in particular, away from instabilities
that are not localized in the IR geometry, none of the I�,
�I�, �I

m� vanish. Then one can simply expand the ratio of
polynomials (A11) in the IR Green’s functions. The result
to leading nontrivial orders will have the form

GRð!; TÞ ¼ d0 þX
dIGR

I ð!; TÞ: (A12)

Because all the constants involved in this expression are
real, taking the imaginary part we obtain

ImGRð!;TÞ ¼ X
dI ImGR

I ð!; TÞ; (A13)

as quoted in Eq. (3.3) in the main text. In deriving this
expression we could have allowed for the analytic! and T
dependence of the coefficients.
When some of the �I are imaginary, the Green’s func-

tions are not small and so we cannot expand the ratio of
polynomials in (A11). In the dc limit ! � T we can
expand the IR Green’s function in!. Because, in the stable
phase T > Tc, the full Green’s function must vanish as
! ! 0, the result will take the form

ImGRð!; TÞ ¼ !

T
FðlogTÞ; (A14)

for some in general complicated function F.
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