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We consider black holes in an ‘‘unsuitable box’’: a finite cavity coupled to a thermal reservoir at a

temperature different than the black hole’s Hawking temperature. These black holes are described by

metrics that are continuous but not differentiable due to a conical singularity at the horizon. We include

them in the Euclidean path integral sum over configurations, and analyze the effect this has on black hole

thermodynamics in the canonical ensemble. Black holes with a small deficit (or surplus) angle may have a

smaller internal energy or larger density of states than the nearby smooth black hole, but they always have

a larger free energy. Furthermore, we find that the ground state of the ensemble never possesses a conical

singularity. When the ground state is a black hole, the contributions to the canonical partition function

from configurations with a conical singularity are comparable to the contributions from smooth fluctua-

tions of the fields around the black hole background. Our focus is on highly symmetric black holes that

can be treated as solutions of two-dimensional dilaton gravity models: examples include Schwarzschild,

asymptotically anti–de Sitter, and stringy black holes.
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I. INTRODUCTION

Black hole thermodynamics has a variety of applica-
tions, from the insights of quantum gravity gedanken
experiments to practical calculations in heavy ion colli-
sions and condensed matter physics. And there are just
as many formalisms for describing the thermodynamic
behavior: the classical four laws of black hole mechanics,
quantum fields on curved backgrounds, microstate count-
ing by virtue of the Cardy formula, and the Euclidean path
integral formulation, to name a few. Each approach has its
benefits, but the path integral approach has proven espe-
cially useful for practical calculations at the zero- and one-
loop levels, particularly in the context of gauge/gravity
dualities. This is due, in part, to its direct connection
with the classical formulation of the gravitational theory.
Given an action IE for the theory, every relevant field
configuration contributes with weight expð�IEÞ. Of
course, the identification and enumeration of the ‘‘relevant
field configurations’’ may present a challenge.

Already in the early days of path integrals it was
discovered that the most relevant class of paths behave
like the ‘‘Weierstrass monster’’: they are continuous, but
not differentiable at any point. In a simple system, like a
point particle in certain potentials, the contributions from
these paths can be accounted for. But the prospect of
summing contributions from nondifferentiable field

configurations seems overwhelming for a theory as com-
plex as gravity. Instead, calculations that employ the
gravitational path integral will often focus exclusively
on the contributions from geometries that satisfy some
smoothness conditions. This assumption may be justified
by physically reasonable results, but the fact remains that
smooth metrics account for only a fraction of the support
of the path integral measure. The alternative is to require
only continuity of the metric when performing path
integral calculations, while relaxing the requirement of
differentiability.
In this paper we make some modest progress in this

direction by including metrics with conical singularities
in the Euclidean path integral for a number of gravita-
tional theories. Specifically, we consider the Euclidean
partition function for a canonical ensemble defined inside
a finite cavity. Field configurations in the ensemble sat-
isfy certain boundary conditions at the wall of the cavity,
where the system is coupled to an external thermal res-
ervoir. In some cases (theories with asymptotically anti-
de Sitter boundary conditions, for instance), the walls of
the box can be removed to an asymptotic region without
compromising the existence of the ensemble, but this is
not always possible. Usually one computes the partition
function for this ensemble by summing contributions
from metrics that are regular everywhere. We will relax
this condition and include certain configurations with
a conical singularity. This ensemble could be referred
to as the conical ensemble, to distinguish it from the
usual canonical ensemble. We then pose the following
questions:
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How do configurations with conical singularities con-
tribute to the partition function? Can the ground state of the
ensemble have a conical singularity?

These questions can be answered quite generally for two-
dimensional dilaton gravity. This class of models includes
the spherically symmetric reduction of higher-dimensional
theories that admit Schwarzschild, Schwarzschild-AdS,
Reissner-Nordström, and BTZ black holes as solutions,
as well as target space actions associated with certain string
theory black holes.

How are conical singularities incorporated into the
ensemble? In the semiclassical approximation, the parti-
tion function is dominated by solutions of the classical
equations of motion, with subleading contributions coming
from smooth fluctuations of the fields around these con-
figurations. We now wish to take into account geometries
that are regular everywhere except for a single point. The
dominant contributions would seem to come from configu-
rations that ‘‘almost’’ extremize the action: they satisfy the
equations of motion everywhere except for the singular
point, similar to the ‘‘off-shell black holes’’ considered by
Carlip and Teitelboim [1]. The assumptions of our frame-
work then require this point to sit either at the center of the
cavity, or on the horizon of a black hole. From the point of
view of a higher-dimensional model, a conical singularity
at any point other than the center of the cavity would not
be consistent with the spherically symmetric reduction of
the action. In the context of the two-dimensional dilaton
gravity, the fact that the configurations satisfy the equations
of motion everywhere except a single point implies the
existence of a certain Killing vector that forces the singu-
larity to sit at the center of the cavity. Thus, the dominant
contributions to the partition function from configurations
with a conical singularity correspond to solutions of the
equations of motion that break down at the horizon, where
there is a delta-function singularity in the curvature.

In the canonical ensemble, one finds that the stable
ground state of the system is typically either ‘‘hot empty
space,’’1 a regular black hole, or some superposition of the
two, depending on the boundary conditions. Even when it
is not the ground state, a black hole may exist for certain
boundary conditions as a local minimum of the free energy,
stable against small thermodynamic fluctuations. We find
that the inclusion of conical singularities in the ensemble
does not change either of these statements. When the
boundary conditions allow a thermodynamically stable
black hole in the canonical ensemble, the addition of a
small conical defect—a conical singularity with deficit or

surplus angle j�j � 1—may result in a lower internal
energy or a higher density of states. In other words, small
conical defects may be energetically or entropically
favored over their smooth counterparts in the conical
ensemble.

EðconicalÞ � EðsmoothÞ< 0 is possible: (1)

SðconicalÞ � SðsmoothÞ> 0 is possible: (2)

These results are somewhat surprising, because they
seem to contradict our intuition that smooth black holes
should be the most stable configurations. However,
Eqs. (1) and (2) are not possible simultaneously, and in
fact the presence of a small conical defect always increases
the free energy:

FðconicalÞ � FðsmoothÞ � �2 > 0; for j�j � 1: (3)

We conclude that black holes that are stable against
Gaussian fluctuations in the canonical ensemble are also
stable against the nucleation of a small conical defect.
This perturbative stability generalizes to a nonperturbative
statement about the ground state of the system. With a few
caveats, it appears that the ground state of the conical
ensemble is always a smooth field configuration.2 In fact,
the relationship between the ground state and the boundary
conditions is the same as in the canonical ensemble. We
provide general arguments as well as several examples
demonstrating these features.
In the semiclassical approximation, the partition func-

tion is dominated by the ground state of the system, which
is a smooth geometry. Corrections to this leading behavior
from small, smooth fluctuations around the ground state
are well understood and can be evaluated using a variety of
techniques. Since configurations with a conical singularity
do not dominate the partition function, it is natural to ask
how their contributions compare to the corrections from
smooth fluctuations. The action is generally a complicated
function of the fields, so contributions from conical singu-
larities cannot be evaluated analytically except in special
cases. However, it is possible to evaluate the contributions
numerically, and in the semiclassical limit the results are
approximated to high precision by relatively simple func-
tions of the boundary conditions that define the ensemble.
When the ground state is a black hole, we find that the
contributions to the partition function from configurations
with a conical singularity are comparable to the contribu-
tions from Gaussian fluctuations. This suggests that,
even in the semiclassical approximation, nonsmooth field
configurations make important subleading contributions to
thermodynamic quantities.

1In the present context, ‘‘hot empty space’’ refers to a space
(with asymptotics appropriate to the model) that does not contain
a black hole, but nevertheless has a finite period for the
Euclidean time such that the boundary conditions of the en-
semble are satisfied. Familiar examples include ‘‘hot flat space’’
[2] and thermal AdS [3].

2For certain theories we find specific classes of solutions that
are only marginally stable against the decay into conical defects,
but these examples (the so-called ‘‘constant dilaton vacua’’) tend
to suffer from other problems.
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It is important to point out that we view these contribu-
tions as logically distinct from the ‘‘mass fluctuations’’ that
are already studied in the literature, see, e.g., Ref. [4], or
from one-loop quantum corrections derived by taking into
account conical defects [5]. Indeed, the reader may wonder
whether the configurations we consider are not already
included in those calculations. In the canonical ensemble,
the proper temperature is held fixed at the wall of the
cavity, and hence black holes with a regular horizon are
only present in the ensemble for isolated values of the mass
(if they are present at all). Shifting the black hole mass
away from these values necessarily introduces a conical
singularity at the horizon, and this must be addressed
before the role of these configurations in the ensemble
can be understood. Thus, we assume that ‘‘mass fluctua-
tions’’ in previous calculations like Ref. [4] refer only to
small, smooth fluctuations of the fields around a black hole
background with a fixed horizon, as opposed to an actual
variation in the mass of the black hole. On the other hand,
one-loop corrections depend explicitly on the precise mat-
ter content coupled to the gravitational theory, so they are
not exclusively an intrinsic property of the black hole. See,
for instance, Ref. [6], Eqs. (1.1), (1.2), and references
therein. Thus, our approach of considering nonsmooth
geometric configurations that are on shell everywhere
except at the horizon is logically distinct from these two
approaches. Nevertheless, as we will show, the leading
corrections to quantities like the entropy take essentially
the same form as they do in other approaches.

This paper is organized as follows: In Sec. II, we recall
some basic results of two-dimensional dilaton gravity and
black hole thermodynamics in the canonical ensemble. In
Sec. III, we study black holes with a conical defect and
evaluate the conical ensemble partition function in the
semiclassical approximation. In Sec. IV, we address gen-
eral features of thermodynamical observables, discuss
stability issues, and give approximate expressions for the
contributions to the partition function. In Sec. V, we pro-
vide several explicit examples, and in Sec. VI, we point to
applications and open problems.

Before proceeding, we point out a few important con-
ventions, which are the same as in Ref. [7] in most cases.
Euclidean signature is employed throughout. Nevertheless,
terms appropriate to Lorentzian signature such as
‘‘Minkowski’’ and ‘‘horizon’’ are used when the meaning
is clear. We use natural units with Gdþ1¼c¼ℏ¼kB¼1,
and the dimensionless Newton’s constant in two dimen-
sions is set to 8�G2 ¼ 1. These constants are restored in
certain expressions, when necessary.

II. PRELIMINARIES

In this section, we recapitulate some of the main results
of Ref. [7]. A reader familiar with these results and the
notation may skip this section.

A. Two-dimensional dilaton gravity action

In this paper, we study black hole (BH) thermodynamics
in two-dimensional models of dilaton gravity. Dilaton
gravity in two dimensions is conventionally described by
the Euclidean action

�½g; X� ¼ � 1

2

Z
M

d2x
ffiffiffi
g

p ðXR�UðXÞðrXÞ2 � 2VðXÞÞ

�
Z
@M

dx
ffiffiffiffi
�

p
XK þ

Z
@M

dx
ffiffiffiffi
�

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
wðXÞe�QðXÞ

q
:

(4)

The dilatonX is defined in terms of its coupling to the Ricci
scalar, which takes the form XR. Different models are
distinguished by the kinetic and potential functions UðXÞ
and VðXÞ; cf., e.g., Refs. [8,9] for reviews. The bulk terms
in the first line of Eq. (4) are supplemented by boundary
terms in the second line. The first boundary term is the
analog of the Gibbons-Hawking-York surface integral
[10,11], where �ab is the induced metric on the boundary
and K is the trace of the extrinsic curvature. Including this
term in the action ensures a Dirichlet boundary problem.
The second boundary term is the holographic counterterm
derived in Ref. [7]. It ensures a well-defined variational
principle, so that the first variation of the action vanishes on
solutions of the equations of motion for all variations that
preserve the boundary conditions.3 The functionswðXÞ and
QðXÞ, which depend on UðXÞ and VðXÞ, are defined below.

B. Equations of motion and all classical solutions

The equations of motion are obtained by extremizing the
action [Eq. (4)] with respect to small variations of the fields
that preserve the boundary conditions. This yields

UðXÞr�Xr�X � 1

2
g��UðXÞðrXÞ2 � g��VðXÞ

þ r�r�X� g��r2X ¼ 0; (5)

Rþ @XUðXÞðrXÞ2 þ 2UðXÞr2X � 2@XVðXÞ ¼ 0: (6)

Solutions of these equations always possess at least one
Killing vector @� with orbits that are curves of constant X
[14,15]. Fixing the gauge so that the metric is diagonal, the
solutions take the form

X ¼ XðrÞ; ds2 ¼ �ðXÞd�2 þ 1

�ðXÞ dr
2; (7)

with

@rX ¼ e�QðXÞ; (8)

3On noncompact spaces, the first variation of the action
[Eq. (4)] without the holographic counterterm vanishes only
for field variations with compact support. It is worth mentioning
that the specific combination of wðXÞ and QðXÞ appearing in the
counterterm is the supergravity prepotential [12,13].
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�ðXÞ ¼ wðXÞeQðXÞ
�
1� 2M

wðXÞ
�
: (9)

The solutions depend on an integration constantM, as well
as two model-dependent functions QðXÞ and wðXÞ that are
given by integrals of UðXÞ and VðXÞ:

QðXÞ :¼ Q0 þ
Z X

d ~XUð ~XÞ; (10)

wðXÞ :¼ w0 � 2
Z X

d ~XVð ~XÞeQð ~XÞ: (11)

The integrals are evaluated at X, with constants of integra-
tionQ0 and w0. Notice that w0 andM contribute to �ðXÞ in
the same manner; together they represent a single parame-
ter that has been partially incorporated into the definition
of wðXÞ. By definition, they transform as w0 ! e�Q0w0

and M ! e�Q0M under the shift Q0 ! Q0 þ �Q0. This
ensures that the functions in Eqs. (8) and (9) transform
homogeneously, allowing Q0 to be absorbed into a rescal-
ing of the coordinates.4 Therefore, the solution depends on
a single constant, w0 þM. With an appropriate choice of
w0, we can restrictM to take values in the rangeM � 0 for
physical solutions. As is evident from Eq. (7), the norm of

the Killing vector @� is
ffiffiffiffiffiffiffiffiffiffi
�ðXÞp

. If it vanishes, we encounter
a Killing horizon. Solutions with M> 0, which exhibit
horizons, will be referred to as BHs.

If the function VðXÞ happens to have a zero atXCDV, then
there is a second, inequivalent family of solutions that also
have the form of Eq. (7). The dilaton and metric for these
solutions are given by

X ¼ XCDV; (12)

� ¼ ĉþ âr� V 0ðXCDVÞr2; (13)

where ĉ and â are arbitrary constants. In most applications,
these solutions, which are characterized by a constant
dilaton and Ricci scalar, are not relevant. We will generally
ignore them, so references to ‘‘generic solutions’’ or ‘‘all
solutions’’ should be understood to mean the solutions in
Eqs. (8) and (9), parametrized by the mass M.

C. Smooth black holes

In the models we consider, solutions have a non-negative
metric function �ðXÞ over a semi-infinite interval

Xmin � X <1; (14)

with the lower end of this interval corresponding to either
the origin or a horizon, and the upper end corresponding
to the asymptotic region of the spacetime. At the upper end
of the interval, the function wðXÞ generally diverges:

lim
X!1wðXÞ ! 1; (15)

so the asymptotic behavior of the metric is characterized by
the solution with M ¼ 0. If the metric function is strictly
positive, then the lower end of the interval in Eq. (14) is just
the value of the dilaton at the origin. But if �ðXÞ vanishes
for some value of the dilaton, X ¼ Xh, then the lower
bound is a Killing horizon. Assuming that the function

eQðXÞ is nonzero for finite values of X, the location of the
horizon is related to the parameter M by

wðXhÞ ¼ 2M: (16)

If this condition admits multiple solutions, then Xh is
always taken to be the outermost horizon, so that
wðXÞ> 2M for X > Xh.
For a field configuration to extremize the action, it

should satisfy the equations of motion at all points, and
this imposes certain differentiability conditions on solu-
tions. In particular, for solutions with M � 0, the horizon
must be a regular point of the geometry. This fixes the
periodicity �� �þ � of the Euclidean time, which is
given by [16]

� ¼ 4�

@r�

��������rh

¼ 4�

w0ðXÞ
��������Xh

: (17)

The inverse periodicity is related to the surface gravity of
the BH by 2���1 ¼ 	. In an asymptotically flat space-
time, ��1 is also the temperature measured by an observer
at infinity, so we denote this quantity by T:

T ¼ 1

�
¼ w0ðXÞ

4�

��������Xh

: (18)

This slight abuse of notation should not be confused with
the proper local temperature TðXÞ, which is related to ��1

by a dilaton-dependent ‘‘Tolman factor’’ [17]:

TðXÞ ¼ 1

�
ffiffiffiffiffiffiffiffiffiffi
�ðXÞp : (19)

The proper temperature at infinity coincides with Eq. (18)
only if �ðXÞ ! 1 as X ! 1.
A solution with M ¼ 0 has no horizon, and is therefore

regular everywhere without having to place any conditions
on the period of the Euclidean time. However, as we will
see below, the boundary conditions of the canonical
ensemble determine a unique, nonzero value for the other-
wise arbitrary period. We will therefore refer to this solu-
tion, which does not contain a black hole but has a nonzero
temperature, as ‘‘Hot Empty Space’’ (HES).

D. Thermodynamics in the canonical ensemble

To describe a consistent BH thermodynamics, we must
specify an ensemble and construct the appropriate partition
function. Motivated by York’s path integral formulation of
the canonical ensemble [18], we introduce an upper bound

4Note that the counterterm in the action [Eq. (4)] depends on
w0, but not on Q0.
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Xc on the interval of Eq. (14). This constrains the dilaton to
a ‘‘cavity’’ X � Xc, whose wall is the dilaton isosurface
X ¼ Xc. Quantities evaluated at the wall or with an explicit
dependence on Xc will carry a subscript ‘‘c.’’

Boundary conditions for the canonical ensemble are
imposed by coupling the system to a thermal reservoir,
which fixes a dilaton charge Dc and the proper local
temperature Tc at the wall of the cavity.5 It is convenient
to think of the boundary condition on the temperature as
fixing the proper local period of the Euclidean time, which
is just the inverse �c ¼ T�1

c of the proper local tempera-
ture. The proper local period is related to the period
�� �þ � by

�c :¼�
ffiffiffiffiffi
�c

p
: (20)

When combined with the smoothness condition [Eq. (18)],
this becomes

�c ¼ 4�

w0ðXhÞ
ffiffiffiffiffi
�c

p
: (21)

This model-dependent (and often complicated) equation,
which may or may not have solutions M> 0, determines
whether there are smooth black holes in the ensemble for
given boundary conditions �c and Xc. Not all solutions of
this equation are relevant: the upper bound on the dilaton
implies that only solutions with XhðMÞ< Xc ‘‘fit’’ inside
the cavity. Thus, any solutions M of Eq. (21) that lie in
the range 0 � M<Mmax are elements of the canonical
ensemble, where

Mmax ¼ 1

2
wðXcÞ (22)

corresponds to a black hole with its horizon located at the
wall of the cavity. One solution that almost always appears
in the canonical ensemble is HES (M ¼ 0) with a period
fixed by the boundary condition [Eq. (20)]:

�HES ¼ �cffiffiffiffiffiffiffiffiffiffiffiffiffi
eQcwc

p : (23)

In most models, the HES solution dominates the ensemble
for at least some range of boundary conditions [3,18].

With these boundary conditions, the partition function of
the canonical ensemble is given by the Euclidean path
integral

Z ¼
Z
Xc;Tc

DgDX expð��½g; X�Þ: (24)

For now, we will take the path integral to include all
smooth spaces ðM; gÞ and dilaton configurations X that
satisfy the boundary conditions, but we will relax the
smoothness requirement in the next section. In the semi-
classical limit, the dominant contribution to the Euclidean
path integral comes from the minimum of the action.
The minimum is, of course, a stationary point of the
action—either a black hole with M> 0 satisfying
Eq. (21) (if such a solution exists), or HES with a period
described by Eq. (23). So the action for smooth field
configurations near the minimum can be written as

�½gmin þ 
g; Xmin þ 
X�
¼ �½gmin; Xmin� þ 
�½gmin; Xmin;
g; 
X�

þ 1

2

2�½gmin; Xmin;
g; 
X� þ . . . ; (25)

where 
� and 
2� are the linear and quadratic terms in the
Taylor expansion. In Ref. [7] it was shown that the leading
term is finite and the linear term vanishes for all field
variations 
g, 
X consistent with the boundary conditions.
Since the solution is assumed to be a minimum (as opposed
to a saddle point), the quadratic term is positive definite,
and the semiclassical approximation of the path integral is
given by

Z � expð��½gmin; Xmin�ÞðQuadratic CorrectionsÞ; (26)

where the second factor comes from performing the
(Gaussian) integral over the quadratic terms in Eq. (25).
The partition function exhibits qualitatively different

behavior depending on whether the minimum of the action
is HES or a black hole. For a particular model, the ground
state can be readily determined from the values of the
boundary conditions: one simply identifies the solutions
of the equations of motion that belong to the ensemble, and
then determines which solution has the smallest action for
the given values �c and Xc. Evaluating the action [Eq. (4)]
for the solutions in Eqs. (8) and (9) gives

�cðMÞ¼�c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
wce

�Qc

q 0
@1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�2M

wc

s 1
A�2�XhðMÞ; (27)

which is bounded below for finite Xc. For HES with
M ¼ 0, this becomes

�cð0Þ ¼ �2�X0; (28)

where X0 is the value of the dilaton at the origin (in most of
the models we consider, X0 ¼ 0). If Eq. (28) is less than
Eq. (27) for all relevant solutions of Eq. (21), then HES is
the ground state of the ensemble. On the other hand, if
there is a solution of Eq. (21) such that Eq. (27) is less than
Eq. (28), then the ground state of the ensemble is a black
hole. If the values of �c and Xc are changed, then the
ground state of the ensemble may change as well, in which
case the system will undergo a phase transition involving

5There is no unique dilaton charge in two dimensions: given
any function of X, one can construct a current that yields that
function as its conserved charge. For simplicity, we take the
dilaton charge at the wall to be Dc ¼ Xc, and refer to this
boundary condition henceforth as fixing Xc. A detailed discus-
sion can be found in Ref. [19], or in Sec. 3.1 of Ref. [7].
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the nucleation of the new ground state—either a stable
black hole or HES. Assuming that there is a single mini-
mum of the action,6 the dominant semiclassical contribu-
tion to the free energy Fc ¼ �Tc lnZ is given by

FcðTc; XcÞ ’ Tc�cðMÞ

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
wce

�Qc

q  
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2M

wc

s 1
A� 2�XhðMÞTc:

(29)

From this result it is possible to derive all thermodynamical
properties of interest, like the entropy and internal energy

S :¼ �
�
@Fc

@Tc

�
Xc

¼ 2�XhðMÞ; (30)

Ec :¼ Fc þ TcS ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
wce

�Qc

q 0
@1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2M

wc

s 1
A: (31)

A comprehensive discussion of thermodynamical proper-
ties is provided in Ref. [7].

A key assumption in the derivation of Eq. (26) is that the
quadratic term in Eq. (25) must be positive definite. This is
just the thermodynamic stability condition that the ground
state must have positive specific heat at constant dilaton
charge. The specific heat at constant Xc is

Cc :¼@Ec

@Tc

��������Xc

¼Tc

@S

@Tc

��������Xc

withEc¼FcþTcS; (32)

which yields

Cc ¼ 4�w0
hðwc � 2MÞ

2w00
hðwc � 2MÞ þ ðw0

hÞ2
: (33)

Thus, given boundary conditions Xc and Tc, a canonical
ensemble dominated by a black hole exists if the minimum
of the action is a solution 0<M<Mmax of Eq. (21), and

w00
h >� ðw0

hÞ2
2ðwc � 2MÞ ; (34)

so that the specific heat [Eq. (33)] is positive. An important
point is that for some theories, this inequality can only be
realized for finite Xc. A theory whose boundary conditions
and solutions have w00ðXhÞ< 0 will not have positive spe-
cific heat as Xc ! 1, since wc ! 1 in this limit. In that
case, a finite cavity is required for the existence of the
canonical ensemble. The classic example of this phenome-
non is the Schwarzschild black hole in a theory with
asymptotically flat boundary conditions [18]. On the other
hand, the right-hand side of Eq. (34) is strictly negative, so

a finite cavity is not required for a theory with boundary
conditions and solutions such thatw00ðXhÞ> 0. In that case,
the specific heat remains positive as Xc ! 1. If the action
of the black hole is less than the action for HES in this
limit, then there is a canonical ensemble with a black hole
ground state that does not require an external thermal
reservoir. The expression in Eq. (33) for the specific heat
will play an important role in later sections.
This concludes our review of thermodynamics in the

Euclidean path integral formalism for two-dimensional
dilaton gravity. In the rest of the paper, we weaken the
assumption of differentiability by considering continuous
metrics that no longer satisfy the condition of Eq. (17).

III. BLACK HOLES WITH CONICAL DEFECT

Let us now reconsider the Euclidean partition function
[Eq. (24)]. In the previous section,we included contributions
from smooth field configurations that satisfy the boundary
conditions. Then the leading term in the semiclassical ap-
proximation of the canonical partition function is

Z � expð��cðMÞÞ; (35)

withM being themass of the smooth solution thatminimizes
the Euclidean action and �c the on-shell action [Eq. (27)].
We assume as before that the absolute minimum of the
action occurs for a single value of M; otherwise Eq. (35)
contains a sum over all values ofM thatminimize the action.
We may rewrite Eq. (35) as

Z �
Z Mmax

0
dM̂
ðM̂�MÞ expð��cðM̂ÞÞ; (36)

where 0 � M̂ <Mmax runs over the physically allowed

values of the mass—subject to the condition XhðM̂Þ<Xc—

and the delta function picks out the value M̂ ¼ M of the
smooth solution that minimizes the action.
Now, suppose that we enlarge the class of field configu-

rations that contribute to Z by relaxing the assumption of
smoothness. Instead of imposing the condition of Eq. (17)
for the period, we allow for metrics that are continuous but
not differentiable at the center of the cavity. In the semi-
classical limit, the largest contributions to the partition
function from this sector are expected to come from con-
figurations that ‘‘almost’’ meet the conditions for station-
ary points of the action: they satisfy the equations of
motion at all points except for the horizon, where there is
a conical singularity. Assuming the action is well defined
for these backgrounds, the contributions to Z take the form
of Eq. (36) without the delta function7:

6For special values of the boundary conditions, there may be
multiple values of M that minimize the action. For instance, it
may be possible to tune �c and Xc so that HES and a black hole
both have the same action.

7In later sections, we will refine the measure of this integral,
expressing the contributions to Z as an integral over internal
energy dEc with the weight given by expð��cFcðM̂ÞÞ ¼
expðSÞ expð��cEcÞ.
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Z �
Z Mmax

0
dM̂ expð��cðM̂ÞÞ: (37)

In the rest of this section, we will consider the properties of
the ‘‘conical defect’’ black holes that contribute to this

integral, and evaluate the action �cðM̂Þ that appears in
the exponent.

A. Classical black hole solutions with conical defect

Black hole field configurations that satisfy the boundary
conditions but not the smoothness condition [Eq. (17)]
have the same general form as before:

X ¼ XðrÞ; ds2 ¼ �ðM̂; XÞd�2 þ 1

�ðM̂; XÞ dr
2; (38)

with period �� �þ ~�, and the functions X and � given by

@rX ¼ e�QðXÞ; (39)

�ðM̂; XÞ ¼ wðXÞeQðXÞ
�
1� 2M̂

wðXÞ
�
: (40)

The location of the horizon, XhðM̂Þ<Xc, is determined as
before:

XhðM̂Þ ¼ w�1ð2M̂Þ: (41)

We will sometimes denote a function’s dependence on M̂
[as opposed to the values M that satisfy Eq. (21), which
typically comprise a discrete set] with a ‘‘hat,’’ abbreviat-

ing XhðM̂Þ as X̂h and �ðM̂; XÞ as �̂ðXÞ.
By assumption, most values of the parameter M̂ do not

correspond to smooth black holes—the condition of
Eq. (21) is not satisfied. This means that the periodicity
of the Euclidean time is not equal to the period required for

regularity at the horizon. Instead, the period �� �þ ~� is
determined by the boundary condition [Eq. (20)] and the

parameter M̂,

~� ¼ �cffiffiffiffiffi
�̂c

q : (42)

In other words, the period ~� does not agree with �̂, defined
as

�̂ :¼ 4�

w0ðXÞ
��������X̂h

: (43)

As a result, these spaces exhibit a conical singularity. The
deficit (or surplus) angle � associated with the defect is

� :¼ 2�
�̂� ~�

�̂
¼ 2�

�
1� �c

�̂c

�
; (44)

where �̂c :¼ �̂
ffiffiffiffiffi
�̂c

q
. If �̂ > ~�, then � is positive, and it

represents a true deficit in the period of Euclidean time.
Otherwise, if � is negative, there is a surplus in the period.

For convenience we will always refer to � as the ‘‘deficit
angle,’’ though it may be positive or negative. Cigar-type
embedding diagrams of black holes with positive, negative,
and vanishing deficit angles are shown in Fig. 1.
An important distinction between spaces with a conical

defect and smooth solutions of the equations of motion is

that M̂ is a continuous parameter that is independent of the

boundary conditions �c and Xc. The only conditions on M̂
are that it should lie in the range associated with physical

solutions, M̂ � 0, and the horizon should fit inside the

cavity, XhðM̂Þ< Xc. The discrete set of masses M that
correspond to smooth solutions is determined by the con-
dition in Eq. (21), which implies a (potentially compli-
cated) dependence on �c and Xc.

B. Euclidean action

In the presence of a conical singularity, the action must
be evaluated carefully, taking into account the behavior of
the metric at the horizon. This is accomplished using a
smoothing procedure that regulates the defect [20–23].
When the action is evaluated for a black hole with
conical singularity, the result is independent of the details
of the smoothing. This suggests that the action [Eq. (4)],
without any modifications, is appropriate for weighting
contributions to the partition function from these spaces,
as in Eq. (37).
For our purposes, a conical singularity at a point p on the

interior of M can be thought of as introducing a delta
function in the curvature, in the sense that the integral of
the Ricci scalar over M isZ

M
d2x

ffiffiffi
g

p
R ¼ 2�þ

Z
M=p

d2x
ffiffiffi
g

p
R; (45)

where � is the deficit angle and M=p is the manifold M
with the point p removed. The spaces described in the

previous section have a conical defect at the horizon X̂h, so

FIG. 1 (color online). Euclidean BH geometries with positive
(outer), vanishing (middle), and negative (inner) deficit angles.
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we can write the action as the usual functional on M̂—the
manifold M with the singular point removed—plus the
contribution from the defect:

�½g; X� ¼ � 1

2

Z
M̂

d2x
ffiffiffi
g

p ½XR�UðXÞðrXÞ2 � 2VðXÞ�

�
Z
@M

dx
ffiffiffiffi
�

p
XK þ

Z
@M

dx
ffiffiffiffi
�

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
wðXÞe�QðXÞ

q
� X̂h�: (46)

For VðXÞ ¼ 0 and constant dilaton, the resulting functional
of the metric is, up to an overall factor of �2�X, the
Gauss-Bonnet formula for a compact Euclidean manifold
M with boundary @M and a deficit angle �.

With the results above, the on-shell action for a black
hole with a conical singularity at the horizon is

�cðM̂Þ¼�c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
wce

�Qc

q  
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�2M̂

wc

s 1
A�2�XhðM̂Þ: (47)

The free energy, which encodes all thermodynamical prop-
erties of interest, is then given by

FcðM̂Þ ¼ Tc�cðM̂Þ

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
wce

�Qc

q �
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2M̂

wc

s �
� 2�XhðM̂ÞTc: (48)

When considering the role of black holes with a conical
singularity in the ensemble, it is useful to compare Eq. (47)
to the action for a smooth solution of the equations of
motion. The difference between the actions is given by

�� :¼ �cðM̂Þ � �cðMÞ (49)

¼ �c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
wce

�Qc

q 0
@ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 2M

wc

s
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2M̂

wc

s 1
A

þ 2�ðXhðMÞ � XhðM̂ÞÞ: (50)

This result will be useful in the next section.

IV. THERMODYNAMICS AND STABILITY

We investigate now the thermodynamical properties of
field configurations with a conical defect, and compare
their role in the conical ensemble to that of smooth solu-
tions. For now, we assume that the ensemble contains
among the smooth field configurations a black hole with
mass M, horizon XhðMÞ, and positive specific heat. Thus,
the black hole is at least a local minimum of the action
among smooth spaces, though it need not be the absolute
minimum of the action. It is useful to define a quantity 

that relates the dilaton at the conical defect to the dilaton at
the horizon of the smooth solution:

XhðM̂Þ ¼ XhðMÞ þ 
: (51)

After deriving expressions for the entropy and internal
energy, we consider the case

j
j � Xh; (52)

where the thermodynamic properties of conical defects can
be analyzed perturbatively. Later in this section, we derive
results that are valid nonperturbatively, in particular con-
cerning the stability of smooth configurations and the
ground state of the ensemble.

A. Entropy and internal energy

In two-dimensional dilaton gravity, the entropy of
smooth black holes takes the universal form in Eq. (30).
This result, which is independent of both the details of the
theory and the size of the cavity, generalizes to black holes
with a conical singularity:

SðM̂Þ :¼ �
�
@FcðM̂Þ
@Tc

�
Xc

¼ 2�XhðM̂Þ: (53)

In terms of the parameter 
, this becomes

SðM̂Þ ¼ SðMÞ þ 2�
; (54)

and we see that the entropy may be either greater than or
less than the entropy of the smooth black hole, depending
on the sign of 
.
The internal energy is related to the entropy, tempera-

ture, and free energy by Ec ¼ Fc þ TcS. The subscript
‘‘c’’ is retained here to emphasize that, unlike the entropy,
the internal energy depends explicitly on the size of the
cavity. Applying the results for the entropy [Eq. (53)] and
the free energy [Eq. (48)] gives

EcðM̂Þ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
wce

�Qc

q 0
@1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�2M̂

wc

s 1
A

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
wce

�Qc

q 0
@1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�wðXhþ
Þ

wc

s 1
A: (55)

Like the entropy, the internal energy of a black hole with a
conical singularity may be either greater than or less than
that of the smooth black hole.

B. Perturbative stability

Based on the results above, a black hole with a conical
singularity can have higher entropy or lower internal en-
ergy than a smooth black hole. However, to determine
whether these black holes are favored in the conical en-
semble, one must consider the free energy. We will first
address this for small 
; i.e., j
j � Xh. In this limit, the
deficit angle is

� ¼ � 4�2

Cc


þOð
2Þ; (56)
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so positive 
 corresponds to a surplus, and negative 

represents a deficit.

The expression in Eq. (53) for the entropy is linear in

XhðM̂Þ, so no expansions are needed when 
 is small. On
the other hand, the internal energy is a nonlinear and

potentially complicated function of XhðM̂Þ. Expanding
Eq. (55) for small 
 gives

EcðM̂Þ ’ EcðMÞ þ 2�Tc
þ 2�2Tc

Cc


2 þOð
3Þ: (57)

So the internal energy of the conical defect may be greater
or less than the internal energy of the smooth black hole,
and at leading order this is controlled by the sign of 
.
Notice, however, that the term at order Oð
2Þ is strictly
positive. This is crucially important when we consider

the free energy FcðM̂Þ. Using Eq. (54) and the expansion
[Eq. (57)], we obtain

FcðM̂Þ ¼ EcðM̂Þ � TcSðM̂Þ

’ FcðMÞ þ 
2 2�
2Tc

Cc

þOð
3Þ: (58)

Expressed in terms of the deficit angle, this is

FcðM̂Þ � FcðMÞ ’ Cc

8�2
�2 � � 1: (59)

Thus, the free energy of a smooth black hole withCc > 0 is
always smaller than the free energy of a nearby [j
j �
XhðMÞ] black hole with conical singularity. In terms of the
internal energy and entropy. this implies

EcðM̂Þ � EcðMÞ � TcðSðM̂Þ � SðMÞÞ: (60)

In other words, the presence of a small conical defect can
lower the internal energy compared to a smooth black hole,
but the corresponding decrease in the density of states
prevents the ensemble from favoring such configurations.
Likewise, a conical defect can have a larger entropy than
a smooth black hole, but the cost in internal energy is
too high for these configurations to be favored by the
ensemble.

C. Nonperturbative stability

The previous section considered black holes with a small
conical defect. In this section, the assumption j
j � Xh is
dropped, which means that quantities like ��c cannot be
evaluated perturbatively. Nevertheless, it is still possible to
show that the minimum of the action does not have a
conical defect. If the absolute minimum of the action
among smooth spaces is a solution with mass M, then

�cðM̂Þ> �cðMÞ for any M̂ with a conical singularity. The
ensemble always has a smooth ground state that is stable
against decay into a space with conical defect.

First, let us illustrate our reasoning with a simple class of
examples: theories that allow the Xc ! 1 limit. The exis-
tence of the ensemble in this limit is addressed in the next

section; for now, let us assume that we are working with a
model where taking Xc ! 1 is allowed. Then, as the
cavity wall is removed, Eq. (49) becomes

lim
Xc!1�� ¼ 2�




w0ðXhÞ
�
wðXh þ 
Þ � wðXhÞ



� w0ðXhÞ

�
:

(61)

The condition �� � 0 becomes a convexity condition
on the function w. An even stronger statement is obtained
by considering extrema of ��. For very large Xc, the
condition

d��

d

¼ 0; (62)

simplifies to

w0ðXhÞ ¼ w0ðXh þ 
Þ: (63)

But this implies that any extremum of �� has to have
the same periodicity as the configuration without conical
defect. While more than one such extremum may exist
(cf., the discussion about how to extract the mass M from
Tc and Xc in Ref. [7]), none of them exhibits a conical
singularity.
For finite values of Xc, it is easier to work directly with

the action [Eq. (47)] for a space with conical singularity.

Extremizing the action with respect to M̂ gives

�c ¼ 4�

w0ðX̂hÞ
ffiffiffiffiffi
�̂c

q
; (64)

which means that extrema occur at precisely those values

of M̂ that correspond to smooth solutions of the equations
of motion. Of course, it is possible that these extrema are
local, and the absolute minimum of the action occurs at one

of the endpoints of the interval 0 � M̂ � Mmax. Indeed,
in most models there is a range of boundary conditions
where the minimum of the action occurs at the lower limit.

But M̂ ¼ 0 is just HES, which is a smooth solution of
the equations of motion. The other possibility—that the
absolute minimum of the action occurs at—Mmax ¼
wðXcÞ=2—can be ruled out quite generally. Consider the

derivative @�cðM̂Þ=@M̂ as M̂ ! Mmax from below:

@�cðM̂Þ
@M̂

¼ �cffiffiffiffiffi
�̂c

q � 4�

w0ðX̂hÞ
¼ 0: (65)

For nonzero �c, the first term is positive and diverges as

ðMmax � M̂Þ�1=2. Unless w0ðXÞ happens to have a zero at
Xc, the first term dominates and the action is increasing as

M̂ approachesMmax. We conclude that the action is always
minimized by a smooth solution of the equations of
motion: either HES or a smooth black hole.
Note that it is possible for a conical singularity to have a

smaller action than a smooth black hole, as long as that
black hole is not the ground state of the ensemble. This
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includes black holes that are thermodynamically stable
(Cc > 0), but only a local minimum of the action. In that
case, there will necessarily be conical singularities close to
the ground state that have a smaller action than any local
minimum. But a smooth black hole (or HES, for that
matter) will never tunnel quantum mechanically to a final
configuration with a defect, because the ground state of the
ensemble is necessarily smooth.

D. Constant dilaton vacua

The discussion up to this point has involved generic
solutions of the equations of motion, but neglected the
constant dilaton vacua (CDV) [Eqs. (12) and (13)] that
may exist for some dilaton gravity models. These isolated
solutions occupy a different superselection sector of the
theory, so there is no perturbative channel for a BH—with
or without a deficit angle—to decay into a CDV. However,
in cases where the boundary conditions happen to coincide
with a zero of the dilaton potential, VðXcÞ ¼ 0, tunneling
between the two types of solutions is possible. A detailed
discussion can be found in Ref. [7].

Since we have extended the class of BH solutions to
configurations with a deficit angle, it is appropriate to do
the same for CDV. Here we discuss these solutions and
evaluate their free energy. The on-shell action can be
calculated using Eq. (46), which gives

�̂CDV ¼ �2�X0 þ ~�
ffiffiffiffiffi
�̂c

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e�QðX0ÞwðX0Þ

q
: (66)

(If we drop the assumption that spacetime is topologically
a disk, the first term in Eq. (66) is multiplied by the Euler
characteristic of the manifold.) The difference between this
action and the action for a smooth CDV solution is

��CDV ¼
�
~�

ffiffiffiffiffi
�̂c

q
��

ffiffiffiffiffi
�c

p � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e�QðX0ÞwðX0Þ

q
¼ 0; (67)

which always vanishes, because both configurations satisfy
the same boundary conditions:

~�
ffiffiffiffiffi
�̂c

q
¼ �

ffiffiffiffiffi
�c

p ¼ �c: (68)

Therefore, all CDV solutions with given X0 and � have the
same free energy. It follows that the regular CDV solution
is only marginally stable against decay into a CDV with
conical defect, and vice versa.

E. Contributions to the partition function

The dominant contributions to the semiclassical parti-
tion function from spaces with a conical singularity are
given by an integral like Eq. (37). But for systems with a
finite cavity, the measure in this integral should be treated
more carefully. In the canonical ensemble, the partition
function is expressed as a sum or integral over different
internal energies of the system, weighted by the density of
states expðSÞ and the Boltzmann factor expð��EÞ. The
internal energy for an ensemble with finite Xc is given by

Eq. (55), which suggests that the appropriate measure is
proportional to

dEcðM̂Þ ¼ dM̂ffiffiffiffiffi
�̂c

q ; (69)

rather than dM̂. Thus, the semiclassical approximation for
the partition function, including contributions from spaces
with a conical singularity,8 is

Z �
Z Mmax

0
dM̂

1ffiffiffiffiffi
�̂c

q expð��cðM̂ÞÞ: (70)

The additional factor of ð�̂cÞ�1=2 in the measure proves to
be relevant when computing subleading corrections to
thermodynamical quantities like the entropy. The func-
tional form of the integrand in Eq. (70) almost always
prevents the direct evaluation of this integral in closed
form, but standard semiclassical approximation techniques
prove to be very accurate when compared with numerical
results.

1. The Xc ! 1 limit

For some theories, the conical ensemble exists even as
the system is decoupled from the external thermal reser-
voir. Taking the Xc ! 1 limit, or ‘‘removing the cavity
wall,’’ usually implies wc ! 1, and in this case the inte-
gral in Eq. (70) simplifies.
Provided the limit Xc ! 1 commutes with the integral

over M̂, the contributions to the semiclassical partition
function become

Z 1 :¼ lim
Xc!1Z

�
Z 1

0
dM̂ lim

Xc!1
1ffiffiffiffiffiffiffiffiffiffiffiffiffi

wce
Qc

p exp

�
2�XhðM̂Þ� �cffiffiffiffiffiffiffiffiffiffiffiffiffi

wce
Qc

p M̂

�
:

(71)

Assuming there are no obstructions, we can use wðX̂hÞ ¼
2M̂ to convert this into an integral over X̂h:

Z 1�1

2

Z 1

X̂0

dX̂hw
0ðX̂hÞexp

�
2�X̂h�1

2
wðX̂hÞ lim

Xc!1
�cffiffiffiffiffiffiffiffiffiffiffiffiffi
wce

Qc

p �
;

(72)

where the lower bound is set by the condition wðX̂0Þ ¼ 0,

and we have absorbed the factor ðwce
QcÞ�1=2 into the

normalization of Z 1.
9

8This does not include the contributions from smooth fluctua-
tions of the fields around the ground state of the system, which
are equally important.

9This may seem odd, since we just introduced the factor of
�̂�1=2
c in the measure in Eq. (70). The point is that this factor is

important for finite Xc, but it becomes state independent, and
hence irrelevant, in the Xc ! 1 limit.
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Before going further, it is important to ask: if Xc ! 1,
what is being fixed in defining the ensemble? If wce

Qc is
finite and nonzero in this limit, then we may continue
to express the action as a function of the same �c that is
held fixed at finite Xc. But if wce

Qc diverges, then we

must take �c ! 1 while keeping the ratio �c=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
wce

Qc

p
finite. In either case, the boundary conditions of the
ensemble are specified by fixing a finite, nonzero value
for the quantity

�1 :¼ lim
Xc!1

�cffiffiffiffiffiffiffiffiffiffiffiffiffi
wce

Qc

p : (73)

In other words, when Xc ! 1, the ensemble is defined by
fixing the value of the period, rather than the proper local
period at the cavity wall. The contributions to the partition
function from conical singularities are then given by

Z 1 ’ 1

2

Z 1

X̂0

dX̂hw
0ðX̂hÞ exp

�
2�X̂h � 1

2
�1wðX̂hÞ

�
; (74)

which can also be expressed in the familiar form

Z 1 ’
Z 1

0
dM̂ expðSðM̂ÞÞ expð��1M̂Þ: (75)

Of course, the ensemble only exists if this integral is
defined, which requires that wðXÞ grows sufficiently fast
at large values of X:

lim
X!1

wðXÞ
X

>
4�

�1
: (76)

If this condition is satisfied, then the ensemble exists.
For example, the Xc ! 1 limit is not defined for the

Schwarzschild model, which has wðXÞ � ffiffiffiffi
X

p
, but it is

defined for the Jackiw-Teitelboim model, which has
wðXÞ � X2. If the large-X behavior of wðXÞ is linear, so
that wðXÞ ¼ w1X þ . . . for large X, then the ensemble
exists only if �1 > 4�=w1, which corresponds to a
Hagedorn temperature TH ¼ w1=4�. This is especially
relevant for the stringy black holes considered in
Sec. VE.

In most cases, the integral in Eq. (74) is easier to work
with than the integral in Eq. (70), though approximation
methods or numerical techniques are usually still required.
The behavior of this integral depends on the ground state
of the system, which is determined as in the finite Xc case.
The condition for extremizing the action in the Xc ! 1
limit is

@�1ðX̂hÞ
@X̂h

¼ 1

2
�1w0ðX̂hÞ � 2� ¼ 0; (77)

where �1ðX̂hÞ ¼ �1wðX̂hÞ=2� 2�X̂h is the action in
the exponent of Eq. (74). As before, this is the usual
smoothness condition, so the ground state of the system

will be either a smooth black hole or the M̂ ¼ 0 HES
solution.10 A solution Xh of Eq. (77) is a minimum if

@2�1ðX̂hÞ
@X̂2

h

��������Xh

¼ 1

2
�1w00ðXhÞ> 0; (78)

which is equivalent to the Xc ! 1 limit of the condition in
Eq. (34) for positivity of the specific heat. If a minimum
exists, it must be compared to the action of HES, �1ðX0Þ ¼
�2�X0, to determine the ground state. Thus, the ground
state of the ensemble is a smooth black hole if there is a
solution of Eq. (77) that satisfies Eq. (78), and

�1ðXhÞ � �1ðX0Þ< 0 ) wðXhÞ
w0ðXhÞ< Xh � X0: (79)

Otherwise, the ground state is HES.
When the ground state of the ensemble is a black hole,

the integral in Eq. (74) is comparable to contributions
to the partition function from smooth Gaussian fluctua-
tions. To see why this is the case, we define a new variable

Y ¼ X̂h � Xh, where Xh is the dilaton at the horizon for
the black hole ground state. In the semiclassical approxi-
mation, the main contributions to Eq. (74) come from
configurations close to the ground state, so the integral
may be approximated as

Z 1 ’ 1

2
expð��1ðMÞÞ

Z 1

�1
dYw0ðXhÞ exp

�
� 2�2

C1
Y2

�
;

(80)

where C1 ¼ 2�w0ðXhÞ=w00ðXhÞ is the Xc ! 1 limit of the
specific heat [Eq. (33)]. Evaluating the integral gives

Z 1 ’ expð��1ðMÞÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2�C1

p
�1

: (81)

This is comparable to the contributions from smooth
Gaussian fluctuations around the black hole ground state,
because in both cases the coefficient of the quadratic term
in the expansion of the action around the minimum is
proportional to C�11 .
If the ground state of the ensemble is HES, then there are

two possible approximations for the integral in Eq. (74). As
before, configurations close to the ground state dominate
the integral in the semiclassical approximation. But their

contributions depend on the behavior of the functionwðX̂hÞ
in this region. We will assume, for convenience, that
X0 ¼ w�1ð0Þ ¼ 0. Then, if the ground state is HES, the

conditions �1ð0Þ ¼ 0 and �1ðM̂Þ> 0 imply that

wðX̂hÞ � X̂�
h near X̂h ¼ 0, with 0 � � � 1. For � < 1,

the��1wðX̂hÞ=2 term dominates the action in this region,
and the integral is well approximated as

10Unlike the finite Xc case, where the upper limit Mmax had to
be considered when determining the ground state, the upper limit
M̂ ! 1 is ruled out by the condition of Eq. (76).
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Z 1 ’
Z 1

0
dM̂ expð��1M̂Þ ¼ 1

�1
: (82)

On the other hand, if wðX̂hÞ is approximately linear

(� ¼ 1) near X̂h ¼ 0, then both terms in the action are
relevant, and Eq. (74) is approximated by

Z 1 ’
Z 1

0
dX̂h

w0ð0Þ
2

exp

�
�
�
1

2
�1w0ð0Þ � 2�

�
X̂h

�

¼ w0ð0Þ
�1w0ð0Þ � 4�

: (83)

In both cases the contributions to the partition function
are generally much smaller than other corrections (for
instance, from radiation) for a HES ground state.

2. Ensembles with finite Xc

Though the analysis is a bit more complicated for
finite Xc, the same approach yields reliable approximations
for Eq. (70). When the ground state of the ensemble
is a black hole, expanding the action around its minimum
gives

�cðM̂Þ ¼ �cðMÞ þ 2�2

Cc

Y2 þOðY3Þ; (84)

where Y ¼ X̂h � Xh, and Cc is the specific heat at finite Xc

[Eq. (33)]. The semiclassical limit implies that the integral
is dominated by configurations near the minimum, and
their contributions may be approximated as

Z ’ expð��cðMÞÞ
Z 1

�1
dY

w0ðXhÞ
2

ffiffiffiffiffi
�c

p exp

�
�2�2

Cc

Y2

�
: (85)

This gives essentially the same result as Eq. (81),

Z ’ expð��cðMÞÞ
ffiffiffiffiffiffiffiffiffiffiffiffi
2�Cc

p
�c

; (86)

but expressed in terms of the relevant quantities evaluated
at Xc. When the ground state is HES, the analysis is very

similar to the Xc ! 1 case. Configurations near M̂ ¼ 0
dominate the integral, and depending on the behavior of

wðX̂hÞ in this region, Eq. (70) is approximated by either
Eq. (82) or Eq. (83), with �1 replaced by �c.

For comparison with other approaches that calculate
corrections to free energy and entropy, it is useful to
represent the results above as

Fc ¼ �Tc logZ ¼ Tc�cðMÞ � Tc logðTc

ffiffiffiffiffiffiffiffiffiffiffiffi
2�Cc

p Þ: (87)

Then the entropy takes the form S ¼ Sð0Þ þ Sð1Þ, where
Sð0Þ ¼ 2�Xh is the contribution from the leading term in
the free energy, and

Sð1Þ ¼ logðTc

ffiffiffiffiffiffiffiffiffiffiffiffi
2�Cc

p Þ þ 1

2

�
@ logCc

@ logTc

�
Xc

þ 1 (88)

’ 1

2
logðCcT

2
c Þ þ . . . : (89)

The second line gives the leading behavior of Sð1Þ in our
semiclassical calculations, which takes the same form as
corrections from thermal fluctuations [24]. These results
also apply to ensembles with Xc ! 1, after making the
appropriate replacements of quantities evaluated at the
cavity wall.

V. BLACK HOLE EXAMPLES

So far, the discussion has allowed for arbitrary functions
UðXÞ and VðXÞ in the action [Eq. (46)]. In this section, we
apply our results to specific models, discussing their ther-
modynamic properties and determining the leading contri-
butions to the partition function from configurations with
conical singularities.

A. Schwarzschild

The Schwarzschild models, which belong to the so-
called ‘‘ab family’’ of dilaton gravities [25], are motivated
by a spherically symmetric reduction of gravity with
asymptotically flat boundary conditions from dþ 1 � 4
dimensions down to two dimensions. The functions wðXÞ
and eQðXÞ for these models take the form

wðXÞ ¼ ðd� 1Þ� 1
d�1X

d�2
d�1; (90)

eQðXÞ ¼ 1

d� 1
�� 1

d�1X�d�2
d�1: (91)

The constant � is given by

� ¼ Ad�1

8�Gdþ1

; (92)

whereGdþ1 is the (dþ 1)-dimensional Newton’s constant,
and Ad�1 is the area of the unit sphere Sd�1. It will be
convenient to retain factors of �, even though they could
be absorbed into a rescaling of the coordinates. Since the
growth of wðXÞ is sublinear for large X, the existence
condition [Eq. (76)] implies that the Xc ! 1 limit is not
possible for the Schwarzschild model. Thus, in order to
work in the canonical ensemble, one must couple the
system to a heat bath at finite Xc.

Setting Eq. (90) equal to 2M̂ gives the value of the
dilaton at the horizon, which can then be applied to
Eq. (53) to obtain the entropy of a configuration with
conical singularity:

SðM̂Þ ¼ 2�

�
2M̂

ðd� 1Þ� 1
d�1

�d�1
d�2
: (93)

DANIEL GRUMILLER, ROBERT MCNEES, AND SIMONE ZONETTI PHYSICAL REVIEW D 86, 124043 (2012)

124043-12



This result takes a more familiar form if we solve Eq. (8)
for the dilaton as a function of the coordinate r:

XðrÞ ¼ �rd�1 ¼ Ad�1

8�Gdþ1

rd�1: (94)

The expression for the entropy becomes one quarter of the
horizon area in Planck units, even for configurations with a
conical singularity:

SðM̂Þ ¼ Ad�1

4Gdþ1

rhðM̂Þd�1: (95)

The internal energy of these configurations is obtained
from Eq. (55). Expressed in terms of the boundary con-

ditions and mass parameter M̂, it is

EcðM̂Þ ¼ ðd� 1Þ� 1
d�1X

d�2
d�1
c

0
@1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2M̂

d� 1
�� 1

d�1X
�d�2

d�1
c

s 1
A:

(96)

For the HES solution M̂ ¼ 0—the ‘‘hot flat space’’ of
Ref. [2]—the internal energy is zero. For nonzero values
of the mass parameter, the result [Eq. (96)] can be inverted

to give M̂ as a function of the internal energy in the region
X � Xc:

M̂ ¼ Êc � Ê2
c

2
ffiffiffiffiffiffi
Xc

p ; (97)

which relates the ADM mass to the internal energy EcðM̂Þ
and the gravitational binding energy �Ê2

c=2
ffiffiffiffiffiffi
Xc

p
in the

cavity [7].
In the rest of this section, we consider the phase structure

of the Schwarzschild model, and the dominant contribu-
tions to the Euclidean partition function coming from black
holes with a conical singularity. It is tempting to focus on
the familiar example dþ 1 ¼ 4, but as we will see, this is a
special case that exhibits qualitatively different behavior
than models based on the reduction from dþ 1 � 5
dimensions. The analysis is simpler when quantities are

expressed as functions of X̂h rather than the mass M̂. In that
case, the action of Eq. (47) is

�cðX̂hÞ¼ ðd�1Þ�c�
1

d�1X
d�2
d�1
c

0
@1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

�
X̂h

Xc

�d�2
d�1

s 1
A�2�X̂h:

(98)

In dþ 1 ¼ 4 dimensions, this is precisely �c times the
‘‘generalized free energy’’ obtained by York in Ref. [18].

The action is plotted in Fig. 2 as a function of X̂h, for
representative values of the boundary conditions. The
minimum of the action is either HES or a smooth black
hole, depending on the values of �c and Xc fixed by the

boundary conditions. The HES solution with M̂ ¼ 0 is
always present, but smooth black holes exist in the

ensemble only when the smoothness and boundary con-
ditions are both met. This occurs at isolated values of Xh

that satisfy

�c ¼ 4�X
1

d�1
c

ðd� 2Þ� 1
d�1

�
Xh

Xc

� 1
d�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

�
Xh

Xc

�d�2
d�1

s
: (99)

To analyze this condition, it is convenient to define the
variables

� :¼
�
Xh

Xc

� 1
d�1
; Bc :¼ ðd� 2Þ� 1

d�1

4�
�cX

� 1
d�1

c ; (100)

so that Eq. (99) takes the form

Bc ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �d�2

p
: (101)

There are no real solutions of Eq. (101), and hence no
smooth black holes in the ensemble, for Bc > B�

c with

B�
c ¼

�
2

d

� 1
d�2

ffiffiffiffiffiffiffiffiffiffiffiffi
d� 2

d

s
: (102)

In this case, the action in Eq. (98) is strictly non-negative,
and the ground state is HES with �cð0Þ ¼ 0. But if
Bc < B�

c, there are two black holes in the ensemble, cor-
responding to two real solutions 0< �� < �þ < 1 of
Eq. (101). The smaller of the two black holes is a local
maximum of the action, and the larger black hole is a local
minimum. This minimum is positive when Bc is greater
than a critical value given by

Bcrit
c ¼

�
d� 2

d

��
4ðd� 1Þ

d2

� 1
d�2
; (103)

so that the ground state of the ensemble remains HES for
Bcrit
c < Bc < B�

c. But for boundary conditions that satisfy

FIG. 2 (color online). The Schwarzschild model action �cðX̂hÞ
for 0 � X̂h � Xc. Local extrema appear only for Bc below a
certain value B�

c.
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0<Bc < Bcrit
c , the minimum of the action is negative and

the ground state of the ensemble is the large black hole.
Using the definition in Eq. (100) and expressing Xc in

terms of the radius of the cavity rc, the three regimes of the
Schwarzschild model can be described in terms of more
conventional variables. Table I gives an overview of these
three regimes.

The Schwarzschild model has a ‘‘low temperature’’
phase, set by the size of the cavity, where smooth black
holes do not exist at all—black holes in the ensemble
necessarily exhibit a conical singularity in this regime.
Two smooth black holes appear in the ensemble as the
temperature is increased at fixed cavity size. One of
the black holes is stable against small fluctuations (i.e.,
Cc > 0), but at intermediate temperatures the system will
eventually tunnel from this state to the HES ground state.
Finally, a ‘‘high temperature’’ phase occurs above a critical
temperature that is also set by the size of the cavity:

Tcrit
c ¼ d

4�rc

�
d2

4ðd� 1Þ
� 1
d�2
: (104)

For Tc > Tcrit
c , the ground state of the ensemble is a smooth

black hole.
It is worth taking a moment to consider a gedanken

experiment that examines the phases described above in
a ‘‘real world’’ setting. Suppose we construct a cavity of
macroscopic size in the lab, removing all matter from the
interior and holding the walls at a constant temperature.
Assuming that gravity is described by the usual Einstein-
Hilbert action (and neglecting all physics besides gravity
and radiation), what is the relevant ground state for the
ensemble? Restoring dimensionful constants, the condition
[Eq. (99)] becomes

ℏc
kBTc

¼ 4�rh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� rh

rc

s
: (105)

The two solutions for a cavity of radius rc ¼ 0:1 m held at
temperature Tc ¼ 103 K are

rð�Þ
h

rc
¼ 1:8	 10�6;

rðþÞ
h

rc
¼ 1� 3	 10�12: (106)

The larger solution describes a stable black hole with its
horizon about a third of a picometer from the wall of the
cavity; reasonable laboratory conditions are apparently far
into the high-temperature regime. A quick calculation

shows that the stable black hole is the ground state of the
ensemble, with a free energy of�1048 J and an entropy of
1068. Yet the interior of the cavity remains HES, with a free
energy of about �10�4 J (from radiation). What prevents
the system from tunneling to the overwhelmingly favorable
black hole ground state? Recall from the analysis of
Refs. [2,18] that the rate of tunneling is approximately

expð��cðrð�Þ
h Þ=ℏÞ. The action of the unstable black hole

is enormous, �cðrð�Þ
h Þ � 1056ℏ, so the probability of a

tunneling event is, for all intents and purposes, zero.11

Contributions to the partition function from field con-
figurations with a conical singularity are approximated to
high accuracy by relatively simple functions of the bound-
ary conditions, as described in Sec. IVE. For the semiclas-
sical approximation to be valid, the action must be very
large in units of ℏ, which requires 2�Xc 
 1 in natural
units. In the low- and intermediate-temperature regimes,
the ground state is HES, and the contributions to the
partition function are approximately

Z ðBc > Bcrit
c Þ ’ 1

�c

¼ Tc: (107)

This approximation can be compared with a numerical
evaluation of Eq. (70). The fractional error, defined as
f ¼ ðZ � Z numÞ=Z num, is shown in Fig. 3 for the case
dþ 1 ¼ 4, with 104 < 2�Xc < 105 and different
values of Bc. In the low-temperature regime, the error is
typically much less than 10�4, while in the intermediate-
temperature regime it is between 10�4 and 10�3 for Bc not
too close to Bcrit

c . The behavior at the critical temperature is
described below.
In the high-temperature phase, the behavior of Z is

qualitatively different. The approximation of Eq. (86) for
the contributions to the partition function gives

Z ðBc < Bcrit
c Þ ’ expð��cð�þÞÞ ðd� 2Þ ffiffiffiffiffiffiffiffiffiffiffiffi

d� 1
p

�
d�3
2þ X

d�3
2ðd�1Þ
cffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2d�d�2þ � 4
q :

(108)

TABLE I. The three phases of the Schwarzschild model.

Boundary conditions Smooth black hole? Ground state

Tc <

ffiffiffiffiffiffiffiffiffiffiffi
dðd�2Þ

p
4�rc

ðd2Þ
1

d�2
Does not exist HES

ffiffiffiffiffiffiffiffiffiffiffi
dðd�2Þ

p
4�rc

ðd2Þ
1

d�2 < Tc <
d

4�rc
ð d2

4ðd�1ÞÞ
1

d�2 Local minimum HES

Tc >
d

4�rc
ð d2

4ðd�1ÞÞ
1

d�2 Global minimum SBH

11Perhaps a better strategy for studying a black hole of this size
is to find one that already exists, build a cavity around it, and
then couple the system to a thermal reservoir. However, rh ’
0:1 m corresponds to a mass well below the Chandrasekhar
limit, so the chances of finding one are not good.
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The fractional error for this approximation is shown for the
dþ 1 ¼ 4 model in Fig. 4, with different values of 2�Xc

and �þ. In the high-temperature regime, �þ takes values in
the range �

4ðd� 1Þ
d2

� 1
d�2

< �þ < 1; (109)

which becomes 8=9< �þ < 1 when dþ 1 ¼ 4. For
2�Xc > 104 and �þ > 8=9, the error is typically below

about 10�4. But at �þ ¼ 8=9 (when Bc ¼ Bcrit
c ), the error

jumps by 1–2 orders of magnitude. This makes sense; at
the lower end of Eq. (109), the smooth black hole has
action �c ¼ 0, so the ground state of the ensemble is a
superposition of the black hole and HES. A better approxi-
mation for Eq. (70) at this transitional value of �þ is given
by the sum of Eqs. (107) and (108). For the dþ 1 ¼ 4
model, this results in a fractional error below 10�5.
The dominant contribution to the partition function in

the high temperature phase is the overall factor of
expð��cð�þÞÞ. This gives the leading term in the free

energy as Fð0Þ
c ¼ �c�cð�þÞ, and the resulting contribution

to the entropy for the smooth black hole is

Sð0Þ ¼ 2�Xh ¼ 2�Xc�
d�1þ : (110)

The contributions to Z from configurations with conical
singularities give corrections to Fc, and hence to S. The
free energy �Tc logZ obtained from Eq. (108) is

Fc ¼ Fð0Þ
c � ðd� 2Þ� 1

d�1

4�X
1

d�1
c �þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �d�2þ

q

	 log

0
@ðd� 2Þ ffiffiffiffiffiffiffiffiffiffiffiffi

d� 1
p

�
d�3
2þ X

d�3
2ðd�1Þ
cffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2d�d�2þ � 4
q

1
A; (111)

which results in an entropy

S ¼ Sð0Þ þ 1

2

�
d� 3

d� 1

�
logSð0Þ

þ ð�d�2þ � 1Þðd�d�2þ þ 2ðd� 3ÞÞ
ðd�d�2þ � 2Þ2

þ log

0
@ d� 2

ð2�Þ d�3
2ðd�1Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d� 1

2d�d�2þ � 4

s 1
A: (112)

The last two terms combine to give an Oð1Þ contribution
for all �þ in the range of Eq. (109). Thus, the entropy for
the (dþ 1)-dimensional Schwarzschild model with correc-
tions from conical singularities takes the form

S ¼ Sð0Þ þ 1

2

�
d� 3

d� 1

�
logSð0Þ þOð1Þ: (113)

In dþ 1 ¼ 4 dimensions, there is no logSð0Þ correction; its
absence can be traced back to the dependence of various
quantities on the boundary condition Xc. In an ensemble
that contains smooth black holes, the boundary conditions

must satisfy Eq. (99), so for fixed �þ, we have �c � X
1

d�1
c .

The specific heat, on the other hand, scales linearly with Xc

at fixed �þ:

Cc ¼ 4�ðd� 1ÞXc�
d�1þ ð1� �d�2þ Þ

d�d�2þ � 2
: (114)

The contributions to Z involve the factor
ffiffiffiffiffiffi
Cc

p
=�c, and for

fixed �þ, this is independent of Xc when dþ 1 ¼ 4. As a
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FIG. 4 (color online). Fractional error in the approximation for
Z as a function of 2�Xc, for different values of �þ in the high-
temperature regime.
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FIG. 3 (color online). The fractional error f¼ðZ �Z numÞ=Z num as a function of 2�Xc, for different values of Bc in the
low (Bc > B�

c) and intermediate (Bcrit
c < Bc < B�

c) temperature
regimes.
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result, the corrections to the free energy and the entropy in
that case are Oð1Þ.

It is important to remember that the canonical partition
function for the Schwarzschild model is not defined as
Xc ! 1, despite the fact that some of the results in this
section seem well behaved in that limit. In the next few
sections, we will consider models that do admit an Xc ! 1
limit. In that case, results analogous to Eq. (113) simplify
quite a bit, and are easier to interpret.

B. Black holes in AdS

The spherically symmetric reduction of gravity with
a negative cosmological constant gives the AdS-
Schwarzschild models. The functions eQ and w in this
case are

wðXÞ ¼ ðd� 1Þ� 1
d�1X

d�2
d�1 þ ðd� 1Þ

‘2
�� 1

d�1X
d

d�1; (115)

eQðXÞ ¼ 1

d� 1
�� 1

d�1X�d�2
d�1; (116)

where ‘ is the AdS length scale and � ¼ Ad�1=8�Gdþ1.

Since wðXÞ=X � X
1

d�1 at large X, this model satisfies the
condition in Eq. (76) for the existence of the partition
function in the Xc ! 1 limit. Rather than considering
the ensemble with finite Xc, we will work with ensembles
where the cavity wall is removed.12

Following the discussion in Sec. IVE, the ensemble is
defined by fixing the period �1. The action for the theory
with the cutoff removed is

�1ðM̂Þ ¼ 1

2
�1wðX̂hÞ � 2�X̂h: (117)

Figure 5 shows plots of the action for representative values
of �1. The action is extremized by black holes with
horizon XhðMÞ that satisfy the smoothness condition

�1 ¼ 4�

w0ðXhÞ ¼
4�‘2�

1
d�1X

1
d�1

h

dX
2

d�1

h þ ðd� 2Þ‘2� 2
d�1

: (118)

Expressed as a function of �1, the possible smooth black
hole horizons Xh are

Xh ¼
�
2�‘2

d�1

�
d�1

�

0
@1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� dðd� 2Þ

�
�1
2�‘

�
2

s 1
Ad�1

:

(119)

This presents three different scenarios for smooth black
holes in the ensemble, assuming dþ 1 � 4 (the case
dþ 1 ¼ 3, the BTZ black hole, will be discussed sepa-

rately). If �1 > 2�‘ffiffiffiffiffiffiffiffiffiffiffi
dðd�2Þ

p , then there are no real solutions of

Eq. (119), and all black holes in the ensemble have a

conical singularity at the horizon. But if �1 < 2�‘ffiffiffiffiffiffiffiffiffiffiffi
dðd�2Þ

p ,

then there are two smooth black holes, with horizons
0<X�

h < Xþ
h , which correspond to a local maximum

(X�
h , with C1 < 0) and minimum (Xþ

h , with C1 > 0) of
the action. The action at the smooth local minimum Xþ

h is

�1ðMÞ ¼ 2�Xþ
h

dðXþ
h Þ 2

d�1 þ ðd� 2Þ‘2� 2
d�1

ð‘2� 2
d�1 � ðXþ

h Þ 2
d�1Þ:

(120)

The ground state of the ensemble is easily determined by
comparing this to the action �1ð0Þ ¼ 0 for the HES solu-
tion (the reduction of ‘‘thermal AdS’’). When Xþ

h <
‘d�1�, the action [Eq. (120)] is positive, and HES is the
ground state of the ensemble; when Xþ

h > ‘d�1�, the

action is negative, and the ground state is the smooth black
hole. The transition between these phases occurs at a

critical value of the period, �crit1 ¼ 2�‘
d�1 , which corresponds

to a Hawking temperature T1 ¼ d�1
2�‘ . Thus, there are two

phases in the model, which can be divided into three

distinct temperature regimes. At low temperatures, T1 <ffiffiffiffiffiffiffiffiffiffiffi
dðd�2Þ

p
2�‘ , there are no smooth black holes in the ensemble,

and the ground state is HES. For an intermediate range of

temperatures,

ffiffiffiffiffiffiffiffiffiffiffi
dðd�2Þ

p
2�‘ < T1 < d�1

2�‘ , two smooth black

holes appear in the ensemble, but the ground state remains
HES. And finally, at high temperatures, T1 > d�1

2�‘ , the

ensemble is dominated by the larger of the two smooth
black hole solutions.
The approximations derived in Sec. IVE for the contri-

butions to the partition function should be accurate as long

as ‘�
1

d�1 � ‘=‘pl 
 1. In the low-temperature regime

where HES dominates the ensemble, �1 > 2�‘ffiffiffiffiffiffiffiffiffiffiffi
dðd�2Þ

p , the

integral in Eq. (74) is approximately

Z 1 ’ ‘T1; (121)

FIG. 5 (color online). The action for the AdS-Schwarzschild
model with the cavity wall removed.

12A very nice treatment of the ensemble with finite Xc may be
found in Ref. [26].
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independent of the dimension dþ 1 of the original model.
The fractional error associated with this approximation
is very small (of order 10�4 or less for ‘=‘pl � 103)

and decreases for lower temperatures and larger values
of ‘=‘pl. In the phase of the theory dominated by the

smooth black hole, 0<�1 < 2�‘
d�1 , the integral [Eq. (74)]

behaves as

Z 1 ’ expð��1ðMÞÞ
�
‘

‘pl

�d�1
2 ð‘T1Þdþ1

2 ; (122)

where the factor in the exponential is given in Eq. (120). At
temperatures less than about twice the critical temperature,
the fractional error in this approximation can be as large as
5% for ‘=‘pl � 103, but at higher temperatures or larger

values of ‘=‘pl, this rapidly drops to a fraction of a percent.

In the high-temperature phase, the contributions
[Eq. (122)] to the partition function are comparable to
corrections from (smooth) quadratic fluctuations around
the ground state. The free energy is F1 ¼ �T1 logZ 1, so

S ¼ �@F1
@T1

¼ 2�Xh þ dþ 1

2
logð‘T1Þ þ . . . ; (123)

where ‘‘. . .’’ is a constant. At high temperatures,
T1 
 d�1

2�‘ , the relation [Eq. (119)] between the horizon

and the temperature is

Xh / ð‘T1Þd�1: (124)

Thus, at high temperatures, the entropy of the smooth black
hole can be expressed as

S ¼ Sð0Þ þ dþ 1

2ðd� 1Þ logS
ð0Þ; (125)

where Sð0Þ ¼ 2�Xh is the dominant contribution to the
entropy coming from the free energy of the smooth
black hole.

C. Exact results for the BTZ black hole

The AdS model with dþ 1 ¼ 3 is an intriguing example
where the contributions to the partition function [Eq. (74)]
can be computed in terms of elementary functions
when Xc ! 1. The condition of Eq. (119) has a nonzero
solution, the BTZ black hole, with horizon

Xh ¼ �‘2

2G3�1
; (126)

where we have used � ¼ ð4G3Þ�1 for d ¼ 2. Thus, unlike
higher-dimensional models, a smooth black hole exists for
ensembles with any value of�1. The action [Eq. (117)] for
the BTZ black hole is

�1ðMÞ ¼ 1

8G3�1
ð�21 � ð2�‘Þ2Þ; (127)

so HES is the ground state of the ensemble for �1 greater
than the critical value �crit1 ¼ 2�‘, and BTZ is the ground
state for �1 < 2�‘.
The action [Eq. (117)] for a black hole with conical

singularity in this model is

�1ðM̂Þ ¼ 1

8G3

�1
�
1þ

�
4G3

‘

�
2
X̂2
h

�
� 2�X̂h: (128)

This appears in the integral in Eq. (74) with the measure

dM̂, which can be rewritten using the condition wðX̂hÞ ¼
2M̂ to give

dM̂ ¼ 4G3

‘2
X̂hdX̂h: (129)

The integral for contributions to the partition function then
takes a form that can be evaluated directly, without the
need for approximations:

Z ’ 4G3

‘2
exp

�
� �1
8G3

�Z 1

0
dX̂hX̂h

	 exp

�
� 2G3

‘2
�1X̂2

h þ 2�X̂h

�
: (130)

Evaluating the integral gives

Z ’ 1

�1
exp

�
� �1

8G3

�
þ expð��1ðMÞÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�3‘2

2G3�
31

s

	
0
@1þ Erf

0
@ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�2‘2

2G3�1

s 1
A
1
A: (131)

In the high-temperature regime, T1 > 2�‘, the factor of
expð��1Þ dominates, and Z is

Z 1 ’ ð‘T1Þ32 expð��1ðMÞÞ: (132)

The entropy of the BTZ is then the usual, leading term, and
a subleading logarithmic correction with coefficient 3=2:

S ¼ �2‘2

G3

T1 þ 3

2
log

�
�2‘2

G3

T1
�
þ . . . : (133)

As with the higher-dimensional AdS models, this is pre-
cisely the sort of correction that is obtained when smooth
fluctuations around the ground state are included in the
path integral. It also agrees with one-loop calculations; see
Ref. [6] and references therein.

D. The Jackiw-Teitelboim model

Another example that can be treated in great detail is the
Jackiw-Teitelboim model [27,28], defined by the functions

wðXÞ ¼ X2; eQðXÞ ¼ 1: (134)

It is convenient to work with the location of the horizon,

rather than the mass parameter M̂. Then the metric function

for a black hole with conical singularity is �̂ ¼ X2 � X̂2
h,

and the action for such a configuration is
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�cðX̂hÞ ¼ �cXc

0
@1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� X̂2

h

X2
c

s 1
A� 2�X̂h: (135)

The smoothness condition that extremizes the action yields

�c ¼ 2�

Xh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2
c � X2

h

q
: (136)

Inverting this expression for Xh identifies a single smooth
black hole that is present in the ensemble for all values of
�c and Xc:

Xh ¼ 2�Xcffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4�2 þ �2

c

p ; (137)

with action

�cðXhÞ ¼ Xcð�c �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2

c þ 4�2
q

Þ: (138)

This expression is always negative, which means that the
smooth black hole dominates HES [with action �cð0Þ ¼ 0].
Unlike the previous examples, the conical ensemble for the
Jackiw-Teitelboim model always has a smooth black hole
for the ground state.

The function wðXÞ for the Jackiw-Teitelboim model
satisfies the condition of Eq. (76), which means that the
Xc ! 1 limit of the ensemble exists. Before considering
the contributions to the partition function for the ensemble
with finite Xc, let us examine this simpler case. The action
for the ensemble with the cavity wall removed is

�1ðX̂hÞ ¼ 1

2
�1X̂2

h � 2�X̂h; (139)

which is minimized by a smooth black hole with
Xh ¼ 2�=�1. The action at this minimum is �1ðXhÞ ¼
�2�2=�1 ¼ �2�2T1, and the contributions [Eq. (74)] to
the partition function are

Z 1 ’
Z 1

0
dX̂hX̂h expð2�2T1Þ

	 exp

�
� 1

2T1
X̂2
h þ 2�X̂h � 2�2T1

�
: (140)

As with the BTZ black hole, this integral can be evaluated
in closed form to give

Z1 ¼ ð2�T1Þ32 expð2�2T1Þ
 
1þ Erfð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2�2T1
p Þ
2

!
þ T1:

(141)

For the semiclassical approximation to hold, the action of
the minimum should be large in units of ℏ, which requires
T1 >>1 in natural units. In that case, the entropy obtained
from Eq. (141) is

S ¼ 4�2T1 þ 3

2
logð4�2T1Þ: (142)

The first term in this expression is the leading contribution
to the entropy of the smooth black hole, and the second
term represents a correction due to the contributions
from conical singularities. The correction once again coin-
cides with the result in Eq. (24) when smooth quadratic
fluctuations around the regular ground state are taken into
account [29].
For finite Xc, the contributions [Eq. (70)] to the semi-

classical partition function cannot be evaluated exactly, but
they are approximated to a high degree of accuracy by a
relatively simple function of the boundary conditions. We
find

Z c ’ expð��cðXhÞÞ 1

ð2�Þ32Xc

 
4�2XcTcffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4�2T2

c

p
!3

2

; (143)

where �cðXhÞ is the action [Eq. (138)] for the smooth black
hole. The fractional error for this approximation, compared
to a numerical evaluation of Eq. (70), is shown in Fig. 6.
The entropy calculated using Eq. (143) consists of a lead-
ing term and corrections

S ¼
�
@

@Tc

ðTc logZ Þ
�
Xc

¼ 4�2XcTcffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4�2T2

c

p þ 3

2
log

 
4�2XcTcffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4�2T2

c

p
!

þ 3

2ð1þ 4�2T2
c Þ

þ . . . ; (144)

where ‘‘. . .’’ indicates terms that are independent of Tc.
The first term in the entropy is the leading behavior asso-
ciated with the smooth black hole, and the next two terms
are the corrections from conical singularity contributions.
For small values of Tc, Eq. (144) is approximately

S ’ 4�2XcTcffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4�2T2

c

p þ 3

2
log

 
4�2XcTcffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4�2T2

c

p
!
; (145)
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FIG. 6 (color online). The fractional error in the approxima-
tion for Z , as a function of 2�Xc, for different ratios of horizon
to cavity size. Each curve is labeled by the value of Xh=Xc.
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which exhibits the same form, Sð0Þ þ 3
2 logS

ð0Þ, as the en-

semble with the cavity wall removed. This is not too

surprising, since �c=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
wce

Qc

p ¼ ðTcXcÞ�1 must be held
fixed in the Xc ! 1 limit, which implies Tc ! 0.

E. Stringy black holes

In this section, we consider three models related to black
holes that arise in string theory, either as solutions of the
beta functions at lowest order in �0, or as exact solutions
that incorporate corrections at all orders in �0. There is an
important difference between this section and the previous
ones: the stringy models must be considered with the
cavity wall removed. In string theory, one cannot introduce
new degrees of freedom in an arbitrary manner (as we have
done with the thermal reservoir), and ad hoc cutoffs on
spacetime fields (the restriction X � Xc on the dilaton) are
usually equivalent to a truncation of states on the world
sheet that spoil the consistency of the theory. Since the
models we consider all have noncompact target spaces
with X ! 1 asymptotically, the Xc ! 1 limit is required
for any calculations that are meant to be interpreted in the
context of string theory. Additional discussion can be
found in Ref. [7].

It is interesting that there is an intrinsic way to identify
stringlike behavior within the zoo of two-dimensional
dilaton gravity models. Namely, a universal property of
all stringy models is that the Weyl-invariant function w is
linear in the dilaton field X for large values of the dilaton
(which means weak coupling from a target-space perspec-
tive). Linearity of w is not just a technical curiosity, but has
important physical implications: by virtue of the inequality
in Eq. (76), stringy models always exhibit a Hagedorn
temperature. The existence of a Hagedorn temperature
(or, equivalently, asymptotic linearity of w) therefore can
be considered as a defining property of stringy models.

1. Witten black hole

The Witten black hole [19,30,31] is obtained from a
solution of bosonic string theory with the world-sheet
dynamics described by a SLð2;RÞ=Uð1Þ coset model.
When the level of the world-sheet current algebra is taken
to be large, the tree-level beta functions at lowest order in
�0 have a black hole solution of the form of Eq. (7). The
equations may be obtained from an action with UðXÞ and
VðXÞ such that

wðXÞ ¼ �X; eQðXÞ ¼ 1

�X
; (146)

with the positive parameter � related to the string scale as

�� 1=
ffiffiffiffiffi
�0p
.

The condition of Eq. (76) implies that the Xc ! 1 limit
is only defined for this model if �1 > 4�=�. In this limit,
the action is

�1ðX̂hÞ ¼ 2�X̂h

�
��1
4�

� 1

�
: (147)

The smoothness condition that extremizes the action gives
a single value of �1 for which a smooth black hole exists:

�1 ¼ 4�

�
: (148)

This corresponds to the Hagedorn temperature for the
model, at which point contributions from states with a
conical singularity at the horizon cause the partition func-
tion to diverge. Therefore, the Xc ! 1 limit of this model
does not admit an ensemble containing a smooth black
hole. However, one can see from Eq. (146) that black hole
solutions would have scalar curvature of order 1=�0 near
the horizon, indicating that �0 corrections are important. In
the next section, we will consider a model that takes these
corrections into account and always has a black hole
ground state.
Before moving on, it is worth considering two more

aspects of the model in Eq. (146). First, the partition
function for this model is well defined in the Xc ! 1 limit
as long as �1 > 4�=�, in which case the ground state is
HES. The integral in Eq. (74) can be directly evaluated,
and gives

Z 1 ¼ 1

�1�� 4�
; (149)

where Th ¼ �=4� is the Hagedorn temperature. Second,
despite problems with implementing a finite Xc cutoff in
string theory, one might consider this model as an example
of a dilaton gravity where the contributions to the partition
function can be calculated exactly for finite Xc. The
action is

�cðX̂hÞ ¼ �c�Xc

0
@1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� X̂h

Xc

s 1
A� 2�X̂h; (150)

with local extrema Xh given by the smoothness condition

�c ¼ 4�

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� Xh

Xc

s
: (151)

The ensemble contains a single smooth black hole if
0<�c < 4�=�, and the action for this configuration is
always negative. Thus, there are two phases: a HES ground
state for�c > 4�=�, and a smooth-black-hole ground state
for 0<�c < 4�=�. The contributions to the partition
function from conical singularities can be calculated
exactly in either phase by expressing the action in terms

of �c and Êc:

�cðX̂hÞ ¼
�
�c � 4�

�

�
Êc þ 2�

�2Xc

Ê2
c: (152)

Then the integral in Eq. (70) is given in terms of exponen-
tials and error functions. The exact form is not especially
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enlightening, but the behavior simplifies when Xc 
 1. In
the low-temperature phase, �c > 4�=�, we obtain essen-
tially the same result as Eq. (149):

Z c ’ 1

�c�� 4�
ðXc 
 1Þ: (153)

At high temperatures, 0<�c < 4�=�, the smooth black
hole dominates, and the contributions to Eq. (70) are
approximately

Z c ’
ffiffiffiffiffiffi
Xc

p
2

ffiffiffi
2

p exp

�
2�Xc

�
1� �c�

4�

�
2
�

ðXc 
 1Þ;
(154)

where the factor in the exponential is minus the action for
the smooth black hole. The free energy is �Tc logZ c, and
the resulting entropy is

S ¼ 2�Xh þ log

� ffiffiffiffiffiffi
Xc

p
2
ffiffiffi
2

p
�
: (155)

Unlike the previous examples, the correction does not

appear to be proportional to logSð0Þ. However, the approxi-
mate result [Eq. (154)] assumes Xc 
 1, and this assump-
tion must be treated carefully, since the model does not
have an Xc ! 1 limit above the Hagedorn temperature
�=4�. The large-Xc result [Eq. (155)] can only be trusted if
�c remains much less than 4�=�, which implies that
Xh=Xc must be close to 1. Then Eq. (155) becomes

S ’ 2�Xh þ 1

2
logð2�XhÞ þOð1Þ: (156)

This is, in a sense, the expected result: the functions
[Eq. (146)] that define this model may also be thought of
as the d ! 1 limit of the Schwarzschild model, and
Eq. (156) is indeed the d ! 1 limit of Eq. (113). Note,
though, that the inverse specific heat for the Schwarzschild
model goes to zero in this limit, so perhaps a better
interpretation of Eq. (156) is the leading term in a 1=d
expansion for large but finite d.

2. Exact string black hole

The black hole background with �0 corrections taken
into account was studied in Ref. [32]. The world-sheet
theory is described by an SLð2;RÞ=Uð1Þ gauged WZW
model with level k > 2. As shown in Ref. [33], the exact
string black hole corresponds to a dilaton gravity model
with

wðXÞ ¼ 2bð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �2

q
� 1Þ;

eQðXÞ ¼ 1

2bð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �2

p þ 1Þ
;

(157)

where the field � is related to the conventionally defined
dilaton X by

X ¼ �þ sinh�1�: (158)

The parameter b depends on both the level of the model
and the string tension

b ¼ 1ffiffiffiffiffi
�0p ffiffiffiffiffiffiffiffiffiffiffiffi

k� 2
p : (159)

For a critical string theory with a target space of dimension
D, it satisfies the condition

D� 26þ 6�0b2 ¼ 0: (160)

Normally this would fix k at a specific value (kcrit ¼ 9
4 for a

critical string theory in two dimensions), but as in
Ref. [34], we will assume that extra matter fields are
present that contribute to the central charge. This modifies
the condition [Eq. (160)], which has the effect of allowing
us to consider other values of k. In practice, b is treated as a
fixed parameter, and the level takes values in the range
2< k <1.
The value of the field � at the horizon is related to the

level of the CFT by

�h ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kðk� 2Þp ! Xh

¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kðk� 2Þp þ sinh�1ð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

kðk� 2Þp Þ: (161)

The smoothness condition with the cavity wall removed
has solutions for any value of k > 2:

�1 ¼ 2�

b

ffiffiffiffiffiffiffiffiffiffiffiffi
k

k� 2

s
; (162)

corresponding to a black hole of mass

M ¼ bðk� 2Þ: (163)

As expected, this black hole is always the ground state of
the theory. The on-shell action for the black hole is explic-
itly negative for all k > 2:

�1ðMÞ ¼ � 1

4G2

sinh�1ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kðk� 2Þ

p
Þ; (164)

where we have restored factors of the two-dimensional
Newton’s constant G2. Computing the entropy from the

leading term in the free energy Fð0Þ1 ¼ T1�1 gives

Sð0Þ ¼ Xh

4G2

¼ 1

4G2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kðk� 2Þp þ 1

4G2

sinh�1ð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kðk� 2Þp Þ:

(165)

Now, according to the approximation in Sec. IVE, the
contributions to the partition function from configurations
with a conical singularity give

Z 1 ’ expð��1ðMÞÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2�C1

p
�1

; (166)

which suggests a subleading correction to the free energy
of the form
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Fð1Þ1 ’ �T1 logðT1
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2�C1

p Þ ¼ �T1 logðk1
4ðk� 2Þ34Þ;

(167)

and consequently a correction to the entropy of the form

Sð1Þ ¼ logðk1
4ðk� 2Þ34Þ þ k� 1

2
: (168)

Since we are considering a solution of the genus-zero beta
functions, we must take G2 � 1 to ensure that the string
coupling is small for any value of k. Then, in the semiclas-

sical limit k 
 1, the results for Sð0Þ and Sð1Þ simplify to

Sð0Þ ’ 1

4G2

ðkþ logkÞ þO
�
1

G2

�
; (169)

Sð1Þ ’ kþ logkþOð1Þ: (170)

We arrive at an interesting result; the corrected entropy
takes the form

S ’
�

1

4G2

þ 1

�
ðkþ logkþOð1ÞÞ: (171)

3. 2D type-0A black holes

The genus-zero beta functions of type-0A string theory
have a solution at leading order in �0 that describes a two-
dimensional black hole with constant Ramond-Ramond
flux [35]. This can be viewed as a solution of a model
with functions w and eQ given by

wðXÞ ¼ �X � �q2 logX; eQðXÞ ¼ 1

�X
; (172)

where �� 1=
ffiffiffiffiffi
�0p

is positive, and q is proportional to the
flux of each of the two Ramond-Ramond gauge fields.13

The ratio wðXÞ=X approaches � in the limit X ! 1,
indicating that the ensemble is only defined at temperatures
below TH ¼ �=4� when the cavity wall is removed. This
is the same Hagedorn temperature as the Witten black hole
model, but unlike that model, the ensemble now contains a
smooth black hole. The smoothness condition gives

T1 ¼ TH

Xh � q2

Xh

; (173)

which identifies a single black hole Xh for any T1 below
the Hagedorn temperature:

Xh ¼ q2TH

TH � T1
: (174)

Combined with the upper limit on the temperature, this
result implies that the dilaton at the horizon satisfies
Xh > q2. Indeed, it turns out that q2 sets a lower bound

on the dilaton at the horizon for any configuration in the
ensemble, with or without a conical singularity. This is due
to the fact thatwðXÞ has a minimum at X ¼ q2; the require-

ment �̂ðXÞ> 0 for X > X̂h then implies X̂h � q2.
The action for the smooth black hole is [37]

�1ðXhÞ ¼ 2�q2
TH

T1

�
1� logq2 þ log

�
1� T1

TH

��
; (175)

and the action for a configuration with a conical singu-
larity is

�1ðX̂hÞ ¼ 2�X̂h

TH

T1

�
1� T1

TH

�
� 2�q2

TH

T1
logX̂h: (176)

To determine the ground state, we must compare the action
for the smooth black hole to the action for the configuration

with X̂h taking the the minimum value X̂h ¼ q2. Their
difference is

�1ðXhÞ � �1ðX̂h ¼ q2Þ
¼ 2�q2

TH

T1

�
log

�
1� T1

TH

�
þ T1

TH

�
; (177)

which is always negative, since the ratio T1=TH is less than
1. Thus, the ground state of the ensemble is always the
smooth black hole [Eq. (174)].
Given the action [Eq. (175)] for the smooth black

hole, the leading contribution to the free energy is

Fð0Þ
1 ¼ T1�1ðXhÞ. The resulting entropy is

Sð0Þ ¼ 2�Xh ¼ 2�q2TH

TH � T1
: (178)

Wemay now consider corrections from configurations with
conical singularities. The integral in Eq. (74) can be eval-
uated exactly using incomplete gamma functions, but for
our purposes the approximation of Eq. (81) is sufficient:

Z 1 ’ expð��1ðXhÞÞ 2�qT
3
21T

1
2

H

TH � T1
: (179)

The contribution to the free energy is

Fð1Þ1 ¼ �T1 log

�
2�qT

3
21T

1
2

H

TH � T1

�
; (180)

and the contribution to the entropy is

Sð1Þ ¼�@Fð1Þ
1

@T1
¼ log

�
2�qT

3
21T

1
2

H

TH�T1

�
þ T1
TH�T1

þ3

2
: (181)

As in the previous two examples, the relation between Sð1Þ

and Sð0Þ is not clear until we consider the conditions for
the semiclassical approximation. With the cavity wall
removed, the semiclassical limit is obtained by taking

q2 
 Xh 
 1. In that case, Sð1Þ becomes

13Both Ramond-Ramond gauge fields have the same flux
qR=2��

0, in the conventions of Ref. [36]. This is related to
the parameter in wðXÞ by q ¼ qR=

ffiffiffiffiffiffiffiffiffi
16�

p
.
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Sð1Þ ’ 1

2
logSð0Þ þO

�
Xh

q2

�
; (182)

which is the same general form as the Witten model at
finite Xc.

VI. DISCUSSION AND OUTLOOK

We have considered black holes in an unsuitable box—a
cavity coupled to a thermal reservoir at a temperature that
is, in general, different from the Hawking temperature—
and studied the thermodynamics of a ‘‘conical ensemble’’
that includes these spaces alongside the more conventional
smooth field configurations. The focus was on black
holes that allow an effective description in terms of two-
dimensional dilaton gravity, including Schwarzschild,
Schwarzschild-AdS, Jackiw-Teitelboim, and various
stringy black holes. We demonstrated that smooth solu-
tions of the equations of motion are locally (perturbatively)
stable against singular configurations with a small angular
deficit or surplus, proved that the ground state of the
conical ensemble never exhibits a conical singularity, and
calculated corrections to the entropy and free energy for
several pertinent examples.

In all the examples we considered, configurations with a
conical singularity result in corrections to the entropy that
take the same form as generic logarithmic corrections from
thermal (and in some cases also quantum) fluctuations. In
fact, our results can be compared with previous results for
entropy corrections from these sorts of fluctuations if the
following caveats are taken into account:

(1) In many cases existing results have been obtained
in the microcanonical ensemble. Translating our
results, derived in the canonical ensemble, into cor-
rections for the microcanonical entropy changes the
sign of the coefficient of the logarithmic term.

(2) Matter interactions and nonspherical excitations
have been neglected, so naturally we can compare
only with results where these contributions are
switched off.

(3) In the Schwarzschild model, the partition function
does not exist in the Xc ! 1 limit, so our results are
only meaningful for a finite cavity.

With these caveats in mind, we can present the
Schwarzschild result [Eq. (113)] also as a correction to
the microcanonical entropy [which coincides at leading

order with the canonical entropy Sð0Þ]:

SSchwarzschildmc

¼ Sð0Þ þ 1

d� 1
logSð0Þ

�
Clocal � 1

2
ðd� 3Þ þ CUð1Þ

�
:

(183)

Here Clocal refers to all matter fields and graviton excita-
tions (basically their contributions to the trace anomaly),

andCUð1Þ is a separate contribution fromUð1Þ gauge fields;
our simple approach is not sensitive to either of these
contributions. The result of Eq. (183) agrees precisely
with Eq. (1.4) in Ref. [6] when matter fields are switched
off and the graviton excitations are frozen.14 Likewise,
the microcanonical analogs of the entropy corrections
[Eq. (125)] for the AdS-Schwarzschild model and
[Eq. (133)] for the BTZ black hole are the same as the
results obtained in Ref. [4]. We consider this to be a
consequence of the semiclassical approximation, where
the leading corrections to the partition function are given
by a Gaussian integral. In both cases—conical singularities
and thermal fluctuations—the coefficient of the quadratic
term in the exponent is proportional to 1=Cc (or 1=C1),
leading to similar corrections.
In our analysis we have only taken into account configu-

rations with a single conical defect, located at the black
hole horizon. A possible generalization is the inclusion of
multiple conical defects, which are not necessarily located
at the horizon. This is challenging for at least two reasons.
First, the existence and description of multiple conical
singularities on a given space is an open problem that
depends on curvature bounds and other model-specific
quantities [38,39]. Second, the action of Eq. (4) is not
suitable for this purpose. We have assumed that field con-
figurations in the ensemble exhibit the same symmetries as
the cavity. From the point of view of a higher-dimensional
theory, the cavity is spherical and elements of the ensemble
are spherically symmetric. Including less symmetric con-
figurations in the ensemble requires a more general action
that contains terms not present in Eq. (4), and ignoring the
contributions from these terms leads to nonsensical results.
For instance, it is tempting to try to study a conical singu-
larity somewhere between the horizon of a smooth black

hole and the cavity wall by replacing �X̂h� in Eq. (46)
with �Xd�, for some Xh < Xd < Xc. In any model that
admits an Xc ! 1 limit, this gives an action that is
unbounded below for�> 0. But this pathological behavior
is simply the result of neglecting important contributions to
the action; there is no catastrophic instability that suddenly
produces conical singularities at large Xd.
One obvious shortcoming of our analysis is that it

applies only to black holes that are symmetric enough to
allow an effective two-dimensional description in terms of
a dilaton gravity model with the action in Eq. (4). It would
be of interest to lift our results to higher dimensions,

14The ensemble in which that result was calculated is called
‘‘mixed ensemble’’ in the notation of Ref. [6], but it really
corresponds to what we call here ‘‘microcanonical,’’ since by
construction we neglect angular momentum and are thus only
sensitive to the s-wave (or J ¼ 0) contributions. Therefore, this
is the appropriate ensemble to compare with. The four-
dimensional microcanonical result contains an additional con-
tribution coming from the Cartan generators of the rotation
group, to which our analysis naturally is blind.
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particularly to three and four dimensions. As an example of
what one could learn from such a generalization, let us
focus on three dimensions. A few years ago the interest in
three-dimensional (quantum) gravity was rekindled; see,
e.g., Refs. [40–43]. In particular, Maloney and Witten
showed that the Euclidean partition function of pure
Einstein gravity with a negative cosmological constant is
not a sensible CFT partition function and does not factorize
holomorphically [44]. They arrived at their result by taking
into account all known contributions to the Euclidean
partition function on the gravity side, assuming smooth
metrics, and speculated (among other logical possibilities)
that the partition function could be made sensible by taking
into account configurations with a conical defect. Given
the results of the present work, this option does not seem to
be likely: we have demonstrated in all explicit examples
that the leading contributions from conical defects to the
partition function behave in the same way as the leading
contributions from thermal or quantum fluctuations. If it
remains true in the presence of conical defects that the
partition function of three-dimensional Einstein gravity is
one-loop exact, this means that the qualitative features of
the partition function are unlikely to change dramatically

upon the inclusion of conical defects. It would be of
interest to demonstrate this explicitly by lifting our results
to three dimensions.
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Nucléaires (IISN, Belgium); his work is supported by the
Belgian Federal Office for Scientific, Technical and
Cultural Affairs through the Interuniversity Attraction
Pole P6/11. D.G. and R.M. thank the Perimeter Institute
and the Center for Theoretical Physics at MIT for hospital-
ity and support during the early stages of this work. Finally,
R.M. would like to acknowledge the birth of his wonderful
daughter Willa. Her arrival in February 2012 provided him
with his best excuse yet for not completing a project on
schedule.

[1] S. Carlip and C. Teitelboim, Classical Quantum Gravity
12, 1699 (1995).

[2] D. J. Gross, M. J. Perry, and L.G. Yaffe, Phys. Rev. D 25,
330 (1982).

[3] S.W. Hawking and D.N. Page, Commun. Math. Phys. 87,
577 (1983).

[4] S. Das, P. Majumdar, and R.K. Bhaduri, Classical
Quantum Gravity 19, 2355 (2002).

[5] S. N. Solodukhin, Phys. Rev. D 51, 609 (1995).
[6] A. Sen, arXiv:1205.0971.
[7] D. Grumiller and R. McNees, J. High Energy Phys. 04

(2007) 074.
[8] D. Grumiller, W. Kummer, and D.V. Vassilevich, Phys.

Rep. 369, 327 (2002).
[9] D. Grumiller and R. Meyer, Turk. J. Phys. 30, 349

(2006).
[10] J.W. York, Jr., Phys. Rev. Lett. 28, 1082 (1972).
[11] G.W. Gibbons and S.W. Hawking, Phys. Rev. D 15, 2752

(1977).
[12] D. Grumiller, arXiv:0711.4115.
[13] D. Grumiller and P. van Nieuwenhuizen, Phys. Lett. B

682, 462 (2010).
[14] H.-J. Schmidt, J. Math. Phys. (N.Y.) 32, 1562 (1991).
[15] T. Banks and M. O’Loughlin, Nucl. Phys. B362, 649

(1991).
[16] J. Gegenberg, G. Kunstatter, and D. Louis-Martinez, Phys.

Rev. D 51, 1781 (1995).
[17] R. C. Tolman, Relativity, Thermodynamics, and

Cosmology (Oxford University Press, Oxford, 1934).
[18] J.W. York, Jr., Phys. Rev. D 33, 2092 (1986).

[19] G.W. Gibbons and M. J. Perry, Int. J. Mod. Phys. D 01,
335 (1992).

[20] E. Farhi, A. H. Guth, and J. Guven, Nucl. Phys. B339, 417
(1990).

[21] G. Hayward, Phys. Rev. D 47, 3275 (1993).
[22] D. Brill and G. Hayward, Phys. Rev. D 50, 4914

(1994).
[23] D. V. Fursaev and S.N. Solodukhin, Phys. Rev. D 52, 2133

(1995).
[24] L. Landau and E. Lifshitz, Statistical Physics, Course of

Theoretical Physics Vol. 5 (Pergamon Press, London,
1959).

[25] M.O. Katanaev, W. Kummer, and H. Liebl, Nucl. Phys.
B486, 353 (1997).

[26] M.M. Akbar, Phys. Rev. D 82, 064001 (2010).
[27] R. Jackiw, in Quantum Theory of Gravity, edited

by S. Christensen (Adam Hilger, Bristol, 1984), p. 403.
[28] C. Teitelboim, in Quantum Theory of Gravity, edited by S.

Christensen
(Adam Hilger, Bristol, 1984), pp. 327.

[29] D. Grumiller, in Path Integrals from Quantum Information
to Cosmology, edited by C. Burdik, N. Navratil, and
S. Posta (JINR Publishing Department, Prague, June,
2005).

[30] E. Witten, Phys. Rev. D 44, 314 (1991).
[31] C. R. Nappi and A. Pasquinucci, Mod. Phys. Lett. A 07,

3337 (1992).
[32] R. Dijkgraaf, H. Verlinde, and E. Verlinde, Nucl. Phys.

B371, 269 (1992).
[33] D. Grumiller, J. High Energy Phys. 05 (2005) 028.

BLACK HOLES IN THE CONICAL ENSEMBLE PHYSICAL REVIEW D 86, 124043 (2012)

124043-23

http://dx.doi.org/10.1088/0264-9381/12/7/011
http://dx.doi.org/10.1088/0264-9381/12/7/011
http://dx.doi.org/10.1103/PhysRevD.25.330
http://dx.doi.org/10.1103/PhysRevD.25.330
http://dx.doi.org/10.1007/BF01208266
http://dx.doi.org/10.1007/BF01208266
http://dx.doi.org/10.1088/0264-9381/19/9/302
http://dx.doi.org/10.1088/0264-9381/19/9/302
http://dx.doi.org/10.1103/PhysRevD.51.609
http://arXiv.org/abs/1205.0971
http://dx.doi.org/10.1088/1126-6708/2007/04/074
http://dx.doi.org/10.1088/1126-6708/2007/04/074
http://dx.doi.org/10.1016/S0370-1573(02)00267-3
http://dx.doi.org/10.1016/S0370-1573(02)00267-3
http://dx.doi.org/10.1103/PhysRevLett.28.1082
http://dx.doi.org/10.1103/PhysRevD.15.2752
http://dx.doi.org/10.1103/PhysRevD.15.2752
http://arXiv.org/abs/0711.4115
http://dx.doi.org/10.1016/j.physletb.2009.11.022
http://dx.doi.org/10.1016/j.physletb.2009.11.022
http://dx.doi.org/10.1063/1.529267
http://dx.doi.org/10.1016/0550-3213(91)90547-B
http://dx.doi.org/10.1016/0550-3213(91)90547-B
http://dx.doi.org/10.1103/PhysRevD.51.1781
http://dx.doi.org/10.1103/PhysRevD.51.1781
http://dx.doi.org/10.1103/PhysRevD.33.2092
http://dx.doi.org/10.1142/S0218271892000161
http://dx.doi.org/10.1142/S0218271892000161
http://dx.doi.org/10.1016/0550-3213(90)90357-J
http://dx.doi.org/10.1016/0550-3213(90)90357-J
http://dx.doi.org/10.1103/PhysRevD.47.3275
http://dx.doi.org/10.1103/PhysRevD.50.4914
http://dx.doi.org/10.1103/PhysRevD.50.4914
http://dx.doi.org/10.1103/PhysRevD.52.2133
http://dx.doi.org/10.1103/PhysRevD.52.2133
http://dx.doi.org/10.1016/S0550-3213(96)00624-4
http://dx.doi.org/10.1016/S0550-3213(96)00624-4
http://dx.doi.org/10.1103/PhysRevD.82.064001
http://dx.doi.org/10.1103/PhysRevD.44.314
http://dx.doi.org/10.1142/S021773239200272X
http://dx.doi.org/10.1142/S021773239200272X
http://dx.doi.org/10.1016/0550-3213(92)90237-6
http://dx.doi.org/10.1016/0550-3213(92)90237-6
http://dx.doi.org/10.1088/1126-6708/2005/05/028


[34] V. A. Kazakov and A.A. Tseytlin, J. High Energy Phys. 06
(2001) 021.

[35] N. Berkovits, S. Gukov, and B. C. Vallilo, Nucl. Phys.
B614, 195 (2001).

[36] M.R. Douglas et al., arXiv:hep-th/0307195.
[37] J. L. Davis and R. McNees, J. High Energy Phys. 09

(2005) 072.
[38] M. Troyanov, Trans. Am. Math. Soc. 324, 793 (1991).
[39] M. Troyanov, arXiv:math/0702666.

[40] E. Witten, arXiv:0706.3359.
[41] W. Li, W. Song, and A. Strominger, J. High Energy Phys.

04 (2008) 082.
[42] S. Carlip, S. Deser, A. Waldron, and D.K. Wise, Classical

Quantum Gravity 26, 075008 (2009).
[43] D. Grumiller and N. Johansson, J. High Energy Phys. 07

(2008) 134.
[44] A. Maloney and E. Witten, J. High Energy Phys. 02 (2010)

029.

DANIEL GRUMILLER, ROBERT MCNEES, AND SIMONE ZONETTI PHYSICAL REVIEW D 86, 124043 (2012)

124043-24

http://dx.doi.org/10.1088/1126-6708/2001/06/021
http://dx.doi.org/10.1088/1126-6708/2001/06/021
http://dx.doi.org/10.1016/S0550-3213(01)00413-8
http://dx.doi.org/10.1016/S0550-3213(01)00413-8
http://arXiv.org/abs/hep-th/0307195
http://dx.doi.org/10.1088/1126-6708/2005/09/072
http://dx.doi.org/10.1088/1126-6708/2005/09/072
http://dx.doi.org/10.1090/tran/1991-324-02
http://arXiv.org/abs/math/0702666
http://arXiv.org/abs/0706.3359
http://dx.doi.org/10.1088/1126-6708/2008/04/082
http://dx.doi.org/10.1088/1126-6708/2008/04/082
http://dx.doi.org/10.1088/0264-9381/26/7/075008
http://dx.doi.org/10.1088/0264-9381/26/7/075008
http://dx.doi.org/10.1088/1126-6708/2008/07/134
http://dx.doi.org/10.1088/1126-6708/2008/07/134
http://dx.doi.org/10.1007/JHEP02(2010)029
http://dx.doi.org/10.1007/JHEP02(2010)029

