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We construct the rank-n finite temperature logarithmic conformal field theory (LCFT) starting from the

n-coupled scalar field theory in the Bañados-Teitelboim-Zanelli black hole background. Its zero

temperature limit reduces to a rank-n LCFT in the AdS3 background whose gravity dual is a polycritical

gravity. We compute all two-point functions of a rank-n finite temperature LCFT. Using the retarded

Green’s functions on the boundary, we obtain quasinormal modes of scalar An which satisfies the 2nth

order linearized equation. Furthermore, the absorption cross section of An indicates a feature of ln
n�1½!‘�

correction to the Klein-Gordon mode.
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Critical gravity based on higher-curvature terms in the
AdSdþ1 spacetimes [1–4] has been regarded as a toy model
for quantum gravity. At the critical point of avoiding the
ghosts, a degeneracy takes place and massive gravitons
coincide with massless gravitons. All massive gravitons
are replaced by an equal amount of logarithmic modes at
the critical point, leading to the critical gravity (log-gravity).
According to the dictionary of AdS-LCFT correspondence,
one finds that a rank-2 logarithmic conformal field theory
(LCFT) is dual to a critical gravity [5–7].

However, one has to face the nonunitarity issue of the
log-gravity theory, because it contains higher-derivative
terms. In order to resolve this issue, a polycritical gravity
with a 2nðn > 2Þ derivative was introduced to provide
multiple critical points [8] whose CFT dual seems to be a
rank-n LCFT. A consistent unitary truncation of polycrit-
ical gravity was performed at the linearized level for odd n
but not for even n [9].

On the other hand, an n-coupled scalar field model in the
AdSdþ1 spacetimes has been proposed as a toy model for
a gravitational dual to a rank-n LCFT [10]. By introducing
n� 1 auxiliary scalar fields, thismodel could be rewritten as
a two-derivative theory. The critical point is obtained when
all masses of the n-scalar fields degenerate. The n� 1
higher-order logarithmic modes appear as logarithmic part-
ners of the Klein-Gordon scalar A1. This model is compared
to the 2n-derivative Lee-Wick model, where the odd n and
the even n cases feature a qualitative difference [11].

In this paper, we will investigate an n-coupled scalar field
model on the Bañados-Teitelboim-Zanelli (BTZ) black hole
background [12]. Our purpose is twofold. One is to recog-
nize the difference in the AdS-LCFT correspondence
between an n-coupled scalar field model on the AdS3—a
rank-n (zero temperature) LCFT and an n-coupled scalar
field model on the BTZ black hole—a rank-n finite tem-
perature LCFT. The other is to compute the quasinormal

frequencies of a field An satisfying ðr2
B �m2ÞnAn ¼ 0 and

the absorption cross section from scattering An off the BTZ
black hole by using the retarded Green’s function of rank-n
finite temperature LCFT. Actually, this computation is a
formidable task when using a single scalar equation

ðr2
B �m2Þn’ ¼ 0: (1)

Instead, employing the n-coupled scalar field model to give
ðr2

B �m2ÞnAn ¼ 0 eventually, one could compute the qua-
sinormal frequencies and absorption cross section in the
low-temperature and massless limits.
We take a toy scalar model for the polycritical gravity

with n-coupled scalar fields with degenerate masses

S ¼
Z

d3x
ffiffiffiffiffiffiffi�g

p ½R� 2�� þ S�; (2)

where S� is given by

S� ¼ � 1

2

Z
d3x

ffiffiffiffiffiffiffi�g
p Xn

i;j¼1

½�ij@��i@
��j þ �ij�i�j�

(3)

with the n-dimensional matrices �ij and �ij [10]. Now we

introduce a background metric �g�� of the BTZ black hole

with the cosmological constant � ¼ �1=‘2 ¼ �1 [12]:

ds2B ¼ �g��dx
�dx�

¼ �ðr2 � r2þÞðr2 � r2�Þ
r2

dt2 þ r2

ðr2 � r2þÞðr2 � r2�Þ
dr2

þ r2
�
d�þ rþr�

r2
dt

�
2
: (4)

Here, the Arnowitt-Deser-Misner mass M ¼ r2þ � r2�,
angular momentum J ¼ 2rþr�, and right and left tem-
perature TR=L ¼ ðrþ � r�Þ=2�.
We consider the perturbation around the background

spacetimes (4) of �i ¼ ��i þ Ai with
��i ¼ 0. Then the

linearized equations are given by
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ðr2
B �m2ÞA1 ¼ 0; ðr2

B �m2ÞAp ¼ Ap�1 (5)

with p ¼ 2; . . . ; n, which lead to the 2nth order differential
equation for An as

ðr2
B �m2ÞnAn ¼ 0: (6)

It is noted that unlike Eq. (1), Eq. (6) was obtained from the
recursion relation, which means that the equation for Ap is

recursively related to A1.
We are in a position to compute the bulk-to-boundary

propagators so that a rank-n finite temperature LCFT is
formed on the boundary. The bulk scalar Ai is represented
by bulk-to-boundary propagatorsKij, which relate the bulk

solution to the boundary source fields AiðbÞ. The propagator
Kij is given as

Kij ¼

0 0 � � � 0 K1

0 0 � � � K2 K2

..

. ..
. ..

. ..
. ..

.

K1 K2 � � � Kn�1 Kn

0
BBBBBB@

1
CCCCCCA: (7)

Here K1 and Kp with p ¼ 2; . . . ; n are

K1 ¼ K1n ¼ K2n�1 ¼ � � � ¼ Kn1; (8)

Kp ¼ Kpn ¼ Kpþ1n�1 ¼ � � � ¼ Knp; (9)

which satisfy the following relations:

ðr2
B �m2ÞK1 ¼ 0; ðr2

B �m2ÞKp ¼ Kp�1: (10)

In this case, K1 and Kp correspond to the bulk-to-boundary

propagators of the Klein-Gordon mode A1 and mode Ap,

respectively. Importantly, the Kn propagator satisfies

ðr2
B �m2ÞnKn ¼ 0: (11)

The solutions Aiðr; uþ; u�Þ to (5) are written as

Ai ¼
Z

du0þdu0�
�Xn
j¼1

Kijðr; uþ; u�; u0þ; u0�ÞAjðbÞ
�

(12)

with u� ¼ �� t. It is well known that, in the BTZ black
hole background, K1 can be found to be the solution to the
Klein-Gordon equation [13]

K1ðr; uþ; u�; u0þ; u0�Þ ¼
�

N�2TRTL

Me�TL�uþþ�TR�u�=4rþ r sinhð�TL�uþÞ sinhð�TR�u�Þ
�4 � N½fðr; uþ; u�; u0þ; u0�Þ�4; (13)

where �u� ¼ u� � u0�, 4ð4� 2Þ ¼ m2, and N is a nor-
malization constant. Here the Hawking temperature TH is
defined by TH ¼ 2=ð1=TR þ 1=TLÞ. It is worth noting that
a general formula for the bulk-to-boundary propagator Kp

leads to

Kp ¼ 1

ðp� 1Þ!
dp�1

ðdm2Þp�1
K1

¼ K1

2p�1ðp� 1Þ!ð4 � 1Þp�1

�
�
lnp�1½f� þ 1

N

�Xp�1

l¼1
p�1Cl

�
@lN

@4l

�
lnp�l�1½f�

�

þ 1

ð4 � 1ÞkN
�Xp�2

k¼1

bkp
Xp0

l¼0
p0Cl

�
@lN

@4l

�
lnp

0�l½f�
��
;

(14)

where p ¼ 2; . . . ; n, nCi � n!
i!ðn�iÞ! , bkp are constant, and

p0 ¼ p� k� 1. Here we observe the highest order loga-
rithmic term of ‘‘lnp�1½f�K1’’ showing that the bulk-
to-boundary operator is determined as the solution to
the 2pth order differential equation ðr2

B �m2ÞpKp ¼ 0.
Now we consider an on-shell bilinear action Seff on the
boundary:

2Seff ¼ � lim
rs!1

Z
s
duþdu�

ffiffiffiffiffiffiffiffi��
p �Xn

i;j¼1

�ijAiðn̂ � rÞAj

�
;

(15)

which leads to a complicated expression (see Ref. [14])
obtained from inserting Eq. (12) with (13) and (14) into
(15). Following the AdS-LCFT correspondence, we wish
to couple the boundary values AiðbÞ of the fields to their
dual operators Oi as

R
duþdu�

ffiffiffiffiffiffiffiffi��
p P

n
i¼1 AiðbÞOi for the

symmetric-type coupling. This shows clearly the one-to-
one correspondence between AiðbÞ and Oi. One can derive
the two-point functions for the dual conformal operators
Oi as follows:

hOiðuþ; u�ÞOj�ið0Þi ¼ �2Seff
�AiðbÞðuþ; u�Þ�Aj�iðbÞð0Þ ¼ 0;

	kk0 hOkðuþ; u�ÞOk0 ð0Þi ¼ �2Seff
�AkðbÞðuþ; u�Þ�Ak0ðbÞð0Þ

¼ 2��kk0 4 N

�
�TL

sinh½�TLuþ�
�4

�
�

�TR

sinh½�TRu��
�4

; (16)

where k0 ¼n�kþ1with k¼1; . . . ;n and i ¼ 1; . . . ; n� 1,
j ¼ iþ 1, iþ 2; . . . ; n. For s ¼ pþ q� n� 1> 0 with
p; q ¼ 2; . . . ; n, the two-point functions are given by
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pqhOpðuþ; u�ÞOqð0Þi ¼ �2Seff
�ApðbÞðuþ; u�Þ�AqðbÞð0Þ

¼ 4N½~fð1Þ�42��pq �
�

1

2sðsÞ!ð4 � 1Þs
�
lns½~fð�Þ� þ 1

N

Xs
l¼1

salln
s�l½~fð�Þ� þ s

4 lns�1½~fð�Þ�

þ 1

4N

Xs
l¼1

ðs� lÞsallns�l�1½~fð�Þ� þ 1

ð4 � 1ÞkN
�Xs�1

k¼1

bksþ1

Xs�k

l¼0
s�kalln

s�l�k½~fð�Þ� þ 1

4

� Xs�1

k¼1

bksþ1

Xs�k

l¼0

ðs� l� kÞs�kalln
s�l�k�1½~fð�Þ�

���
; (17)

where ~fð�Þ and jal are, respectively, given by

~fð�Þ ¼ �
�2TRTL

sinh½�TL�uþ� sinh½�TR�u�� ;

jal ¼ jCl

�
@lN

@4l

�
:

All correlation functions are zero for s < 0. We note that
this is one of our main results. In (16) and (17), when
reducing to the AdS3 background [10], the parameters 	kk0

and 
pq are determined to be

	kk0 ¼ 2��kk0
4N

½2ð�� 1Þ�n ; 
pq ¼ 2��pq 4 N

½2ð�� 1Þ�nþs :

At this stage, we wish to point out that if one truncates the
theory with odd rank to be unitary, the only nonzero
correlation function is given by a reduced matrix as

hOiOji � 0 0

0 CFT

 !
; (18)

which implies that the remaining sector involves a non-
trivial two-point correlator

hOlog
n�1
2 ðxÞOlog

n�1
2 ð0Þi ¼ ½2ð4 � 1Þ�n

jxj24 : (19)

This defines a unitary CFT, and, thus, the nonunitary issue
could be resolved by truncating a rank-n LCFT with
n ¼ 3; 5; . . . . On the contrary, for the even rank of
n ¼ 4; 6; . . . , it reduces to a null matrix

hOiOji � 0 0

0 0

 !
; (20)

which contains null states only.
On the other hand, the retarded Green’s functions are

defined by

Dret
jk ðt; �; 0; 0Þ ¼ i�ðt� 0Þ �Djkðuþ; u�Þ;

j; k ¼ 1; 2; . . . ; n;

where the commutators evaluated in the equilibrium
canonical ensemble are given by

�Djk ¼ hOjðuþ � i�;�u� � i�ÞOkð0Þi � h� ! ��i:
Making the Fourier transform of �Djkðuþ; u�Þ,
�Djkðpþ; p�Þ takes the form

�Djk ¼
Z

duþdu�eiðpþuþ�p�u�Þ �Djkðuþ; u�Þ (21)

in the momentum space. Here p� ¼ ð!� kÞ=2. Using (21)
together with (16), we obtain the null Green’s function as

�D ij�iðpþ; p�Þ ¼ 0ðj ¼ iþ 1; . . . ; nÞ:
Also, substituting (16) into (21) leads to the CFT-retarded
Green’s function in the momentum space

�D1n ¼ �D2n�1 ¼ � � � ¼ �Dn1

¼ ð2ð4 � 1ÞÞn ð2�TLÞ4�1ð2�TRÞ4�1

�ð4Þ2

� sinh

�
pþ
2TL

þ p�
2TR

����������
�4
2
þ i

pþ
2�TL

���������2

�
���������

�4
2
þ i

p�
2�TR

���������2

; (22)

where � is the gamma function. The log-retarded Green’s
functions are given by

�D2n ¼ �D3n�1 ¼ � � � ¼ �Dn2

¼ �D1nðpþ; p�Þ �
�

n

4� 1
þ ln½2�TL� þ ln½2�TR�

� 2c ð4Þ þ 1

2
c

�4
2
þ i

pþ
2�TL

�

þ 1

2
c

�4
2
� i

pþ
2�TL

�
þ 1

2
c

�4
2
þ i

p�
2�TR

�

þ 1

2
c

�4
2
� i

p�
2�TR

��
; (23)

where c ðAÞ¼@ln½�ðAÞ�=@A is the digamma function. In
deriving �D2n, we have used the following relation [15]:

hOiðuþ; u�ÞOjð0Þi ¼ 1

s!

�
@

@4
�
shO1ðuþ; u�ÞOnð0Þi:
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We notice that the logn�1-Green’s functions of �Dkn½¼
�Dkþ1n�1 ¼ � � � ¼ �Dnk� with k ¼ 3; . . . ; n can be found
along the same line by using the above relation.

In order to derive quasinormal frequencies, we inves-
tigate the pole structure of the commutators for the non-
rotating BTZ black hole (TR ¼ TL ¼ TH ¼ 1=2�‘,
rþ ¼ ‘). It is found that for i; j ¼ 1; 2; . . . ; n and s ¼ iþ
j� n� 1 	 0, the pole structure of the retarded Green’s
functions is given by

�DijðpþÞ/
Xs
m¼0s

Cm�
ðmÞ
�
hLþi

pþ
2�TL

�
�ðs�mÞ

�
hL�i

pþ
2�TL

�

with �ðmÞ ¼ @m�
@4m . This is one of our main results. Following

Ref. [16], for the rank-n case one can read off quasinormal
frequencies of scalar An, which satisfies ðr2

B �m2Þn
An ¼ 0:

!N
n ¼k� i4�TLðNþhLÞ; N¼0;1;2; . . . ; (24)

from an n-fold pole of the retarded Green’s function
�DnnðpþÞ. Applying the previous truncation process for

the LCFT to �Dij leads to

�Dij �
0 0

0 �Dðnþ1Þ=2ðnþ1Þ=2

 !
for odd n; (25)

�Dij �
0 0

0 0

 !
for even n; (26)

which implies that, for odd rank, the matrix provides a
simple pole of !N

s ¼ k� i4�TLðN þ hLÞ obtained from
the finite temperature CFT, while, for even rank, it contains
nothing.

It is well known that the absorption cross section [17]
can be written in terms of frequency (!) and temperatures
ðTR=L; THÞ as

�ij
abs ¼

Cn
!

�Dijð!Þ; (27)

where Cn is a normalization constant. Here �Dijð!Þ is

obtained by substituting pþ ¼ p� ¼ !=2 for the s wave

(k ¼ 0) into (22) and (23), and �Dpn½¼ �Dpþ1n�1 ¼ � � � ¼
�Dnp� with p ¼ 3; 4; . . . ; n. From the expression (27), one

can find the absorption cross section

�1n
abs ¼ �2n�1

abs ¼ � � � ¼ �n1
abs ’ �2!‘2;

�2n
abs ¼ �3n�1

abs ¼ � � � ¼ �n2
abs

’ ½n� 2þ 2�� 2 ln2þ 2 ln½!‘���1n
abs (28)

for the low-temperature limit of ! 
 TR=L and 4 ¼ 2.

Here Euler’s constant � ¼ 0:5772, ‘ is the AdS3 curva-
ture radius, and the normalization constant is fixed to be
Cn ¼ 21�n. On the other hand, one finds that the other

absorption cross sections of �pn
abs½¼ �pþ1n�1

abs ¼ � � � ¼
�np

abs� with p ¼ 3; 4; . . . ; n are given in terms of
�Dpn½¼ �Dpþ1n�1 ¼ � � � ¼ �Dnp�.
Finally, it turns out that, in the low-temperature limit and

� ¼ 2, the general form of the absorption cross sections is
given by the power series expansion of ln½!‘�:

�ij
absj!
TR=L

¼
�Xs
m¼0

aðnÞsmlnm½!‘�
�
�1n

abs; (29)

where s ¼ iþ j� n� 1 	 0 and aðnÞsm are some constants
to be fixed (see Ref. [14]). For i; j ¼ n and s ¼ n� 1, (29)
leads to the highest-order logarithmic correction lnn�1½!‘�
to the Klein-Gordon mode which corresponds to the mode
An satisfying r2n

B An ¼ 0.

Applying the previous truncation process to �ij
absj!
TR=L

leads to

�ij
abs �

0 0

0 �ðnþ1Þ=2ðnþ1Þ=2
abs

 !
for odd n; (30)

�ij
abs �

0 0

0 0

 !
for even n; (31)

which imply that, in the low-temperature and massless
limits, the odd rank case provides the absorption cross
section for the Klein-Gordon mode only, while, for even
rank, it contains null states only.
In summary, we have constructed the rank-n finite tem-

perature LCFT starting from the n-coupled scalar field
theory S� (3) in the BTZ black hole background. Our
approach has provided two important quantities of quasi-
normal frequencies and absorption cross section of scalar
An, which satisfies the 2nth order linearized equation
ðr2

B �m2ÞnAn ¼ 0 around the BTZ black hole. This
work shows a usefulness of the AdS-LCFT correspondence
for obtaining two observables of quasinormal modes and
absorption cross section of An without solving the 2nth
order linearized equation directly.
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