
Space-time diagrammatics
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We introduce a new class of two-dimensional diagrams, the projection diagrams, as a tool to visualize

the global structure of space-times. We construct the diagrams for several metrics of interest, including

the Kerr-Newman-(anti)de Sitter family, with or without cosmological constant, and the Emparan-Reall

black rings.
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I. INTRODUCTION

A very useful tool for visualizing the geometry of
two-dimensional Lorentzian manifolds is that of con-
formal Carter-Penrose diagrams. Such diagrams have
been successfully used to visualize the geometry of
two-dimensional sections of the Schwarzschild (cf., e.g.,
Ref. [1]), Kerr [2,3] and several other [4] geometries.
A systematic study of conformal diagrams for time-
independent two-dimensional geometries has been carried
out in Ref. [5] byWalker; for the convenience of the reader,
Walker’s analysis is briefly summarized in Sec. II.

For spherically symmetric geometries, the two-
dimensional conformal diagrams provide useful informa-
tion about the four-dimensional geometry as well, since
many essential aspects of the space-time geometry are
contained in the t� r sector of the metric.

The object of this paper is to show that one can usefully
represent classes of nonspherically symmetric geometries
in terms of two-dimensional diagrams, which we call
projection diagrams, using an auxiliary two-dimensional
metric, constructed out of the space-time metric. The
issues such as stable causality, global hyperbolicity, exis-
tence of event or Cauchy horizons, the causal nature of
boundaries, and existence of conformally smooth infinities
become evident by inspection of the diagrams.

We give a general definition of such diagrams and con-
struct examples for the Kerr-Newman family of metrics,
with or without cosmological constant of either sign, and
for the Emparan-Reall metrics. We show how the projec-
tion diagrams for the Pomeransky-Senkov metrics could be
constructed and present a tentative diagram for those met-
rics. We end the paper by pointing out how the projection
diagrams can be used to construct inequivalent extensions
of a family of maximal, globally hyperbolic, vacuum or
electrovacuum, space-times with compact Cauchy surfaces

obtained by periodic identifications of the time coordinate
in the Kerr-Newman-(anti)de Sitter family of metrics, as
well as for Taub-NUT space-times.

II. CONFORMAL DIAGRAMS FOR STATIC
TWO-DIMENSIONAL SPACE-TIMES

Following [5], we construct conformal diagrams for
two-dimensional Lorentzian metrics of the form

g
ð2Þ ¼ �FðrÞdt2 þ F�1ðrÞdr2; (1)

where F is, for simplicity and definiteness, a real-analytic
function on an interval, t ranges over R, and one considers
separately maximal intervals in R on which F is finite and
does not change sign; those define the ranges of r. Each
such interval leads to a connected Lorentzian manifold on

which g
ð2Þ

is defined, and the issue is whether or not such
manifolds can be patched together, and how. Note that t is
not a time coordinate in regions where F is negative.
It should be kept in mind that the study of the conformal

structure for more general metrics of the form

g
ð2Þ ¼ �FðrÞH1ðrÞdt2 þ F�1ðrÞH2ðrÞdr2; (2)

where H1 and H2 are positive in the range of r of interest,
can be reduced to the one for the metric (1) by writing

g
ð2Þ ¼ ffiffiffiffiffiffiffiffiffiffiffiffi

H1H2

p ð�F̂dt2 þ F̂�1dr2Þ; (3)

where F̂ ¼
ffiffiffiffiffi
H1

H2

q
F.

A. Manifest conformal flatness

In order to bring the metric (1) to a manifestly confor-
mally flat form, one chooses a value of r� such that Fðr�Þ �
0 and introduces a new coordinate x defined as

xðrÞ ¼
Z r

r�

ds

FðsÞ ) dx ¼ dr

FðrÞ ; (4)
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leading to

g
ð2Þ ¼ �Fdt2 þ 1

F
ðFdxÞ2 ¼ Fð�dt2 þ dx2Þ: (5)

The geometry of the space-time, and its possible extend-
ability, will depend upon the sign of F, the zeros of F, and
their order. For example, whenever x ranges over R the

space-time ðR2; g
ð2ÞÞ can be conformally mapped to the

following diamond:

f��=2< T � X <�=2;��=2< T þ X < �=2g � R2:

This is done by first introducing

u¼t�x; v¼tþx() t¼uþv

2
; x¼v�u

2
; (6)

which brings g
ð2Þ

into the form

g
ð2Þ ¼ �dudv:

While some other ranges of variables might arise in spe-
cific examples, in the current case we have ðu; vÞ 2 R2. We
bring the last R2 to a bounded set using

U ¼ arctanðuÞ; V ¼ arctanðvÞ; (7)

and thus

ðU;VÞ 2
�
��

2
;
�

2

�
�

�
��

2
;
�

2

�
:

This looks somewhat more familiar if we make one last
change of coordinates similar to that in (6):

U¼T�X; V¼TþX() T¼UþV

2
; X¼V�U

2
;

(8)

see Fig. 1, leading to

g
ð2Þ ¼ 1

cos2ðT � XÞcos2ðT þ XÞ ð�dT2 þ dX2Þ:

Simple variations of the above coordinate transforma-
tions might be used for alternative ranges of x. An integral
of 1=F which is infinite near one of the integration bounds
and finite at the other one leads to triangles, obtained by

cutting a diamond across a diagonal; the sign of F deter-
mines which diagonal is relevant. A finite integral of 1=F
leads to strips, if one does not perform the subsequent
coordinate transformation (7). These are then the building
blocks, out of which the final maximal diagrams can be
built.

B. Gluing

We pass now to the gluing question. It turns out that four
blocks can be glued together across a boundary fr ¼ r0g
at which

Fðr0Þ ¼ 0; F0ðr0Þ � 0:

Since F has a simple zero, it factorizes as

FðrÞ ¼ ðr� r0ÞHðrÞ;
for a function H which has no zeros in a neighborhood of
r0. The gluing is done in two steps by defining

u¼ t� fðrÞ; v¼ tþ fðrÞ; f0 ¼ 1

F
;

û¼�expð�cuÞ; v̂¼ expðcvÞ;
(9)

where

c ¼ F0ðr0Þ
2

:

This leads to the following form of the metric:

g
ð2Þ ¼ � 4HðrÞ

ðF0ðr0ÞÞ2
expð�f̂ðrÞF0ðr0ÞÞdûdv̂; (10)

with a negative sign if we started in the region r > r0 and
positive otherwise. Here

f̂ðrÞ :¼ fðrÞ � 1

F0ðr0Þ lnjr� r0j:

In (10) the function r should be viewed as a function of the
product û v̂ , implicitly defined by the equation

û v̂ ¼ �ðr� r0Þ expðf̂ðrÞF0ðr0ÞÞ:
Note that for analytic F’s the extension so constructed is
real analytic; this follows from the analytic version of the
implicit function theorem.
Boundaries at finite distance r ¼ r0 but at which F has a

zero of higher order can still be glued together via two-
block gluing. Here one continues to use the functions u and
v defined in (9), but now one does not use u and v
simultaneously as coordinates. Instead one considers a
coordinate system ðu; rÞ, so that

g
ð2Þ ¼ �F

�
duþ 1

F
dr

�
2 þ 1

F
dr2 ¼ �Fdu2 � 2dudr:

Since detg
ð2Þ ¼ �1, the resulting metric extends smoothly

as a Lorentzian metric to the whole nearby interval where
F is defined. This will certainly include the nearest

FIG. 1. The conformal diagram for (1þ 1)-dimensional
Minkowski space-time.
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conformal block, as well as some further ones if the case
arises. A distinct extension is obtained when using instead
the coordinate system ðv; rÞ.

Asymptotic regions where jrj ! 1 but F is bounded,
and bounded away from zero, provide null conformal
boundaries at infinity.

III. PROJECTION DIAGRAMS

A. The definition

Let ðM; gÞ be a smooth space-time, and let R1;n denote
the ðnþ 1Þ-dimensional Minkowski space-time. A projec-
tion diagram is a pair ð�;UÞ, where

�: M ! W

is a continuous map, differentiable on an open dense set,
from M onto �ðMÞ ¼: W � R1;1, together with an
open set

U � M;

assumed to be nonempty, on which � is a smooth
submersion, so that it holds:

(1) every smooth timelike curve � � �ðUÞ is the
projection of a smooth timelike curve � in ðU; gÞ:
� ¼ � � �;

(2) the image � � � of every smooth timelike curve
� � U is a timelike curve in R1;1.

Some comments are in order.
First, we have assumed for simplicity that ðM; gÞ, �jU,

and the causal curves in the definition are smooth, though
this is unnecessary for most purposes.

Next, we do not assume that� is a submersion, or in fact
differentiable, everywhere on M. This allows us to talk
about ‘‘the projection diagram of Minkowski space-time,’’
or ‘‘the projection diagram of Kerr space-time,’’ rather than
of ‘‘the projection diagram of the subset U of Minkowski
space-time,’’ etc. Note that the latter terminology would be
more precise, and will sometimes be used, but appears to
be an overkill in most cases.

Further, the requirement that timelike curves in �ðUÞ
arise as projections of timelike curves in M ensures that
causal relations on �ðUÞ, which can be seen by inspection
of�ðUÞ, reflect causal relations onM. Conditions 1 and 2
taken together ensure that causality on �ðUÞ represents as
accurately as possible causality on U.

By continuity, images of causal curves in U are causal
in �ðUÞ. Note that null curves in U are often mapped to
timelike ones in �ðUÞ.

The second condition of the definition is of course
equivalent to the requirement that the images by �� of
timelike vectors in TU are timelike. This implies further
that the images by �� of causal vectors in TU are causal.
One should keep in mind that images by �� of null vectors
in TU could be timelike. And, of course, many spacelike
vectors will be mapped to causal vectors under ��.

Recall that � is a submersion if �� is surjective at every
point. The requirement that � is a submersion guarantees
that open sets are mapped to open sets. This, in turn,
ensures that projection diagrams with the same set U are
locally unique, up to a local conformal isometry of two-
dimensional Minkowski space-time. We do not know
whether or not two surjective projection diagrams �i:
U ! W i, i ¼ 1, 2, with identical domain of definition
U are globally unique, up to a conformal isometry of W 1

and W 2. It would be of interest to settle this question.
In many examples of interest the set U will not be

connected.
Note that a necessary condition for existence of a

projection diagram is stable causality of U: indeed, let t
be any time function on R1;1, then t � � is a time function
on U.
It might be tempting to require that U be dense in M.

Such a requirement would, however, prohibit one to con-
struct a projection diagram of the usual maximal extension
of Kerr space-time, since the latter contains open regions
which are not stably causal.
Recall that a map is proper if inverse images of compact

sets are compact. One could further require � to be proper;
indeed, many projection diagrams below have this prop-
erty. This is actually useful, as then the inverse images of
globally hyperbolic subsets of W are globally hyperbolic,
and so global hyperbolicity, or lack thereof, can be estab-
lished by visual inspection of W . It appears, however,
more convenient to talk about proper projection diagrams
whenever � is proper, allowing for nonproperness in
general.
As such, we have assumed for simplicity that�mapsM

into a subset of Minkowski space-time. In some applica-
tions it might be natural to consider more general two-
dimensional manifolds as the target of�; this requires only
a trivial modification of the definition. An example is
provided by the Gowdy metrics on a torus, discussed at
the end of this section, where the natural image manifold
for � is ð�1; 0Þ � S1, equipped with a flat product
metric. Similarly, maximal extensions of the class of
Kerr-Newman-de Sitter metrics of Fig. 8 require the image
of � to be a suitable Riemann surface.

B. Simplest examples

The simplest examples of projection diagrams can be
constructed for metrics of the form

g ¼ efð�Fdt2 þ F�1dr2Þ þ hABdx
AdxB|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

¼:h

; (11)

with F ¼ FðrÞ, where h ¼ hABðt; r; xCÞdxAdxB is a family
of Riemannian metrics on an ðn� 1Þ-dimensional mani-
fold Nn�1, possibly depending upon t and r, and f is a
function which is allowed to depend upon all variables. It
should be clear that any manifestly conformally flat repre-
sentation of any extension, defined on W � R1;1, of the
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two-dimensional metric �Fdt2 þ F�1dr2, as discussed in
Sec. II, provides immediately a projection diagram for
ðW � Nn�1; gÞ.

In particular, introducing spherical coordinates
ðt; r; xAÞ on

U :¼ fðt; ~xÞ 2 Rnþ1; j ~xj � 0g � R1;n (12)

and forgetting about the ðn� 1Þ-sphere part of the metric
leads to a projection diagram for Minkowski space-time
which coincides with the usual conformal diagram of the
fixed-angles subsets of Minkowski space-time (see the left
figure in Fig. 14 below; the shaded region there should be
left unshaded in the Minkowski case). The setU defined in
(12) cannot be extended to include the world line passing
through the origin of Rn since the map � fails to be
differentiable there. This diagram is proper but fails to
represent correctly the nature of the space-time near the
set j ~xj ¼ 0.

On the other hand, a globally defined projection diagram
for Minkowski space-time [thus, ðU; gÞ ¼ R1;n] can be
obtained by writing R1;n as a product R1;1 � Rn�1 and
forgetting about the second factor. This leads to a projec-
tion diagram of Fig. 1. This diagram, which is not proper,
fails to represent correctly the connectedness of Iþ and I�
when n > 1.

It will be seen in Sec. III H that yet another choice of �
and of the set ðU; gÞ � R1;n leads to a third projection
diagram for Minkowski space-time.

A further example of nonuniqueness is provided by the
projection diagrams for Taub-NUT metrics, discussed in
Sec. IVB.

These examples show that there is no uniqueness in the
projection diagrams and that various such diagrams might
carry different information about the causal structure. It is
clear that for space-times with intricate causal structure,
some information will be lost when projecting to two
dimensions. This raises the interesting question, whether
there exists a notion of optimal projection diagram for
specific space-times. In any case, the examples we give
in what follows appear to depict the essential causal prop-
erties of the associated space-time, except perhaps for the
black ring diagrams of Secs. III H and III I.

Nontrivial examples of metrics of the form (11) are
provided by the Gowdy metrics on a torus [6], which can
be written in the form [6,7]

g¼ efð�dt2þd�2Þ
þ jtjðePðdx1þQdx2Þ2þ e�Pðdx2Þ2Þ; (13)

with t 2 ð�1; 0Þ and ð�; x1; x2Þ 2 S1 � S1 � S1.
Unwrapping � from S1 to R and projecting away the dx1

and dx2 factors, one obtains a projection diagram the
image of which is the half-space t < 0 in Minkowski
space-time. This can be further compactified as in
Sec. II A, keeping in mind that the asymptotic behavior
of the metric for large negative values of t [8] is not

compatible with the existence of a smooth conformal
completion of the full space-time metric across past null
infinity. Note that this projection diagram fails to represent
properly the existence of Cauchy horizons for nongeneric
[9] Gowdy metrics.
Similarly, generic Gowdy metrics on S1 � S2, S3, or

Lðp; qÞ can be written in the form [6,7]

g ¼ efð�dt2 þ d�2Þ þ R0 sinðtÞ sinð�Þ � ðePðdx1
þQdx2Þ2 þ e�Pðdx2Þ2Þ; (14)

with ðt; �Þ 2 ð0; �Þ � ½0; ��, leading to the Gowdy square
as the projection diagram for the space-time. [This is the
diagram of Fig. 13, where the lower boundary corresponds
to t ¼ 0, the upper boundary corresponds to t ¼ �, the left
boundary corresponds to the axis of rotation � ¼ 0, and
the right boundary is the projection of the axis of rotation
� ¼ �. The diagonals, denoted as y ¼ yh in Fig. 13, cor-
respond in the Gowdy case to the projection of the set
where the gradient of the area R ¼ R0 sinðtÞ sinð�Þ of the
orbits of the isometry group Uð1Þ � Uð1Þ vanishes, and do
not have any further geometric significance. The lines with
the arrows in Fig. 13 are irrelevant for the Gowdy metrics,
as the orbits of the isometry group of the space-time metric
are spacelike throughout the Gowdy square.]
In the remainder of this work we will construct projec-

tion diagrams for families of metrics of interest which are
not of the simple form (11).

C. The Kerr metrics

Consider the Kerr metric in Boyer-Lindquist
coordinates,

g ¼ ��r � a2sin2ð�Þ
�

dt2 þ �

�r

dr2 þ �d�2

þ sin2ð�Þððr2 þ a2Þ2 � a2sin2ð�Þ�rÞ
�

d’2

� 2asin2ð�Þðr2 þ a2 ��rÞ
�

dtd’: (15)

Here

� ¼ r2 þ a2cos2�;

�r ¼ r2 þ a2 � 2mr ¼ ðr� rþÞðr� r�Þ; (16)

for some real parameters a and m, with

r� ¼ m� ðm2 � a2Þ12;
and we assume that 0< jaj 	 m. We note that

g’’¼ sin2ð�Þ
�
2a2mrsin2ð�Þ
a2cos2ð�Þþr2

þa2þr2
�

¼ sin2ð�Þða4þa2 cosð2�Þ�rþa2rð2mþ3rÞþ2r4Þ
a2 cosð2�Þþa2þ2r2

;

(17)
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the first line making clear the non-negativity of g’’
for r 
 0.

In the region where @’ is spacelike we rewrite the t� ’
part of the metric as

gttdt
2 þ 2gt’dtd’þ g’’d’

2

¼ g’’

�
d’þ gt’

g’’
dt

�
2 þ

�
gtt �

g2t’
g’’

�
dt2; (18)

with

gtt �
g2t’
g’’

¼ � 2�r�

a4 þ a2�r cosð2�Þ þ a2rð2mþ 3rÞ þ 2r4
:

For r > 0 and �r > 0 it holds that

�r�

ða2þ r2Þ2 	
��������gtt� g2t’

g’’

��������	 �r�

rða2ð2mþ rÞþ r3Þ ; (19)

with the infimum attained at � 2 f0; �g and maximum at
� ¼ �=2.

In the region r > 0, �r > 0 consider any vector

X ¼ Xt@t þ Xr@r þ X�@� þ X’@’;

which is causal for the metric g. Let�ðr; �Þ be any positive
function. Since both g�� and the first term in (18) are
positive, while the coefficient of dt2 in (18) is negative,
we have

0
�2gðX;XÞ¼�2g��X
�X�


�2

�
gtt�

g2t’
g’’

�
ðXtÞ2þ�2grrðXrÞ2


�sup
�

�
�2

��������gtt� g2t’
g’’

��������
�
ðXtÞ2þ inf

�
ð�2grrÞðXrÞ2: (20)

To guarantee the requirements of the definition of a
projection diagram, it is simplest to choose � so that
both extrema in (20) are attained at the same value of �,
say ��, while keeping those features of the coefficients
which are essential for the problem at hand. It is conve-
nient, but not essential, to have �� independent of r. We
will make the choice

�2 ¼ r2 þ a2

�
; (21)

but other choices are possible and might be more conve-
nient for other purposes. [The � factor has been included
to get rid of the angular dependence in �2grr, while
the numerator has been added to ensure that the metric
coefficient �rr in (23) tends to one as r recedes to infinity,
reflecting the asymptotic behavior for large r of the corre-

sponding function F̂ in (3).] With this choice of �, (20) is
equivalent to the statement that

��ðXÞ :¼ Xt@t þ Xr@r (22)

is a causal vector in the two-dimensional Lorentzian metric

� :¼ � �rðr2 þ a2Þ
rða2ð2mþ rÞ þ r3Þdt

2 þ ðr2 þ a2Þ
�r

dr2: (23)

Using the methods of Walker [5], as reviewed in Sec. II, in
the region rþ < r <1, the metric � is conformal to a flat
metric on the interior of a diamond, with the conformal
factor extending smoothly across that part of its boundary
at which r ! rþ when jaj<m. This remains true when
jaj ¼ m except at the leftmost corner i0L of Fig. 1.
To avoid ambiguities, at this stage � is the projection

map ðt; r; �; ’Þ � ðt; rÞ. The fact that g-causal curves
are mapped to �-causal curves follows from the con-
struction of �. In order to prove the lifting property, let
�ðsÞ ¼ ðtðsÞ; rðsÞÞ be a �-causal curve, and then the curve

ðtðsÞ; rðsÞ; �=2; ’ðsÞÞ;
where ’ðsÞ satisfies

d’

ds
¼ � gt’

g’’

dt

ds
;

is a g-causal curve which projects to �.
For causal vectors in the region r > 0, �r < 0, we have

instead

0
�2gðX;XÞ
�2

�
gtt�

g2t’
g’’

�
ðXtÞ2þ�2grrðXrÞ2


 inf
�

�
�2

��������gtt� g2t’
g’’

��������
�
ðXtÞ2�sup

�
ð�2jgrrjÞðXrÞ2: (24)

Since the inequalities in (19) are reversed when �r < 0,
choosing the same factor � one concludes again that
Xt@t þ Xr@r is �-causal in the metric (23) whenever it is
in the metric g. Using again [5], in the region r� < r < rþ,
such a metric is conformal to a a flat two-dimensional
metric on the interior of a diamond, with the conformal
factor extending smoothly across those parts of its bound-
ary where r ! rþ or r ! r�.
When jaj<m the metric coefficients in � extend ana-

lytically from the ðr > rþÞ range to the ðr� < r < rþÞ
range. As described in Sec. II, one can then smoothly
glue together four diamonds as above to a single diamond
on which r� < r <1.
The singularity of � at r ¼ 0 reflects the fact that the

metric g is singular at� ¼ 0. This singularity persists even
if m ¼ 0, which might at first seem surprising since then
there is no geometric singularity at � ¼ 0 anymore [2].
However, this singularity of � reflects the singularity of the
associated coordinates on Minkowski space-time, with the
set r ¼ 0 in the projection metric corresponding to a
boundary of the projection diagram.
For r < 0 we have �r > 0, and the inequality (20) still

applies in the region where @’ is spacelike. Here one needs
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to keep in mind the nonempty Carter time-machine set
[compare (17)]

V :¼ fg’’ < 0g ¼
�
r 	 0;� � 0; sinð�Þ

� 0; cosð2�Þ<� a4 þ 2a2mrþ 3a2r2 þ 2r4

a2�r

�
; (25)

on which the Killing vector @’ (which has 2�-periodic

orbits) is timelike. The projection of the closure of this
region to a two-dimensional diagram should be considered
to be a singular set. But causality is restored regardless of
the value of � if we remove from M the closure of V :
Setting

U :¼ M nV ;

throughout U we have

a4 þ 2a2mrþ 3a2r2 þ 2r4

a2ða2 � 2mrþ r2Þ > 1

()rða2ð2mþ rÞ þ r3Þ> 0: (26)

Equivalently,

r < r̂� :¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a6 þ 27a4m2

p
� 9a2m

3

q
32=3

� a2ffiffiffi
33

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a6 þ 27a4m2

p
� 9a2m

3

q < 0; (27)

see Fig. 2. In the region r < r̂� the inequalities (19) hold
again, and so the projected vector ��ðXÞ as defined by (22)
is causal, for g-causal X, in the metric � given by (23).
One concludes that the four-dimensional region f�1<
r < r�g has the causal structure which projects to those
diamonds of, e.g., Fig. 3 which contain a shaded region.
Those shaded regions, which correspond both to the sin-
gularity r ¼ 0, � ¼ �=2 and to the time-machine region
V of (25), belong to W ¼ �ðMÞ but not to �ðUÞ.
Causality within the shaded region is not represented in
any useful way by a flat two-dimensional metric there, as
causal curves can exit this region earlier, in Minkowskian
time on the diagram, than they entered it. This results in

causality violations throughout the enclosing diamond
unless the shaded region is removed.
The projection diagrams for the usual maximal exten-

sions of the Kerr-Newman metrics can be found in Fig. 3.
Remark III.1.—Let us make some general remarks con-

cerning projection diagrams for the Kerr-Newman family
of metrics, possibly with a nonvanishing cosmological
constant �. The shaded regions in figures such as
Fig. 3 and others contain the singularity � ¼ 0 and
the time-machine set fg’’ < 0g; they belong to the set

W ¼ �ðMÞ but do not belong to the set �ðUÞ, on which
causality properties of two-dimensional Minkowski space-
time reflect those of U � M. We emphasize that there
are closed timelike curves through every point in the
preimage under � of the entire diamonds containing
the shaded areas. On the other hand, if the preimages of
the shaded region are removed from M, the causality
relations in the resulting space-times are accurately repre-
sented by the diagrams, which are then proper.
The parameters r̂� are determined by the mass and the

charge parameters [see (64)], with r̂þ ¼ 0when the charge
e vanishes and r̂þ positive otherwise. The boundaries
r ¼ �1 correspond to smooth conformal boundaries at
infinity, with causal character determined by�. The arrows
indicate the spatial or timelike character of the orbits of the
isometry group. Maximal diagrams are obtained when
continuing the diagrams shown in all allowed directions.
It should be kept in mind that the resulting subsets of R2

are not simply connected in some cases, which implies that
many alternative nonisometric maximal extensions of the

FIG. 2 (color online). The radius of the time-machine ‘‘left
boundary’’ r̂�=m as a function of a=m.

FIG. 3. A projection diagram for the Kerr-Newman metrics
with two distinct zeros of �r (left diagram) and one double zero
(right diagram); see Remark III.1.
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space-time can be obtained by taking various coverings of
the planar diagram. One can also make use of the symme-
tries of the diagram to produce distinct quotients.j

1. Conformal diagrams for a class of two-dimensional
submanifolds of Kerr space-time

One can find, e.g., in Refs. [1,3] conformal diagrams for
the symmetry axes in the maximally extended Kerr space-
time. These diagrams are identical with those of Fig. 3,
except for the absence of shading. (The authors of
Refs. [1,3] seem to indicate that the subset r ¼ 0 plays a
special role in their diagrams, which is not the case as the
singularity r ¼ cos� ¼ 0 does not intersect the symmetry
axes.) Now, the symmetry axes are totally geodesic sub-
manifolds, being the collection of fixed points of the
isometry group generated by the rotational Killing vector
field. They can be thought of as the submanifolds � ¼ 0
and � ¼ � (with the remaining angular coordinate irrele-
vant then) of the extended Kerr space-time. As such,
another totally geodesic two-dimensional submanifold in
Kerr is the equatorial plane � ¼ �=2, which is the set of
fixed points of the isometry � � �� �. This leads one to
inquire about the global structure of this submanifold or,
more generally, of various families of two-dimensional
submanifolds on which � is kept fixed. The discussion
that follows appears to have some interest of its own.
More importantly for us, it illustrates clearly the distinction
between projection diagrams, in which one projects out the
� and ’ variables, and conformal diagrams for submani-
folds where �, and ’ or the angular variable ~’ of (30)
below, are fixed.

An obvious family of two-dimensional Lorentzian sub-
manifolds to consider is that of submanifolds, which we
denote as N�;’, which are obtained by keeping � and ’

fixed. The metric, say gð�Þ, induced by the Kerr metric on
N�;’ reads

gð�Þ ¼ ��r � a2sin2ð�Þ
�

dt2 þ �

�r

dr2

¼: �F1ðrÞdt2 þ dr2

F2ðrÞ : (28)

Form2 � a2cos2ð�Þ> 0 the function F1 has two first-order
zeros at the intersection of N�;’ with the boundary of the

ergoregion fgð@t; @tÞ> 0g:

r�;� ¼ m�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 � a2cos2ð�Þ

q
: (29)

The key point is that these zeros are distinct from those of
F2 if cos

2� � 1, which we assume in the remainder of this
section. Since r�;þ is larger than the largest zero of F2, the

metric gð�Þ is a priori only defined for r > r�;þ. One
checks that its Ricci scalar diverges as ðr� r�;þÞ�2 when

r�;þ is approached; therefore, those submanifolds do not

extend smoothly across the ergosphere and will thus be of
no further interest to us.
We consider, next, the two-dimensional submanifolds,

say ~N�; ~’, of the Kerr space-time obtained by keeping � and

~’ fixed, where ~’ is a new angular coordinate defined as

d~’ ¼ d’þ a

�r

dr: (30)

Using further the coordinate v defined as

dv ¼ dtþ ða2 þ r2Þ
�r

dr; (31)

the metric, say ~gð�Þ, induced on ~N�; ~’ takes the form

~gð�Þ ¼ � ~FðrÞ
�

dv2 þ 2dvdr

¼ � ~FðrÞ
�

dv

�
dv� 2

�
~FðrÞdr

�
; (32)

where ~FðrÞ :¼ r2 þ a2cos2ð�Þ � 2mr. The zeros of ~FðrÞ
are again given by (29). Setting

du ¼ dv� 2
�
~FðrÞdr (33)

brings (32) to the form

~gð�Þ ¼ � ~FðrÞ
�

dvdu:

The usual Kruskal-Szekeres type of analysis applies to this
metric, leading to a conformal diagram as in the left Fig. 3
with no shadings, and with r� there replaced by r�;�, as
long as ~F has two distinct zeros.
Several comments are in order.
First, the event horizons within ~N�;~’ do not coincide

with the intersection of the event horizons of the Kerr
space-time with ~N�;~’. This is not difficult to understand

by noting that the class of causal curves that lie within ~N�; ~’

is smaller than the class of causal curves in space-time, and
there is therefore no a priori reason to expect that the
associated horizons will be the same. In fact, is should be
clear that the event horizons within ~N�; ~’ should be located

on the boundary of the ergoregion, since in two space-time
dimensions the boundary of an ergoregion is necessarily a
null hypersurface. This illustrates the fact that conformal
diagrams for submanifolds might fail to represent correctly
the location of horizons. The reason that the conformal
diagrams for the symmetry axes correctly reflect the global
structure of the space-time is an accident related to the fact
that the ergosphere touches the event horizon there.
This last issue acquires a dramatic dimension for

extreme Kerr black holes, for which jaj ¼ m, where for
� 2 ð0; �Þ the global structure of maximally extended
~N�;~’’s is represented by an unshaded version of the left

Fig. 3, while the conformal diagrams for the axisymmetry
axes are given by the unshaded version of the right Fig. 3.
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Next, another dramatic change arises in the global struc-
ture of the ~N�; ~’’s with � ¼ �=2. Indeed, in this case we

have r�;þ ¼ 2m, as in Schwarzschild space-time, and

r�;� ¼ 0, regardless of whether the metric is underspin-

ning, extreme, or overspinning. Since r�;� coincides now

with the location of the singularity, ~N�;~’ acquires two

connected components: one where r > 0 and a second
one with r < 0. The conformal diagram of the first one
is identical to that of the Schwarzschild space-time
with positive mass, while the second is identical to that
of Schwarzschild with negative mass; see Fig. 4. We
thus obtain the unexpected conclusion that the singularity
r ¼ cosð�Þ ¼ 0 has a spacelike character when approached
with positive r within the equatorial plane and a timelike
one when approached with negative r within that plane.
This is rather obvious in retrospect, since the metric
induced by Kerr on ~N�=2;~’ coincides, when m> 0, with

the one induced by the Schwarzschild metric with positive
mass in the region r > 0 and with the Schwarzschild metric
with negative mass �m in the region r < 0.

Note finally that, surprisingly enough, even for over-
spinning Kerr metrics there will be a range of angles � near
�=2 so that ~F will have two distinct first-order zeros. This
implies that, for such �, the global structure of maximally
extended ~N�; ~’’s will be similar to that of the corresponding

submanifolds of the underspinning Kerr solutions. This
should be compared with the projection diagram for over-
spinning Kerr space-times, to be found in Fig. 5.

2. The orbit space-metric on M=Uð1Þ
Let h denote the tensor field obtained by quotienting out

in the Kerr metric g the � :¼ @’ direction:

hðX; YÞ ¼ gðX; YÞ � gðX;�ÞgðY;�Þ
gð�;�Þ : (34)

The tensor field h projects to the natural quotient metric on
the manifold part of M=Uð1Þ. In the region where � is
spacelike, the quotient space M=Uð1Þ has the natural
structure of a manifold with boundary, where the boundary
is the image, under the quotient map, of the axis of rotation

A :¼ f� ¼ 0g:
Using t, r, � as coordinates on the quotient space we find a
diagonal metric

h ¼ httdt
2 þ �

�r

dr2 þ �d�2; (35)

where

htt ¼ gtt �
g2t’
g’’

;

as in (18). Thus, the metric � of Sec. III C is directly
constructed out of the ðt; rÞ part of the quotient-space
metric h. However, the analogy is probably misleading as
there does not seem to be any direct correspondence
between the quotient spaceM=Uð1Þ and the natural mani-
fold as constructed in Sec. III C using the metric � [10].

D. The Kerr-Newman metrics

The analysis of the Kerr-Newman metrics is essentially
identical: The metric takes the same general form (15),
except that now

�r ¼ r2 þ a2 þ e2 � 2mr ¼: ðr� rþÞðr� r�Þ;
and we assume that e2 þ a2 	 m so that the roots are real.
We have

g’’ ¼ sin2ð�Þððr2 þ a2Þ2 � a2�rsin
2ð�ÞÞ

�
; (36)

gtt �
g2t’
g’’

¼ � �r�

ðr2 þ a2Þ2 � a2�rsin
2ð�Þ ; (37)

and note that the sign of the denominator in (37) coincides
with the sign of g’’. Hence

sgn

�
gtt �

g2t’
g’’

�
¼ �sgnð�rÞsgnðg’’Þ:

For g’’ > 0, which is the main region of interest, we

conclude that the minimum of ðgtt � g2t’
g’’

Þ��1��1
r is

assumed at � ¼ �
2 and the maximum at � ¼ 0, �, so for

all r for which g’’ > 0 we have

� �r�

ðr2þa2Þ2�a2�r

	gtt�
g2t’
g’’

	� �r�

ðr2þa2Þ2 : (38)

FIG. 4. The conformal diagram of a maximal analytic exten-
sion of the equatorial plane � ¼ �=2 and constant ~’ for Kerr
metrics with arbitrary a 2 R with r > 0 (left) and r < 0 (right).

FIG. 5. A projection diagram for overspinning Kerr-Newman
space-times.
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Choosing the conformal factor as

�2 ¼ r2 þ a2

�

we obtain, for g-causal vectors X,

0
�2gðX;XÞ¼�2g��X
�X�


�2

�
gtt�

g2t’
g’’

�
ðXtÞ2þ�2grrðXrÞ2


� �rðr2þa2Þ
ðr2þa2Þ2�a2�r

ðXtÞ2þðr2þa2Þ
�r

ðXrÞ2: (39)

This leads to the following projection metric:

� :¼� �rðr2þa2Þ
ðr2þa2Þ2�a2�r

dt2þðr2þa2Þ
�r

dr2

¼� �rðr2þa2Þ
a2ðrð2mþrÞ�e2Þþr4

dt2þðr2þa2Þ
�r

dr2; (40)

which is Lorentzian if and only if r is such that g’’ > 0

for all � 2 ½0; ��. Now, it follows from (36) that g’’ will

have the wrong sign if

0> ðr2 þ a2Þ2 � a2�rsin
2ð�Þ: (41)

This does not happen when �r 	 0, and hence in a neigh-
borhood of both horizons. On the other hand, for �r > 0, a
necessary condition for (41) is

0> ðr2þa2Þ2�a2�r

¼ r4þr2a2þ2mra2�a2e2¼:fðrÞ: (42)

The second derivative of f is positive; hence, f0 has exactly
one real zero. Note that f is strictly smaller than the
corresponding function for the Kerr metric, where e ¼ 0;
thus, the interval where f is negative encloses the corre-
sponding interval for Kerr. We conclude that f is negative
on an interval ðr̂�; r̂þÞ, with r̂� < 0< r̂þ < r�.

The corresponding projection diagrams are identical to
those of the Kerr space-time, see Fig. 3, with the minor
modification that the region to be excised from the diagram
is fr 2 ðr̂�; r̂þÞg, with now r̂þ > 0, while we had r̂þ ¼ 0
in the uncharged case.

E. The Kerr-de Sitter metrics

The Kerr-de Sitter metric in Boyer-Lindquist-like coor-
dinates reads [12,13]

g ¼ �

�r

dr2 þ sin2ð�Þ
�2�

��ðadt� ðr2 þ a2Þd’Þ2

� 1

�2�
�rðdt� asin2ð�Þd’Þ2 þ �

��

d�2; (43)

where

� ¼ r2 þ a2cos2ð�Þ;

�r ¼ ðr2 þ a2Þ
�
1��

3
r2
�
� 2��r;

(44)

and

�� ¼ 1þ�

3
a2cos2ð�Þ; � ¼ 1þ�

3
a2; (45)

for some real parameters a and �, where � is the
cosmological constant. In this section we assume �> 0
and a � 0. By a redefinition ’ � �’ we can always
achieve a > 0, similarly changing r to �r if necessary
we can assume that � 
 0. The case � ¼ 0 leads to the
de Sitter metric in unusual coordinates (see, e.g., Eq. (17)
in Ref. [14]). The inequalities a > 0 and �> 0 will be
assumed from now on.
The Lorentzian character of the metric should be clear

from (43); alternatively, one can calculate the determinant
of g:

detðgÞ ¼ ��2

�4
sin2�: (46)

We have

gtt ¼ grrg��g’’
detðgÞ ¼ ��4

��

� 1

�r

� g’’

sin2�
; (47)

which shows that either t or its negative is a time function
whenever �r and g’’=sin

2� are positive. (Incidentally,

chronology is violated on the set where g’’ < 0; we will

return to this shortly.) One also has

grr ¼ �r

�
; (48)

which shows that r or its negative is a time function in the
region where �r < 0.
The character of the principal orbits of the isometry

group R�Uð1Þ is determined by the sign of the
determinant

det
gtt g’t
g’t g’’

� �
¼ ��r��

�4
sin2�: (49)

Therefore, for sinð�Þ � 0 the orbits are two-dimensional,
timelike in the regions where �r > 0, spacelike where
�r < 0, and null where �r ¼ 0 once the space-time has
been appropriately extended to include the last set.
When� � 0 the set f� ¼ 0g corresponds to a geometric

singularity in the metric. To see this, note that

gð@t; @tÞ ¼ a2sin2��� � �r

��2
¼ 2

�r

��
þOð1Þ; (50)

where Oð1Þ denotes a function which is bounded near
� ¼ 0. It follows that for � � 0 the norm of the Killing
vector @t blows up as the set f� ¼ 0g is approached along
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the plane cosð�Þ ¼ 0, which would be impossible if the
metric could be continued across this set in a C2 manner.

The function �r has exactly two distinct first-order real
zeros when

�2 >
2

35�2�
ð3� a2�Þ3: (51)

It has at least two, and up to four, possibly but not neces-
sarily distinct, real roots when

a2� 	 3; �2 	 2

35�2�
ð3� a2�Þ3: (52)

The negative root r1 is always simple and negative; the
remaining ones are positive. We can thus order the roots as

r1 < 0< r2 	 r3 	 r4; (53)

when there are four real ones, and we set r3 � r4 :¼ r2
when there are only two real roots r1 < r2. The function�r

is positive for r 2 ðr1; r2Þ, and for r 2 ðr3; r4Þ whenever
the last interval is not empty; �r is negative or vanishing
otherwise.

It holds that

g’’ ¼ sin2ð�Þð��ðr2 þ a2Þ2 � a2�rsin
2ð�ÞÞ

�2�
(54)

¼ sin2ð�Þ
�

�
2a2�rsin2ð�Þ
a2cos2ð�Þ þ r2

þ a2 þ r2
�
: (55)

The second line is manifestly non-negative for r 
 0 and
positive there away from the axis sinð�Þ ¼ 0. The first line
is manifestly non-negative for �r 	 0, and hence also in a
neighborhood of this set.

Next

gtt �
g2t’
g’’

¼ � ���r�

�2ð��ðr2 þ a2Þ2 ��ra
2sin2ð�ÞÞ

¼ � ���r�

�2ðAðrÞ þ BðrÞ cosð2�ÞÞ ; (56)

with

AðrÞ ¼ �

2
ða4 þ 3a2r2 þ 2r4 þ 2a2�rÞ; (57)

BðrÞ ¼ a2

2
�ða2 þ r2 � 2�rÞ: (58)

We have

AðrÞ þ BðrÞ ¼ �ða2 þ r2Þ2;

AðrÞ � BðrÞ ¼ r2�

�
a2 þ r2 þ 2

a2�

r

�
;

(59)

which confirms that for r > 0, or for large negative r, we
have A > jBj> 0, as needed for g’’ 
 0. The function

fðr; �Þ :¼ ðAðrÞ þ BðrÞ cosð2�ÞÞ
��

� ðAðrÞ þ BðrÞ cosð2�ÞÞ
1þ �

3 a
2cos2ð�Þ

satisfies

@f

@�
¼ � a2�

�2
�

�r sinð2�Þ; (60)

which has the same sign as ��r sinð2�Þ. In any case, its
extrema are achieved at � ¼ 0, �=2 and �. Accordingly,
this is where the extrema of the right-hand side of (56) are
achieved as well. In particular, for �r > 0, we find

�r�

ða2þr2Þ2 	�2

��������gtt� g2t’
g’’

��������	 ��r

�rða2ð2�þrÞþr3Þ ;
(61)

with the minimum attained at � ¼ 0 and the maximum
attained at � ¼ �=2.
To obtain the projection diagram,we can now repeat word

for word the analysis carried out for the Kerr metrics on the
set fg’’ > 0g. Choosing a conformal factor�2 equal to

�2 ¼ r2 þ a2

�
; (62)

one is led to a projection metric

� :¼ � ðr2 þ a2Þ�r

�3rða2ð2�þ rÞ þ r3Þdt
2 þ r2 þ a2

�r

dr2: (63)

It remains to understand the set

V :¼ fg’’ < 0g;
where g’’ is negative. To avoid repetitiveness, we will do

it simultaneously both for the charged and the uncharged
case, where (54) still applies [but not (55) for e � 0] with
�r given by (64); the Kerr-de Sitter case is obtained by
setting e ¼ 0 in what follows. A calculation shows that
g’’ is the product of a non-negative function with

� :¼ 2a2�r� a2e2 þ r2a2 þ r4

þ ðr2a2 � 2a2�rþ a2e2 þ a4Þcos2ð�Þ:
This is clearly positive for all r and all � � �=2 when
� ¼ e ¼ 0, which shows that V ¼ ; in this case.
Next, the function � is sandwiched between the two

following functions of r, obtained by setting cosð�Þ ¼ 0
or cos2ð�Þ ¼ 1 in �:

�0 :¼ r4 þ r2a2 þ 2a2�r� a2e2; �1 :¼ ðr2 þ a2Þ2:
Hence, � is positive for all r when cos2ð�Þ ¼ 1. Next, for
�> 0 the function �0 is negative for negative r near zero.
Further, �0 is convex. We conclude that, for �> 0, the set
on which �0 is nonpositive is a nonempty interval ½r̂�; r̂þ�
containing the origin. We have already seen that g’’ is non-

negative wherever �r 	 0, and since r2 > 0 we must have

r1 < r̂� 	 r̂þ < r2:
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In fact, when e ¼ 0 the value of r̂� is given by (27) with m
there replaced by �, with r̂� ¼ 0 if and only if � ¼ 0.

We conclude that if � ¼ e ¼ 0 the time-machine
set is empty, while if j�j þ e2 > 0 there are always cau-
sality violations ‘‘produced’’ in the nonempty region
fr̂� 	 r 	 r̂þg.

The projection diagrams for the Kerr-Newman-de Sitter
family of metrics depend upon the number of zeros of �r,
and their nature, and can be found in Figs. 6–9.

F. The Kerr-Newman-de Sitter metrics

In the standard Boyer-Lindquist coordinates the Kerr-
Newman-de Sitter metric takes the form (43) [13,15,16]
with all the functions as in (44) and (45) except for �r,
which instead takes the form

�r ¼
�
1� 1

3
�r2

�
ðr2 þ a2Þ � 2��rþ�e2; (64)

where
ffiffiffiffiffi
�

p
e is the electric charge of the space-time. In this

section we assume,

�> 0; � 
 0; a > 0; e � 0:

The calculations of the previous section, and the analysis
of zeros of �r, remain identical except for the following
equations: First,

g’’ ¼ sin2ð�Þ
�

�
a2ð2�r� e2Þsin2ð�Þ

a2cos2ð�Þ þ r2
þ a2 þ r2

�
; (65)

the sign of which requires further analysis; we will return
to this shortly. Next, we still have

gtt �
g2t’
g’’

¼ � ���r�

�2ð��ðr2 þ a2Þ2 � �ra
2sin2ð�ÞÞ

¼ � ���r�

�2ðAðrÞ þ BðrÞ cosð2�ÞÞ ; (66)

FIG. 6. A projection diagram for the Kerr-Newman-de Sitter
metric with four distinct zeros of �r; see Remark III.1.

FIG. 7. A projection diagram for the Kerr-Newman-de Sitter
metrics with three distinct zeros of �r, r1 < 0< r2 ¼ r3 < r4;
see Remark III.1.

FIG. 8. A projection diagram for the Kerr-Newman-de Sitter
metrics with three distinct zeros of �r, r1 < 0< r2 < r3 ¼ r4;
see Remark III.1. Note that one cannot continue the diagram
simultaneously across all boundaries r ¼ r3 on R2, but this can
be done on an appropriate Riemann surface.

FIG. 9. A projection diagram for the Kerr-Newman-de Sitter
metrics with two distinct first-order zeros of �r, r1 < 0< r2 and
�> 0; see Remark III.1. The diagram for a first-order zero at r1
and third-order zero at r2 ¼ r3 ¼ r4 would be identical except
for the bifurcation surface of the bifurcate Killing horizon at the
intersection of the lines r ¼ r2, which does not exist in the third-
order case and has therefore to be removed from the diagram.
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but now

AðrÞ ¼ �

2
ða4 þ 3a2r2 þ 2r4 þ 2a2�r� a2e2Þ;

BðrÞ ¼ a2

2
�ða2 þ r2 � 2�rþ e2Þ;

with

AðrÞ þ BðrÞ ¼ �ða2 þ r2Þ2;

AðrÞ � BðrÞ ¼ r2�

�
a2 þ r2 þ 2

a2�

r
� a2e2

r2

�
:

Equation (60) remains unchanged, and for �r > 0, we find

�r�

ða2 þ r2Þ2 	 �2

��������gtt � g2t’
g’’

��������
	 ��r

�ða2ð2�r� e2 þ r2Þ þ r4Þ ; (67)

with the minimum attained at � ¼ 0 and the maximum
attained at � ¼ �=2. This leads to the projection metric

� :¼� �r

�3ða2ð2�r�e2þr2Þþr4Þdt
2þ 1

�r

dr2: (68)

We recall that the analysis of the time-machine set
fg’’ < 0g has already been carried out at the end of

Sec. III E, where it was shown that for e � 0 causality
violations always exist and arise from the nonempty region
fr̂� 	 r 	 r̂þg.

The projection diagrams for the Kerr-Newman-de Sitter
family of metrics can be found in Figs. 6–9.

G. The Kerr-Newman-anti de Sitter metrics

We consider the metric (43)–(45), with however �r

given by (64), assuming that

a2 þ e2 > 0; �< 0:

While the local calculations carried out in Sec. III E remain
unchanged, one needs to reexamine the occurrence of zeros
of �r.

We start by noting that the requirement that � � 0
imposes

1þ�

3
a2 � 0:

Next, a negative � would lead to a function �� which
changes sign. By inspection, one finds that the signature
changes from ð� þþþÞ to ðþ ���Þ across these zeros,
which implies nonexistence of a coordinate system in
which the metric could be smoothly continued there [17].
From now on we thus assume that

� � 1þ�

3
a2 > 0: (69)

It is well known that those metrics for which �r has no
zeros are nakedly singular whenever

e2 þ j�j> 0: (70)

This can, in fact, be easily seen from the following formula
for gtt on the equatorial plane:

gtt¼ 1

3�2r2
ð�3�e2þ6��rþð�a2�3Þr2þ�r4Þ: (71)

So, under (70) the norm of the Killing vector @t is
unbounded and the metric cannot be C2-continued across
f� ¼ 0g by usual arguments.
Turning our attention, first, to the region where r > 0,

the occurrence of zeros of �r requires that

� 
 �cða; e;�Þ> 0:

Hence, there is a positive threshold for the mass of a black
hole at given a and e. The solution with � ¼ �c has the
property that �r and its r derivative have a joint zero and
can thus be found by equating to zero the resultant of these
two polynomials in r. An explicit formula for mc ¼ ��c

can be given, which takes a relatively simple form when
expressed in terms of suitably renormalized parameters.
We set

	 ¼
ffiffiffiffiffiffiffi
j�j
3

s
a() a ¼ 	

ffiffiffiffiffiffiffi
3

j�j

s
;


 ¼ 3
ffiffiffiffiffiffiffij�jp

ð1þ 	2Þ3=2 ��()m :¼ �� ¼ ð1þ 	2Þ3=2
3

ffiffiffiffiffiffiffij�jp 
;

and

� ¼ 9
	2 þ j�j

3 q2

ð1þ 	2Þ2

() q2 :¼ �e2 ¼ 3

j�j
��
1þ 	2

3

�
2
�� 	2

�
:

Letting
c be the value of
 corresponding to�c, one finds


c¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�9þ36�þ ffiffiffi

3
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið3þ4�Þ3pq

3
ffiffiffi
2

p

()m2
c¼ð1þ	2Þ3ð�9þ36�þ ffiffiffi

3
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið3þ4�Þ3p Þ

162j�j : (72)

When q ¼ 0, the graph of 
c as a function of 	 can be
found in Fig. 10. In general, the graph of
c as a function of
a and q can be found in Fig. 11.
Note that if q ¼ 0, then � can be used as a replacement

for a; otherwise, � is a substitute for q at fixed a.
When e ¼ 0 we have mc ¼ aþOða3Þ for small a, and

mc ! 8

3
ffiffiffiffiffi
j�j

p as jaj % ffiffiffiffiffiffiffiffiffiffiffiffij3=�jp
.

According to Ref. [18], the physically relevant mass of
the solution is � and not m; because of the rescaling

involved, we have �c ! 1 as jaj % ffiffiffiffiffiffiffiffiffiffiffiffij3=�jp
.

We have d2�r=dr
2 > 0, so that the set f�r 	 0g is an

interval ðr�; rþÞ, with 0< r� < rþ.
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It follows from (54) that g’’=sin
2ð�Þ is positive for r >

0, and the analysis of the time-machine set is identical to
the case �> 0 as long as �> 0, which is assumed. We
note that stable causality of each region on which �r has
constant sign follows from (47) and (48).

The projection metric is formally identical to that de-
rived in Sec. III E, with projection diagrams seen in Fig. 12.

H. The Emparan-Reall metrics

We consider the Emparan-Reall black-ring metric as
presented in [19]:

ds2 ¼ �FðyÞ
FðxÞ

�
dt� CR

1þ y

FðyÞ dc
�
2 þ R2FðxÞ

ðx� yÞ2

�
�
�GðyÞ

FðyÞ dc
2 � dy2

GðyÞ þ
dx2

GðxÞ þ
GðxÞ
FðxÞ d�

2

	
;

(73)

where

Fð�Þ ¼ 1þ �; Gð�Þ ¼ ð1� �2Þð1þ ��Þ; (74)

and

C ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð� �Þ 1þ 

1� 

s
: (75)

The parameter  is chosen to be

 ¼ 2�

1þ �2
; (76)

with the parameter � lying in (0, 1), so that

0< �< < 1: (77)

The coordinates x, y lie in the ranges �1 	 y 	 �1,
�1 	 x 	 1, assuming further that ðx; yÞ � ð�1;�1Þ.
The event horizons are located at y ¼ yh ¼ �1=� and
the ergosurface is at y ¼ ye ¼ �1=. The @c axis is at

y ¼ �1 and the @� axis is split into two parts x ¼ �1.

Spatial infinity i0 corresponds to x ¼ y ¼ �1. The metric
becomes singular as y ! �1.
Although this is not immediately apparent from the

current form of the metric, it is known [20] that @c

is spacelike or vanishing in the region of interest, with
gc c > 0 away from the rotation axis y ¼ �1. Now, the

metric (73) may be rewritten in the form

g¼
�
gtt�

g2tc
gc c

�
dt2� R2

ðx�yÞ2
FðxÞ
GðyÞdy

2

þgc c

�
dc þ gtc

gc c

dt

�
2þgxxdx

2þg��d�
2

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

0

: (78)

We have

FIG. 10 (color online). The critical mass parameter

mc

ffiffiffiffiffiffiffiffiffiffiffiffij�=3jp ¼ ��c

ffiffiffiffiffiffiffiffiffiffiffiffij3=�jp
as a function of jaj ffiffiffiffiffiffiffiffiffiffiffiffij�=3jp

when
q ¼ 0.

FIG. 11 (color online). The critical mass parametermc

ffiffiffiffiffi
j�j
3

q
as a

function of 	 ¼ a
ffiffiffiffiffi
j�j
3

q
and q

ffiffiffiffiffi
j�j
3

q
.

FIG. 12. The projection diagrams for the Kerr-Newman-anti
de Sitter metrics with two distinct zeros of �r (left diagram) and
one double zero (right diagram); see Remark III.1.
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gtt�
g2tc
gc c

¼� GðyÞFðyÞFðxÞ
FðxÞ2GðyÞþC2ð1þyÞ2ðx�yÞ2 : (79)

It turns out that there is a nonobvious factorization of the
denominator as

FðxÞ2GðyÞ þ C2ð1þ yÞ2ðx� yÞ2 ¼ �FðyÞIðx; yÞ;
where I is a second-order polynomial in x and y with
coefficients depending upon �, sufficiently complicated
so that it cannot be usefully displayed here. The polyno-
mial I turns out to be non-negative, which can be seen
using a trick similar to one in Ref. [21], as follows: One
introduces new, non-negative, variables and parameters
ðX; Y;�Þ via the equations

x ¼ X � 1; y ¼ �Y � 1; � ¼ 1

1þ �
; (80)

with 0 	 X 	 2, 0 	 Y <þ1, 0<�<þ1. A
MATHEMATICA calculation shows that in this parameteri-

zation the function I is a rational function of the new
variables, with a simple denominator which is explicitly
non-negative, while the numerator is a complicated poly-
nomial in X, Y, � with, however, all coefficients positive.

Let � ¼ ðx� yÞ= ffiffiffiffiffiffiffiffiffiffi
FðxÞp

, then the function

�ðx; yÞ :¼ �2

�
gtt �

g2tc
gc c

�
¼ � GðyÞFðyÞ

FðxÞ2
ðx�yÞ2 GðyÞ þ C2ð1þ yÞ2

(81)

has extrema in x only for x ¼ y ¼ �1 and x ¼ �1= <
�1. This may be seen from its derivative with respect to x,
which is explicitly nonpositive in the ranges of variables
of interest:

@�

@x
¼ � 2GðyÞ2FðyÞ2FðxÞðx� yÞ

ðFðxÞ2GðyÞ þ C2ð1þ yÞ2ðx� yÞ2Þ2

¼ � 2GðyÞ2FðxÞðx� yÞ
Iðx; yÞ2 :

Therefore,

ð1þ yÞ2GðyÞ
Ið�1; yÞ ¼ �ð�1; yÞ 
 �ðx; yÞ 
 �ð1; yÞ

¼ ð1� yÞ2GðyÞ
Ið1; yÞ :

Since both Ið�1; yÞ and Ið1; yÞ are positive, in the domain
of outer communications f�1=� < y 	 �1g whereGðyÞ is
negative we obtain

�GðyÞð1þ yÞ2
Ið�1; yÞ 	

���������2

�
gtt �

g2tc
gc c

���������	 �GðyÞð1� yÞ2
Ið1; yÞ :

(82)

One finds

Ið1; yÞ ¼ 1þ 

1� 
ð�1þ y2Þð1� yð� �Þ � �Þ;

which leads to the projection metric

� :¼ �ðyÞ GðyÞ
ð�1� yÞdt

2 � R2

GðyÞdy
2; (83)

where, using the variables (80) to make manifest the
positivity of � in the range of variables of interest,

�ðyÞ ¼ ð1� yÞð1� Þ
ð1þ Þð1� yð� �Þ � �Þ

¼ ð2þ YÞ�ð1þ �Þð2þ 2�þ �2Þ
ð2þ �Þ3ð2þ Y þ �Þ > 0:

The calculation of (3) leads to the following conformal
metric:

g
ð2Þ ¼ R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�

j1þ yj
s

ð�F̂dt2 þ F̂�1dr2Þ; (84)

where F̂ ¼ � 1
R

ffiffiffiffiffiffiffiffiffi
�

j1þyj
q

G. Since the integral of F̂�1 diverges

at the event horizon and is finite at y ¼ �1 (which corre-
sponds both to an axis of rotation and the asymptotic region
at infinity), the analysis in Sec. II shows that the corre-
sponding projection diagram is as in Fig. 13.
It is instructive to compare this to the projection diagram

for five-dimensional Minkowski space-time

ðt; r̂ cos�; r̂ sin�; ~r cosc ; ~r sinc Þ � ðt; x̂; ŷ; ~x; ~yÞ 2 R5

parameterized by ring-type coordinates:

y ¼ � r̂2

ðr̂2 þ ~r2Þ2 � 1; x ¼ ~r2

ðr̂2 þ ~r2Þ2 � 1;

r̂ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x̂2 þ ŷ2

q
; ~r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~x2 þ ~y2

q
:

FIG. 13. The projection diagram for the Emparan-Reall black
rings. The arrows indicate the causal character of the orbits of the
isometry group. The boundary y ¼ �1 is covered, via the
projection map, by the axis of rotation and by spatial infinity
i0. Curves approaching the conformal null infinities I� asymp-
tote to the missing corners in the diagram.
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For fixed x � 0, y � 0 we obtain a torus as ’ and c vary
over S1. The image of the resulting map is the set x 
 �1,
y 	 �1, ðx; yÞ � ð�1;�1Þ. Since

x� y ¼ 1

r̂2 þ ~r2
;

the spheres r̂2 þ ~r2 ¼: r2 ¼ const are mapped to subsets
of the lines x ¼ yþ 1=r2, and the limit r ! 1 corre-
sponds to 0 	 x� y ! 0 (hence x ! �1 and y ! �1).
The inverse transformation reads

r̂ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�y� 1

p
x� y

; ~r ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
xþ 1

p
x� y

:

The Minkowski metric takes the form

� ¼ �dt2 þ dx̂2 þ dŷ2 þ d~x2 þ d~y2

¼ �dt2 þ dr̂2 þ r̂2d’2 þ d~r2 þ ~r2dc 2

¼ �dt2 þ dy2

4ð�y� 1Þðx� yÞ2

þ dx2

4ðxþ 1Þðx� yÞ2 þ r̂2d’2 þ ~r2dc 2

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

0

:

Thus, for any �-causal vector X,

�ðX; XÞ 
 �ðXtÞ2 þ ðXyÞ2
4ð�y� 1Þðx� yÞ2 :

There is a problem with the right-hand side since, at fixed
y, x is allowed to go to infinity, and so there is no positive
lower bound on the coefficient of ðXyÞ2. However, if we
restrict attention to the set

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r̂2 þ ~r2

p

 R

for some R> 0, we obtain

�ðX; XÞ 
 �ðXtÞ2 þ R4ðXyÞ2
4ð�y� 1Þ :

This leads to the conformal projection metric, for
�1� 1

R2 ¼: yR 	 y 	 �1,

� :¼ �dt2 þ R4dy2

4jyþ 1j ¼ �dt2 þ ðdðR2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jyþ 1j

q
ÞÞ2

¼ R2

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijyþ 1jp �

�
� 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijyþ 1jp
R2

dt2 þ R2

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijyþ 1jp dy2

�
:

(85)

Introducing a new coordinate y0 ¼ �R2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�y� 1

p
we have

� ¼ �dt2 þ dy02;

where �1 	 y0 	 0. Therefore, the projection diagram
corresponds to a subset of the standard diagram for a
two-dimensional Minkowski space-time; see Fig. 14.

I. The Pomeransky-Senkov metrics

We consider the Pomeransky-Senkov metrics [22]

g¼ 2Hðx;yÞk2
ð1��Þ2ðx�yÞ2

�
dx2

GðxÞ�
dy2

GðyÞ
�
�2

Jðx;yÞ
Hðy;xÞd’dc

�Hðy;xÞ
Hðx;yÞðdtþ�Þ2�Fðx;yÞ

Hðy;xÞdc
2þFðy;xÞ

Hðy;xÞd’
2; (86)

where � is a 1-form given by

� ¼ Mðx; yÞdc þ Pðx; yÞd’:
The definitions of the metric functions may be found in
Refs. [22,23]. The metric depends on three constants: k, �,
and , where k is assumed to be inR�, while the parameters
 and � are restricted to the set [24]

fð�; Þ: � 2 ð0; 1Þ; 2 ffiffiffi
�

p 	  < 1þ �g: (87)

The coordinates x, y, ’, c , and t vary within the ranges
�1 	 x 	 1, �1< y<�1, 0 	 ’ 	 2�, 0 	 c 	 2�
and �1< t <1, respectively.
A Cauchy horizon is located at

yc :¼ �þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 � 4�

p

2�
;

and the event horizon corresponds to

yh :¼ ��
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 � 4�

p

2�
:

Using an appropriate Gauss diagonalization, the metric
may be rewritten in the form

g ¼ ð�Þdt2 þ gyydy
2 þ ð��Þ;

FIG. 14. The projection diagram for the complement of a
world-tube R� BðRÞ in five-dimensional Minkowski space-
time using spherical coordinates (left figure, where the shaded
region has to be removed) or using ring coordinates (right
figure). In the right figure the right boundary y ¼ �1 is covered,
via the projection map, both by the axis of rotation and by spatial
infinity, while null infinity projects to the missing points at the
top and at the bottom of the diagram.
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where

ð�Þ ¼ ðg2tc g’’ � 2gt’gtc gc’ þ g2t’gc c

þ gttðg2c’ � g’’gc c ÞÞ=ðg2c’ � g’’gc c Þ;

ð��Þ ¼ gxxdx
2 þ ðgtcdtþ gc’d’þ gc cdc Þ2

gc c

þ
�
g’’ � g2c’

gc c

��
d’þ gt’gc c � gtcgc’

g’’gc c � g2c’

dt

�
2
:

The positive-definiteness of ð��Þ for y > yc follows from
Refs. [21,25]. Note that gc c < 0 would give a timelike

Killing vector @c and that g’’gc c � g2c’ < 0 would lead

to some combination of the periodic Killing vectors @’ and

@c being timelike, so the term ð��Þ in (88) is non-negative

on any region where there are no obvious causality
violations.

The coefficient ð�Þ in front of dt2 is negative for y > yh
and positive for y < yh, vanishing at y ¼ yh. This may be
seen in the reparameterized form of the Pomeransky-
Senkov solution that was introduced in Ref. [21]: Indeed,
let a, b be the new coordinates as in Ref. [21] replacing x
and y, respectively, and let us reparameterize �,  by c, d
again as in Ref. [21], where all the variables a, b, c, d are
non-negative above the Cauchy horizon, y > yc:

x¼�1þ 2

1þa
; y¼�1� dð4þcþ2dÞ

ð1þbÞð2þcÞ ;

�¼ 1

ð1þdÞ2 ; ¼ 2
2d2þ2ð2þcÞdþð2þcÞ2
ð2þcÞð1þdÞð2þcþ2dÞ :

(88)

Set

� :¼ ð�Þ�2; (89)

�2 :¼ ðx� yÞ2ð1� �Þ2
2k2Hðx; yÞ : (90)

Using MATHEMATICA one finds that � takes the form

� ¼ ��2ðy� yhÞQ;

where Q ¼ Qða; b; c; dÞ is a huge rational function in
ða; b; c; dÞ with all coefficients positive. To obtain the
corresponding projection metric � one would have, e.g.,
to find sharp lower and upper bounds for Q, at fixed y,
which would lead to

� :¼ �ðy� yhÞ sup
y fixed

jQjdt2 � 1

GðyÞdy
2:

This requires analyzing a complicated rational function,
which we have not been able to do so far. We hope to return
to this issue in the future.

We expect the corresponding projection diagram to look
like that for Kerr-anti de Sitter space-time of Fig. 12, with

r ¼ 1 there replaced by y ¼ �1, r ¼ �1 replaced by
y ¼ 1 with an appropriate analytic continuation of the
metric to positive y’s (compare [25]), rþ replaced by yh
and r� replaced by yc. The shaded regions in the negative
region there might be nonconnected for some values of
parameters and always extend to the boundary at infinity in
the relevant diamond [25].
Recall that a substantial part of the work in Ref. [25] was

to show that the function Hðx; yÞ had no zeros for y > yc.
We note that the reparameterization

y ! �1� cd

ð1þ bÞð2þ cþ 2dÞ
of Ref. [21] [with the remaining formulas (88) remaining
the same] gives

Hðx;yÞ ¼ Pða;b;c;dÞ
ð1þaÞ2ð1þbÞ2ð2þ cÞ2ð1þdÞ6ð2þ cþ 2dÞ4 ;

where P is a huge polynomial with all coefficients positive
for y > yh. This establishes immediately positivity of
Hðx; yÞ in the domain of outer communications. We have,
however, not been able to find a simple proof of positivity
of Hðx; yÞ in the whole range y > yc.

IV. AN APPLICATION TO SPATIALLY COMPACT
Uð1Þ � Uð1Þ SYMMETRIC MODELS WITH

COMPACT CAUCHY HORIZONS

In this section we wish to use the Kerr-Newman-(anti)de
Sitter family of metrics to construct explicit examples of
maximal, four-dimensional, Uð1Þ � Uð1Þ symmetric, elec-
trovacuum or vacuum models, with or without cosmologi-
cal constant, containing a spatially compact partial Cauchy
surface. Similarly, five-dimensional, Uð1Þ � Uð1Þ � Uð1Þ
symmetric, spatially compact vacuum models with spa-
tially compact partial Cauchy surfaces can be constructed
using the Emparan-Reall or Pomeransky-Senkov metrics.
We will show how the projection diagrams constructed so
far can be used to understand maximal (nonglobally hyper-
bolic) extensions of the maximal globally hyperbolic
regions in such models, and for the Taub-NUT metrics.

A. Kerr-Newman-(anti)de Sitter-type and
Pomeransky-Senkov-type models

The diamonds and triangles which have been used to
construct our diagrams so far will be referred to as blocks.
Here the notion of a triangle is understood up to diffeo-
morphism; thus planar sets with three corners, connected
by smooth curves intersecting only at the corners which are
not necessarily straight lines, are also considered to be
triangles.
In the interior of each block one can periodically iden-

tify points lying along the orbits of the action of the R
factor of the isometry group. Here we are only interested in
the connected component of the identity of the group,
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which is R� Uð1Þ in the four-dimensional case and
R� Uð1Þ � Uð1Þ in the five-dimensional case.

Note that isometries of space-time extend smoothly
across all block boundaries. For example, in the coordi-
nates ðv; r; �; ~’Þ discussed in the paragraph around (30),
translations in t become translations in v; similarly for the
ðu; r; �; ~’Þ coordinates. Using the ðU;V; �; ~’Þ local coor-
dinates near the intersection of two Killing horizons, trans-
lations in t become boosts in the ðU;VÞ plane.

Consider one of the blocks, out of any of the diagrams
constructed above, in which the orbits of the isometry
group are spacelike. (Note that no such diamond or triangle
has a shaded area which needs to be excised, as the shad-
ings occur only within those building blocks where the
isometry orbits are timelike.) It can be seen that the peri-
odic identifications result then in a spatially compact maxi-
mal globally hyperbolic space-time with S1 � S2 spatial
topology, respectively, with S1 � S1 � S2 topology.

Now, each diamond in our diagrams has four null
boundaries which naturally split into pairs, as follows: In
each block in which the isometry orbits are spacelike, we
will say that two boundaries are orbit-adjacent if both
boundaries lie to the future of the block or both to the
past. In a block where the isometry orbits are timelike,
boundaries will be said orbit-adjacent if they are both to
the left or both to the right.

One out of each pair of orbit-adjacent null boundaries of
a block with spacelike isometry-orbits corresponds, in the
periodically identified space-time, to a compact Cauchy
horizon across which the space-time can be continued to a
periodically identified adjacent block. Which of the two
adjacent boundaries will become a Cauchy horizon is a
matter of choice; once such a choice has been made, the
other boundary cannot be attached anymore: those geo-
desics which, in the unidentified space-time, would have
been crossing the second boundary become, in the periodi-
cally identified space-time, incomplete inextendible geo-
desics. This behavior is well known from Taub-NUT
space-times [26–28] and is easily seen as follows.

Consider a sequence of points pi :¼ ðti; riÞ such that pi

converges to a point p on a horizon in a projection diagram
in which no periodic identifications have been made. Let
T > 0 be the period with which the points are identified
along the isometry orbits; thus, for every n 2 Z points
ðt; rÞ and ðtþ nT; rÞ represent the same point of the quo-
tient manifold. It should be clear from the form of the
Eddington-Finkelstein-type coordinates u and v used to
perform the two distinct extensions [see the paragraph
around (30)] that there exists a sequence ni 2 Z such
that, passing to a subsequence if necessary, the sequence
qi ¼ ðti þ niT; riÞ converges to some point q in the com-
panion orbit-adjacent boundary; see Fig. 15.

Denote by ½p� the class of p under the equivalence
relation ðt; rÞ � ðtþ nT; rÞ, where n 2 Z and T is the
period. Suppose that one could construct simultaneously

an extension of the quotient manifold across both orbit-
adjacent boundaries. Then the sequence of points ½qi� ¼
½pi� would have two distinct points ½p� and ½q� as limit
points, which is not possible. This establishes our claim.
Returning to our main line of thought, note that a peri-

odically identified building block in which the isometry
orbits are timelike will have obvious causality violations
throughout, as a linear combination of the periodic Killing
vectors becomes timelike there.
The branching construction, where one out of the pair of

orbit-adjacent boundaries is chosen to perform the exten-
sion, can be continued at each block in which the isometry
orbits are spacelike. This shows that maximal extensions
are obtained from any connected union of blocks such that
in each block an extension is carried out across precisely
one out of each pair of orbit-adjacent boundaries. Some
such subsets of the plane might only comprise a finite
number of blocks, as seen trivially in Fig. 9. Clearly an
infinite number of distinct finite, semi-infinite, or infinite
sequences of blocks can be constructed in the diagram of
Fig. 6. Two sequences of blocks which are not related by
one of the discrete isometries of the diagram will lead to
nonisometric maximal extensions of the maximal globally
hyperbolic initial region.

B. Taub-NUT metrics

We have seen at the end of Sec. III B how to construct a
projection diagram for Gowdy cosmological models.
Those models all contain Uð1Þ � Uð1Þ as part of their
isometry group. The corresponding projection diagrams
constructed in Sec. III B were obtained by projecting out
the isometry orbits. This is rather different from the
remaining projection diagrams constructed in this work,
where only one of the coordinates along the Killing orbits
was projected out.
It is instructive to carry out explicitly both procedures

for the Taub-NUT metrics, which belong to the Gowdy
class. Using Euler angles ð�; �; ’Þ to parameterize S3, the
Taub-NUT metrics [26,29] take the form

g ¼ �U�1dt2 þ ð2‘Þ2Uðd� þ cosð�Þd’Þ2
þ ðt2 þ ‘2Þðd�2 þ sin2ð�Þd’2Þ: (91)

FIG. 15. The sequences qi and pi. Rotating the figure by
integer multiples of 90� shows that the problem of nonunique
limits arises on any pair of orbit-adjacent boundaries.
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Here

UðtÞ ¼ �1þ 2ðmtþ ‘2Þ
t2 þ ‘2

¼ ðtþ � tÞðt� t�Þ
t2 þ ‘2

;

with

t� :¼ m�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ ‘2

p
:

Further, ‘ and m are real numbers with ‘ > 0. The region
ft 2 ðt�; tþÞg will be referred to as the Taub space-time.

The metric induced on the sections � ¼ const,
’ ¼ const0, of the Taub space-time reads

�0 :¼ �U�1dt2 þ ð2‘Þ2Ud�2: (92)

As already discussed by Hawking and Ellis [1], this is a
metric to which the methods of Sec. II apply provided that
the 4�-periodic identifications in � are relaxed. Since U
has two simple zeros, and no singularities, the conformal
diagram for the corresponding maximally extended two-
dimensional space-time equipped with the metric �0 can
be seen as the left diagram in Fig. 16; compare Fig. 33 in
Ref. [1]. The discussion of the last paragraph of the pre-
vious section applies and, together with the left diagram in
Fig. 16, provides a family of simply connected maximal
extensions of the sections � ¼ const, ’ ¼ const0, of the
Taub space-time.

However, it is not clear how to relate the above to
extensions of the four-dimensional space-time. Note that

projecting out the � and ’ variables in the region where
U > 0, using the projection map �1ðt; �; �; ’Þ :¼ ðt; �Þ,
one is left with the two-dimensional metric

�1 :¼ �U�1dt2 þ ðt2 þ ‘2Þd�2; (93)

which leads to the flat metric on the Gowdy square as the
projection metric. (The coordinate t here is not the same as
the Gowdy t coordinate, but the projection diagram
remains a square.) And one is left wondering how this
fits with the previous picture.
Now, one can attempt instead to project out the � and ’

variables, with the projection map

�2ðt; �; �; ’Þ :¼ ðt; �Þ: (94)

For this we note the trivial identity

g��d�
2 þ 2g’�d’d� þ g’’d’

2

¼
�
g�� �

g2’�
g’’

�
d�2 þ g’’

�
d’þ g’�

g’’
d�

�
2

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
ð�Þ

: (95)

Since the left-hand side is positive-definite on Taub space,

where U > 0, both g�� � g2
’�

g’’
and g’’ are non-negative

there. Indeed,

g’’ ¼ ð‘2 þ t2Þsin2ð�Þ þ 4‘2Ucos2ð�Þ; (96)

g�� �
g2’�
g’’

¼ ð2‘Þ2
�
1� ð2‘Þ2Ucos2ð�Þ

g’’

�
U

¼ 4‘2ð‘2 þ t2Þsin2ð�Þ
ð‘2 þ t2Þsin2ð�Þ þ 4‘2Ucos2ð�Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

ð��Þ

U: (97)

However, perhaps not unsurprisingly given the character of
the coordinates involved, the function ð��Þ in (97) does not
have a positive lower bound independent of � 2 ½0; 2��,
which is unfortunate for our purposes. To sidestep this
drawback we choose a number 0< �< 1 and restrict
ourselves to the range � 2 ½��; �� ���, where �� 2
½0; �=2� is defined by

sin 2ð��Þ ¼ �:

Now, g’’ is positive for large t, independently of �. Next,

g’’ equals 4‘2U at the axes of rotation sinð�Þ ¼ 0 and

equals ‘2 þ t2 at � ¼ �=2. Hence, keeping in mind that U
is monotonic away from ðt�; tþÞ, for � small enough there
will exist values

t̂�ð�Þ; with t̂�ð�Þ< t� < 0< tþ < t̂þð�Þ
such that g’’ will be negative somewhere in the region

ðt̂�ð�Þ; t�Þ [ ðtþ; t̂þð�ÞÞ and will be positive outside of this

FIG. 16. The left diagram is the conformal diagram for
an extension of the universal covering space of the sections
� ¼ const, ’ ¼ const0, of the Taub space-time. The right dia-
gram represents simultaneously the four possible diagrams for
the maximal extensions, within the Taub-NUT class, with com-
pact Cauchy horizons, of the Taub space-time. After invoking the
left-right symmetry of the diagram, which lifts to an isometry of
the extended space-time, the four diagrams lead to two non-
isometric space-times.
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region. We choose those numbers to be optimal with
respect to those properties.

On the other hand, for � close enough to 1 the metric
coefficient g’’ will be positive for all � 2 ½��; �� ���
and t < t�. In this case we set t̂�ð�Þ ¼ t�, so that the
interval ðt̂�ð�Þ; t�Þ is empty. Similarly, there will exist a
range of � for which t̂þð�Þ ¼ tþ, and ðtþ; t̂þð�ÞÞ ¼ ;. The
relevant ranges of � will coincide only if m ¼ 0.

We note

@�

�
g�� �

g2’�
g’’

�
¼ 16‘4U2ð‘2 þ t2Þ sinð2�Þ

ðð‘2 þ t2Þsin2ð�Þ þ 4‘2Ucos2ð�ÞÞ2 ;

which shows that, for

t =2 ðt̂�ð�Þ; t�Þ[ ðtþ; t̂þð�ÞÞ and �2 ð��;����Þ; (98)

the multiplicative coefficient ð��Þ of U in (97) will
satisfy

ð��Þ 
 4‘2ð‘2 þ t2Þsin2ð��Þ
ð‘2 þ t2Þsin2ð��Þ þ 4‘2Ucos2ð��Þ

¼: f�ðtÞ: (99)

We are ready now to construct the projection metric in
the region (98). Removing from the metric tensor (91)
the terms ð�Þ appearing in (95), as well as the d�2

terms, and using (99) one finds, for g-causal vectors X,

gðX; XÞ 
 �2ðð�2Þ�X; ð�2Þ�XÞ;

with �2 as in (94), where

�2 :¼ �U�1dt2 þ f�Ud�2: (100)

Since U has exactly two simple zeros and is finite every-
where, and for � such that g’’ is positive on the region

� 2 ½��; �� ���, the projection diagram for that region,
in a space-time in which no periodic identifications in �
are made, is given by the left diagram of Fig. 16. The
reader should have no difficulties finding the corre-
sponding diagrams for the remaining values of �.
However, we are in fact interested in those space-times

where � is 4� periodic. This has two consequences:
(i) there are closed timelike Killing orbits in all the regions
where U is negative, and (ii) no simultaneous extensions
are possible across two orbit-adjacent boundaries. It then
follows (see the right diagram of Fig. 16) that there are,
within the Taub-NUT class, only two nonisometric, maxi-
mal, vacuum extensions across compact Cauchy horizons
of the Taub space-time. (Compare Proposition 4.5 and
Theorem 1.2 in Ref. [30] for the local uniqueness of
extensions and [31] for a discussion of extensions with
noncompact Killing horizons.)
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