
Is a tabletop search for Planck scale signals feasible?

Jacob D. Bekenstein

Racah Institute of Physics, Hebrew University of Jerusalem, Jerusalem 91904, Israel
(Received 11 October 2012; published 20 December 2012)

Quantum gravity theory is untested experimentally. Could it be tested with tabletop experiments? While

the common feeling is pessimistic, a detailed inquiry shows it possible to sidestep the onerous requirement

of localization of a probe on the Planck length scale. I suggest a tabletop experiment which, given state-of-

the-art ultrahigh vacuum and cryogenic technology, could already be sensitive enough to detect Planck

scale signals. The experiment combines a single photon’s degree of freedom with that of a macroscopic

probe to test Wheeler’s conception of ‘‘quantum foam,’’ the assertion that on length scales of the Planck

order, spacetime is no longer a smooth manifold. The scheme makes few assumptions beyond energy and

momentum conservations, and is not based on a specific quantum gravity scheme.
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I. INTRODUCTION

The theory of quantum gravity is a salient desideratum
of contemporary physics. But the proposed quantum grav-
ity schemes differ considerably from one another and
are remote from experimental confrontation. Given this
situation, one would like to have tests of the basic ideas
which inspire the search for the quantum gravity-to-be.
One of these is Wheeler’s proposal of ‘‘quantum foam’’
[1]: on scales below that of Planck, spacetime is no longer a
smooth manifold, but rather a frothy and tumultuous land-
scape. How can this idea be tested without assuming too
much about quantum gravity theory?

During the last decade, a sizable fraction of investigators
adopted the view that the palpable world is confined to a
four-dimensional brane in higher-dimensional spacetime,
with the additional dimensions not necessarily micro-
scopic [2]. This implies that the fundamental 4D Planck

length, ‘P, is really much larger than the quantity ‘P ¼
ðℏG=c3Þ1=2 ¼ 1:616� 10�35 m, where G is the measured
Newton constant. Can we decide experimentally between
this scheme and the traditional one? Can we decide experi-
mentally for or against the proposal that gravity, being a
kind of thermodynamics of spacetime [3], is in no need of
quantization?

Hopes have been expressed that the Planck scale can be
probed through its influence on the inflationary stage of
the Universe soon after the big bang [4], through its modi-
fication of the energy-momentum dispersion relation or
the uncertainty principle as put in evidence by ultrahigh-
energy astrophysical processes [5], through the residual
noise in LIGO or other gravitational wave interferometers
[6], and through the possible formation of microscopic
black holes in the LHC particle collider [7]. Thus far,
none of these approaches has yielded unambiguous evi-
dence of Planck scale physics.

Could one use laboratory experiments to probe Planck
scale physics? Some suggestions in this direction focus on
experimental consequences of deformations of the familiar

uncertainty relation which are expected by many to be
important near Planck scales [8]. If one is rather interested
in direct evidence for quantum foam, it goes almost with-
out saying that detection of such on the Planck scale is
unfeasible with an elementary particle as probe. If we tried
to localize the particle to the required scale, the uncertainty
principle would require that we give the particle a momen-
tum of at least ℏ=‘P, which for elementary particle masses
corresponds to an energy of at least 1019 GeV; this is
many orders of magnitude beyond what foreseeable parti-
cle accelerators will afford.
Could one instead ‘‘see’’ the quantum foam using a

macroscopic probe (mass M), say, by observing the effect
of moving it a distance of order ‘P? Again the answer
is negative if the experiment involves localizing the probe
(more correctly, its center of mass, c.m. henceforth) to
better than a Planck length, so that we can be sure that
the probe, as a whole, has moved only by a distance of that
order. According to the uncertainty principle, such local-
ization would introduce an uncertainty �p > ℏ=‘P in the
probe’s momentum. Thus, to engender a translation under
control, we would have to give the probe at least ℏ=‘P
of momentum, which would change its velocity by at
least ℏ=ðM‘PÞ. During a time interval �, the probe would
move an uncontrolled distance of at least �ℏ=ðM‘PÞ. This
would remain smaller than ‘P only if � < ð‘P=cÞðM=mPÞ,
where mP ¼ ðcℏ=GÞ1=2 � 2:177� 10�8 kg in the no-
extra-dimensions scenario. Even for M� 103 kg, � would
have to be shorter than 10�32 s. But switching a device on
and off that fast is beyond foreseeable technology.
However, one could succeed in the envisaged task using

a macroscopic probe if its operation did not depend on
localizing it with any great accuracy, for then the preceding
argument would be rendered irrelevant. But how could
one be sure that the probe moves a distance of order ‘P
without first localizing it? By relying on conservation of
momentum.
In what follows, we propose the idea for a tabletop experi-

ment which, depending on the outcome, may confirm the
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radical texture of sub-Planckian spacetime, and decide
whether the Planck scale is very small or merely micro-
scopic. The idea, in brief, is to use a single optical photon
which traverses a dielectric block to engender a translation
of the block which can be arranged to be of the order of the
Planck scale. The translation does not hinge on giving a
permanent impulse to the block. Certification that the tiny
translation actually occurred is to be had from detecting the
photon after transit through the block and relying on mo-
mentum conservation. But, as discussed in Sec. III, trans-
lation by a distance of order ‘P is expected to be impeded
with some probability. Thus, if in a series of like experi-
mental runs, the frequency with which the photon is found
to get through the block falls short of expectations (from
the block’s classical transmission coefficient), this may
signal that spacetime is ‘‘rough’’ at the relevant scale. The
scale at which spacetime ceases to be smooth could thus be
experimentally determined.

II. THE IDEAL EXPERIMENT

The macroscopic probe shall be a rectangular dielectric
block of dimensions L1 � L2 � L2 and mass M that may
be crystalline or amorphous. We require it to be highly
transparent to optical electromagnetic waves. The dielec-
tric is supposed to be optically isotropic; e.g., if a mono
crystal, it should be of the cubic crystal class. The block
shall be suspended from a thin fiber so that the small
translation here envisioned can be regarded as frictionless
motion with negligible restoring force (Fig. 1). The fiber
must be affixed to the center of the block’s upper face.

A photon of vacuum wavelength �0 from a suitable
single-photon emitter E is to be directed at the block
normally to one of the square faces (henceforth the ingress
face, the opposite one being the egress face). An optical
system, also shown in Fig. 1, should shape the pulse so that
it illuminates almost the whole block (as opposed to just a
narrow tube through it). A second such system, placed after
the block, is used to focus the exiting pulse onto a suitable
single-photon detector D. In vacuum this photon carries

momentum p0 ¼ h=�0 ¼ ℏ!=c, where ! is the corre-
sponding angular frequency. What is the momentum of
the photon inside the block, supposing that it was not
reflected at the ingress face?
Faraday’s equation r�Eþ c�1@tB ¼ 0, which is

valid in matter as well as in vacuum, imposes on the
electric field E and magnetic induction B of a plane
wave which varies as expð{k � r� {!tÞ the relation
k�E ¼ ð!=cÞB. Of course, k ¼ nð!=cÞ, where n
denotes the dielectric’s index of refraction at the said
frequency. We recall that n ¼ ffiffiffiffiffiffiffi

��
p

, with � the permittivity

and � the permeability at the said frequency, and that the
magnetic field H is given by H ¼ B=�. Thus,

ffiffiffiffi
�

�

s
k

k
�E ¼ H: (1)

Now, in a dielectric the density of electromagnetic
momentum is given by [9]

�p ¼ jE�Hj
4�c

¼
ffiffiffiffi
�

�

s
E2

4�c
; (2)

whereas that of the energy is written as

�e ¼ E �DþH � B
8�

¼ �E2 þ�H2

8�
¼ �

4�
E2; (3)

where we have used Eq. (1) and the additional fact that k
and E are orthogonal. Thus

�e

�p
¼ c

ffiffiffiffiffiffiffi
��
p ¼ cn: (4)

We interpret the above to mean that for a single photon
in a dielectric, the ratio of energy to momentum is cn.
Now, in the dielectric’s Lorentz rest frame, ! will be
unchanged in the passage from vacuum to dielectric (or
vice versa). May we assume that the photon’s energy is also
unchanged? Yes, since energy must be conserved, and
there seems to be no mechanism for depositing a signifi-
cant fraction of the photon’s energy in the block upon
ingress (we neglect the extremely tiny kinetic energy tem-
porarily acquired by the block and the very small Doppler
redshift of ! at egress due to the slow motion of the block
before it stops). We conclude that in the block,

jpj ¼ h

n�0

¼ ℏ!
cn

: (5)

This expression concurs with that of Abraham in the
celebrated Abraham-Minkowski controversy [10,11]. If
one instead uses Minkowski’s momentum density, replac-
ing E�H in Eq. (2) with D� B, one gets that jpj ¼
nℏ!=c. In what follows, we shall rely on conservation of
the momentum of the block plus that of the photon. This is
true for both Abraham and Minkowski photon momenta,
provided that one uses for the block the kinematic momen-
tum in the first case, and the canonical momentum in the

FIG. 1. The suspended block and the photon’s path (dotted
line) starting from the single-photon emitter E, passing through a
divergentþ convergent lens system (to spread the pulse) and,
after transiting the block, passing through a second convergent
lens that focuses the pulse onto the single-photon detector D.
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second [11]. Because the kinematic momentum is the
simpler, we proceed by using the Abraham photon mo-
mentum, Eq. (5).

Upon entering the block, the photon obviously deposits
in it forward momentum equal to

�p ¼ ℏ!
c
� ℏ!

cn
¼ ℏ!

c

�
1� 1

n

�
: (6)

We take it that in the block’s original Lorentz rest frame its
c.m. (defined in the Appendix) has acquired this momen-
tum. The c.m. thus moves with speed �p=M during the
time interval (nL1=c) it takes for the photon to traverse the
block. Assuming the photon exits the block rather than
being reflected back at its egress face, it must recover its
old momentum (ℏ!=c); the block must thus divest itself of
the momentum �p it borrowed temporarily. Hence, upon
egress of the photon, the block’s c.m. comes to rest in its
original rest frame. We may conclude that in this particular
frame the c.m. has moved a total distance

�X0 ¼ L1

ℏ!
Mc2

ðn� 1Þ (7)

before coming to rest [12]. (There is no violation here of
the uncertainty relation, as made clear in the Appendix.)
Certification that this translation really took place can be
had by detecting the photon after its transit of the block.

But why should we care about this small translation
of the c.m.? After all, the c.m. is not the position of any
specific electron or quark. Eq. (A3) of the Appendix shows
that the c.m. position components are canonically conju-
gate to the corresponding components of the block mo-
mentum vector. This last is a key observable of the whole
block, and so its canonical conjugate, the c.m. position
observable, acts as a faithful proxy for the whole block’s
position. An additional argument for the relevance of the
c.m. will be given in Sec. III. Anyway, our arguments
presume that what happens to the c.m. matters physically.

How big is the translation? As an example, let us con-
sider a photon of wavelength � ¼ 445 nm (energy ℏ! ¼
2:78 eV), and a block of mass 0:15� 10�3 kg. This last
contains 0:15� Avogadro’s number or 0:903� 1023

nucleons, and so has mass-energy Mc2 ¼ 0:848�
1023 GeV. Thus, ℏ!=ðMc2Þ ¼ 3:31� 10�32. With L1 ¼
10�3 m and n ¼ 1:6 (relevant to high-lead glass at � ¼
445 nm), we find �X0 ¼ 1:98� 10�35 m, quite close to
the Planck length in the traditional (no large extra dimen-
sions) scenario. Probing the Planck scale with the present
idea thus seems feasible.

Needless to say, the magnitude of the translation men-
tioned above will differ in a different Lorentz frame, and
can even become of order nL1 in a frame moving very fast
with respect to the laboratory. But when analyzed in the
initial c.m. frame, the translation has a sharp beginning
and end; in another frame, translation has been going on
before photon ingress, and it continues after egress with the

passage of the photon being marked, generically, by just a
slight change in velocity. Obviously the magnitude of such
translation is not sharply limited. The shortest c.m. trans-
lation, providing the best resolution of spacetime foam as it
were, is manifested in the block’s rest frame.
The above also clarifies why the experiment cannot

employ a macroscopic light pulse instead of a single
photon. In the former case the pulse is always partially re-
flected back, and the resulting recoil of the block imparts to
it a constant velocity leading ultimately to unlimited trans-
lation. (The consequences of backreflection of a single
photon are studied in Sec. III below.)
A possible complication in the above considerations is

dispersion in the block material. As an example, we look at
Schott N-SF2 high-lead glass [13]. At � ¼ 445 nm, it has
n ¼ 1:67 with dn=d� ¼ �0:000256 nm�1. We are inter-
ested in a photon pulse defined in time to better than
5� 10�12 s, the nominal light crossing time for the block.
Thus, the time-energy uncertainty relation lets us get by
with a bandwidth �! ¼ 2� 1012 s�1, which corresponds
to �� ¼ 0:21 nm. Consequently, with care in the prepara-
tion of the photon, the index of refraction will vary by only
a fraction, 3� 10�5, so that dispersion is immaterial here.
We now consider perturbations. Newtonian gravity of

nearby objects is not a significant perturbation on the
block. It is true that a 1 kg mass a distance of 1 m from
the block will impart to it, over the course of photon transit,
momentum of the same order as that given by the photon.
However, that gravitational field is to be regarded as a
(minute) part of Earth’s field, which determines the vertical
direction for the fiber as well as the precise value of the
gravitational acceleration g. Thus we do not have to worry
about that gravitational perturbation.
Of course, the suspending fiber exerts a minute restoring

force on the block; how does this affect the argument? If
the fiber’s point of support is a distance l above the block’s
c.m., the restoring force when the block is displaced from
the vertical by horizontal distance �x is Mg�x=l. Thus, in
the course of the photon transit time, nL1=c, the restoring
force deposits in the block momentum MgnL1�xðlcÞ�1.
This becomes comparable to the momentum transferred to
the block, Eq. (6), for �x ¼ lℏ!ðn� 1ÞðMgn2L1Þ�1. (The
same displacement is obtained if one reckons, in the rest
frame in which the block was at rest, the distance travelled
by the block during photon transit under the acceleration
g�x=l, and equates it to �X0.) With the parameters
mentioned above, and assuming l� 10�1 m, �x � 7:1�
10�15 m, a displacement merely the size of a nucleus.
Even bigger displacements from the vertical result from

thermal agitation, as discussed below in Sec. V. But this
does not mean that thermal displacement of the block c.m.
from equilibrium submerges the Planck scale translation
we are looking for. Due to the low speed of sound in solid
matter, a few times 103 ms�1, the restoring force of the
fiber can only influence, during the photon transit time,
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those parts of the block within about 10 nm from the point
of block-fiber attachment. This is a tiny fraction of the
block volume in the examples considered in this paper (see
also Sec. IV). For practical reasons, the illuminated part of
the block will not comprise that boundary region. Thus the
motion of the block c.m. that we speak of does not include
the effect of the force from the fiber. Of course, this last
does play a part in establishing the motion of the block at
any moment; such motion, however, is not considered here
because we work in the block c.m.’s Lorentz rest frame at
the moment of photon ingress.

III. TRANSITS AND ENTANGLEMENT

Internal reflection of the photon complicates the descrip-
tion of the experiment. How likely is it that the photon
transits the block rather than being reflected backward, and
how certain can one be that it traverses it once and not
multiple times?

According to Fresnel’s relations [9], if an electromag-
netic wave of either polarization and electric amplitude Ei

propagating through a transparent medium with index n1
is incident normally on the plane boundary between that
medium and a second one with index n2, the transmitted
and reflected amplitudes are

Et ¼ 2n1
n1 þ n2

Ei and Er ¼ n1 � n2
n1 þ n2

Ei; (8)

respectively. We may interpret the above ratios as applying
to the amplitude of a single photon. Thus, in the wake of a
single passage through the block, our photon’s incident
amplitude gets multiplied by the factor

F0 ¼ 4n

ð1þ nÞ2 e
{n!L1=c; (9)

where the shown phase is accrued over the thickness L1 of
the block (we of course neglect the block’s velocity as
compared to c). Concurrently, the block’s c.m. is translated
by the �X0 of Eq. (7).

If instead the photon is backreflected at the would-be
egress face and then at the ingress face a total of j times
before finally escaping through the egress face, its original
amplitude gets multiplied by

Fj ¼ 4n

ð1þ nÞ2
ðn� 1Þ2j
ð1þ nÞ2j e

{ð2jþ1Þn!L1=c; (10)

because in addition to entering and leaving the block, it has
undergone 2j reflections at boundaries from refraction
index n to index n ¼ 1, and has traveled the length L1 a
total of 2jþ 1 times. Concurrently, the block’s c.m. is
translated by

�Xj ¼ L1

ℏ!
Mc2

ðn� 1þ 2jnÞ; (11)

because every time the photon is reflected off the egress
face, it imparts to the block an additional forward

momentum equal to twice the value in Eq. (5); the said
momentum causes motion of the c.m. during the time
nL1=c that the photon flies backward, and when the photon
is reflected by the ingress face, it recovers the said
momentum from the block. This is repeated j times.
Meanwhile, the block retains the forward momentum �p
from Eq. (6) so long as the photon is inside it, and this last
alone contributes 2jþ 1 translations of size �X0. The sum
of the various translations is �Xj.

If before the transit the photon’s normalized state was
j�ii, after the transit the part of the state of the photon-
block system in which the photon propagates forward is, in
obvious notation,

jc i ¼
X1
j¼0

4n

ð1þ nÞ2
ðn� 1Þ2j
ð1þ nÞ2j e

{ð2jþ1Þn!L1=cj�ii � j�Xji;

(12)

that is to say, the photon’s amplitude gets entangled with
the block displacement. There is, of course, a piece jc!i
corresponding to the photon going backwards towards its
source, which is not important here.
From Eq. (12), the probabilities that the photon transits

the block with j double internal reflections are

pj ¼ 16n2

ð1þ nÞ4
ðn� 1Þ4j
ð1þ nÞ4j j ¼ 0; 1; 2; . . . (13)

with

p �
X1
j¼0

pj ¼ 2n

n2 þ 1
: (14)

According to Bayes’s theorem, the conditional probability
that the photon avoided internal reflections (j ¼ 0) given
that it transited the block is

pðj ¼ 0j  Þ ¼ p0

p 
¼ 8nðn2 þ 1Þ
ðnþ 1Þ4 : (15)

With n ¼ 1:6, as in our example, p0 ¼ 0:896, p1 ¼
0:00254, p2 ¼ 7:2� 10�6; . . . . In addition, p ¼ 0:899
and pðj ¼ 0j  Þ ¼ 0:997. This last is also the probability
that a photon was emitted, has crossed the block without
any internal reflections, and is accompanied by a shift �X0

of the block. Since that probability is so close to unity, we
can, in this first discussion, and when the photon is detected
at D, ignore the possibility of internal reflections. The
above description of the process assumes a smooth space-
time geometry.
As long as the experimental parameters are such that

�X0 � ‘P, we may regard spacetime as endowed with the
usual symmetries under translation, rotation and Lorentz
boosts. No impediment to the translation is expected in that
case. However, since on scales comparable to ‘P, vacuum
quantum fluctuations of the metric are expected to be large,
we expect such fluctuations to impede translation of
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the c.m. by distances �X0 � ‘P. One way to visualize this
is as follows: In order of magnitude, the energy density
associated with order-unity fluctuations of the metric on
said scale is expected to be � ℏ=ðc‘P4Þ; it should have a

coherence length of the Planck order. Thus, in a region
with diameter of order ‘P, the mass is sufficient to form a
black hole of mass � ℏ=ðc‘PÞ ¼ mP, the minimal black
hole mass. One may thus envisage quantum foam as a sea
of virtual black holes of about Planck mass mP and Planck
scale radius constantly forming and disappearing on a
nearly Planck timescale.

The block’s c.m., whose translation during photon
transit extends over a time long compared to Planck’s,
will thus frequently run into one or another such black
hole. It seems likely that this repeated interaction of the
c.m. will impede its linear translation, at least for some
of the photon transits. For one, a Planck scale black hole,
which is likely to be moving rapidly in a direction other
than that of the c.m., is not negligibly light compared to the
block’s mass we have in mind, and it must have some
dynamical effect on it. The usual argument against such
hindrance from Lorentz invariance of the unconfined
vacuum is probably immaterial here: it is widely suspected
that Lorentz symmetry is broken at the Planck scale. We
note that no black hole can be smaller than Planck length;
this suggests that block translations much shorter than
a Planck length may be immune to the hindrance just
discussed.

Incidentally, the foregoing argument is another reason
for focusing on what happens to the c.m. rather than to
some elementary component of the block. We could not
very well talk of a quark or electron belonging to the block
colliding with a Planck sized black hole: its vastly bigger
Compton length would mean the particle ‘‘averages out’’
the black hole soup and is thus insensitive to its existence.
By contrast, the Compton length associated with the c.m.
of our example block is very sub-Planckian in size.

We concluded that the block’s translation associated
with photon transit may be impeded. This must happen
with some probability �	. Whenever the block’s motion is
impeded, the photon must be prevented from crossing the
block because the associated transfer of momentum to the
block and back to the photon in accordance with momen-
tum conservation is not consistent with a block translation
smaller than �X0. One cannot argue that the momentum
�p in Eq. (6) is transferred to the black hole gas instead of
being retained by the block. The gravitational vacuum
must be homogeneous on scale L1 or even �, both much
larger than ‘P, so that the momentum of the block plus
photon must be conserved (the gravitational vacuum must
have zero momentum). Thus, with probability �	 the
photon will be backreflected by the block (or absorbed).
This reflection is in addition to that required by Fresnel’s
formulas (or their extension to account for imperfect
transparency).

If, after accounting for the quantum efficiency of the
photon detector, it is found, in multiple runs of the
experiment here suggested, that the direct photon is
detected significantly less frequently than expected from
the a priori probability p0 given by Eq. (13), this may
signal ‘‘roughness’’ of spacetime at Planck scale. Without
making specific hypotheses about quantum spacetime, we
cannot estimate �	. However, it may be possible, by vary-
ing n� 1, L1 or M, to determine the critical scale above
which the situation corresponds to a smooth spacetime.
This would then provide a check on Wheeler’s conjecture
as well as on the large extra dimensions idea. Conversely,
failure to detect any anomaly would not be inconsistent
with the thermodynamic view of spacetime [3].

IV. CALIBRATION

Inaccuracies in the various optical parameters may con-
fuse the probably small effect we are after. One way to
sidestep this hurdle is to supplement the basic setup of
Fig. 1 with a second, comparison, block of identical com-
position suspended side by side with the first, also by a thin
fiber, and followed by its own single-photon detector D0.
For clarity, the second block is displayed in the lower half
of Fig. 2. The dimensions of the second block should be
adjusted so that the corresponding �X0 (for the same
wavelength as earlier) is much longer than ‘P. For ex-
ample, both blocks can be made of high-lead glass with
density 6� 103 kgm�3 and n ¼ 1:6. The first will have
L1 ¼ 10�3 and L2 ¼ 5� 10�3 so that M ¼ 1:5�
10�4 kg and �X0 ¼ 1:98� 10�35 m. The second block
can have L1 ¼ L2 ¼ 10�3 m, to which correspond
M ¼ 6� 10�6 kg and �X0 ¼ 4:96� 10�34 m � 30‘P.

FIG. 2. Setup of suspended blocks showing (dotted lines) the
alternative paths for the photon. E is the single-photon emitter;
D and D0 are the single-photon detectors. BS denotes the beam
splitter, and M the mirror. DL is the fiber optics delay line, and
EB are the electronics that triggerD andD0 through cable C. The
optical elements to widen the beam before and focus it after each
block are left out for clarity. In the real experiment, the blocks
would hang side by side.
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The Newtonian force between the two example blocks
set 0.2 m apart is 1:5� 10�18 N. Over the course of the
photon transit, this will impart either block a momentum
8� 10�30 kgm s�1, which is a factor of 70 below the
momentum acquired from the photon. Thus mutual gravi-
tation can be kept from being disruptive.

As shown in Fig. 2, the beam from the single-photon
emitter is directed through a 50-50 beam splitter and mirror
assembly from which it continues to the blocks as shown
in the figure. One advantage of this configuration, over the
alternative in which a series of measurements is made
using the first block followed by another series using the
second, is that the effect of possible temporal drifts in the
apparatus is minimized by working both arms of the setup
essentially simultaneously.

Now, if a particular photon is ultimately detected byD, it
has, with high probability (see Sec. III), transited the upper
block only once, and has caused a translation of it of order
‘P, as per our example. If instead the photon is detected by
D0, it has gone through the lower block, most probably
without internal reflection, and has translated it by a dis-
tance some 30 times larger than ‘P. According to the ideas
already mentioned, the first alternative is expected to be
somewhat suppressed because of the nonsmooth character
of spacetime at the Planck scale. Thus, if the two arms of
the setup in Fig. 2 are perfectly balanced, events in which
the photon is detected by D0 should somewhat outnumber
those in which it is detected by D.

This asymmetry might be small, and might thus be
swamped by unbalance of the beam splitter-mirror assem-
bly. Relative calibration of the two-block setup is thus
required. This could be done by preceding the series of
single-photon measurements with a separate experiment in
which a macroscopic laser pulse is directed down the same
paths as the single photons, and the relative intensities atD
and D0 are accurately measured (with a pair of more
suitable counters, which may be periodically interchanged
to correct for differences in their efficiencies).

While conclusions can be drawn statistically, following
a series of single-photon events, from the fraction of counts
in D and D0, it may also prove interesting to study each
event separately. To prevent confusion between a click inD
or D0 and an unrelated single-photon emission from E, one
can opt to trigger the detectors through cable C issuing
from the electronics EB which detect the emission. This
signal can be allowed time to precede the photon by having
the latter ‘‘stored’’ in a delay line, e.g., the coil of optical
fiber DL in Fig. 2.

V. SOURCES OF NOISE

As in any experiment, one must here contend with
sources of noise which tend to cover up the phenomenon
under investigation. Confusion of the single photon in
question with background light can be reduced to a toler-
able level by proper shielding, cooling to suppress thermal

optical background, and the use of narrow-band filters
centered on the single photon’s wavelength and placed at
the detectors’ inputs.
We now consider noise of extraterrestrial origin. Cosmic

ray hits on the blocks might be a problem. A cosmic ray
carries such high momentum compared to the optical
photon’s that it would totally wash out the small displace-
ment if they arrived together. But the most abundant cos-
mic rays (protons with energies >0:4 GeV) account for a
flux less than 104 s�1 m�2 sr�1 [14]. Thus, the chance of
such a cosmic ray overlapping with the occasional optical
photon transit is a totally ignorable 4� 10�9, assuming
that the single photons arrive at a rate 102 s�1.
What about solar neutrinos? Recently the Borexino

Collaboration [15], employing 2:8� 105 kg of liquid scin-
tillator as detector (as compared with our 1:5� 10�4 kg
block), managed to detect but a few neutrinos per day.
These neutrinos from the pep reaction account for about
0.25% of the totality of neutrinos emitted by the Sun. From
this we crudely estimate the probability of any type of solar
neutrino interacting with the block in coincidence with one
of those 102 s�1 single photons at 2� 10�12. Solar neu-
trinos are evidently not a problem here.
Assessing the noise caused by the hypothetical dark

matter particles is made particularly difficult by the great
variety of types speculated upon. We take an empirical
tack. About the only positive experimental evidence for
dark matter has been provided by the decade-long DAMA/
LIBRA experiment in the Grand Sasso tunnel [16]. That
experiment now uses 2:4� 102 kg of Na I scintillator as
detector for the weakly interacting dark matter particles
thought to be trapped in the potential well of our Galaxy. It
is sensitive to the 2–6 keV energy range.
The DAMA/LIBRA Collaboration claims to have

detected a correlation of the number of events detected
with the yearly motion of the Earth about the Sun. The
largest count numbers are seen in early summer, when the
Earth’s 30 km s�1 orbital velocity vector most nearly aligns
with the solar 2� 102 km s�1 velocity around the galactic
center; the lowest count rate comes 6 months later. The
instrument reveals a sinusoidal variation in between these
dates with amplitude 1� 10�2 counts=day kg�1 keV�1.
Evidently, the full mean event rate must be a factor
200=30 larger.
Making the exaggerated assumption that the spectrum of

weakly interacting dark matter particles extends to 1 MeV
without dropping at all makes the rate 66 counts=day kg�1.
The probability that a DAMA/LIBRA-type event will
occur in our 1:5� 10�4 kg block in coincidence with the
crossing of one of those 102 s�1 single photons can thus be
estimated as being below 5� 10�17. Even without delving
into the other possible types of dark matter particles
that are speculated upon, it should be clear that as sources
of noise in the experiment contemplated here they are
ignorable.
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The most troublesome source of noise is thermal jitter of
the primary block’s c.m. Let us begin with a naive analysis
of it. We compare the rms speed of the c.m. in thermal

equilibrium at temperature T, Vt ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3kBT=M

p
with the

speed imparted to the c.m. by the momentum transfer �p.
The two become equal at the crossover temperature Tc:

kBTc ¼ ðn� 1Þ2
3n2

ℏ!
Mc2

ℏ!; (16)

and we obviously want to operate well below Tc. For the
example of the first block in Sec. IV, we already mentioned
that ðℏ!=Mc2Þ � 3� 10�32, so that kBTc � 4:34�
10�33 eV or Tc � 5:04� 10�29 K. This is hopelessly
below foreseeable experimental reach. Tweaking the
parameters over a practical range does not help much.
However, the experiment is not thereby made unfeasible;
the above analysis is simply improperly focused.

The thermal jitter of the c.m. is maintained by collisions
of ambient gas atoms or molecules and thermal photons
with the block. The random block speed Vt estimated
above is acquired after so many collisions that thermody-
namic equilibrium has been reached between gas, radiation
and block. Let us first ignore the thermal photons and focus
on impacts by atoms or molecules. In between collisions, the
block’s c.m. moves uniformly, and can be said to be at rest in
some Lorentz reference frame. If the gas is very tenuous,
collisions may be rare enough that, with high probability, the
c.m. velocity acquired by the block from the optical photon
does not get changed during the photon transit. It then
becomes irrelevant that there is an overall large thermal
noise. Put another way, the obstruction to the experiment
is not the c.m. thermal motion per se, but the frequency with
which significant changes occur in it.

Let us introduce the length L defined by

L2 ¼ 2ð2L1L2 þ L2
2Þ: (17)

L2 is just the total surface area of the block. Now, the
number density of ambient molecules is %=m	, where % is
the mass density of the gas, whilem	 is the mass of an atom
or molecule. Thus, a good estimate of the number of hits
per unit time of ambient molecules on the block is

ð%=m	Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3kBT=m	

p
L2. Let us require that the mean number

of hits over the transit time nL1=c be much smaller than
unity. We obtain the condition

� � nL2L1P

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3

m	c2kBT

s

 1; (18)

where we have replaced %=m	 with P=ðkBTÞ in accordance
with the ideal gas law, an excellent approximation at the
low pressures P we have in mind.

We may obviously interpret� as the probability of a hit
on the block during photon transit. In those rare trials when
the block is hit during photon transit by an atom or mole-
cule, the momentum thus transferred to the block, of order

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3m	kBT
p

, well exceeds that given by the photon (unless T
drops to near 10�6 K). In such case, the block receives a
permanent momentum increment much larger than �p
in Eq. (6), and its translation increases constantly, so
that eventually it is much bigger than Planck’s length.
Consequently, we do not expect any photon transmission
anomaly in this case.
By contrast, in the more frequent trials with no hit, the

discussion in Sec. IV applies literally, and the probability
of photon backreflection in the upper path of Fig. 2 is
expected to be enhanced. Thus, when the condition in
Eq. (18) is satisfied, a series of single-photon trials will
result in the above-described asymmetry between the counts
in detectors D and D0. Can � be made small in practice?
Pressures down to 1:3� 10�11 Pa could be reached in

low-pressure labs already two decades ago [17], and
10�11 Pa can routinely be obtained today with off-the-shelf
equipment. With m	 ¼ 4 amu (appropriate to helium
which, being inert, should be the gas of choice for the
block’s environment), and assuming room temperature
T ¼ 300 K, we find � ¼ 9� 10�4 for the first block and
� ¼ 1� 10�4 for the second in the example of Sec. IV.
For various reasons it may be necessary to work at low
temperatures. It is germane here to note that pressures as
low as 6:7� 10�15 Pa were indirectly measured in a 4 K
(liquid He temperature) vacuum system already 20 years ago
[18]. But even atP ¼ 10�11 PawithT ¼ 4 K, we find� ¼
1� 10�2 for the first block and � ¼ 9� 10�4 for the
second. It is thus experimentally feasible to reduce the
atom hit probability during single-photon transit to 1% or
less, which makes most single-photon events usable.
Let us now consider the effects of thermal photon noise.

The mean number density of thermal photons is [19]

N ¼ 0:244

�
kBT

ℏc

�
3 ¼ 2:03� 107TðKÞ3 m�3: (19)

We estimate the number of thermal photon hits on the
block per unit time as NcL2. For T ¼ 300 K (T ¼ 4 K),
the first block in our example of Sec. IV receives�6� 107

(140) hits during the optical photon transit.
Now, the photon number spectrum peaks at wavelength

[19]

�peak ¼ 1:60ℏc
kT

¼ 0:00367 m

TðKÞ : (20)

For the range 4–300 K, the photons are in the microwave to
extreme infrared range. Their frequencies lie well below
most of the oscillator frequencies we could associate with
the atomic constitutes of transparent dielectrics. Hence, the
relevant value of n is close to the zero-frequency one, which
is usually a few times unity. Fresnel’s formulas [Eq. (8)] thus
predict that the photons will most probably be reflected by
the dielectric (actually scattered by the block).
Consequently, each thermal photon that hits the block

imparts to it momentum in a random direction of the order
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of the momentum corresponding to �peak, that is,

�3:92kBT=c. Consequently, the total momentum �p so
acquired from thermal photons during the optical photon’s
transit will scale up with the square root of the number of
hits. The final result is

�p � 1:9ℏðnL1L
2Þ1=2

�
kBT

ℏc

�
5=2

: (21)

We find for T ¼ 300 K that �p ¼ 4:3� 10�25 kgm s�1
and 1:3� 10�25 kgm s�1 for the first and second blocks,
respectively. For T ¼ 4 K, the mean momenta acquired are
instead 8:6� 10�30 kgm s�1 and 2:5� 10�30 kgm s�1,
respectively. By comparison (Sec. II), the optical photon’s
momentum transfer to either block is �p ¼ 5:6�
10�28 kgm s�1. Obviously the experiment is rendered im-
possible at room temperature by thermal photon noise, but
it looks feasible at T ¼ 4 K, for which that noise is only
1% of the signal.

One worry remains. The momentum in Eq. (21), unlike
the optical photon’s, is deposited permanently in the block.
When the optical photon exits, the block c.m. continues
to move in its original rest frame, albeit much more
slowly than during the transit. Thus, there is no exact sense
in which the c.m. gets translated by a definite distance.
However, since �p
 �p � ℏ!=c, this may not be
important. After all, by placing the detectors D and D0
near enough to the blocks, one may bring the experiment to
a close with the detection of each optical photon rather
soon after its transit. Thus, the continuing slow c.m. drift
may be irrelevant.

Any doubts of the kind just mentioned may be allayed by
cooling the blocks and their environment further. For T �
4 K, the typical thermal photon wavelength, �peak, is

smaller than the larger dimension of the first block in our
example. It is then a good approximation to equate the
optical cross section of the block and its geometric cross
section [20]. Once the temperature is brought an order of
magnitude below 4 K, �peak � L2, and Rayleigh’s regime

sets in Ref. [9], with the optical cross section scaling as
��4. In view of Eqs. (19) and (20), the contemplated
reduction of T by an order of magnitude would cut the
rate of thermal photon hits by a factor of 103 � 104 ¼ 107.
As a consequence, the probability of a thermal photon hit
during photon transit would be reduced to 10�5. Thus,
most of the single optical photon events would be free of
noise, and the statistics of counts in D and D0 would need
no correction on account of block thermal noise.

VI. SUMMARY

The feasibility of translating the c.m. of a macroscopic
block of dielectric by a distance of the order of Planck’s
length without first localizing it has been demonstrated.
This translation is not measured but inferred by momentum
conservation involving a single optical photon which
crosses the block. It is argued that such translation may

occasionally be at odds with the nonsmooth texture of
spacetime on the Planck scale. Contradiction is then
avoided if the photon is reflected by the block more often
than predicted by classical electrodynamics. An ex-
perimental setup is proposed to detect this transmission
anomaly, even if tiny; it compares the effect of the same
photon on the above-mentioned block and on a similar
block which gets translated a distance much larger than
Planck’s. It is shown that the thermal noise that might
compromise the experiment is sufficiently suppressed by
operating the blocks in an ultrahigh vacuum at a tempera-
ture below �0:5 K.
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APPENDIX

The discussion in Sec. II seems to ignore the incompati-
bility of measurements of momentum and position of the
block. However, a shift in the block’s c.m. coordinate can
in fact be measured simultaneously with the block
momentum.
Let the operators for coordinates and kinematic mo-

menta of particles in the block be r̂i and p̂i. With M �P
imi, the center-of-mass coordinate is

R̂ðtÞ ¼ 1

M

X
i

mir̂iðtÞ; (A1)

whereas the total kinematic momentum is

P̂ðtÞ ¼X
i

p̂iðtÞ: (A2)

It follows immediately from the canonical commutators
½x̂i; p̂xj� ¼ {ℏ�ij, ½x̂i; p̂yj� ¼ 0, etc., that

½R̂ðtÞ; P̂ðtÞ� ¼ {ℏI; (A3)

where I is the 3� 3 unit tensor (dyad).
Let us designate a time ti as immediately following the

ingress of the photon, while tf is defined as a time imme-

diately preceding its egress, so that the block’s translation
from time ti to tf is

�X̂ � R̂ðtfÞ � R̂ðtiÞ: (A4)

We are interested in ½�X̂; P̂�.
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Nonrelativistically, the block’s Hamiltonian may be
written as

Ĥ ¼X
i

1

2

p̂iðtÞ2
mi

þX
a

X
i�j

Vaðr̂iðtÞ � r̂jðtÞÞ; (A5)

where V1; V2; . . . are the potentials for interactions of
proton-proton Coulomb, proton-proton nuclear, neutron-
neutron nuclear, proton-neutron nuclear, electron-proton
Coulomb and electron-electron Coulomb types. The nu-
clear interactions are approximated as being two-body and
depending on positions only through the vector distance
between the particles (not necessarily leading to central
forces). The range of particles over which the summation
over i and j takes place is, of course, different for each kind
of potential.

Now notice that for all i and j,

½P̂ðtÞ; Vðr̂iðtÞ � r̂jðtÞÞ� ¼ V 0 � ð½p̂iðtÞ; r̂iðtÞ�
� ½p̂jðtÞ; r̂jðtÞ�Þ ¼ 0: (A6)

The photon Hamiltonian, one for a quasiparticle, will not
depend on p̂iðtÞ or r̂iðtÞ. Hence, the full Hamiltonian

commutes with P̂ðtÞ, so that the total block momentum is
conserved as long as the photon is inside it.
Let us now work out the Heisenberg equation

{ℏdR̂=dt ¼ ½R̂; Ĥ�. Obviously R̂ðtÞ commutes with the
potentials Va. From the canonical commutation relations,
we deduce in addition that

�
R̂ðtÞ; 1

2

p̂iðtÞ2
mi

�
¼ {ℏIp̂iðtÞ

M
) ½R̂ðtÞ; Ĥ� ¼ {ℏIP̂

M
: (A7)

Integration of the mentioned Heisenberg equation gives

R̂ðtÞ ¼ R̂ðtiÞ þ ðt� tiÞP̂=M for ti < t < tj. It follows that

�X̂ is proportional to P̂, so that �X̂ and P̂ commute. Thus
the relevant variables in the experiment are compatible,
and we can simultaneously ascribe precise values to the
block’s momentum and to �X0.
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