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The effect of quantum torsion in theories of quantum gravity is usually described by an axionlike field

which couples to matter and to gravitation and radiation gauge fields. In perturbation theory, the couplings of

this torsion-descent axion field are of derivative type and so preserve a shift symmetry. This shift symmetry

may be broken, if the torsion-descent axion field mixes with other axions, which could be related to moduli

fields in string-inspired effective theories. In particular, the shift symmetry may break explicitly via

nonperturbative effects, when these axions couple to fermions via chirality-changing Yukawa couplings

with appropriately suppressed coefficients. We show how in such theories an effective right-handed

Majorana neutrino mass can be generated at two loops by gravitational interactions that involve global

anomalies related to quantum torsion. We estimate the magnitude of the gravitationally induced Majorana

mass and find that it is highly model dependent, ranging from the multi-TeV to keV scale.
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I. INTRODUCTION

The recent discovery [1] of the Higgs boson at the CERN
LargeHadronCollider constitutes an importantmilestone for
the ultraviolet (UV) completion of the StandardModel (SM).
Although the so-called Higgs mechanism may well explain
the generation of most of the particle masses in the SM, the
origin of the small neutrino masses still remains an open
issue. In particular, the observed smallness of the light neu-
trino masses may naturally be explained through the seesaw
mechanism [2], which necessitates the Majorana nature of
the light (active) neutrinos and postulates the presence of
heavy right-handed Majorana partners of mass MR. The
right-handed Majorana mass MR is usually considered to
be much larger than the lepton or quark masses. The origin
ofMR has been the topic of several extensions of the SM in
the literature, within the framework of quantum field theory
[2–4] and string theory [5].

Recently, a potentially interesting radiative mechanism
for generating gauge-invariant fermion masses at three
loops has been studied in Ref. [6]. The mechanism utilizes
global anomalies triggered by the possible existence of
scalar or pseudoscalar fields in U(1) gauge theories
and by heavy fermions F whose masses may not result
from spontaneous symmetry breaking. One-loop quantum
effects of the heavy fermions F give rise to a global chiral
anomaly given by

aðxÞF��ðxÞ?F��ðxÞ; (1)

where aðxÞ is a pseudoscalar field, F�� denotes the U(1)

gauge field Maxwell tensor and ?F�� ¼ 1
2"

����F�� is its

dual. Moreover, it was assumed in Ref. [6] that the

pseudoscalar field aðxÞ couples to chirality-changing fer-
mion bilinears, �fi�5f, via the Yukawa-type couplings

yaaðxÞ �fi�5f: (2)

The fermions f are assumed to have zero bare masses.
However, as was explicitly demonstrated in Ref. [6], the
fermions f can receive a nonzero mass at the three-loop
level, through the anomalous interaction (1) and the
chirality-changing Yukawa couplings (2).
It was further suggested in Ref. [6] that this mass-

generating mechanism can also be applied to create
low-scale fermion masses by pure quantum-gravity effects.
In this case, the role of the U(1) gauge field strength tensor
F�� will be played by the Riemann curvature tensor R����,

and hence the role of the gauge fields by the gravitons. Such
a gravitationally generating mass mechanism could straight-
forwardly be applied to fermions without SM quantum
charges, such as Majorana right-handed neutrinos, which
we restrict our attention to here. In such a framework of
quantum gravity, the operator (1) is expected to be replaced
by an operator of the form

aðxÞR����
?R����; (3)

where aðxÞ is an appropriate pseudoscalar field and
?R���� ¼ 1

2"
����R��

�� denotes the dual Riemann curva-

ture tensor.
It is the purpose of this paper to present explicit scenar-

ios of quantum gravity and provide reliable estimates of the
gravitationally induced right-handed Majorana mass MR.
Although quantum gravitational interactions are nonrenor-
malizable, nevertheless there are aspects of the theory that
can be exact, in a path integral sense, and these are related
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to some aspects of torsionful manifolds. Torsion appears as
a nonpropagating form-valued pseudoscalar field bðxÞ in a
quantum-gravity path integral and as such it can be inte-
grated out exactly. As we explain in this paper, the effect
of torsion would result in anomalous operators analogous
to (3), which are instrumental in the generation ofMajorana
fermion masses.

Nevertheless, in addition to the torsional field bðxÞ, the
presence of extra pseudoscalar fields aðxÞ are required for
generating a chirality-violating Majorana mass MR. The
reason is that the couplings of the torsional axion field bðxÞ
are of derivative type and preserve a shift symmetry: bðxÞ !
bðxÞ þ c, where c is an arbitrary constant. As a consequence,
chirality is conserved in the massless limit of the right-
handed neutrinos, thus forbidding the generation of a
Majorana massMR. However, the shift symmetry may break
explicitly via nonperturbative effects, when these axions
couple to fermions via chirality-changing Yukawa couplings
ya of the form (2). The size of the Yukawa coupling ya is
highly model dependent, implying a wide range of values
for the gravitationally induced Majorana mass scaleMR.

This paper is organized as follows. After this introductory
section, Sec. II reviews some basic properties of manifolds
with quantum torsion, within field-theoretic and string-
theoretic frameworks. In Sec. III we present an explicit
effective field-theoretic scenario of quantum torsion that
can give rise to an anomalous Majorana neutrino mass
generation at two loops. Finally, Sec. IV summarizes our
conclusions and presents possible future directions.

II. PROPERTIES OF QUANTUM TORSION

Quantum field theories in space-times with torsion exhibit
some interesting properties, which have been known for some
time [7]. In theories with fermions, torsion is introduced
necessarily in the first-order Palatini formalism, where
vierbein and spin connections are treated as independent
variables (Einstein-Cartan theory) [8]. In what follows, we
discuss various caseswhere torsion appears in the spectrumof
a quantum-gravitymodel.We shall examinefirst string theory
models and then proceed to argue that certain properties of
quantum torsion, such as those related to chiral (axial) anoma-
lies, are generic to field theories with fermions and can arise
in ordinary local field-theoretic models, not only strings. Let
us commence our discussion from string theory, not as much
for historical purposes, but because this provides a concrete
UV complete theoretical framework for quantum gravity.

A. Quantum torsion and KR axions in string theories

In string theories, torsion is introduced as a consequence
of the existence of the antisymmetric tensor field B�� ¼
�B�� existing in the gravitational multiplet of the string.

Indeed, as a result of the stringy ‘‘gauge’’ symmetry
B�� ! B�� þ @½�B��, the low-energy string effective

action depends only on the field strength

H��� ¼ @½�B���; (4)

where the symbol ½. . .� denotes antisymmetrization of the
appropriate indices. In fact, it can be shown [9] that the
terms involving the field strength perturbatively to each
order in the Regge slope parameter �0 can be assembled, in
such a way that only torsionful Christoffel symbols, such

as ��
�
��, appear. In this formalism, the torsionful Christoffel

symbol ��
�
�� is defined as

��
�
�� ¼ �

�
�� þ �ffiffiffi

3
p H

�
�� � ��

�
��; (5)

where �
�
�� ¼ �

�
�� is the ordinary, torsion-free, symmetric

connection, and � is the gravitational constant given by

�2 ¼ 8	GN ¼ 8	

M2
P

; (6)

where GN and MP are Newton’s constant and the Planck
mass, respectively. Consequently, terms involving the gen-
eralized Riemann curvature tensor �R���� appear in the

effective action. In the context of (super)string theories
[10], anomaly cancellation requires that Lorentz and gauge
Chern-Simons terms are added to the field strength of theB
field so that one may define a new field strength three-form

H ¼ dBþ �0
8� ð�L ��VÞ such that the following Bianchi

identity is implied:

dH ¼ �0

8�
TrðR ^R� F ^ FÞ; (7)

where R denotes the gravitational Riemann curvature four-
form without H torsion and F the gauge field strength two-
form, which includes the torsion. The ^ symbol denotes
appropriate contractionswith thevierbeinsea�, while the trace

is taken over all possible group-theoretic structures. To lowest
order in �0, where we shall restrict our attention here, the
effective action in a four-dimensional space-time (obtained
after compactification and up to a total divergence) reads [9]

Sð4Þ ¼
Z

d4x
ffiffiffiffiffiffiffi�g

p �
1

2�2
R� 1

6
H���H

���

�

¼
Z

d4x
ffiffiffiffiffiffiffi�g

p �
1

2�2
�R� 1

3
�2H���H

���

�
; (8)

where in the second line we used the generalized torsionful
connection (5). The gravitational constant �2 contains all the
appropriate compactification volume factors and string cou-
pling terms; in particular we have the following relation from
string theory:

1

g2s
M2

sV
ðcÞ ¼ 1

2�2
; (9)

with Ms ¼ 1=
ffiffiffiffiffi
�0p

the string mass scale and gs the string
coupling assumed weak gs < 1. We assume constant dila-
tions
 in four dimensions for our purposes here. In general,
for nonconstant dilations gs ¼ expð
Þ are a field-dependent
quantity.
In four dimensions, wemay define the dual ofH,Y¼?H,

or equivalently in components,
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Y� ¼ �3
ffiffiffi
2

p
@�b ¼ ffiffiffiffiffiffiffi�g

p
�����H

���; (10)

after adopting the normalizations of Ref. [11]. The field bðxÞ
is a form-valued pseudoscalar field, with a canonically
normalized kinetic term, which we call from now on the
Kalb-Ramond (KR) axion [12], in order to distinguish it
from other axionlike fields coming, e.g., from the moduli
sector of string theory, which we shall also employ in our
analysis. Using the definition (10) we may rewrite the
Bianchi identity (7) in the form

r�Y
� ¼ �0

32�

ffiffiffiffiffiffiffi�g
p

�����ðRad
��R��ad � F��F��Þ; (11)

where r� is the torsion-free gravitational covariant deriva-
tive and R... are the components of the torsion-free curvature
tensor. The latin indices a, d are tangent space indices as
usual. Using (11) in (8) and performing a partial integration,
we arrive at the following form of the string-inspired four-
dimensional effective action with H torsion [11]:

Sð4Þ ¼
Z

d4x
ffiffiffiffiffiffiffi�g

p �
1

2�2
R� 1

2
@�bðxÞ@�bðxÞ

þ �0 ffiffiffi
2

p
192�

bðxÞ�����ðRad
��R��ad � F��F��Þ

�
: (12)

The close relation of the H torsion to the appearance of an
axionlike field in the effective action is not unique to string
theory. In the next subsection we proceed to discuss a field-
theoretical case where similar effects take place.

B. Quantum torsion and KR axions in field theory

As observed in Ref. [11] in the context of QED in
torsionful manifolds, one obtains similar couplings of the
torsion-induced axion to gravity and gauge fields as in (12),
by employing quantum anomalies of the axial fermion
current. Indeed, let us consider Dirac QED fermions in a
torsionful space-time. The Dirac action reads

Sc ¼ i

2

Z
d4x

ffiffiffiffiffiffiffi�g
p ð �c�� �D�c � ð �D�

�c Þ��c Þ; (13)

where �D� ¼ �r� � ieA�, with e the electron charge and

A� the photon field. The overline above the covariant

derivative, i.e., �r�, denotes the presence of torsion, which

is introduced through the torsionful spin connection:
�!ab� ¼ !ab� þ Kab�, where Kab� is the contorsion

tensor. The latter is related to the torsion two-form Ta ¼
dea þ �!a ^ eb via [7,11]: Kabc ¼ 1

2 ðTcab � Tabc � TbcdÞ.
The presence of torsion in the covariant derivative in the
Dirac-like action (13) leads, apart from the standard terms
in manifolds without torsion, to an additional term involv-
ing the axial current J

�
5 � �c���5c :

Sc 3�3

4

Z
d4

ffiffiffiffiffiffiffi�g
p

S� �c���5c ¼�3

4

Z
S^ ?J5; (14)

where S ¼ ?T is the dual of T: Sd ¼ 1
3! �

abc
dTabc.

We next remark that the torsion tensor can be decom-
posed into its irreducible parts [7], of which Sd is the
pseudoscalar axial vector:

T��� ¼ 1

3
ðT�g�� � T�g��Þ � 1

3!
�����S

� þ q���; (15)

with�����q
��� ¼ q��� ¼ 0. This implies that the contorsion

tensor undergoes the following decomposition:

Kabc ¼ 1

2
�abcdS

d þ K̂abc; (16)

where K̂ includes the trace vector T� and the tensor q���

parts of the torsion tensor.
The gravitational part of the action can then be written as

SG ¼ 1

2�2

Z
d4x

ffiffiffiffiffiffiffi�g
p ðRþ �̂Þ þ 3

4�2

Z
S ^ ?S; (17)

where �̂ ¼ K̂�
��K̂

��
� � K̂��

�K̂��
�, with the hatted

notation defined in (16).
In a quantum-gravity setting, where one integrates over

all fields, the torsion terms appear as nonpropagating
fields and thus they can be integrated out exactly. The
authors of Ref. [11] have observed though that the clas-
sical equations of motion identify the axial-pseudovector
torsion field S� with the axial current, since the torsion

equation yields

K�ab ¼ � 1

4
ec��abcd �c�5 ~�

dc : (18)

From this it follows d?S ¼ 0, leading to a conserved
‘‘torsion charge’’ Q ¼ R

?S. To maintain this conserva-
tion in quantum theory, they postulated d?S ¼ 0 at the
quantum level, which can be achieved by the addition of
judicious counterterms. This constraint, in a path-integral
formulation of quantum gravity, is then implemented via
a delta function constraint, 
ðd?SÞ, and the latter via the
well-known trick of introducing a Lagrange multiplier

field �ðxÞ � ð3=�2Þ1=2bðxÞ. Hence, the relevant torsion
part of the quantum-gravity path integral would include
a factor

Z
DSDbexp

�
i
Z 3

4�2
S^?S�3

4
S^?J5þ

�
3

2�2

�
1=2

bd?S

�

¼
Z
Dbexp

�
�i

Z 1

2
db^?dbþ 1

fb
db^?J5

þ 1

2f2b
J5^J5

�
; (19)

where

fb ¼ ð3�2=8Þ�1=2 ¼ MPffiffiffiffiffiffiffi
3	

p (20)

and the nonpropagating S field has been integrated out.
The reader should notice that, as a result of this integra-
tion, the corresponding effective field theory contains a
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nonrenormalizable repulsive four-fermion axial current-
current interaction.1

We may partially integrate the second term in the expo-
nent on the right-hand side of (19) and take into account
the well known field-theoretic result that in QED the axial
current is not conserved at the quantum level, due to
anomalies, but its divergence is obtained by the one-loop
result [14]:

r�J
5� ¼ e2

8	2
F�� ~F��� 1

192	2
R���� ~R���� �GðA;!Þ:

(21)

Observe that in (21) the torsion-free spin connection has
been used. This can be achieved by the addition of proper
counterterms in the action [11], which can convert the
anomaly from the initialGðA; �!Þ toGðA; !Þ. Using (21) in
(19) one can then obtain for the effective torsion action
in QED

Z
Dbexp

�
�i

Z 1

2
db^?db� 1

fb
bGðA;!Þþ 1

2f2b
J5^J5

�
:

(22)

Thus, even in ordinary field theories, we obtain the coupling
of the KR axion to the curvature and gauge field strengths:
bGðA; !Þ, exactly as we obtained in the string case (12). In
addition, the torsion leads to repulsive four-fermion inter-
actions involving the axial current. Crucial to the above
derivation was, however, the postulation of the conservation
of the torsion charge at the quantum level, as expressed by
the constraint d?S ¼ 0. The resulting axion field has origi-
nated from the Lagrange multiplier field implementing this
constraint. In the subsequent section we present an alter-
native derivation of this result.

C. Alternative proof of the connection of axions
to torsion in field theory

We shall now provide a different proof concerning the
fundamental geometrical properties of the torsion at the
quantum level. To this end, we concentrate on the work of
Ref. [15], which discusses fermionic torsion in first-order
Palatini formalism of fermions in curved space-times.
Although the motivation of that work was an attempt to
connect some aspects of loop quantum-gravity theories to
Ashtekar canonical formulation of quantum gravity,

nevertheless the used formalism will allow us to discover
the above-mentioned torsion-induced axions from a differ-
ent viewpoint.
As noted in Refs. [15,16], in the case of Dirac fermions

in a manifold with torsion, if one uses the naive version of
the Dirac action (13), decomposes the torsion tensor in its
irreducible parts, and uses the equations of motion, then the
trace vector part T� is found proportional to the axial

fermion current J5�, which is inconsistent with the respec-

tive Lorentz transformation properties. Such an inconsis-
tency is remedied by adding to the action a total derivative
term which can be expressed solely in terms of topological
invariants, namely the so-called Nieh-Yan invariant
density [17], and a total divergence of the fermion axial
current:

SHolst ¼ �i
�

2

Z
d4x½INY þ @�J

5��;

INY ¼ �����

�
Ka

��K��a � 1

2
���

ab �R��ab

�

¼ �����@�K���; (23)

where � is a constant real parameter,���
ab ¼ 1

2 e
a
½�e

b
��, the

overline above the curvature tensor denotes the inclusion
of torsion and K��� is the contorsion tensor defined pre-

viously. Notice that in the last equality for the Nieh-Yan
topological invariant we took into account the fact that,
for the torsion (18), the term quadratic in the contorsion
in INY vanishes.2 Then, on account of (18), we observe
that in the case with fermionic torsion, both terms in the
space-time integrand of the Holst action turn out to be
proportional to the divergence of the axial current,
which can be expressed in terms of the (torsion-free)
curvature and gauge field strengths through the anomaly
equation (21).3

By promoting the constant parameter � into a pseudo-
scalar field [19],

� ! �ðxÞ; (24)

1This term will induce a cubic term in the equations of motion
for the fermions. Under the assumption of formation of a
(Lorentz-violating) fermionic condensate of the axial current,
it was recently argued [13] that Dirac fermions may lead to
C- and CPT-violating differences between the fermion-
antifermion populations in the finite temperature environment
of the early Universe. In contrast, for a Majorana spinor of
interest to us, the Majorana condition c c ¼ c entails that a
Majorana fermion is its own antiparticle and so there is no such
violation of CPT.

2We note in passing that the parameter � in (23) is related to
the so-called Immirzi-Barbero parameter of loop quantum
gravity. Such completions of torsionful-space-time gravity theo-
ries, with the above topological invariant terms, have been
included for consistency in the canonical quantization of super-
gravity theories [18], where the various fermion fields, including
gravitinos, contribute to torsion.

3In the case of string-inspired H torsion and in the presence of
fermions, the contortion tensor contains two parts, the fermion-
dependent ones (18) and the ones proportional to the H torsion.
In that case, through the anomaly equation (21) and Bianchi
identity (7), both terms in the expression for the Holst action
(23) are proportional to the same form total derivative terms, up to
algebraic proportionality factors. The final result for the integrand
of the Holst action is again given by the anomaly term (21),
GðA; !Þ, up to proportionality constants, which can be absorbed
in the normalization of the parameter �.
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we notice that the term involving the divergence of the axial
current in (23) yields, upon using the anomaly equation (21),
a similar term in the effective action as the one involving the
axion fields in string theory or in QED through implement-
ing the appropriate constraints by Lagrange multipliers, and
thus we can identify the nonconstant field �ðxÞ with the
axion bðxÞ:

�ðxÞ � bðxÞ: (25)

The kinetic terms for the field � are obtained by using the
equations of motion and identifying extra contributions in
the contorsion involving derivatives of the field. This iden-
tification has also been conjectured in Ref. [19] without
having prior knowledge of the works of Ref. [11]. Indeed,
it was shown in Ref. [19] that the torsionful spin connection
in a theory with fermions and a nonconstant �ðxÞ � bðxÞ is
modified compared to the constant � case as follows:

�!ab
� ¼ !�

abðeÞ þ 1

4
�abcde

c
�ð�J5d � 2�df@fbðxÞÞ; (26)

where �df is the Minkowski metric on the tangent space.
The quadratic parts of the torsionful spin connection then
yield [19] kinetic terms for the field bðxÞ and an effective
action of the form (19), which, upon using the anomaly
equation (21), implies the axion-curvature couplings men-
tioned above in (22).

Consequently, we seem to have established that the pres-
ence of the coupling of axion to spatial curvature and the dual
of the curvature tensor is a rather generic feature of torsionful
theories of space-time. We next proceed to apply the above
ideas to the problem of gauge-invariant Majorana mass
generation, without spontaneous symmetry breaking, for
right-handed Majorana neutrinos, which carry no Standard
Model charges, and are thus susceptible to the effects of
torsion.

III. ANOMALOUS MAJORANA MASS
GENERATION FROM QUANTUM TORSION

An important aspect of the coupling of the torsion KR
field bðxÞ to the fermionic matter discussed above is its
shift symmetry, characteristic of an axion field. Indeed,
by shifting the field bðxÞ by a constant, bðxÞ ! bðxÞ þ c,
the action (22) only changes by total derivative terms, such
as cR���� ~R���� and cF�� ~F��. These terms are irrelevant

for the equations of motion and the induced quantum
dynamics, provided the fields fall off sufficiently fast to
zero at space-time infinity. Our scenario for the anomalous
Majorana mass generation through torsion consists of aug-
menting the effective action (22) by terms that break such a
shift symmetry.

To illustrate this last point, we first couple the KR axion
bðxÞ to another pseudoscalar axion field aðxÞ. In string-
inspired models, such pseudoscalar axion aðxÞ may be
provided by the string moduli [20,21]. The proposed

coupling occurs through a mixing in the kinetic terms of
the two fields. To be specific, we consider the action

S ¼
Z

d4x
ffiffiffiffiffiffiffi�g

p �
1

2
ð@�bÞ2 þ bðxÞ

192	2fb
R���� ~R����

þ 1

2f2b
J5�J

5� þ �ð@�bÞð@�aÞ þ 1

2
ð@�aÞ2

� yaiað �c R
Cc R � �c Rc R

CÞ
�
; (27)

where c R
C ¼ ðc RÞC is the charge-conjugate right-handed

fermion c R, J
5
� ¼ �c���5c is the axial current of the four-

component Majorana fermion c ¼ c R þ ðc RÞC, and � is a
real parameter to be constrained later on. Here, we have
ignored gauge fields, which are not of interest to us, and the
possibility of a nonperturbative massMa for the pseudosca-
lar field aðxÞ. Moreover, we remind the reader that the
repulsive self-interaction fermion terms are due to the exis-
tence of torsion in the Einstein-Cartan theory. The Yukawa
coupling ya of the axion moduli field a to right-handed
sterile neutrino matter c R may be due to nonperturbative
effects. These terms break the shift symmetry: a ! aþ c.
Before proceeding with the evaluation of the anomalous

Majorana mass, it is convenient to diagonalize the axion
kinetic terms by redefining the KR axion field as follows:

bðxÞ ! b0ðxÞ � bðxÞ þ �aðxÞ: (28)

This implies that the effective action (27) now becomes

S ¼
Z

d4x
ffiffiffiffiffiffiffi�g

p �
1

2
ð@�b0Þ2 þ 1

2
ð1� �2Þð@�aÞ2

þ 1

2f2b
J5�J

5� þ b0ðxÞ � �aðxÞ
192	2fb

R���� ~R����

� yaiað �c R
Cc R � �c Rc R

CÞ
�
: (29)

Thus we observe that the b0 field has decoupled and can be
integrated out in the path integral, leaving behind an axion
field aðxÞ coupled both to matter fermions and to the
operator R���� ~R����, thereby playing now the role of

the torsion field. We observe though that the approach is
only valid for

j�j< 1; (30)

otherwise the axion field would appear as a ghost, i.e., with
the wrong sign of its kinetic terms, which would indicate
an instability of the model. This is the only restriction of
the parameter �. In this case we may redefine the axion
field so as to appear with a canonical normalized kinetic
term, implying the effective action:

Sa¼
Z
d4x

ffiffiffiffiffiffiffi�g
p �

1

2
ð@�aÞ2� �aðxÞ

192	2fb
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1��2

p R���� ~R����

� iyaffiffiffiffiffiffiffiffiffiffiffiffiffi
1��2

p að �c R
Cc R� �c Rc R

CÞþ 1

2f2b
J5�J

5�

�
: (31)

ANOMALOUS MAJORANA NEUTRINO MASSES FROM . . . PHYSICAL REVIEW D 86, 124038 (2012)

124038-5



Evidently, the action Sa in (31) corresponds to a canoni-
cally normalized axion field aðxÞ, coupled both to the
curvature of space-time, à la torsion, with a modified

coupling �=ð192	2fb
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �2

p Þ, and to fermionic matter
with chirality-changing Yukawa-like couplings of the form

ya=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �2

p
.

The mechanism for the anomalous Majorana mass
generation is shown in Fig. 1. We may now estimate the
two-loop Majorana neutrino mass in quantum gravity with
an effective UV energy cutoff �. Adopting the effective
field-theory framework of Ref. [22], we first notice that the
energy (E) dependence of the curvature R is E2, since
it contains two derivatives @�, with i@� ! p� � E.

Therefore, the operator aðxÞR����
~R���� gives rise to an

E4 dependence. Likewise, on naive dimensional grounds,
the couplings of the linearized gravitons h�� and h�� to

chiral fermions c R and c C
R both grow as E, as their kinetic

terms are proportional to a single power of i@�. This gives

rise to another energy factor E2. Collecting all the energy
factors resulting from the gravitational interactions and the
loop momenta, we find that the two-loop graph in Fig. 1
exhibits a UV cutoff dependence �6. This leads to a
gravitationally induced Majorana mass MR:

MR � 1

ð16	2Þ2
ya��

4�6

192	2fbð1� �2Þ ¼
ffiffiffi
3

p
ya��

5�6

49152
ffiffiffi
8

p
	4ð1� �2Þ ;

(32)

where in the second step we took into account (20). In a
UV complete theory such as strings, � andMP are related,
since� is proportional toMs and the latter is related toMP

(or �) through (9).
It is interesting to provide a numerical estimate of the

anomalously generated Majorana massMR. Assuming that
� � 1, the size of MR may be estimated from (32) to be

MR � ð3:1� 1011 GeVÞ
�

ya
10�3

��
�

10�1

��
�

2:4� 1018 GeV

�
6
:

(33)

Obviously, the generation ofMR is highly model dependent.
Taking, for example, the quantum-gravity scale to be
� ¼ 1017 GeV, we find that MR is at the TeV scale, for
ya ¼ 10�3 and � ¼ 0:1. However, if we take the quantum-
gravity scale to be close to the grand unified theory (GUT)
scale, i.e.,� ¼ 1016 GeV, we obtain a right-handed neutrino
massMR � 16 keV, for the choice ya ¼ � ¼ 10�3. This is
in the preferred ballpark region for the sterile neutrino c R

to qualify as a warm dark matter [23].
In a string-theoretic framework, many axions might

exist that could mix with each other. Such a mixing can
give rise to reduced UV sensitivity of the two-loop graph
shown in Fig. 1. To make this point explicit, let us therefore
consider a scenario with a number n axion fields, a1;2;...;n.
Of this collection of n pseudoscalars, only a1 has a kinetic
mixing term � with the KR axion b and only an has a
Yukawa coupling ya to right-handed neutrinos c R. The
other axions a2;3;...;n have a next-to-neighbor mixing pat-

tern. In such a model, the kinetic terms of the effective
action are given by

Skin
a ¼

Z
d4x

ffiffiffiffiffiffiffi�g
p �

1

2

Xn
i¼1

ðð@�aiÞ2 �M2
i Þ þ �ð@�bÞð@�a1Þ

� 1

2

Xn�1

i¼1


M2
i;iþ1aiaiþ1

�
; (34)

where the mixing mass terms 
M2
i;iþ1 are constrained to be


M2
i;iþ1 <MiMiþ1, so as to obtain a stable positive mass

spectrum for all axions. As a consequence of the next-to-
neighbor mixing, the UV behavior of the off-shell transition
a1!an, described by the propagator matrix element
�a1anðpÞ, changes drastically, i.e., �a1anðpÞ/1=ðp2Þn�
1=E2n. Assuming, for simplicity, that all axion masses and
mixings are equal, i.e., M2

i ¼ M2
a and 
M2

i;iþ1¼
M2
a, the

anomalously generated Majorana mass may be estimated
to be

MR �
ffiffiffi
3

p
ya��

5�6�2nð
M2
aÞn

49152
ffiffiffi
8

p
	4ð1� �2Þ ; (35)

for n � 3, and

MR �
ffiffiffi
3

p
ya��

5ð
M2
aÞ3

49152
ffiffiffi
8

p
	4ð1� �2Þ

ð
M2
aÞn�3

ðM2
aÞn�3

; (36)

for n > 3. It is then not difficult to see that three axions a1;2;3
with next-to-neighbor mixing as discussed above would be
sufficient to obtain a UV finite result forMR at the two-loop
level. Of course, beyond the two loops, MR will depend
on higher powers of the energy cutoff �, i.e., �n>6, but if
���1, these higher-order effects are expected to be
subdominant.
In the above n-axion-mixing scenarios, we note that the

anomalously generated Majorana mass term will only
depend on the mass-mixing parameters 
M2

a of the axion
fields and not on their masses themselves, as long as n � 3.
Instead, for axion-mixing scenarios with n > 3, the

FIG. 1. Typical Feynman graph giving rise to anomalous fer-
mion mass generation. The black circle denotes the operator
aðxÞR����

~R���� induced by torsion.
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induced Majorana neutrino masses are proportional to the
factor ð
M2

a=M
2
aÞn, which gives rise to an additional sup-

pression for heavy axions with masses Ma � 
Ma.
The possible existence of heavy pseudoscalar fields,

with masses Ma as large as TeV, has been considered,
for instance in Ref. [24], within complicated GUTs, with
extra strong interactions, confining at very short distance
scales. Phenomenological implications and astrophysical
constraints of such heavy axions have been analyzed in
Ref. [25], for a wide range of axion couplings. Specifically,
for the Peccei-Quinn axion scale4 fa � 1012 GeV, super-
novae data exclude heavy pseudoscalar axionlike particles
with masses in the region 100 eV � Ma � 1GeV. Heavier
axions are allowed provided their coupling is greater than
fa 	 1015 GeV.

In themultiaxionmodels outlined above, the anomalously
generated Majorana neutrino mass MR will still depend on
theYukawa coupling ya and the torsion-axion kineticmixing
coefficient�, besides the assumedUVcompletion scale� of
quantumgravity. In order to get an estimate of the size ofMR,
we treat the axion massesMa and mass mixings 
Ma as free
parameters to be constrained by phenomenology. Let us
assume an n-axion-mixing model with n 	 3, in which the
axion mass mixings 
Ma and their masses Ma are of the
same order, i.e., 
Ma=Ma � 1. In this case, employing (35),
we may estimate the Majorana neutrino massMR to be

MR

Ma

� 10�3ya�

1� �2

ð
MaÞ6
MaM

5
P

� 10�3ya�

1� �2

�

Ma

MP

�
5
: (37)

For axion masses Ma � 1 TeV considered in the literature
thus far, we find that MR=Ma&10

�83, which implies extra-
ordinary small Majorana masses MR. An obvious caveat to
this result would be to have ultraheavy axionmassesMa close
to the GUT scale and/or fine-tune the torsion-axion kinetic
mixing parameter � to 1, in a way such that the factor �

1��2

compensates for the mass suppression ð
Ma=MPÞ5 in (37).

The latter possibility, however, might result in an unnaturally

large (nonperturbative) ‘‘effective’’ Yukawa coupling yeffa �
ya=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �2

p
*

ffiffiffiffiffiffiffi
4	

p
in (31), which will bring us outside the

perturbative framework that we have been considering here.
A more detailed phenomenological and astrophysical
analysis of all possible axion-mixing scenarios may be given
elsewhere.

IV. CONCLUSIONS

We have shown how, in theories of quantum gravity with
torsion, an effective right-handed Majorana neutrino mass
MR can be generated at two loops by gravitational interac-
tions that involve global anomalies. The global anomalies
result, after integrating out a formed-valued pseudoscalar
field b, the so-called Kalb-Ramond axion, which describes
the effect of quantum torsion. The KR axion b couples to
both matter and to gravitation and radiation gauge fields.
In perturbation theory, this torsion-descent axion field b has
derivative couplings, leading to an axion shift symmetry:
b ! bþ c, where c is an arbitrary constant. If another
axion field a or fields are present in the theory, the shift
symmetry may be broken, giving rise to axion masses and
chirality-changing Yukawa couplings to massless fermions,
such as right-handed Majorana neutrinos c R.
We have estimated the magnitude of the two-loop grav-

itationally induced Majorana mass MR and found that it is
highly model dependent. Its size generically depends on
three parameters: the value of the Yukawa coupling ya to
c R, the kinetic mixing term � between the KR axion b and
the other axion field a, and the assumed quantum-gravity
scale � of UV completion. In the present study, we have
assumed that � is considerably smaller than the Planck
mass, i.e., �� � 1. The anomalously generated Majorana
neutrino massMR can take values, ranging from the multi-
TeV to keV scale.
The radiative fermion mass mechanism discussed in this

paper may be used to account for the generation of other
gauge-invariant masses, such as those pertinent to vectorlike
quarks and leptons. It would be interesting to investigate,
whether this radiative mechanism can be consistently
extended to supergravity theories with quantum torsion
and analyze the possible consequences of such theories on
Majorana fermion masses.
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4The Peccei-Quinn symmetry breaking scale fa usually de-
fines the strength of the axion interactions with the SM matter
(nucleons) and photons. Adopting the notations of Ref. [25], the
relevant interaction Lagrangian may be written down as

Lint ¼ �iyakaðxÞ �c k�5c k þ 1

4
ga��aðxÞF��

~F�� þ . . . ;

where yak ¼ Ckmk=fa is the Yukawa coupling of the axion aðxÞ
to the fermion (nucleon) species c k of mass mk, ga�� ¼
C��em=ð2	faÞ is the axion-photon-photon coupling, and Ck;�
are model-dependent dimensionless parameters which are usu-
ally, but not necessarily, of order one. Notice that there is no bare
mass for the Majorana fermion c in our case, which the
pseudoscalar field aðxÞ couples to. Therefore, the scale fa cannot
be defined, but one should instead constrain directly the dimen-
sionless Yukawa coupling ya in (31). A detailed phenomeno-
logical study may appear elsewhere. Of course, one can always
assume that the axion moduli fields couple, in addition to the
Majorana neutrinos, also to the SM matter, such as nucleons and
photons as above, in which case the phenomenological analysis
and constraints of Ref. [25] apply.
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