
Slowly rotating relativistic stars in scalar-tensor gravity

Hajime Sotani*

Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto 606-8502, Japan
(Received 3 August 2012; published 19 December 2012)

We consider the slowly rotating relativistic stars with a uniform angular velocity in scalar-tensor

gravity, and examine the rotational effect around such compact objects. For this purpose, we derive a

second order differential equation describing the frame dragging in scalar-tensor gravity and solve it

numerically. As a result, we find that the total angular momentum is proportional to the angular velocity

even in scalar-tensor gravity. We also show that one can observe the spontaneous scalarization in

rotational effects as well as the other stellar properties, if the cosmological value of the scalar field is

zero. On the other hand, if the cosmological value of the scalar field is nonzero, the deviation from general

relativity can be seen in a wide range of coupling constants. Additionally, we find that, independently of

the cosmological value of the scalar field, the deviation from general relativity becomes larger with more

massive stellar models. Thus, via precise observations of astronomical phenomena associated with

rotating relativistic stars, one may probe not only the gravitational theory in the strong-field regime,

but also the existence of a scalar field.
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I. INTRODUCTION

The theory of general relativity proposed by Einstein is
the theory describing gravity. In order to verify general
relativity, many experiments have been performed up to
now and nothing indicates the failure of this theory.
However, most of these experiments are performed in a
weak gravitational field, such as the Solar System. This
means that the gravitational theory in a strong gravitational
field is still unconstrained by astronomical observations.
Namely, the gravitational theory might be different from
general relativity in a strong gravitational field. If so, one
can probe the gravitational theory by observing the deviation
from predictions in general relativity. Actually, the develop-
ment of technology will enable us to observe the phenomena
related to compact objects with high accuracy. Such obser-
vations may be used as a test of the gravitational theory in a
strong gravitational field. So far, many attempts and possi-
bilities to test the gravitational theory in a strong gravitational
field have been suggested [1–6]. Hopefully, the reliability of
gravitational theory even in a strong gravitational field will
be observationally revealed in the near future.

Scalar-tensor gravity is a natural extension of general
relativity, and one of the simplest alternative gravitational
theories, where gravity is mediated by long-range scalar
fields in addition to the usual tensor field in general rela-
tivity [1,7]. The scalar field plays an essential role in
explaining the accelerated expansion phases of the
Universe, such as the inflation scenario. Additionally, the
scalar-tensor theory in gravity can be obtained from
the low energy limit of string and/or other gauge theories.
In scalar-tensor gravity, one adopts the basic assumption
that the scalar and gravitational fields, ’ and g���, are

coupled to matter via an effective metric defined as ~g�� ¼
A2ð’Þg���, where the function form of the conformal

factor is still unclear. The Brans-Dicke theory is the sim-
plest version of scalar-tensor gravity, which assumes that
Að’Þ ¼ expð�’Þ [8]. The parameter in the conformal
factor, �, can often be connected to the Brans-Dicke
parameter, !BD, as �

2 ¼ ð2!BD þ 3Þ�1, and the expected
deviation from general relativity becomes of the order
�2 [9]. The experiments in the solar system set severe
constraints on the parameter, i.e., !BD * 40000 or �<
10�5 [10]. On the other hand, Damour and Esposito-Farèse
adopted the different function forms of the conformal
factor, i.e., Að’Þ ¼ expð�’þ �’2=2Þ. Then, they showed
that massive neutron stars in scalar-tensor gravity can
significantly deviate from the expectations of general rela-
tivity [9,11]. In particular, they pointed out that the sudden
deviation in neutron star properties from the predictions in
general relativity is possible for specific values of the
coupling constants, even if the value of � is considerably
small. This phenomenon is referred to as ‘‘spontaneous
scalarization.’’ Subsequently, Harada studied more details
with linear analysis and with the technique of catastrophe
theory, and found that spontaneous secularization is pos-
sible for � & �4:35 [12]. Recently, Freire et al. have ruled
out the parameter range of �<�5 with the observations
of the pulsar white dwarf binary [13]. This constraint is
quite strict, but we still have a small chance to see sponta-
neous scalarization. So, we focus on the range of � � �5
in this article.
Previously, several possible ways to distinguish scalar-

tensor gravity from general relativity by using astronomi-
cal observations have been suggested, e.g., with the
redshift lines of the X and � rays radiated from the surface
of neutron stars [14] and with the spectrum of gravitational
waves emitted from neutron stars [15,16]. In this article,*hajime.sotani@nao.ac.jp
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we examine a different approach to probe the gravitational
theory. That is, we focus on the rotational effect around
neutron stars, where we especially consider slowly rotating
neutron stars with a uniform angular velocity [17].
A similar analysis in general relativity was originally
done by Hartle [19], and subsequently a lot of studies
associated with the stellar rotation have been examined.
For instance, taking into account the rotational effect, the
additional oscillation family referred to as r modes can be
excited, and it might be possible to obtain the stellar
information from their spectrum [20,21]. In this sense,
this article could become a first step toward considering
the rotational effect around relativistic stars in a more
complicated system in scalar-tensor gravity. We should
remark that a similar analysis of the tensor-vector-scalar
(TeVeS) theory has been done [6]. However, in this analy-
sis, they did not consider the dependence on the scalar
coupling, because in TeVeS the dependence on the vector
coupling is stronger than that on the scalar coupling. In
addition, for simplicity, they did not consider the depen-
dence on the cosmological value of the scalar field. So, in
this article, we will examine the dependence on the scalar
coupling as well as the dependence on the cosmological
value of the scalar field, although scalar-tensor gravity is
one of the specific cases in TeVeS.

This article is organized as follows. In the next section,
we mention the fundamental parts of scalar-tensor gravity
and the equilibrium of nonrotating relativistic stars in
scalar-tensor gravity. In Sec. III, we derive the differential
equation describing the frame dragging in scalar-tensor
gravity. Additionally, we numerically show the rotational
effect in this section. Then, we draw a conclusion in
Sec. IV. In this article, we adopt the units of c ¼ G ¼ 1,
where c and G denote the speed of light and the gravita-
tional constant, respectively, and the metric signature is
ð�;þ;þ;þÞ.

II. STELLAR MODELS IN
SCALAR-TENSOR GRAVITY

A. Scalar-tensor gravity

The scalar-tensor gravity is a natural extension of
general relativity, where gravity is mediated not only by
a metric tensor but also by a massless scalar field ’. The
total action of such a gravitational theory is given by [7]

S ¼ 1

16�G�

Z ffiffiffiffiffiffiffiffiffiffi�g�
p ðR� � 2g

��
� ’;�’;�Þd4x

þ Sm½�m; A
2ð’Þg����; (2.1)

where G� is the bare gravitational coupling constant, g���

is the Einstein metric, R� is the Ricci scalar constructed
with g���,�m represents matter fields collectively, and Sm
denotes the matter action. It is known that the formulation
of field equations is better in the ‘‘Einstein frame’’
described by the Einstein metric. But a test particle moves

on the geodesic in the ‘‘Jordan frame’’ described by the
metric ~g��, which is defined as ~g�� ¼ A2ð’Þg��� [7]. So,

the Jordan frame is often referred to as the physical frame.
Hereafter, quantities with an asterisk are related to the
Einstein frame, while quantities with a tilde denote those
in the physical frame.
By varying the total action S with respect to g���, one

can obtain the field equation for the tensor field:

G��� ¼ 8�G�T��� þ 2

�
’;�’;� � 1

2
g���g

��
� ’;�’;�

�
;

(2.2)

where T��� is the energy-momentum tensor in the Einstein

frame, which is associated with that in the physical frame as

T��
� � 2ffiffiffiffiffiffiffiffiffiffi�g�

p �Sm
�g���

¼ A6ð’Þ ~T��: (2.3)

Similarly, by varying S with respect to ’, one obtains the
field equation for the scalar field:

h�’ ¼ �4�G��ð’ÞT�; (2.4)

whereh� denotes the d’Alembertian of g���, and�ð’Þ and
T� are defined as

�ð’Þ � d lnAð’Þ
d’

; (2.5)

T� � T��� ¼ T��
� g���: (2.6)

We should remark that scalar-tensor gravity for �ð’Þ ¼ 0
reduces to general relativity. In addition to Eqs. (2.2)
and (2.4), one gets another equation from the energy-

momentum conservation law, i.e., ~r�
~T�

� ¼ 0, such as

r��T
�
�� ¼ �ð’ÞT�r��’: (2.7)

In particular, in this article, we adopt the same form of
conformal factor Að’Þ as in Ref. [9], i.e.,

Að’Þ ¼ e�’
2=2; (2.8)

where � is a real constant. Thus, �ð’Þ can be written as
�ð’Þ ¼ �’, and scalar-tensor gravity with � ¼ 0 corre-
sponds to general relativity.

B. Nonrotating relativistic stellar models
in scalar-tensor gravity

The equilibrium configurations of nonrotating relativis-
tic stars in scalar-tensor gravity have been calculated in
Refs. [7,12,15]. The metric describing the static, spheri-
cally symmetric relativistic stars can be written as

ds2� ¼ g���dx
�dx�

¼ �e2�ðrÞdt2 þ e2�ðrÞdr2 þ r2ðd�2 þ sin2�d	2Þ;
(2.9)
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where e�2� ¼ 1� 2�ðrÞ=r, and �ðrÞ corresponds to the
mass function. Therefore, the physical metric is

d~s2 ¼ ~g��dx
�dx�

¼ �A2e2�dt2 þ A2e2�dr2 þ A2r2ðd�2 þ sin2�d	2Þ:
(2.10)

We assume that the stellar matter is a perfect fluid, i.e.,
~T�� ¼ ð~
þ ~PÞ ~U�

~U� þ ~P~g��, where ~
, ~P, and ~U� are the

total energy density, the pressure, and the four-velocity of
the fluid in the physical frame, respectively.

Using Eqs. (2.2), (2.4), and (2.7), one can obtain the
Tolman-Oppenheimer-Volkoff (TOV) equations in scalar-
tensor gravity [7,12], such as

�0 ¼ 4�G�r2A4 ~
þ 1

2
rðr� 2�Þ�2; (2.11)

�0 ¼ 4�G�
r2A4 ~P

r� 2�
þ 1

2
r�2 þ �

rðr� 2�Þ ; (2.12)

’0 ¼ �; (2.13)

�0 ¼ 4�G�
rA4

r� 2�
½�ð~
� 3 ~PÞ þ rð~
� ~PÞ��

� 2ðr��Þ
rðr� 2�Þ�; (2.14)

~P0 ¼ �ð~
þ ~PÞ½�0 þ ���; (2.15)

where the prime denotes a derivative with respect to r. In
order to close the system of equations, one needs to prepare
the relationship between ~
 and ~P, i.e., the equation of
state (EOS). In this article, we adopt the polytropic EOS
as in Refs. [7,12,15]:

~P ¼ Kn0mb

�
~n

n0

�
�
; (2.16)

~
 ¼ ~nmb þ
~P

�� 1
; (2.17)

where ~n is the baryon number density in the physical
frame, while mb and n0 are some constants given by mb ¼
1:66� 10�24 g and n0 ¼ 0:1 fm�3. In order to fit this
EOS to the tabulated data of realistic EOS known as
EOS A [22] and EOS II [23], we especially adopt � ¼
2:46 and K ¼ 0:00936 for EOS A and � ¼ 2:34 and
K ¼ 0:0195 for EOS II.
The stellar equilibrium can be determined as follows.

With the boundary conditions at the stellar center as
�ð0Þ¼0, �ð0Þ¼�c, ~
ð0Þ¼ ~
c, ’ð0Þ¼’c, and �ð0Þ¼0,
the TOV equations with the EOS are integrated outward
and the stellar surface is determined at ~P ¼ 0 as R ¼
Að’sÞrs, where ’s and rs denote the values of ’ and r at
~P ¼ 0. For r � rs, the TOVequations with ~
 ¼ ~P ¼ 0 are
integrated outward. Then, the central values of �c and ’c

can be determined so that the calculated solutions should
agree with the asymptotic behaviors as

g��� ¼ ��� þ 2MADM

r
��� þO

�
1

r2

�
; (2.18)

’ðrÞ ¼ ’0 þQ

r
þO

�
1

r2

�
; (2.19)

where ���, MADM, ’0, and Q correspond to the

Minkowskian metric, the Arnowitt-Deser-Misner (ADM)
mass, the cosmological value of scalar field, and the total
scalar charge, respectively [24]. In practice, with the
matching conditions at the stellar surface between the
interior and exterior solutions, one can determine the val-
ues of MADM, ’0, and Q as

MADM¼ r2s�
0
s

G�

�
1�2�s

rs

�
1=2

�exp

2
4� �0

sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið�0
sÞ2þ�2

s

p arctanh

0
@

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið�0
sÞ2þ�2

s

p
�0

sþ1=rs

1
A
3
5;

(2.20)

FIG. 1 (color online). For EOS A, the stellar radius R is plotted as a function of�� with the fixed ADMmass for ’0 ¼ 0 (left panel)
and for ’0 ¼ 0:01 (right panel).
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’0 ¼ ’s þ �sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið�0
sÞ2 þ�2

s

p arctanh

2
4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið�0
sÞ2 þ�2

s

p
�0

s þ 1=rs

3
5;

(2.21)

Q ¼ ��s

�0
s

MADM; (2.22)

where the quantities with the subscript s denote their
values at r ¼ rs [9]. At last, choosing the values of two
constants � and ’0, the stellar models become one pa-
rameter family with ~
c (or MADM). In particular, in this
article, we adopt ’0 ¼ 0:01 as a example for ’0 � 0.

We show the dependence of the stellar radius R on the
coupling constant �� with the fixed ADM mass in Fig. 1
for EOS A and in Fig. 2 for EOS II. In both figures, the left
and right panels correspond to the cases of ’0 ¼ 0 and
’0 ¼ 0:01, respectively. From these figures, one can
observe the spontaneous scalarization in R at around
� ’ �4:4 for ’0 ¼ 0, while the stellar radii are changing
smoothly for ’0 � 0. Namely, even for�4:4<�< 0, the
stellar properties in scalar-tensor gravity with ’0 � 0 are
different from those in general relativity (for the case
of � ¼ 0).

III. SLOWLY ROTATING RELATIVISTIC STARS
IN SCALAR-TENSOR GRAVITY

A. Rotating dragging

In order to see the rotational effect around relativistic
stars in scalar-tensor gravity, we consider a slowly rotating

stellar model with a uniform angular velocity, ~�, where the
rotational axis is put on� ¼ 0. For this purpose, wemake an
assumption to keep only the linear effects in the angular
velocity, which is the same treatment as in general relativity
[19]. With this assumption, the stellar model is still spheri-
cally symmetric, because the deformation of stellar shape

due to rotation is of the order ~�2. Similarly, the rotational
effects in the components of the metric except for ~gt	
become of the order ~�2. So, the metric describing a slowly
rotating system in the physical frame can be written as

d~s2 ¼ �A2e2�dt2 þ A2e2�dr2 þ A2r2ðd�2 þ sin2�d	2Þ
� 2!r2A2sin2�dtd	; (3.1)

where the last term appears due to the rotational ef-
fect. Hereafter, in order to specify the rotational effects,
the deviation from the nonrotating stellar model will
be expressed by using variables with �, such as �~gt	 ¼
�!r2A2sin2�. The deviations of the pressure, density, and
scalar field due to the rotation are also of the order

Oð ~�2Þ, i.e., � ~P¼Oð ~�2Þ, �~
¼Oð ~�2Þ, and �’¼Oð ~�2Þ,
because those properties should behave in the same
way under a reversal in the direction of rotation. With
such an ordering, one can show that �~g�� ¼ A2�g���

and �T��� ¼ A2� ~T�� within the linear order of ~�.

Additionally, the deviation of fluid velocity in the physical
frame can be described as

� ~U� ¼ ð0; 0; 0; ~� ~UtÞ; (3.2)

where ~Ut denotes the t component of the four-velocity
for a nonrotating stellar model, i.e., ~Ut ¼ e��=A.
Consequently, the nonzero component of the energy-

momentum tensor of the order ~� is only � ~Tt	, which is

given as

� ~Tt	¼ r2A2ð~
þ ~PÞð!� ~�Þsin2�� ~P!r2A2sin2�: (3.3)

At last, the rotational effect ! can be determined by
solving the following equation:

�G��� ¼ 8�G��T��� � e�2��2�g���; (3.4)

which comes from the Einstein equation (2.2). We should
remark that another field equation (2.4) cannot tell us
any information about the rotational effect in the order

of ~�, because �’�Oð ~�2Þ, ���Oð ~�2Þ, and �T� �
Oð ~�2Þ. One can show that only the ðt; 	Þ component in
Eq. (3.4) becomes a nontrivial equation, which can be
written as

FIG. 2 (color online). Similar to Fig. 1, but for EOS II. The labels denote the adopted stellar mass in units of M�, where the seven
solid lines from top to bottom correspond to the cases of M=M� ¼ 1:3, 1.4, 1.5, 1.6, 1.7, 1.8, and 1.9.
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!00 þ
�
4

r
��0 ��0

�
!0

� 2

�
�00 þ ð�0 ��0Þ

�
�0 þ 1

r

�
þ�2

�
!

þ 1

r2
e2�

�
!;�� þ 3!;�

cos�

sin�

�

þ 16�G�A4e2�½ ~P!þ ð~
þ ~PÞð ~��!Þ� ¼ 0: (3.5)

In general, !�Oð ~�Þ can be expressed as !ðr; �Þ ¼
�!ðrÞ= sin�@�P‘ðcos�Þ, where P‘ is the Legendre poly-
nomial of order ‘. With this expression, the bracket of the
fourth term in Eq. (3.5) can be reduced to

!;�� þ 3!;�

cos�

sin�
¼ ð‘þ 2Þð‘� 1Þ!@�P‘

sin�
: (3.6)

Furthermore, in order to reproduce the general relativity
limit of scalar-tensor gravity, i.e., � ! 0, we especially
adopt the case for ‘ ¼ 1 in this article. In practice, one
cannot adopt an arbitrary value of ‘ except for ‘ ¼ 1 to
construct the distribution of!which satisfies the regularity
condition at the stellar center [19]. Finally, the equation to
solve becomes

!00 þ
�
4

r
��0 ��0

�
!0

� 2

�
�00 þ ð�0 ��0Þ

�
�0 þ 1

r

�
þ�2

�
!

þ 16�G�A4e2�½ ~P!þ ð~
þ ~PÞð ~��!Þ� ¼ 0: (3.7)

Note that Eq. (3.7) for � ¼ 0 agrees with the well-known
equation describing the frame dragging in general
relativity [19].

B. Numerical results

In order to determine the rotational effect !ðrÞ with
Eq. (3.7), one needs to prepare the boundary conditions
at the stellar center and spatial infinity, i.e., the regularity
condition at r ¼ 0 and the asymptotic flatness far from the
central object. Since one can expand ! as !ðrÞ ¼ !c0 þ
!c2r

2 þ 	 	 	 in the vicinity of the stellar center, Eq. (3.7) is
integrated outward from r ¼ 0 with the boundary condi-
tions of !ð0Þ ¼ !c0 and !

0ð0Þ ¼ 0. Then, one can find the
exact value of !c0 in such a way that the solution !ðrÞ
should satisfy the asymptotic behavior, i.e.,

!ðrÞ ¼ 2J

r3
þO

�
1

r4

�
; (3.8)

where J is some constant. In practice, we adopt the bound-
ary condition of 1þ 3!=ð!0rÞ ¼ 0, which can be derived
from Eq. (3.8), at the numerical boundary far from the
central object. In general relativity, the distribution of !ðrÞ
outside the star can be analytically written as !ðrÞ ¼
2J=r3, where the constant J corresponds to the total angu-
lar momentum of the central object, and J is related to the
angular velocity for slow rotation as

J ¼ I ~�: (3.9)

Here, the constant of proportionality I corresponds to the
relativistic generalization of momentum of inertia for a
slowly rotating system [19]. On the other hand, in scalar-

tensor gravity, we plot the value of J= ~� as a function of the

angular velocity ~� for the stellar models with EOS A and
withMADM ¼ 1:4M� in Fig. 3 for ’0 ¼ 0 and in Fig. 4 for
’0 � 0. In both figures, the right endpoints of lines corre-
spond to the allowed maximum angular velocity for each
stellar model. From these figures, one can see that the value

of J= ~� is independent of ~� even in scalar-tensor gravity.
That is, Eq. (3.9) can hold even in scalar-tensor gravity.
This is the same result as in TeVeS [6]. We remark that in
Fig. 3 the lines for � � �4:4 are completely equivalent to
the line for � ¼ 0, because the stellar models with ’0 ¼ 0
for � � �4:4 are the same as those in general relativity
(for � ¼ 0).
The distribution of !ðrÞ for the stellar model with EOS

A and with MADM ¼ 1:4M� and ~� ¼ 1 kHz is plotted in
Fig. 5 for ’0 ¼ 0 and in Fig. 6 for ’0 ¼ 0:01. In both
cases, we can obviously observe the difference of ! inside
the star in scalar-tensor gravity from the prediction in

FIG. 3 (color online). Dependence of J= ~� on the angular
velocity ~� for the stellar models with EOS A and with MADM ¼
1:4M� and ’0 ¼ 0, where the solid line corresponds to the case
in the general relativity, while the broken lines correspond to the
results in the scalar-tensor gravity with different values of �.

FIG. 4 (color online). Similar to Fig. 3, but for ’0 ¼ 0:01. The
labels attached on each line denote values of �.
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general relativity. In fact, compared with the case in gen-
eral relativity, one can see the decrease of the central value
of! in scalar-tensor gravity up to 6.3% in Fig. 5 and 10.0%
in Fig. 6. Thus, via the observations such as the stellar
oscillations and/or the radiated gravitational waves, one
could probe the gravitational theory in the strong-field
regime. Meanwhile, although the deviation outside the
star may be almost negligible, it still exists. Now, we
should remark on the difference between the results in
scalar-tensor gravity and in TeVeS. Unlike the results in
scalar-tensor gravity, the value of !ðrÞ in TeVeS becomes

larger than that in general relativity in the vicinity of the
stellar center, and becomes smaller in the outer region (see
Fig. 3 in Ref. [6]). This means that one might be able to
probe the gravitational theory via the observations of a
binary system composed of relativistic stars with quite
high accuracy.
Furthermore, we plot the momentum of inertia I as a

function of the coupling constant �� with the fixed ADM
mass in Fig. 7 for EOS A and in Fig. 8 for EOS II, where
the left and right panels are results for ’0 ¼ 0 and
’0 ¼ 0:01, respectively. From both figures, it is found
that the dependence of I on �� becomes stronger as the
stellar mass increases. One can also observe that, compared
with the case of ’0 ¼ 0, the case of ’0 � 0 depends
strongly on the scalar coupling �. For example, for EOS
A, the value of I in the scalar-tensor gravity becomes up to
1.4%, 5.3%, 11.0%, and 19.7% larger than that in general
relativity for M ¼ 1:3M�, 1:4M�, 1:5M�, and 1:6M� in
the left panel of Fig. 7, while up to 4.7%, 9.9%, 16.8%, and
27.4% larger for M ¼ 1:3M�, 1:4M�, 1:5M�, and 1:6M�
in the right panel of Fig. 7. We should emphasize that such
a dependence of I on the gravitational theory is completely
different from that in the case of TeVeS, i.e., the value of I
in TeVeS becomes smaller than that in general relativity
[6]. Additionally, for the case of ’0 ¼ 0 (left panels in
Figs. 7 and 8), only if � is less than around �4:4, I in
scalar-tensor gravity can deviate from I in general relativ-
ity. Namely, the spontaneous scalarization can be observed
in I as well as the other stellar properties. On the other
hand, for the case of ’0�0 (right panels in Figs. 7 and 8),
one can observe the deviation in I even for�4:4 & �< 0.
Now, in order to clarify the deviation in I for ’0 ¼ 0:01,
we define the relative deviation � as

� ¼ ðIST � IGRÞ=IGR; (3.10)

where IST and IGR denote the momentum of inertia defined
as Eq. (3.9) in scalar-tensor gravity and in general relativ-
ity, respectively. The calculted � is plotted as a function of
�� in Fig. 9, where the left and right panels correspond to
the results for EOS A and for EOS II. This figure obviously
shows the statement mentioned above, i.e., the deviation

FIG. 5 (color online). Distribution of !ðrÞ for ’0 ¼ 0 with
different values of �, where the adopted stellar model is
MADM ¼ 1:4M� and ~� ¼ 1 kHz for EOS A.

FIG. 7 (color online). For EOS A, the momentum of inertia I is plotted as a function of �� with the fixed ADM mass for ’0 ¼ 0
(left panel) and for ’0 ¼ 0:01 (right panel).

FIG. 6 (color online). Similar to Fig. 5, but for ’0 ¼ 0:01.
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from general relativity becomes larger with a more massive
stellar model. Meanwhile, comparing stellar models with
the same mass but different EOS, one can see that the
stellar model with softer EOS becomes a larger deviation
from the prediction in general relativity. At last, one can
clearly see the deviation from general relativity even for
�4:4 & �< 0, which is around 0.01%–10%. This devia-
tion might be small, but we still have a chance to probe the
gravitational theory in the strong-field regime via accurate
observations around relativistic objects.

IV. CONCLUSION

In order to examine the rotational effect around relativ-
istic stars in scalar-tensor gravity, we consider slowly
rotating relativistic objects with a uniform angular velocity.
From the Einstein equations, we derive a second order
differential equation governing the frame dragging, and
solve it numerically with appropriate boundary conditions.
As a result, we find that, similar to general relativity, the
total angular momentum is proportional to the angular
velocity for the slow rotation. Additionally, we find that
spontaneous scalarization can arise in rotational effects as
well as the other stellar properties for ’0 ¼ 0, where ’0

denotes the cosmological value of the scalar field. On the
other hand, for ’0 � 0, we can observe the deviation from
general relativity in a wide range of the coupling constant
�. Comparing the results in this article with those in the

case of TeVeS, we find that the dependence on gravita-
tional theory is completely different. In particular, we find
an obvious difference in the momentum of inertia. That is,
compared with the prediction in general relativity, the
momentum of inertia in TeVeS becomes smaller, while
that in scalar-tensor gravity becomes larger. Thus, via the
astronomical observations around relativistic stars with
high accuracy, one could probe not only the gravitational
theory in the strong-field regime, but also the existence of a
scalar field. At last, we adopt simple stellar models in this
article, but to compare with the actual observational data,
we need to consider the more realistic stellar models,
where we might take into account the magnetic effects
[25] and the effects of crust and/or the more exotic phase
[26,27]. Considering such additional properties, one could
obtain further constraints in the theory.
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FIG. 8 (color online). Similar to Fig. 7, but for EOS II.

FIG. 9 (color online). Relative deviation of I in scalar-tensor gravity compared with I in general relativity. The left and right panels
correspond to the cases of EOS A and EOS II, respectively.
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