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The Dirac Lagrangian is minimally coupled to the most general Rþ T þ T2-type Lagrangian in

(1þ 2)-dimensions. The field equations are obtained from the total Lagrangian by a variational principle.

The space-time torsion is calculated algebraically in terms of the Dirac condensate plus coupling

coefficients. A family of circularly symmetric rotating exact solutions which is asymptotically three-

dimensional anti–de Sitter is obtained. Finally, Banados-Teitelboim-Zanelli-like solutions are discussed.
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I. INTRODUCTION

Although it is well known that general relativity is a
classically trivial theory in three dimensions, the proposi-
tion of topologically massive gravity of Deser et al. [1]
made it nontrivial and thus considerably increased theo-
retical interest in 3D gravity. In the meantime, the discov-
ery of Banados-Teitelboim-Zanelli (BTZ) black holes [2]
enhanced 3D gravity efforts, see, e.g., Refs. [3–10] and
references therein. The motivations for those investigations
can be listed briefly as the study of the properties of the
quantum fields in curved space-times [11], inflation [12],
and the dS/CFT correspondence [13,14].

On the other hand, the non-Riemannian formulation
is another approach to be followed to obtain a dynamical
3D theory of gravity. There is plenty of literature on 3D
gravity with torsion. The first possibility along this route is
the Einstein-Cartan theory. Nevertheless, it is nondynamic
in the absence of matter. Thus it is amended by the inclu-
sion of a Chern-Simons term. Then, Mielke and Baekler
generalized the topological massive gauge model of grav-
ity by adding a new translational Chern-Simons term to the
standard (rotational) one [15]. This generalization with or
without matter attracted a lot of attention in the literature,
see, for example, Refs. [16–20] and references therein.

On the contrary, the number of published works on the
spinor coupled 3D gravity model with/without torsion is
much less, to our knowledge [20–22]. Our initial aim is to
fill in this gap. Nevertheless, for the first time in the
literature, we investigate 3D gravity which is formulated
in terms of the most general nonpropagating torsion. That
is, we write a Lagrangian in the form of Rþ T þ T2 which
is also called the weak Poincare gauge theory of gravity.
Thus our gravity Lagrangian contains six parameters: a, �,
k1, k2, k3, b. When the Dirac spinor is minimally coupled
to it, k2 disappears and one of k1 or k3 can be dropped
without loss of generality. Also, b gives contributions to
both the bare cosmological constant and the mass of the
Dirac spinor.

The paper is organized as follows. Since wewill be using
the coordinate independent exterior forms, in Sec. II we
introduce our notations and conventions. In Sec. III, after
we couple minimally the Dirac Lagrangian to the gravita-
tional Lagrangian, we obtain the first and second field
equations and the Dirac equation by varying the total
Lagrangian with respect to the coframe, the connection,
and the adjoint of Dirac spinor, respectively. Before closing
this section, we solve torsion from the second equation and
insert the findings to the first equation. After that, in Sec.
we reduce our theory to a Riemannian one. Section IV starts
with a circularly symmetric and rotating metric ansatz.
Then we write explicitly the Dirac equation and cast the
first equation as five coupled differential equations. In order
to see whether there is an exact solution to our model, in
Sec. IVA we restrict ourselves to a special case � ¼ � by
tracing the technique in Ref. [22]. Here we obtain a family
of solutions which goes to AdS3 as r ! 1. In Sec. IVB we
consider BTZ-like solutions and do find one, but only for
the case of vanishing Dirac condensate.

II. MATHEMATICAL PRELIMINARIES

We specify the space-time geometry by a triplet
ðM;g;rÞ where M is a three-dimensional differentiable
manifold equipped with a metric tensor

g ¼ �abe
a � eb (1)

of signature ð�;þ;þÞ. ea is an orthonormal coframe dual
to the frame vectors Xa, that is e

aðXbÞ � �be
a ¼ �a

b where

�b :¼ �Xb
denotes the interior product. A metric compatible

connection r can be specified in terms of connection
1-forms !a

b satisfying !ba ¼ �!ab. Then the Cartan

structure equations

dea þ!a
b ^ eb ¼ Ta; (2)

d!a
b þ!a

c ^!c
b ¼ Ra

b (3)

define the space-time torsion 2-forms Ta and curvature
2-forms Ra

b, respectively. Here d denotes the exterior deri-

vative and ^ the wedge product. We fix the orientation of
space-time by choosing the volume 3-form �1¼e0^e1^e3
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where � is the Hodge star map. In three-dimensional
space-times with Lorentz signature for any p-form ��¼�1.
We will use the abbreviation eab��� :¼ ea ^ eb ^ � � � . It is
possible to decompose the connection 1-forms in a unique
way as

!a
b ¼ ~!a

b þ Ka
b; (4)

where ~!a
b are the zero-torsion Levi-Civita connection

1-forms satisfying

dea þ ~!a
b ^ eb ¼ 0; (5)

and Ka
b are the contortion 1-forms satisfying

Ka
b ^ eb ¼ Ta: (6)

Correspondingly, the full curvature 2-form is decomposed as
the Riemannian part plus torsional contributions:

Ra
b ¼ ~Ra

b þ ~DKa
b þ Ka

c ^ Kc
b; (7)

where ~Ra
b is the Riemannian curvature 2-form and

~DKa
b ¼ dKa

b þ ~!a
c ^ Kc

b � ~!c
b ^ Ka

c:

As seen above, we label the Riemannian quantities by a
tilde.

We are using the formalism of Clifford algebra
C‘1;2-valued exterior forms. C‘1;2 algebra is generated by

the relation among the orthonormal basis f�0; �1; �2g
�a�b þ �b�a ¼ 2�ab: (8)

One particular representation of the ��’s is given by the
following Dirac matrices:

�0 ¼
0 1

�1 0

 !
; �1 ¼

0 1

1 0

 !
;

�2 ¼
1 0

0 �1

 !
:

(9)

In this case a Dirac spinor � can be represented by a
two-component column matrix. Thus we write explicitly
the covariant exterior derivative of �, its Dirac conjugate,
and the curvature of the spinor bundle, respectively,

D� ¼ d�þ 1

2
�ab�!ab; D �� ¼ d ��� 1

2
���ab!

ab;

D2� ¼ 1

2
Rab�ab�; (10)

where �ab :¼ 1
4 ½�a; �b� ¼ 1

2 �abc�
c are the generators of

the Lorentz group. Overline figures the Dirac adjoint,
�� :¼ �y�0. We frequently make use of the identity

�c�ab þ �ab�c ¼ �abc: (11)

III. THE WEAK POINCARE GAUGE
THEORY OF GRAVITY

The field equations of our model are obtained by varying
the action

I½ea; !ab; ��� ¼
Z
M
ðLG þ LDÞ; (12)

where LG signifies the gravitational Lagrangian density
3-form

LG ¼ a

2
Rab ^ �eab þ ��1þ k1

2
Ta ^ �Ta þ k2

2
V ^ �V

þ k3
2
A ^ �Aþ b

2
Ta ^ ea; (13)

and LD denotes the (Hermitian) Dirac Lagrangian density
3-form

LD ¼ i

2
ð ���� ^D��D �� ^ ���Þ þ im ����1; (14)

with the definitions V ¼ �aT
a and A ¼ Ta ^ ea. Here

the gravitational constants a, k1, k2, k3, mass m, and the
Dirac field � have the dimension of length�1, the gravita-
tional constant b has the dimension of length�2, and the
cosmological constant � has the dimension of length�3.
When all k1, k2, k3, b coefficients are zero, it corresponds
to the well-known Einstein-Cartan-Dirac theory with cos-
mological constant. The Hermiticity of the Lagrangian
(14) leads to a charge current which admits the usual
probabilistic interpretation. LG is the most general gravity
Lagrangian with nonpropagating torsion in three dimen-
sions. It is also called the weak Poincare gauge theory of
gravity in three dimensions. We remind that a term con-
taining an odd number of the Hodge star has even parity
and its coefficient is scalar, and with an even number of the
Hodge star, it has odd parity and its factor is pseudoscalar.
Correspondingly, we notice that a, k1, k2, k3, m are scalar,
but b is pseudoscalar. b

2 T
a ^ ea is known as the transla-

tional Chern-Simons term which corresponds to the usual
(rotational) Chern-Simons 3-form ð1=2Þð!a

b ^ d!b
a þ

ð2=3Þ!a
b ^!b

c ^!c
aÞ for the curvature [15].

We obtain the field equations via independent variations

with respect to ea,!ab, ��. Thus ea variation yields the first
equation

� a

2
�abcR

bc � ��ea � bTa � k1
2
½2D�Ta þ �aðTb ^ �TbÞ

� 2ð�aTbÞ ^ �Tb� þ
k2
2
½2Dð�a�V Þ � �aðV ^ �V Þ

� 2ð�aTbÞ ^ ð�b�V Þ� � k3
2
½2Dðea ^ �AÞ

þ �aðA ^ �AÞ � 2ð�aTbÞ ^ ðeb ^ �AÞ� ¼ 	a; (15)

!ab variation yields the second equation
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� a

2
�abcT

c þ b

2
eab þ k1

2
ðea ^ �Tb � eb ^ �TaÞ

� k2
2
ðea ^ �b

�V � eb ^ �a
�V Þ þ k3eab ^ �A ¼ �ab;

(16)

and �� variation yields the Dirac equation

�� ^
�
D� 1

2
V
�
�þm��1 ¼ 0; (17)

where �ab ¼ �Seab is the Dirac angular momentum

2-form with S :¼ i
4
���, and 	a is the Dirac energy-

momentum 2-form

	a ¼ i

2
�eba ^ ½ ���bðD�Þ � ðD ��Þ�b�� þ im ����ea:

(18)

For future convenience, by using the Dirac equation (17)

and its conjugate ðD� 1
2V Þ �� ^ ���m ���1 ¼ 0, we

rewrite the Dirac energy-momentum 2-form as

	a ¼ � i

2
½ ���bðDa�Þ � ðDa

��Þ�b���eb

¼ � i

2
½ ���bð@a�Þ � ð@a ��Þ�b���eb þ S!bc;ae

bc;

(19)

where Da :¼ �aD, @a :¼ �ad and !bc;a :¼ �a!bc.

Now we solve the second Eq. (16) for torsion

Ta ¼ P �ea where P ¼ 2S þ b

�aþ 2ðk1 þ 3k3Þ : (20)

Then we calculate V ¼ 0 and A ¼ 3P �1. By substitut-
ing these results into the first Eq. (15) we obtain

a

2
�abcR

bc þ ðk1 þ 3k3Þea ^ dP

þ
�
�þ bP � 1

2
ðk1 þ 3k3ÞP 2

�
�ea þ 	a ¼ 0: (21)

Themanner inwhich ðk1 þ 3k3Þ appears inEqs. (20) and (21)
makes it clear that one can set k1 ¼ 0 or k3 ¼ 0 without loss
of generality. Instead, we redefine k1 þ 3k3 ¼ c. For later
use, we also note that substitution of (20) into (6) yields the
following expression for the contortion:

Kab ¼ �P
2

�eab: (22)

A. Reduction to a Riemannian theory

To gain physical insight on the coupling parameters and
torsion, we reformulate the theory in terms of Riemannian
quantities. Firstly, we decompose the concerned quantities
by using (20) and (22) repeatedly,

Rab ^ �eab ¼ ~Rab ^ �eab þ 3

2
P 2�1þmodðdÞ; (23)

Ta ^ �Ta ¼ �3P 2�1; (24)

A ^ �A ¼ �9P 2�1; (25)

Ta ^ ea ¼ 3P �1; (26)

D� ¼ ~D�þ P
4
��; (27)

D �� ¼ ~D ���P
4

���: (28)

Here since modðdÞ :¼ ð ~DKabÞ ^ �eab ¼ dðKab ^ �eabÞ is
an exact form, it can be discarded. Also, ~D� is defined as
~D� ¼ d�þ 1

2�ab�~!ab, and similarly so is ~D �� . When

we insert all those findings into the total Lagrangian
L ¼ LG þ LD, we obtain a new Riemannian Lagrangian
which is equivalent to the weak Poincare gauge theory of
gravity,

~L ¼ a

2
~Rab ^ �eab þ 
a ^ Ta þ

�
�þ 3b2

4ð2c� aÞ
�
�1

þ i

2
ð ���� ^ ~D�� ~D ��^���Þ

þ i

�
mþ 3ðS þ bÞ

4ð2c� aÞ
�
����1; (29)

where 
a is a Lagrange multiplier 1-form constraining
torsion to zero. As seen above, pseudoscalar coupling
coefficient b shifts the bare cosmological constant and
the mass of the Dirac particle. In fact, the Dirac field gains
mass through torsional interactions.

IV. CIRCULARLY SYMMETRIC
ROTATING SOLUTIONS

We consider the metric

g ¼ �f2ðrÞdt2 þ h2ðrÞdr2 þ r2ðwðrÞdtþ d�Þ2; (30)

in plane polar coordinates ðt; r; �Þ. Here the metric func-
tion wðrÞ is concerned with rotation. We use the notation
and the techniques introduced in Ref. [22]. The following
choice of the orthonormal basis 1-forms

e0 ¼ fðrÞdt; e1 ¼ hðrÞdr; e2 ¼ rðwðrÞdtþ d�Þ
(31)

leads to the Levi-Civita connection 1-forms
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~!0
1 ¼ �e0 � �

2
e2; ~!0

2 ¼ ��

2
e1;

~!1
2 ¼ ��

2
e0 � �e2;

(32)

where we defined

� ¼ f0

fh
; � ¼ rw0

fh
; � ¼ 1

rh
: (33)

Here prime denotes the derivative with respect to r. Then
we write explicitly the full connection 1-forms with the
substitution of (22) and (32) into Eq. (4)

!01 ¼ ��e0 þ �� P
2

e2; !02 ¼ �þ P
2

e1;

!12 ¼ ��þ P
2

e0 � �e2: (34)

Under the assumption of � ¼ �ðrÞ we calculate the cur-
vature 2-forms

R0
1 ¼

�
��0

h
� �2 þ 3�2

4
þ P 2

4

�
e01

þ
�
P 0 � �0

2h
� ��

�
e12;

R0
2 ¼

�
���þ P 2 � �2

4

�
e02;

R1
2 ¼

�
P 0 þ �0

2h
þ ��

�
e01

þ
�
��0

h
� �2 þ P 2 � �2

4

�
e12: (35)

The next operation is to write down the Dirac equation (17)
and its adjoint

�0

h
¼ �

�
�þ �

2
þ
�
�

4
þ 3P

4
þm

�
�1

�
�; (36)

��0

h
¼ � ��

�
�þ �

2
�
�
�

4
þ 3P

4
þm

�
�1

�
: (37)

Now we can calculate explicitly the Dirac energy-
momentum 2-forms by using Eq. (19)

	0 ¼ �2�Se01 � Sð�þ P Þe12;
	1 ¼ �ð2PS þ 4mSÞe02;
	2 ¼ Sð�� P Þe01 � 2�Se12:

(38)

Then the first Eq. (21) turns out to be the following set of
the coupled ordinary differential equations:

�0

2h
þ ða� 2cÞP 0

2ah
þ ��� 2�S

a
¼ 0; (39)

�0

2h
� ða� 2cÞP 0

2ah
þ ��þ 2�S

a
¼ 0; (40)

� �0

h
� �2 þ 3�2

4
þ ða� 2cÞP 2

4a
þ Sð�� P Þ þ bP þ �

a

¼ 0; (41)

� �0

h
� �2 � �2

4
þ ða� 2cÞP 2

4a
� Sð�þ P Þ � bP � �

a

¼ 0; (42)

� ��� �2

4
þ ða� 2cÞP 2

4a
þ 2PS þ bP þ 4mS þ �

a

¼ 0: (43)

A. �ðrÞ ¼ �ðrÞ case
We firstly restrict our attention to those cases for which

� ¼ � ¼ 1

rh
: (44)

From the definitions (33) it immediately follows that

fðrÞ ¼ f0r; (45)

where f0 is a constant. Then, using (39)�(40) we arrive at

�ðrÞ ¼ �0

r2
; SðrÞ ¼ S0

r2
; (46)

where �0 and S0 are integration constants. But, (41) and
(42) causes a constraint among them

�0 ¼ � 2

a
S0: (47)

Inserting the above results and � ¼ 1=rh into (41)þ(42)
yields a solution for hðrÞ

hðrÞ ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h0 � AS20=2r

2 þ�r2
q

; (48)

where h0 is an integration constant, A is the shifted
coupling constant, and � is the effective cosmological
constant

A ¼ 4ð2a� cÞ
a2ða� 2cÞ ; � ¼ 4�ða� 2cÞ � 3b2

4aða� 2cÞ : (49)

Equation (42) gives a constraint between the integration
constants

h0 ¼ 4M

a
S0; (50)

whereM is a shifted Dirac massM ¼ 4mða�2cÞ�3b
4ða�2cÞ . Now we

calculate wðrÞ from ((33)ii)
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wðrÞ ¼ �
ffiffiffiffiffiffiffiffiffi
8f20
Aa2

s
arctan

2
64

ffiffiffiffiffiffiffi
2�

p
r2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�AS2

0 þ 8MS0r
2=aþ 2�r4

q
S0

ffiffiffiffi
A

p
3
75þ w0; (51)

where w0 is a constant. Here we notice the consistency
condition A, �> 0. Moreover, if we choose

w0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2
2f20
Aa2

s
; (52)

then as S0 ! 0, wðrÞ goes to zero. These results have been
cross-checked by the computer algebra system REDUCE
[23] and its package EXCALC [24].

Our final job is to work out the Dirac equation. Let us
consider a Dirac spinor field and its Dirac conjugate

�¼ c 1ðrÞ
c 2ðrÞ

 !
; �� :¼�y�0¼ �c ?

2 ðrÞ c ?
1 ðrÞ

� �
; (53)

where � denotes complex conjugation and c 1, c 2 are
complex functions. Then Eq. (36) reads in components as
follows:

c 0
1 ¼ �h�c 1 � �þ 3P þ 4m

4
hc 2; (54)

c 0
2 ¼ �h�c 2 � �þ 3P þ 4m

4
hc 1: (55)

We take the combinations c� ¼ c 1 � c 2 and write a
decoupled system of equations

c 0� ¼ �
�
�� �þ 3P þ 4m

4

�
hc�: (56)

The explicit solutions to these equations are given by

c�ðrÞ ¼ C�
r

e�½�A’ðrÞþM�ðrÞ�; (57)

where C� are the complex integration constants and

’ðrÞ ¼ a

4

Z
hðrÞSðrÞdr ¼

ffiffiffiffiffiffi
a2

8A

s
arctan

2
64

ffiffiffiffiffiffiffi
2�

p
r2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�AS2

0 þ 8MS0r
2=aþ 2�r4

q
S0

ffiffiffiffi
A

p
3
75; (58)

�ðrÞ ¼
Z

hðrÞdr ¼ 1ffiffiffiffiffiffiffi
4�

p ln

2
644MS0=aþ 2�r2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�ð�AS2

0 þ 8MS0r
2=aþ 2�r4Þ

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2A�S2

0 þ 16M2S2
0=a

2
q

3
75: (59)

Thus we can write the components of the Dirac spinor
as c 1 ¼ ðcþ þ c�Þ=2 and c 2 ¼ ðcþ � c�Þ=2.
Consequently, we write down explicitly the Dirac conden-
sate S :¼ i

4
��� ¼ i

8r2
ðC?�Cþ � C?þC�Þ. By comparing

this with ((46)ii), we observe

S0 ¼ i

8
ðC?�Cþ � C?þC�Þ: (60)

Here we want to remark that if CI ’s, I ¼ �;þ, are
the ordinary complex numbers [i.e., CICJ ¼ þCJCI,
ðCICJÞ? ¼ C?

I C
?
J , C

??
I ¼ CI] then S0 is a real number.

Similarly, if CI ’s are the Grassmann complex numbers
[i.e., CICJ ¼ �CJCI, ðCICJÞ? ¼ C?

JC
?
I , C

??
I ¼ CI] then

S0 is again a real number.

B. hðrÞ ¼ 1=fðrÞ case
We try to find a family of solutions in the form of

hðrÞ ¼ 1=fðrÞ. By substituting this into the Dirac equation
(36) with notation (53) and c� ¼ c 1 � c 2, we obtain

c�ðrÞ ¼ C�
r

e��ðrÞ; (61)

where

�ðrÞ ¼ �
Z � M

fðrÞ þ
j

2r2fðrÞ
�
dr: (62)

Here j is a constant. Then we calculate the Dirac conden-
sate as

SðrÞ ¼ S0

rfðrÞ ; (63)

where S0 ¼ i
8 ðC?�Cþ � C?þC�Þ. Now if we choose

S0 ¼ 0, then the set of Eqs. (39)–(43) accepts a family
of solutions as follows:

fðrÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�r2 �Mþ j2=r2

q
; hðrÞ ¼ 1=fðrÞ;

wðrÞ ¼ j=r2; (64)

whereM is an integration constant. This looks exactly the
same as the very well-known BTZ metric of general
relativity.
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V. CONCLUSION

We formulated the Dirac coupled gravity theory with the
most general nonpropagating torsion (the weak Poincare
gauge theory of gravity) in (1þ 2)-dimensions by using
the algebra of exterior differential forms. We obtained the
field equations by a variational principle. The space-time
torsion was calculated algebraically from the second field
equation in terms of the coupling constants and the qua-
dratic spinor invariant, the so-called the Dirac condensate.
Further, we reformulated the non-Riemannian theory in

terms of Riemannian quantities. Thus we could gain new
interpretations on the coupling coefficients and the mass of
Dirac field.
We then looked for rotating circularly symmetric solu-

tions and found a particular class of solutions which is
asymptotically AdS3. These solutions exhibit one singu-
larity at the origin and two more at the outer region. In
order to obtain the physical meaning of the above singu-
larities, we calculated the following pair of invariants. The
first is the curvature scalar

R ¼ ½3b2ð2a� 3cÞ � 6�ða� 2cÞ2�r4 þ ½12bða� cÞ � 8mða� 2cÞ2�S0r
2 þ 12cS2

0

aða� 2cÞ2r4

and the second is the quadratic torsion

�ðTa ^ �TaÞ ¼ 3ðbr2 þ 2S0Þ2
ða� 2cÞ2r4 :

As seen above, although the singularities at the outer region
are coordinate singularities, the singularity at the origin is
essential. Correspondingly, that solution seems to define a
black hole with two horizons. We also remark that if one
sets S0 ¼ 0, then both invariants turn out to be constant.

Finally we obtained a BTZ-type solution in the case
of vanishing condensate. Although we searched if
Eqs. (39)–(43) accepted the BTZ solution when S0 � 0,
we were not able to arrive at a definite answer. This fact,
however, does

not diminish the novelty of our solution because our space-
time is still non-Riemannian because of the nonzero tor-
sion, see Eq. (20). Accordingly, the autoparallel curves of
our geometry do not coincide with the geodesics of metric
(64). We also noticed that the coupling parameter b still
shifts the mass term of the Dirac field, see the last paren-
thesis of (29). That is, even if the Dirac field was massless,
it would gain mass through the b-contained interactions.
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