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Theoretical studies in gravitational wave astronomy have mostly focused on the information that can be

extracted from individual detections, such as the mass of a binary system and its location in space. Here

we consider how the information from multiple detections can be used to constrain astrophysical

population models. This seemingly simple problem is made challenging by the high dimensionality

and high degree of correlation in the parameter spaces that describe the signals, and by the complexity of

the astrophysical models, which can also depend on a large number of parameters, some of which might

not be directly constrained by the observations. We present a method for constraining population models

using a hierarchical Bayesian modeling approach which simultaneously infers the source parameters and

population model and provides the joint probability distributions for both. We illustrate this approach by

considering the constraints that can be placed on population models for galactic white dwarf binaries

using a future space-based gravitational wave detector. We find that a mission that is able to resolve

�5000 of the shortest period binaries will be able to constrain the population model parameters, including

the chirp mass distribution and a characteristic galaxy disk radius to within a few percent. This compares

favorably to existing bounds, where electromagnetic observations of stars in the galaxy constrain disk

radii to within 20%.
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I. INTRODUCTION

There is an old joke in astrophysics that with one source
you have a discovery, and with two you have a population.
With a population of sources it becomes possible to
constrain astrophysical models. Until recently, studies of
milli-Hertz gravitational wave science have either focused
on making predictions about the source populations [1–3],
or have looked at detection and parameter estimation for
individual source types [4–6]. These types of studies have
featured heavily in the science assessment of alternative
space-based gravitational wave mission concepts, where
metrics such as detection numbers and histograms of the
parameter resolution capabilities for fiducial population
models were used to rate science performance (see, e.g.,
Ref. [7]). These are certainly useful metrics, but they only
tell part of the story. A more powerful and informative
measure of the science capabilities is the ability to dis-
criminate between alternative population models.

Inferring the underlying population model, and the
attendant astrophysical processes responsible for the
observed source distribution, from the time series of a
gravitational wave detector is the central science challenge
for a future space mission. It folds together the difficult
task of identifying and disentangling the multiple over-
lapping signals that are in the data, inferring the individual
source parameters, and reconstructing the true population
distributions from incomplete and imperfect information.

The past few years have seen the first studies of the
astrophysical model selection problem in the context of
space-based gravitational astronomy. Gair and collabora-
tors [8–11] have looked at how extreme mass ratio inspiral
formation scenarios and massive black hole binary assem-
bly scenarios can be constrained by gravitational wave
observations using Bayesian model selection with a
Poisson likelihood function. Plowman and collaborators
[12,13] have performed similar studies of black hole popu-
lation models using a frequentist approach based on error
kernels and the Kolmogorov-Smirnov test. Related work
on astrophysical model selection for ground based detec-
tors can be found in Refs. [14,15].
We develop a simple yet comprehensive hierarchical

Bayesian modeling approach that uses the full multidimen-
sional and highly correlated parameter uncertainties of
a collection of signals to constrain the joint parameter
distributions of the underlying astrophysical models. The
method is general and can be applied to any number of
astrophysical model selection problems [16–18].
A remarkable feature of the hierachial Bayesian method

is that in its purest form it is completely free of selection
effects such as the Malmquist bias. By ‘‘purest form’’ we
mean where the signal model extends over the entire
source population, including those with vanishingly small
signal-to-noise ratio [19]. In practice it is unclear how to
include arbitrarily weak sources in the analysis, and in any
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case the computational cost would be prohibitive, so we are
forced to make some kind of selection cuts on the signals,
and this will introduce a bias if left uncorrected [20].

To illustrate the hierachical Bayesian approach and to
investigate where a bias can arise, we look at the problem
of determining the population model for white dwarf
binaries in the Milky Way. Future space-based missions
are expected to detect thousands to tens of thousands of
white dwarf binaries [11,21–24]. Here we focus on deter-
mining the spatial distribution and the chirp mass distribu-
tion, but in future work we plan to extend our study to
include a wider class of population characteristics such
as those described in Ref. [22]. Determining the galaxy
shape using gravitational wave observations of white dwarf
binaries will be an independent measure on the shape of
the galaxy to complement electromagnetic observations.
Additionally, the white dwarf binaries that are not detect-
able form a very bright stochastic foreground. Accurately
modeling the confusion foreground level is crucial for the
detection of extragalactic stochastic gravitational wave
signals [25].

The paper is organized as follows: The hierarchical
Bayesian approach is described in Sec. II and is illustrated
using a simple toy model in Sec. III. A more realistic toy
model is developed in Sec. IV to explore mismodeling
biases that can occur when using Gaussian approximations
to the likelihood function. In Sec. V the method is applied
to simulated observations of galactic white dwarf binaries,
and in Sec. the possibility of using the Fisher information
matrix approximation to the likelihood is explored.
Concluding thoughts follow in Sec. VII.

II. HIERARCHICAL BAYESIAN MODELING

Hierarchical Bayesian modeling has been around since
at least the 1950s [26–29], but it is only now becoming
widely known and used. The term ‘‘hierarchical’’ arises
because the analysis has two levels. At the highest level
are the space of models being considered, and at the lower
level are the parameters of the models themselves.
Hierachical Bayes provides a method to simultaneously
perform model selection and parameter estimation. In this
work we will consider models of fixed dimension that can
be parametrized by smooth functions of one or more hyper-
parameters. A hyperparameter is a parameter of the prior
distribution or the likelihood function. The joint posterior

distribution for the model parameters ~� and the hyper-
parameters ~� given data s follows from Bayes’ theorem:

pð ~�; ~�jsÞ ¼ pðsj ~�; ~�Þpð ~�j ~�Þpð ~�Þ
pðsÞ ; (1)

where pðsj ~�; ~�Þ is the likelihood, pð ~�j ~�Þ is the prior
on the model parameters for a model described by hyper-
parameters, ~�, pð ~�Þ is the hyperprior and pðsÞ is a normal-
izing factor

pðsÞ¼
Z
pðs; ~�Þd ~�¼

Z
pðsj ~�; ~�Þpð ~�j ~�Þpð ~�Þd ~�d ~�: (2)

The quantity pðs; ~�Þ can be interpreted as the ‘‘density of
evidence’’ for a model with hyperparameters ~�.
The integral marginalizing over the hyperparameters is

often only tractable numerically, and this can be computa-
tionally expensive. Empirical Bayes is a collection of
methods that seek to estimate the hyperparameters in vari-
ous ways from the data [30,31]. Markov chain Monte Carlo
(MCMC) techniques allow us to implement hierachical
Bayesian modeling without approximation by producing
samples from the joint posterior distributions, which

simultaneously informs us about the model parameters ~�
and the hyperparameters ~�. This approach helps reduce
systematic errors due to mismodeling, as the data help
select the appropriate model. An example of this is the
use of hyperparameters in the instrument noise model, such
that the noise spectral density is treated as an unknown to
be determined from the data [25,32,33].
Hierarchical Bayesian modeling can be extended to

discrete and even disjoint model spaces using the reverse
jump Markov chain Monte Carlo [34] algorithm. Each
discrete model can be assigned its own set of continuous
hyperparameters.

III. TOY MODEL I

As a simple illustration of hierarchical Bayesian
modeling, consider some population of N signals, each
described by a single parameter xi that is drawn from a
normal distribution with standard deviation �0. The mea-
sured values of these parameters are affected by instru-
ment noise that is drawn from a normal distribution with
standard deviation �. The maximum likelihood value for
the parameters is then �xi ¼ �0�1 þ ��2 where the �’s
are independent and identically distributed unit standard
deviates. Now suppose that we employ a population
model where the parameters are distributed according to
a normal distribution with standard deviation �. Each
choice of � corresponds to a particular model with pos-
terior distribution

pðxijs;�Þ¼ 1

pðs;�Þ
YN
i¼1

1

ð2���Þe
�ð �xi�xiÞ2=2�2

e�x2i =2�
2

(3)

and model evidence

pðs; �Þ ¼ 1

ð ffiffiffiffiffiffiffi
2�

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ �2

p ÞN
Y
i

e� �x2i =2ð�2þ�2Þ: (4)

To arrive at a hierarchical Bayesian model we elevate �
to a hyperparameter and introduce a hyperprior pð�Þ
which yields the joint posterior distribution
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pðxi; �jsÞ ¼ pðxijs; �Þpð�Þ
pðsÞ : (5)

Rather than selecting a single ‘‘best fit’’ model, hierarchical
Bayesian methods reveal the range of models that are con-
sistent with the data. In the more familiar, nonhierarchical
approach we would maximize the model evidence (4) to
find the model that best describes the data, which is here
given by

�2
ME ¼ 1

N

XN
i¼1

�x2i � �2: (6)

Since Varð �xiÞ ¼ �2
0 þ �2, we have

�2
ME ¼ �2

0 �Oð ffiffiffi
2

p ð�2
0 þ �2Þ= ffiffiffiffi

N
p Þ: (7)

The error estimate comes from the sample variance of the
variance estimate. In the limit that the experimental errors�
are small compared to thewidth of the prior�0, the error in�

scales uniformly as 1=
ffiffiffiffi
N

p
. The scaling is more complicated

when we have a collection of observations with a range of
measurement errors. Suppose that the measurement errors
are large compared to thewidth of the prior, and that we have
N1 observationswith standard error�1,N2 observationswith
standard error �2, etc., then the error in the estimate for � is

��2 ¼
�X

i

Ni

�4
i

��1=2
: (8)

Recalling that 1=�i scales with the signal-to-noise ratio of
the observation, we see that a few high signal-to-noise ratio
(SNR) observations constrain � far more effectively than a
large number of low SNR observations.

The above calculation shows that the maximum evi-
dence criteria provides an unbiased estimator for the model
parameter �0, but only if the measurement noise is con-
sistently included in both the likelihood and the simulation
of the �xi. Using the likelihood from Eq. (3) but failing to
include the noise in the simulations leads to the biased
estimate �2

ME ¼ �2
0 � �2. Conversely, including noise in

the simulation and failing to account for it in the likelihood
leads to the biased estimate �2

ME ¼ �2
0 þ �2. These same

conclusions apply to the hierarchical Bayesian approach,
as we shall see shortly.

A. Numerical simulation

The joint posterior distribution (5) can be explored using
MCMC techniques. To do this we produced simulated data
with N ¼ 1000, �0 ¼ 2 and � ¼ 0:4 and adopted a flat
hyperprior for �. The posterior distribution function for
�, marginalized over the xi, is shown in Fig. 1. The
distribution includes the injected value and has a spread
consistent with the error estimate of Eq. (7). The maximum-
a-posteriori (MAP) estimate for � has been displaced from
the injected value of �0 ¼ 2 by the simulated noise.

To test that there is no bias in the recovery of the model
hyperparameter�, we produced 30 different realizations of
the data and computed the average MAP value. Figure 2
shows the MAP value for each of these realizations and
the corresponding average. We see that as we average over
multiple realizations � does indeed converge to the
injected value. The blue line in Fig. 2 shows a biased
recovery for � when noise is not included in the data.

We instead recover � ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2
0 � �2

q
� 1:96.

IV. TOY MODEL II

The hierarchical Bayesian approach produces unbiased
estimates for the model parameters if the signal and the
noise (and hence the likelihood) are correctly modeled.
However, in some situations the cost of computing the
likelihood can be prohibitive, and it becomes desirable to
use approximations to the likelihood, such as the Fisher
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FIG. 1 (color online). The marginalized posterior distribution
function for �. The injected value is indicated by the vertical
black line.

 1.8

 1.85

 1.9

 1.95

 2

 2.05

 2.1

 2.15

 2.2

 0  5  10  15  20  25  30

α

Realization

MAP values with Noise
Average of MAP values with Noise

MAP values without Noise
Average of MAP values without Noise
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information matrix. For example, to investigate how the
design of a detector influences its ability to discriminate
between different astrophysical models, it is necessary to
Monte Carlo the analysis over many realizations of the
source population for many different instrument designs,
which can be very costly using the full likelihood.

To explore these issues we introduce a new toy model that
more closely resembles the likelihood functions encoun-
tered in gravitational wave data analysis. Consider a wave
form h0 that represents a single data point (e.g., the ampli-
tude of a wavelet or a Fourier component), which can be
parametrized in terms of the distance to the source d0. The
instrument noise n is assumed to be Gaussian with variance
�2. Here we will treat the noise level� as a hyperparameter
to be determined from the observations. Adopting a fiducial
noise level�0 allows us to define a reference signal-to-noise
ratio SNR2

0 ¼ h20=�
2
0. The likelihood of observing data s ¼

h0 þ n for a source at distance d with noise level � is then

pðsjd; �Þ ¼ 1ffiffiffiffiffiffiffi
2�

p
�
e�ðs�hÞ2=ð2�2Þ; (9)

where h ¼ ðd0=dÞh0. The likelihood is normally distributed
in the inverse distance 1=d, with a maximum that depends
on the particular noise realization n:

1

dML

¼ 1þ n=ð�0SNR0Þ
d0

: (10)

Now suppose that the distances follow a one-sided normal
distribution pðd � 0Þ ¼ 2ffiffiffiffiffi

2�
p

�
expð�d2=2�2

0Þ, and that we

adopt a corresponding model for the distance distribution
with hyperparameter � and a flat hyperprior.

We simulate the data from N ¼ 1000 sources with
�0 ¼ 2 and� ¼ 0:05. The values of�0 and�were chosen
to give a fiducial SNR ¼ 5 for d ¼ 2�0. In the first of our
simulations the value of � was assumed to be known, and
we computed the MAP estimates of � for 30 different

simulated data sets. As shown in Fig. 3, the average
MAP estimate for � converges to the injected value.
In contrast to the first toy model where only the

combination �2 þ �2 is constrained by the data, in this
more realistic toy model both the noise level � and the
model hyperparameter � are separately constrained.
Figure 4 shows the marginalized posterior distribution
function (PDFs) for both � and �. Tests using multiple
realizations of the data show that the MAP values of �
and � are unbiased estimators of the injected parameter
values.

A. Approximating the likelihood

For stationary and Gaussian instrument noise the

log likelihood for a signal described by parameters ~� is
given by

Lð ~�Þ ¼ � 1

2
ðs� hð ~�Þjs� hð ~�ÞÞ; (11)

where ðajbÞ denotes the standard noise-weighted inner
product, and we have suppressed terms that depend on
the noise hyperparameters. We can expand the wave

form hð ~�Þ about the injected source parameters ~�0:

hð ~�Þ ¼ hð ~�0Þ þ ��i �h;i þ ��i��j �h;ij þOð��3Þ; (12)

where � ~� ¼ ~�� ~�0, and it is understood that the deriva-

tives are evaluated at ~�0. Expanding the log likelihood we
find

Lð� ~�Þ ¼ � 1

2
ðnjnÞ þ ��iðnjh;iÞ � 1

2
��i��jðh;ijh;jÞ

þOð��3Þ: (13)

The maximum likelihood solution is found from
@L=@��i ¼ 0, which yields ��i

ML¼ðnjhjÞ�ij, where �ij

is the inverse of the Fisher information matrix�ij¼ðh;ijh;jÞ.
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FIG. 3 (color online). MAP values for 30 different realizations
of the toy model II. Using the full likelihood (red, solid) the MAP
values converge to the injected value, but with the Fisher matrix
approximation to the likelihood (blue, dotted) there is a bias.

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0.04

 1.8  1.9  2  2.1  2.2

p(
α|

s)

α
 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0.04

 0.02  0.04  0.06  0.08  0.1

p(
β|

s)

β

FIG. 4 (color online). PDFs for the prior hyperparameter � and
the noise level � for toy model II. Both are individually con-
strained in this model. The injected values are shown by the bold
vertical lines.

ADAMS, CORNISH, AND LITTENBERG PHYSICAL REVIEW D 86, 124032 (2012)

124032-4



Using this solution to eliminate ðnjh;iÞ from Eq. (13) yields

the quadratic, Fisher information matrix approximation to
the likelihood

Lð ~�Þ ¼ const� 1

2
ð�i � �i

MLÞð�j � �j
MLÞ�ij: (14)

This form of the likelihood can be used in simulations by
drawing the ��i

ML from a multivariate normal distribution
with covariance matrix �ij.

In our toy model �dd ¼ SNR2
0�

2
0=ð�2d20Þ, and LðdÞ ¼

�SNR2
0�

2
0ðd� dMLÞ2=ð2�2d20Þ. The approximate likeli-

hood follows a normal distribution in d while the full
likelihood follows a normal distribution in 1=d. For signals
with large SNR this makes little difference, but at low SNR
the difference becomes significant and results in a bias in
the recovery of the model hyperparameters, as shown
in Fig. 3. In this instance there is a simple remedy: using
u ¼ 1=d in place of d in the quadratic approximation to the
likelihood exactly reproduces the full likelihood in this
simple toy model. However, it is not always so easy to
correct the deficiencies of the quadratic, Fisher information
matrix approximation to the likelihood.

V. WHITE DWARF BINARIES IN THEMILKYWAY

To illustrate how the hierarchical Bayesian approach can
be applied to an astrophysically relevant problem, we
investigate how population models for the distribution of
white dwarf binaries in the Milky Way galaxy can be
constrained by data from a space-based gravitational
wave detector. Several studies have looked at parameter
estimation for individual white dwarf binaries in the
Milky Way [35–37]. We extend these studies to consider
how the individual observations can be combined to infer
the spatial and mass distributions of white dwarf binaries in
the Galaxy.

We use the Laser Interferometer Space Antenna (LISA)
[38] as our reference mission. We focus this analysis on
short-period galactic binaries, with gravitational wave fre-
quencies above 4 mHz. Our conclusions would be little
changed if we considered the recently proposed eLISA
[11] mission instead, as both are able to detect roughly
the same number of galactic binaries in the frequency
bands considered here. For the population model we are
considering, which was also used in the mock-LISA data
challenges [4], there are total of �40; 000 detectable
binaries for the original LISA mission assuming a 4 year
lifetime, and �4; 500 for the eLISA mission assuming a
2 year lifetime. However, for the frequencies above 4 mHz
that we focus on here, the detections numbers are compa-
rable: �5000 for LISA and �2500 for eLISA.

The 4 mHz lower limit is chosen to simplify the analysis
in two ways. First, it avoids the signal overlap and source
confusion problems that become significant at lower fre-
quencies [21], and second, it circumvents the issue of
sample completeness and Malmquist selection bias since

LISA’s coverage of the galaxy is complete at high frequen-
cies. This claim is substantiated in Fig. 5 showing the
cumulative percentage of binaries detected as a function
of frequency for a 4 year LISA mission. A given frequency
bin represents the percentage of binaries of that frequency
and higher that are detected. All binaries above �4 mHz
are detectable by LISA, of which there are �5000.
It is possible to extend our analysis to include all detect-

able white dwarf binaries if we were to properly account
for the undetectable sources. One way to do this is to
convolve the astrophysical model priors by a function
that accounts for the selection effects [20] so that we are
working with the predicted observed distribution rather
than the theoretical distribution. Another approach is to
marginalize over the undetectable signals [19].
The high frequency signals are not only the simplest to

analyze, but they also tend to have the highest signal-to-
noise ratios, the best sky localization and the best mass
and distance determination due to their more pronounced
evolution in frequency. When simulating the population
of detectable sources we will assume that binaries of all
frequencies above 4 mHz are homogeneously distributed
throughout the Galaxy and share the same chirp mass
distribution. In reality the population is likely to be more
heterogenous, and more complicated population models
will have to be used.

A. Likelihood

The likelihood for a single source is given by

pðsj ~�Þ ¼ Ce�ðs�hð ~�Þjs�hð ~�ÞÞ=2: (15)

Here pðsj ~�Þ is the likelihood that the residual s� hð ~�Þ is
drawn from Gaussian noise, where s is the data, and hð ~�Þ is
the signal produced in the detector by a source described

by parameters ~�. The simulated data s ¼ hð ~�0Þ þ n
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FIG. 5 (color online). The percentage of sources which are
detectable as a function of frequency. Virtually 100% of the
white dwarf binaries in the Milky Way above 4 mHz would be
detected by LISA.
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includes a wave form hð ~�0Þ and a realization of the LISA
instrument noise n. The normalization constant C depends
on the instrument noise levels, but is independent of the
wave form parameters.

The wave form for a white dwarf binary is well approxi-
mated by

hþðtÞ ¼ 1

d

4GM�2

c4

�
1þ cos2�

2

�
cosð�tÞ

h�ðtÞ ¼ 1

d

4GM�2

c4
cos� sinð�tÞ;

(16)

where � ¼ 2�f. We have 8 parameters that describe a
white dwarf binary signal, the frequency f, the distance to
the source d, the chirp mass M, the inclination angle �, a
polarization angle c , a phase angle ’0, and sky location
parameters � and �. To leading order, the frequency
evolves as

_f ¼ 96�

5
ð�MÞ5=3f11=3: (17)

Sources with _fT2SNR� 1, where T is the observation
time, provided useful measurements of the chirp mass
M and the distance d [39,40]. The strong f dependence
in Eq. (17) is the reason why high frequency binaries are
the best candidates for placing strong constraints on the
distance and chirp mass.

B. Model for the galaxy

We adopt a bulge plus disk model for the galaxy shape
[41–44]. Choosing the x-y plane as the plane of the galaxy,
the density of stars in the galaxy is given by

	ðx;y;zÞ¼	0ðAe�r2=R2
bþð1�AÞe�u=Rdsech2ðz=ZdÞÞ: (18)

Here, r2 ¼ x2 þ y2 þ z2, u2 ¼ x2 þ y2, Rb is the charac-
teristic radius for the bulge, and Rd and Zd are a character-
istic radius and height for the disk, respectively. The
quantity 	0 is a reference density of stars, and the coeffi-
cient A, which ranges between 0 and 1, weights the number
of stars in the bulge versus the number in the disk. We
produced synthetic galaxies using the catalog of binaries
provided by Gijs Nelemans for the mock-LISA data
challenges [4,45].

With appropriate normalization, the spatial density 	
becomes our prior distribution for the spatial distribution
of galactic binaries. The parameters of the density distribu-
tion A, Rb, Rd and Zd become hyperparameters in the
hierarchical Bayesian analysis. Each set of values for the
four parameters corresponds to a distinct model for the shape
of the galaxy. For our simulations, we chose a galaxy with
A¼0:25, Rb¼500 pc, Rd¼2500 pc and Zd ¼ 200 pc.

C. Chirp mass prior

The distribution of sources as a function of frequency
and chirp mass is not chosen by hand, but rather results

from a complicated population synthesis model that takes
into account many physical processes that affect binary
formation and evolution [41–44]. We use the chirp mass
distribution from a Monte Carlo realization of the popula-
tion synthesis model to develop a parametrized analytic fit
to the distribution, which we then use as a parametrized
prior in our analysis.
Figure 6 shows the chirp mass distribution for binaries in

our simulated galaxy. We use this distribution to construct
a hyperprior on the chirp mass, approximated by the fol-
lowing distribution:

pðMÞ ¼ C

ðMM0
Þ�a þ a

b ðMM0
Þb ; (19)

where M0, a and b are hyperparameters in our model.
C is the normalization constant which can be calculated
analytically and is given by

C ¼ M0�
b

aþ1
aþba�aþ1

aþb

ðaþ bÞ sin�ðb�1Þ
aþb

: (20)

M0 is the mode of the distribution. The hyperparameters a
and b determine the width of the distribution, which can be
seen by calculating the full width at half maximum
(FWHM). It is given by

FWHM’M0ð½2ðb=aþ1Þ�1=b�½2ða=bþ1Þ��1=aÞ: (21)

We further assume that the orbital evolution is due only to
the emission of gravitational waves, and is thus adequately
described by Eq. (17). In principle, one would want to be
more careful and consider tidal effects and mass transfer

[46] as possible contributions to _f. However, it is expected
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FIG. 6 (color online). The chirp mass distribution of the 5000
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that the high frequency sources we are focusing on will be
mostly detached white dwarf binaries where tidal or mass
transfer effects are unlikely to be significant [47].

Our ability to measure the hyperparameters of the spatial
distribution depends on how well we measure the sky
location and distance for each binary. For many sources,
the distance is poorly determined because it is highly
correlated with the chirp mass. For slowly evolving sys-
tems, the distance determination is significantly improved
by having a well determined chirp mass prior. If effect,
systems with sufficiently high frequency, chirp mass
and/or SNR provide tight constraints on the chip mass

distribution, which in turn improves the distance determi-
nation for lower SNR, less massive or lower frequency
sources.

VI. RESULTS

We are able to efficiently calculate the full likelihood for
each source [Eq. (15)] using the fast wave form generator
developed by Cornish and Littenberg [32]. The following
results are all derived from simulations using the full like-
lihood. Using the same MCMC approach from our toy
models, we sample the posterior and get PDFs for source
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distribution from which the binaries were drawn.
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and model parameters simultaneously. We check for
convergence by starting the chains at different locations
in the prior volume and find that regardless of starting
location, the chains converge to the same PDFs.

Our procedure successfully recovers the correct chirp
mass distribution, as shown in Fig. 6, and is able to mean-
ingfully constrain the parameters of the galaxy distribution
and chirp mass distribution models, with PDFs shown in
Figs. 7 and 8, respectively.

We ran simulations with 100, 1000 and 5000 binaries to
show how the constraints on the galaxy hyperparameters
improved as we include more sources (for comparison,
eLISA is expected to detect between 3500–4100 white
dwarf binaries during a 2 year mission lifetime [11]).
The chains ran for 1 million, 500 k and 100 k iterations,
respectively. Even for a relatively modest number of
detections we begin to get meaningful measurements on
the population model of white dwarf binary systems.
The more binaries we use in our analysis the tighter our
constraints on the hyperparameters.

Table I lists the recovered MAP values and the variance
of the marginalized posterior distribution function for
each hyperparameter. Gravitational wave observations
would be very competitive with existing electromagnetic
observations in constraining the shape of the galaxy
[48,49]. Making direct comparisons between our results
to those in the literature is complicated, as the actual
values of the bulge and disk radii are very model depen-
dent. For example, Juric uses a model where the galaxy is
comprised of both a thin and thick disk. With gravita-
tional wave data in hand, this comparison could easily be
made by trivially substituting the density profile used
here.
What matters for this proof-of-principle study is how

well the parameters can be constrained. In the models of
Juric et al. constraints for the disk radii are around 20%.
We find similar accuracy when using a pessimistic popu-
lation of 100 systems. Adopting a source catalog that
is more consistent with theoretical predictions, we find
constraints for the disk parameters as low as 1.5%—a
substantial improvement over the current state-of-the-art
electromagnetic constraints.

A. Approximating the likelihood

While we happen to have a very efficient method for
computing the full likelihood for galactic binaries, this is
not always the case. For other signal types, such as extreme
mass ratio inspirals [50], the full likelihood can be very
expensive to compute, posing problems if we wish to do
extensive studies of many astrophysical models or detector
configurations. For such exploratory studies it is preferable
to use the Fisher information matrix, which provides a good
approximation to the likelihood (14) for signals with high
SNR [51] However, as we sawwith the toy model in Sec. IV,

TABLE I. MAP values and variances for the galaxy hyper-
parameters when using 100, 1000 and 5000 galactic binaries in
the analysis. The simulated values were A ¼ 0:25, Rb ¼ 500 pc,
Rd ¼ 2500 pc and Zd ¼ 200 pc.

100 1000 5000

Parameter MAP 
 MAP 
 MAP 


A 0.262 0.047 0.226 0.0157 0.249 0.0074

Rb (pc) 440 58.9 490 17.1 480 8.38

Rd (pc) 2465 237.5 2584 70.2 2461 32.4

Zd (pc) 193 20.8 201 7.02 195 3.25

M0 0.226 0.0063 0.208 0.0018 0.205 0.00088

FWHM 0.07 0.0094 0.071 0.0026 0.076 0.0014
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FIG. 9 (color online). PDFs from a simulation using 5000 binaries for the four galaxy model hyperparameters for the full likelihood
(red, solid), a Fisher approximation in d (green, dotted) and a Fisher approximation in 1=d (blue, dashed).
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this can lead to biases in the recovered parameters.
The Fisher matrix �ij is not a coordinate invariant quantity,

and we can at least partially correct the bias by reparame-
trizing our likelihood. Just as in Sec. IV, instead of using the
distance d as a variable, we can instead use 1=d, which
provides a much better approximation to the full likelihood.
We test these shortcuts by redoing the analysis of the
galactic population using the Fisher matrix approximation
to the likelihood (both with d and 1=d as parameters) and
compare to the results from the previous analysis using the
full likelihood. Figure 9 shows PDFs for the galaxy hyper-
parameters using the three different methods for computing

pðdj ~�Þ with the full sample of 5000 binaries.
We find that the approximation using 1=dmatches the full

likelihood better than the likelihood parametrized with d;
however, there are additional discrepancies due to nonqua-
dratic terms in the sky location f�;�g that we have not
accounted for. The dependence of the wave form on f�;�g
is more complicated than the distance, and is not so easily
corrected by a simple reparametrization. The approximation
could be improved by carrying the expansion of the like-
lihood beyond second order; however, this is computation-
ally expensive and can be numerically unstable (though not
always [52]).

If we analyze several realizations of the galaxy using
the three different likelihood functions and average the
results, we find the biases are persistent for the approxi-
mate methods. Figure 10 shows the MAP values and the
average of the MAP values for 10 realizations of our
fiducial galaxy model. The biases in the recovered disk
radius and disk height are particularly pronounced when
using the Fisher matrix approximation to the likelihood
parametrized with d.

VII. CONCLUSION

We have demonstrated a general hierarchical Bayesian
method capable of constraining the model parameters for a
population of sources. In the particular case of white dwarf
binaries in the Milky Way, we can constrain the spatial
distribution of the galaxy to levels better than current
electromagnetic observations using the anticipated number
of systems detectable by space-based gravitational wave
detectors. Even if the currently held event rates for white
dwarf binaries turn out to be optimistic by more than an
order of magnitude, the constraints possible with a gravi-
tational wave detector are comparable to our current
estimates of the Milky Way’s shape.
When the data from a space-borne detector has been

collected, the resolvable white dwarf binaries will be
regressed from the data, leaving behind a confusion-
limited foreground which will significantly contribute to
the overall power in the data around �1 mHz. Measuring
the overall shape of the galaxy as demonstrated here will
provide additional means to characterize the level of the
confusion noise. As we will show in an upcoming paper,
we can then use the detailed understanding of the fore-
ground signal to detect a stochastic gravitational wave
background at levels well below the confusion noise.
Analyzing simulated data with the full likelihood is

computationally taxing and, when performing a large suite
of such studies, could prove to be prohibitive. To mitigate
the cost of such analyses, we test a much faster approach
(approximately 50 times faster), using the Fisher matrix
approximation to the likelihood. We find the results are
significantly less biased by the Fisher approximation when
using 1=d as the parameter that encodes the distance to the
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source. This simple adjustment gives adequately reliable
results in significantly less time than the brute-force cal-
culation, and will provide an additional, useful, metric to
gauge the relative merits of proposed space-based gravita-
tional wave missions.
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